
ibm.com/redbooks

Front cover

Using Informix
Dynamic Server
with WebSphere

Chuck Ballard
Eduardo Akisue

Alexander Koerner
Martin Lurie

Pagadala J. Suresh

Informix Dynamic Server for
data management

WebSphere for Web application
development productivity

Solution integration and
easy implementation

International Technical Support Organization

Using Informix Dynamic Server with WebSphere

June 2003

SG24-6948-00

© Copyright International Business Machines Corporation 2003. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (June 2003)

This edition applies to Informix Dynamic Server Version 9.4, WebSphere Application Server Version 5, and
WebSphere Studio Application Developer Version 5. Windows/2000 was used as the operating environment
for WebSphere Studio, and SuSE Linux V8.0 was used as the operating environment for IDS and WebSphere
Application Server.

Note: Before using this information and the product it supports, read the information in “Notices” on
page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
Executive summary . xiii
The sample applications. xiv
Highlights and benefits . xiv
The team that wrote this redbook. xv
Become a published author . xviii
Comments welcome. xviii

Introduction. xix

Chapter 1. Informix Dynamic Server: An overview 1
1.1 Informix database family . 2
1.2 Understanding Informix Dynamic Server (IDS) . 3
1.3 Feature highlights . 8

Chapter 2. Installing and configuring IDS V9.40 . 21
2.1 Taking advantage of new IDS 9.40 features . 22
2.2 Installing IDS 9.40 on SuSE Linux V8 . 31
2.3 Configuring IDS for use with WebSphere . 56

Chapter 3. WebSphere V5: An overview . 63
3.1 What is WebSphere? . 64
3.2 WebSphere product family . 67
3.3 WebSphere Application Server (WAS) . 68

3.3.1 J2EE: Overview. 68
3.3.2 WebSphere Application Server: Architecture 71
3.3.3 WebSphere Application Server: Packages . 73

3.4 WebSphere Studio Application Developer (WSAD) 77
3.4.1 Role-based development model . 78
3.4.2 WebSphere Studio Application Developer - Packages 80

3.5 WebSphere Studio integration with Informix 4GL 84

Chapter 4. Installing and configuring WebSphere Studio V5 85
4.1 Installing WSAD on Windows/2000. 86
4.2 Configuring WSAD for IDS . 87
4.3 A sample application using Database Web Pages 88
© Copyright IBM Corp. 2003. All rights reserved. iii

4.3.1 Deploying the application in WebSphere Application Server 102
4.3.2 Summary. 102

Chapter 5. Installing and configuring WebSphere Application Server . 103
5.1 Installing WAS on SuSE Linux V8.0 . 104

5.1.1 Verifying the installation . 111
5.2 Configuring WAS for use with IDS . 114

5.2.1 Configuring the Informix JDBC Provider . 114
5.2.2 Verifying the configuration. 115

5.3 WebSphere Administration Repository . 118

Chapter 6. Integrating IDS and WebSphere . 121
6.1 Scenarios for deploying IDS and WebSphere . 122

6.1.1 Implementation scenarios . 123
6.2 High availability considerations . 125

6.2.1 IDS high availability and WebSphere . 127
6.2.2 High availability with HDR . 127
6.2.3 JDBC support for IDS and HDR . 128

6.3 Systems architecture . 129
6.4 Connecting IDS and WebSphere . 130

6.4.1 Using a Data Source object . 131
6.4.2 Configure Informix Data Source on WebSphere Studio 132
6.4.3 Configure Informix Data Source on WebSphere Application Server136

Chapter 7. Working with IDS and WebSphere . 143
7.1 Introduction to the sample applications . 144
7.2 Extending the Database Web Pages sample application 144

7.2.1 Steps to extend the sample application . 145
7.2.2 Creating a JSP to integrate the application modules 149
7.2.3 Deploying the application . 151

7.3 Sample application: Container Managed Persistent Bean 152
7.3.1 The ITSOStores sample application . 152
7.3.2 Steps for creating a CMP bean . 152
7.3.3 Deploying the application . 154

7.4 A sample application using JMS and IDS . 158
7.4.1 The ITSOStoresJMS sample application . 159
7.4.2 Preparing the sample application for deployment 160
7.4.3 Store and forward mechanism . 163

7.5 Managing transactions . 165
7.5.1 Java Transaction Service (JTS) . 166
7.5.2 Local and global transactions in WebSphere 167
7.5.3 Bean-managed transactions (BMT) . 168
7.5.4 Container-managed transactions (CMT) . 168
7.5.5 Transactional programming considerations 171
iv Using Informix Dynamic Server with WebSphere

7.5.6 General guidelines for using transactions . 172

Chapter 8. IDS, WebSphere, and XML . 175
8.1 An introduction to XML . 176

8.1.1 XML usage scenarios . 177
8.2 IBM Informix Dynamic Server (IDS) and XML. 179

8.2.1 XML support in database systems . 180
8.2.2 What’s available with IDS . 181

8.3 Dynamic XML mapping with WSAD V5 and IDS. 186
8.3.1 XML tools in WSAD V5 . 186
8.3.2 The SQLtoXML and XMLtoSQL framework in WSAD 187
8.3.3 Create a wizard based SQLtoXML sample project 188
8.3.4 Enhance the sample project with the XMLtoSQL class library 200
8.3.5 Additional dynamic XML mapping options in WSAD V5 204

Chapter 9. IDS, Web services, and WebSphere . 209
9.1 Introduction to Web services . 210

9.1.1 Web service standards . 211
9.1.2 WSAD V5 tools for Web services development 213

9.2 Using IDS as a Web service provider . 214
9.2.1 IDS 7/9 Web services based on EJBs . 214
9.2.2 IDS 7/9 Web services based on Java beans 215
9.2.3 DADX Web services and IDS 7/9 . 221

9.3 Using IDS 9 as a Web service consumer . 233
9.3.1 IDS 9 and J/Foundation . 235
9.3.2 Installation and configuration of IDS 9 and AXIS for the examples. 236
9.3.3 The basic IDS Web service consumer development steps 238
9.3.4 The AXIS WSDL2Java tool . 239
9.3.5 A simple IDS Web service example — Currency Exchange project 239
9.3.6 A complex IDS Web service example — Google search 245

Chapter 10. WebSphere Portal Server . 253
10.1 An introduction to WebSphere Portal . 254

10.1.1 WebSphere Portal Experience . 256
10.1.2 Industry impact and acceptance . 257

10.2 WebSphere Portal architecture . 258
10.2.1 WebSphere Portal tooling . 261

10.3 WebSphere Portal . 261
10.3.1 Portal concepts . 261
10.3.2 Portlets . 262
10.3.3 Portlet lifecycle . 267
10.3.4 Portlet events and messaging . 268
10.3.5 Page aggregation . 270

10.4 Portlet solution patterns. 273
 Contents v

10.5 IDS and WebSphere portal server . 276
10.5.1 Configuring IDS for WebSphere Portal . 277

Chapter 11. WebSphere MQ, messaging, and IDS 279
11.1 WebSphere MQ overview . 280
11.2 WebSphere and messaging . 283

11.2.1 Overview . 283
11.2.2 Java Message Services (JMS) . 283
11.2.3 WebSphere Messaging Engines. 283

11.3 WebSphere MQ Integration with IDS . 285
11.3.1 MQSeries Transactional Support for IDS 286
11.3.2 IBM Informix MQSeries DataBlade . 286

Chapter 12. IBM Informix 4GL and WebSphere . 289
12.1 IBM Informix 4GL: Protecting your investment 290

12.1.1 Informix 4GL . 290
12.1.2 EGL and WebSphere . 291
12.1.3 Extending EGL to support I4GL . 292
12.1.4 Moving from I4GL to EGL . 294
12.1.5 The value of WebSphere Application Developer 294

Chapter 13. Implementation hints and tips . 295
13.1 Our implementation experience . 296

13.1.1 Installing SuSE 8.0 Linux . 296
13.1.2 Installing IDS on SuSE 8.0 Linux . 298
13.1.3 Performance tuning guidelines . 303
13.1.4 Determining the port number of IDS on Linux. 305
13.1.5 Using sequence objects rather than serial data type 307
13.1.6 WebSphere and IDS . 307
13.1.7 Install error with Redhat 8.0 Linux. 308
13.1.8 An alternative Java UDR deployment method 308

Appendix A. SQLtoXML and XMLtoSQL Java class description 311
Class com.ibm.etools.sqltoxml.SQLToXML . 311

Constructors . 311
Methods . 311

Class com.ibm.etools.xmltosql.XMLToSQL . 317
Constructors . 318
Methods . 318

Class com.ibm.etools.sqltoxml.QueryProperties . 323
Constructor overview . 323
Method overview . 323

Class com.ibm.etools.xmltosql.SQLProperties . 324
Field overview . 324
vi Using Informix Dynamic Server with WebSphere

Constructor overview . 325
Method overview . 325

Class com.ibm.etools.sqltoxml.BaseProperties . 325
Constructor overview . 325
Method overview . 326

Appendix B. DADX file format . 327

Appendix C. IDS and WSAD on Windows . 333
Configuring IDS and WSAD for Windows . 334
Windows/Linux Differences . 340

Appendix D. Additional material . 343
Locating the Web material . 343
Using the Web material . 343

Glossary . 345

Abbreviations and acronyms . 347

Related publications . 349
IBM Redbooks . 349
Other publications . 349
Online resources . 350
How to get IBM Redbooks . 350

 Index . 351
 Contents vii

viii Using Informix Dynamic Server with WebSphere

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are
inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.
© Copyright IBM Corp. year. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Approach®
AIX®
CrossWorlds®
CICS®
DataBlade™
Domino™
DB2 Universal Database™
DB2®

™
^™
eServer™

Everyplace®
IBM®
ibm.com®
IMS™
Informix®
iSeries™
Lotus Notes®
Lotus®
MQSeries®
Notes®
OS/400®

Redbooks™
Redbooks(logo) ™
RS/6000®
Sametime®
SecureWay®
SupportPac™
Tivoli®
VisualAge®
WebSphere®
z/OS®
zSeries®

The following terms are trademarks of International Business Machines Corporation and Rational Software
Corporation, in the United States, other countries or both.

ClearCase® Rational Software Corporation® Rational®

The following terms are trademarks of other companies:

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
x shortitle

Preface

This IBM Redbook is primarily intended for use by IBM Informix Customers and Business
Partners. Its purpose is to provide information that will enable the implementation of a robust
Web application development environment that can be built with the WebSphere family of
products, and based on an IBM Informix Dynamic Server.

The information in this redbook will help you understand the WebSphere family of product
packages and Informix Dynamic Server, and how they can be used together. You can even
get first-hand experience using the products together. The redbook takes you through the
step-by-step process of installing, configuring, using, and managing Informix Dynamic Server
Version 9.4 (IDS), WebSphere Application Server Version 5, and WebSphere Studio
Application Developer Version 5. And, there are step-by-step instructions that enable you to
develop sample applications (using WebSphere Studio) to demonstrate WebSphere and IDS
working together in Windows/2000 and Linux operating environments.

In addition to the application exercises, there are many other related topics of interest in this
redbook. The following is a brief description of the topics and how this book is organized:

� The Executive Summary provides a high level overview of the contents of the redbook.
|It enables the reader to get a basic understanding of the contents and conclusions
presented in this redbook, without the requirement of reading all the detailed and technical
supporting information.

� Chapter 1 gives an overview of the Informix family of database products, with a focus on
the Informix Dynamic Server (IDS) 9.4. This is a brief overview, and is not intended to be
an exhaustive review of IDS. It discusses the basic architecture along with a number of the
key functions and features of IDS, with a focus on those used in an integrated
environment with WebSphere. You will get a good understanding of the power and
capabilities, and the benefits, of using IDS.

� Chapter 2 guides you through the process of installing and configuring IDS V9.4. Some of
the new IDS V9.4 functions and features will be discussed, but the focus in on giving you
step-by-step instructions that will help you implement IDS V9.4 on Linux (SuSE V8) and
configuring it for use with WebSphere V5.

� Chapter 3 presents an overview of WebSphere V5 family of product packages.
This will be good information for Informix customers who may not yet be familiar with
WebSphere. The focus will be on those product packages that will be used in creating a
robust application development environment, in conjunction with IDS. There are many
product packages in the WebSphere family, but this chapter focuses on those that
comprise the WebSphere foundation. And, in particular, WebSphere Application Server
and WebSphere Studio Application Developer. Because of their relative importance to this
environment, we also discuss WebSphere Portal Server, in Chapter 10, and WebSphere
MQ in Chapter 11. Actually, some of the functionality in MQ is used in the sample
applications exercises in the form of Java™ Messaging Services.

� Chapter 4 guides you through the step-by-step process of installing and configuring
WebSphere Studio Application Developer. It was installed under Windows/2000, and the
focus was on configuration, and integration with IDS.

� Chapter 5 guides you through the step-by-step process of installing and configuring
WebSphere Application Server. It was installed under the SuSE V8.0 Linux operating
environment, and the focus was on configuration, and integration with IDS. There is also a
related topic covering the WebSphere Administration Repository.
© Copyright IBM Corp. 2003. All rights reserved. xi

� Chapter 6 provides more detail on the implementation and integration aspects of
WebSphere and IDS. For example, it describes connectivity and integration options, and
also alternative implementation scenarios that may be used. The step-by-step process to
create a data source on both WebSphere Studio and WebSphere Application Server is
given to demonstrate the integration. The result of these exercises is the ability to perform
queries from either WebSphere environment and select data from the IDS database.

� Chapter 7 gets into more detail on working with WebSphere and IDS. For example, it
discusses how to create a Java Server Page, how to create a J2EE Container Managed
Persistent Bean, and how container managed persistence works. It also takes you
through the step-by-step development of sample applications using WebSphere Studio
Application Developer. The applications can perform selects, inserts, updates, and
deletes against the IDS database. The application makes use of Java Messaging
Services, which results in a configuration that could also be used in a distributed systems
environment. It also provides guidance for managing transactions.

� Chapter 8 introduces you to the topic of XML, an industry standard that supports
integration and interoperability by enabling data and document interchange. There is an
overview of XML and application examples to demonstrate its use. Related topics such as
Dynamic XML Mapping are also discussed.

� Chapter 9 discusses the use of IBM Informix Dynamic Server as a foundation for the
implementation of Web services. It describes and defines a Web Services and considers
the use of IDS as both a Web Services provider and a Web Services consumer. Examples
are provided to demonstrate the use of IDS in this environment.

� Chapter 10 describes another WebSphere module, the Portal Server. This is an important
and strategic element when creating a Web presence. It provides a single point of
interaction with dynamic information, applications, processes, and people. This chapter
provides an introduction to WebSphere Portal Server and its concepts, and describes how
to configure IDS for use with it.

� Chapter 11 provides a high level overview of WebSphere MQ. Though not directly used in
this project, it is another important member of the WebSphere family of products used in
support of distributed systems environments. WebSphere MQ can enable integration by
helping applications exchange information across multiple heterogeneous platforms. It
was used indirectly in this project during the development of our sample application, in the
form of Java Message Services.

� Chapter 12 discusses product directions for an important and widely implemented
Informix product, 4GL. It describes the plans for protecting the Informix customer
investment in 4GL, extending the functionality, and integrating it into WebSphere Studio.

� Chapter 13 documents a number of “hints and tips” that are provided to make your
implementation of WebSphere and IDS go easier, faster, and more smoothly. These are
typically unexpected issues we encountered during the project that we documented so
you could be aware of them. Having this information available will save you time and
provide the solutions you need during your implementation. We also provide some
information regarding other functional areas of importance, such as improving
performance.

� Appendix A contains additional information about the SQLtoXML and the XMLtoSQL
Java classes. These were described and discussed in Chapter 8.

� Appendix B provides the complete DADX syntax. It is informational, and was used in the
Web Services scenario in Chapter 9.

� Appendix C provides an overview of the installation and environment configuration of IDS
in a Microsoft® Windows® environment. We focused on Linux in the previous chapters,
but wanted to provide instructions for those who may prefer using Windows.
xii Using Informix Dynamic Server with WebSphere

� Appendix D provides additional material for this redbook that can be downloaded from
the Redbooks Internet site. There are four sample applications, a Sample Applications
Implementation Guide, and the Master.css file that is required for the applications,
contained there for your use.

Executive summary
This redbook provides, in one document, information you need to understand about how the
combination of WebSphere and Informix Dynamic Server can provide you with a powerful
and flexible e-business (Web application development) environment. We provide a high level
overview of the products for an understanding of the important capabilities that enable such
an environment. In addition, we provide detailed and practical guidelines on how to install,
configure, integrate, and use these products for development of a robust e-business
environment.

Developing a strong presence on the Internet is critical to the success of any business — it is
the future unfolding. As such it deserves your attention, and significant consideration in the
development of a strategy and direction for developing such a presence. It is too important to
treat lightly or to believe you have multiple opportunities, or that the competition will wait for
you to “get it right”.

IBM is a leader in providing products that can help enable a robust e-business environment.
They have invested heavily in research, and development of solutions to address it. The
result is a strategic infrastructure software platform for dynamic e-business, called
WebSphere. This is not just a product, but a comprehensive family of products designed on
open standards. It has been designed for easy implementation and use, but with the flexibility
you need as you grow and change.

IBM is also a leader in delivering high volume and high function data management products,
and relational database management systems in particular. With the acquisition of Informix,
IBM has gained database market share and the Informix portfolio of data management
products. The Informix products are also flexible and robust, and have been serving the
Informix customer set for a long period of time. Becoming part of the IBM family, the Informix
customers now have even better access to, and incentive to use, other IBM products. And, in
particular, WebSphere.

You should read this redbook and consider the benefits of developing your e-business
environment on these product platforms. It is written to help you easily implement the
products and demonstrate for yourself the power and capabilities. We take you through
step-by-step product installation processes, and then through step-by-step development
process for some sample applications. This will give you a good basis for evaluating these
products, their ease of installation, their ease of integration, their ease of enabling application
development, and their usability. It is a practical approach that lets you see, do, and discover
for yourself, rather than simply telling you about it, or just showing you an example. Take the
time to try it and evaluate it, and we think you will choose it.
 Preface xiii

The sample applications
To make this a more practical decision process, we decided to enable you to install the
required products, configure them to work together, and then develop some sample
applications to validate the integration and the ease of use of the application development
environment. The sample applications discussed in the redbook are based on several
application development approaches. That is, they demonstrate flexibility in the type of
development and in the type of systems environments. For example, they describe
application development for both a single server environment and a distributed systems
environment. Since you will be using real products and developing your own sample
applications, you can also try your own preferred approach.

Highlights and benefits
A number of highlights and benefits are described and demonstrated in the redbook. For
quick and easy reading, we have simply provided some of them in the following list form. For
more details, and to add to the list, we encourage you to continue reading the remaining
content of the redbook.

� Informix Dynamic Server is a robust and powerful relational database management
system. It has the scalability, reliability, and availability to support the needs of today’s
high volume and high availability e-business environments.

� WebSphere is a robust and powerful software platform for e-business. It provides
products to provide all the capabilities required for an e-business environment. It has been
architected for the development, deployment, management, and use of dynamic
e-business applications.

� WebSphere Studio Application Developer provides the capability to develop and deploy
high function e-business applications. It includes a graphical oriented development
approach that fast delivery and minimum resource requirements.

� WebSphere Application Server provides the capability to manage the deployed
e-business applications. It enables the end user connectivity, execution, and management
of the e-business workload.

� Step-by-step guidelines for the installation, configuration, and integration of the
e-business products enables the fast implementation of a sample e-business
environment. They provides a practical and fast approach for trying and evaluating the
e-business capabilities that can be provided by an implementation of the products
considered in this redbook.

� Information and examples on advanced topics, such as XML, provide education,
guidance, and direction on how to use and position products based on this powerful
technology. Based on industry standards, this is an important technology for supporting
integration and interoperability by enabling data and document interchange in
heterogeneous environments.

� New technologies are presented that can enhance the development capabilities, such as
Web Services. A Web Service is a set of related application functions that can be
programmatically invoked over the Internet. Businesses can dynamically mix and match
Web Services to perform complex transactions with minimal programming. This means
less resources for, and faster development of, applications
xiv Using Informix Dynamic Server with WebSphere

� WebSphere Portal Server is discussed and positioned as a single point of interaction with
dynamic information, applications, processes, and people to help build successful
business Web portals. This is critical to the ease of learning and ease of use of your
e-business environment. It supports a wide variety of pervasive devices enabling users to
interact with their portal anytime, anywhere, and using any device, wired or wireless.

� Any e-business environment will be required to handle thousands of transactions to
enable users to exchange information across many different platforms. They will be
sending and receiving data, as messages, on a continuous basis. Your system will need
to connect all your business software together to form one efficient enterprise by providing
an open, scalable, industrial-strength messaging backbone. This is what WebSphere MQ
does. It can minimize the time taken to integrated resources and applications held in
different systems so you can quickly respond to the changing needs of the e-business.

� Many Informix customers use the Informix 4GL product for application development. We
provide information on how IBM is continuing to enhance this product and protect your
investment. As such, the direction is to integrate that product into the WebSphere family
through integration into the WebSphere development environment.

� We also provide a number of Hints and Tips to make it easier as you implement your
e-business environment using IDS and WebSphere.

The redbook provides, in a single document, the information you need to implement and
integrate WebSphere and IDS. And, it guides you through the development and deployment
of sample applications to demonstrate and verify the integration.

We hope you find the information in this redbook informative, educational, practical, and
useful in developing an example integrated e-business environment with WebSphere and
Informix Dynamic Server.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world. Four members
worked on this project at the International Technical Support Organization, in San Jose,
California and one worked remotely in Boston, Massachusetts.

Left to Right: Pagadala J. Suresh, Eduardo Akisue, Chuck Ballard, Alexander Koerner
 Preface xv

Chuck Ballard is a Project Leader at the International Technical Support Organization, in
San Jose, California. He has over 35 years experience, holding positions in the areas of
Product Engineering, Sales, Marketing, Technical Support, and Management. His expertise
is primarily in the areas of database, data management, data warehousing, business
intelligence, and process re-engineering. He has written extensively on these subjects, taught
classes, and presented at conferences and seminars worldwide. Chuck has both a Bachelors
degree and a Masters degree in Industrial Engineering from Purdue University.

Eduardo Akisue is an Advanced Technical Support Engineer at the IBM Latin America Call
Center, located in Miami Florida, USA. Originally joining Informix in 1996, he has worked with
almost every product in the Informix portfolio. Now with IBM, he is an Informix and DB2
certified engineer and also holds the Online III certification (dial-up certification for down
systems cases). His current focus is on IBM Informix Dynamic Server, DataBlades, and
Content Management, and activities include technical support to other engineers,
presentations, and classes through Latin America countries, and advanced support for critical
situations. He provides customer support in three different languages (English, Portuguese,
and Spanish), and holds a Bachelors degree in Computer Science from the University of Sao
Paulo - Brazil.

Alexander Koerner is an Informix-, DB2- and XML-certified Senior IT-Specialist in the Data
Management Technical Sales organization, Munich, Germany, and joined Informix in October
1989. He was instrumental in starting and leading the SAP/R3 on Informix project, developed
an Informix adaptor to Apple's (NeXT's) Enterprise Object Framework, and has contributed to
many strategic projects across the region. Alexander is currently focused on topics such as
IDS 9, XML, Web services, and DataBlade™ technology. His activities also include
presentations at conferences such as the IBM Software Symposium, IIUC, XML One, and
ApacheCon. He is a member of the German Informatics Society and holds a Masters degree
in Computer Science from the Technical University of Berlin.

Pagadala J. Suresh is a Software Engineer, working in India, with two years of experience in
the area of Web Technologies. He holds a Masters degree in Computer Applications from
Karnataka Regional Engineering College, Surathkal. His areas of expertise include
WebSphere Application Server and WebSphere Studio Application Developer (WSAD), and
he is a certified Developer Associate on WSAD. He has written extensively and has recently
submitted a paper to the IBM developer works, and has given numerous presentations on
these subjects. In addition, he has hands-on experience with the WebSphere Business
Components Composer framework by IBM, and has had an asset on Testing Strategy - Static
and Dynamic accepted and posted on the IBM Intellectual Capital Management Asset Web.

Martin Lurie was the remote team member. Marty is a Systems Engineer in IBM’s Data
Management Division, and is located in Boston Massachusetts. However, if pressed, he will
admit that he mostly plays with computers. He is an IBM-certified DB2 DBA, IBM-certified
Business Intelligence Solutions Professional, and an Informix-certified Professional.
xvi Using Informix Dynamic Server with WebSphere

Extended team members
We would like to give special thanks to the following people. Although not formal members of
the residency team, they contributed advice, support, and written content, and were
considered to be “extended team members”.

Jonathan Leffler is an IBM Informix Database Engineer in Menlo Park, California. One of his
areas of specialty is the Informix 4GL.

Sekhar Meka is an Application Architect providing e-business Architecture Services, from
AMS e-bis. His areas of specialty are WebSphere Application Server, WebSphere MQ,
WebSphere Portal Server, and WebSphere Pervasive Computing products.

Allan Richen is an IT Specialist providing e-business Enablement Services in Winnipeg,
Canada. He is an IBM-certified specialist for WebSphere Application Server and Java 2, and
the WebSphere Competency Lead for the Canadian SDC.

Other contributors
We would also like to thank the following people for their support and contributions:

Omkar Nimbalkar, Informix Product Management and Marketing
Dwaine Snow, Product Manager, Informix Dynamic Server
Patricia Quinn, Brand Manager, Informix Dynamic Server
Mohan Natraj, WW Brand Manager, XPS and RedBrick
Helen Wong, IDS 9.4 Development Manager
Sonali Surange, DADX Web Services
Nelson Androes, JDBC
Fred Summa, JDBC
Gary Proctor and Team, J/Foundation
Vinayak Shenoi, J/Foundation
Martin Siegenthaler, MQ DataBlade
Sandor Szabo, Linux
IBM Informix Marketing, Support, and Development

Susan Malaika, DB2 XML
Dirk Wollscheid, WORF
IBM DB2 Development

Janet Olausen, WebSphere Technical Support Marketing Program Manager
Glenn McGorty,, Manager, WebSphere Trial Support
David Long, WebSphere Software Developer and Program Support Team
Ernest Mah, WebSphere Application Developer
Kihup Boo, WebSphere Application Developer
Dirk Wittkopp, WebSphere Portal Server
Uwe Hansmann, WebSphere Portal Server
Muthukumarasamy L Shanmugam, WebSphere Application Server
IBM WebSphere Development

Jaques Roy, WorldWide Sales Support
DB Server Technology Sales

Mary Comianos, Operations and Communications
Yvonne Lyon, Technical Editor
Deanna Polm, Residency Administration
Emma Jacobs, Graphics Designer
International Technical Support Organization, San Jose Center
 Preface xvii

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with
specific products or solutions, while getting hands-on experience with leading-edge
technologies. You'll team with IBM technical professionals, Business Partners and/or
customers.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus,
you'll develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments about this or
other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099
xviii Using Informix Dynamic Server with WebSphere

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

Introduction

Because the world is rapidly moving more and more business to the Internet, developing an
Internet presence will most certainly have a very positive impact on the success of almost any
business. Many businesses have been on the Internet for some time and have gone through
a number of iterations as they determine what works best for them. Key to this is the ability to
develop and deploy Web applications easily and quickly, as well as to maintain their flexibility
to change and adapt.

The changing business environment
Flexibility, and easy and quick deployment of Web-based applications, has really become
more than just important for businesses, it has become an imperative. It is becoming even
more important for businesses, with the increasing demand for consistent quarterly profits
and growth. Stockholders and financial analysts are keeping an ever more watchful eye on
these targets, and becoming less and less forgiving when they are not met. It is certainly a
changing business environment, and one that demands businesses manage to it. To meet
this challenge means becoming more efficient and more effective. Everyone is being asked to
do more with less — and the competition is fierce.

An element of every business strategy is, and must be, an increasing use of the Internet. It is
fast moving and ever changing, and requires maximum flexibility. To satisfy this requirement,
businesses are turning to their IT organizations. They look for faster and easier-to-use
applications that are easily modified and expanded. All this in an environment of mergers and
acquisitions that require integration of disparate systems, faster changing user requirements,
and the need for more information faster. This is also mandating that IT shops begin to
purchase more software rather than build it, and that they use products based on open
standards to minimize development and support requirements.

In turn, IT shops are demanding that software developers deliver products that support the
integration of their environments, which typically consists of products from multiple vendors.
And, they are beginning to base purchasing decisions on the ability of products to participate
in an integrated environment. Many times this simply means architecting a framework based
on a qualified set of vendors and a preferred technology, and then building on it. Gone are the
days when IT shops could afford to support multiple products that provide similar capability.
They now must consider consolidation, standardization, and commoditization. These are the
types of things that can keep overhead low, expenses low, and prices low, to help meet those
quarterly targets.
© Copyright IBM Corp. 2003. All rights reserved. xix

IBM® supports those goals by delivering products built on open architectures and with open
standards. And this is the case with the WebSphere® family of products. They provide a
common application development environment that is easy to implement and use, that
supports standards, and that can operate in an integrated environment. This enables a
powerful and high function application development environment.

Why Informix® and WebSphere?
With the advent of the Internet and e-business, the demands on the IT infrastructure are
greater than ever, from both a performance and data management perspective. Also critical,
are the applications that help meet the consumers business demands. The DB2® and
Informix database products are very powerful, stable, and proven, and provide customers
with a very robust infrastructure upon which applications can be built. And, WebSphere is
there to meet the application development requirements.

Now that Informix has been acquired by, and integrated into, IBM — Informix customers also
have an excellent opportunity to take advantage of this robust and flexible Web application
development environment much more easily. WebSphere can enable Informix customers to
take greater advantage of the e-business environment, and help meet their current Web
application development needs today — as well as their growing and changing requirements
of tomorrow.

Using Informix and WebSphere
In this redbook we present information to help in the installation, configuration, use, and
management of a Web applications development environment consisting of IBM WebSphere
V5 and Informix Dynamic Server V9.4. It will help enable customers to take advantage of the
many benefits and productivity gains that come with using the WebSphere open, common
development toolset. This redbook is primarily written for Informix customers and business
partners who may not yet be familiar with WebSphere, and those who have already selected
WebSphere and are in the process of implementing one or more of the WebSphere product
packages. Much of the information in the book was obtained from experience gained by the
redbook project team from installing the products, using WebSphere to develop sample
applications, and running those sample applications using IDS as the underlying relational
database.

The redbook describes some of the functions and features of Informix Dynamic Server,
WebSphere Application Server, and WebSphere Studio Application Developer that support
the challenges of the changing business environment. Informix Dynamic Server (IDS) is a
seasoned relational database management system supporting many mission critical
applications, and enjoys a very large customer install base. WebSphere is the IBM strategic
software platform for e-business and supporting a number of underlying databases —
including IDS. Now Informix customers can take advantage of this powerful e-business
platform for their Web application development.

We provide a brief overview of both the Informix Dynamic Server and the WebSphere family,
to give you a base from which to start. This information will give a better understanding of the
products and how they can work together to enable you to get the benefits of, for example, a
powerful Internet presence much more quickly.

To help you get you started towards such an environment, we implemented the products
ourselves so we could provide you with some guidelines and instructions to make your
implementation easier and faster. For our implementation, we used an intel-based IBM
processor, with 760 MB of memory, and the following software configuration:

� SuSE Linux V8.0
� Informix IDS V9.4
� WebSphere Application Server V5 for Linux
xx Using Informix Dynamic Server with WebSphere

Sample applications were developed using WebSphere Studio Application Developer Version
5, running under Windows/2000. A sample database, the Stores_demo Database, comes
with IDS and was used as the test vehicle for the implementation. It is a database familiar to
most Informix customers. This environment provided us a means of demonstrating how
quickly applications can be developed with WebSphere to retrieve data from IDS databases.
Windows/2000 based clients were used to access the WebSphere Application Server, the
sample applications, and IDS.

In addition, we provide overviews of other members of the WebSphere family, such as Portal
Server and WebSphere MQ, even though they were not part of our actual implementation.
We also discuss other subjects such as Web Services and XML, and position them as they
relate to an integrated IDS and WebSphere environment. In addition, we provide information
on the future direction for the Informix 4GL and how it fits in with the WebSphere strategy.

We believe this redbook will provide, in one document, the information you need to begin
implementing a powerful Web presence for your organization — based on robust, market
leading products. And, that Web presence will be such that it provides the flexibility you need
as you move forward, grow, and change.

Using our sample applications

Note: We created and documented, in this redbook, the exercise of developing sample
applications that enable you to get first-hand experience at using the real IBM products
working together. However, this is not a simple task. To do these exercises requires the
installation of IDS 9.4, WebSphere Studio Application Developer, and WebSphere
Application Server, along with a few related components that we provide. If you do not
already have these products, you can download trial copies of them from the IBM Informix
Web site and the IBM WebSphere Web site.

The step-by-step instructions for developing the sample applications are documented
throughout this redbook. However, we have also created a “Sample Applications
Implementation Guide” to put all those instructions in one place to make it simpler for you.
That guide can be downloaded from the Redbooks™ Web site. Instructions can be found
in “Additional material” on page 343.

There may be those who prefer only to implement the software and then execute the
sample applications. To do this, you can download executable copies of the sample
applications. They are actually included in the same download file discussed above with
the Sample Applications Implementation Guide.
 Introduction xxi

xxii Using Informix Dynamic Server with WebSphere

Chapter 1. Informix Dynamic Server:
An overview

In this chapter we provide a brief overview of the Informix Dynamic Server (IDS). This is not
intended to be an in-depth product description, nor does it describe all of the functions and
features of IDS. Rather, it presents some of the basic concepts, architecture, functions, and
features that contribute to the powerful capabilities of the product.

Many of the features discussed are centered around the ability to support high availability,
fast data loads, fast backup and restore, and high performance. These are the types of
capabilities required to develop and support a robust online environment, and still maintain
flexibility and ease of change. And, this is the type of environment that can be created as you
implement IDS in an integrated environment with WebSphere.

1

© Copyright IBM Corp. 2003. All rights reserved. 1

1.1 Informix database family
In this section we provide a very brief description of the Informix family of database servers.
We describe them briefly, and position the features and advantages that enable them to
satisfy the differing requirements of the solutions that customers need.

Informix Dynamic Server (IDS)
IDS is the Informix flagship database server. It is the best-of-breed, general purpose, but
mission-critical, OLTP database for e-business. It delivers the performance, reliability,
scalability, and high-availability needed for today’s global, e-business enterprises.

Key IDS features include Data Partitioning, High-Availability Data Replication (HDR),
Enterprise Replication (ER), Parallel Queries, and fast loads and backups. It also supports
industry standards for client connectivity, such as ODBC, JDBC and OLE/DB.

IDS is divided in two main product lines: Version 7.x and Version 9.x. The IDS architecture,
and most of the features, are supported on both families. Some extended features for Version
9.x will also be described in later chapters.

Informix Dynamic Server with J/Foundation
IDS with J/Foundation combines all the features of IDS with an open, flexible, embedded
Java Virtual Machine. Basically this provides the added capability of running Stored
Procedures written in the Java language (Java on the server).

Informix Online Extended Edition
Informix Online Extended Edition is an easy-to-use, relational database server for
low-to-medium size workloads. It features superior online transaction processing support with
the assurance of data integrity. And it provides rich multimedia data management capabilities
that support the storage of a wide range of media, such as documents, images, and audio.
Included also is support for a wide variety of application development tools, along with a large
number of other third-party tools, enabled by support of the ODBC and JDBC industry
standards for client connectivity.

Informix SE
Informix Standard Edition (SE) is a UNIX, Linux, and Microsoft Windows-based embeddable
database server. It seamlessly integrates with Informix and third party application
development tools, and it is ideal for small to medium-sized applications that need the power
of SQL without any database administration requirements. It represents a low-maintenance,
high-reliability database solution, and it provides excellent performance, data consistency,
client/server capabilities, and adherence to standards.

Informix C-ISAM
Informix C-ISAM is a fast and cost-effective file management technology. It is a library of C
functions which efficiently manage your indexed sequential access method (ISAM) files. As it
is only a file management system (and not a database), it eliminates the overhead of a full
relational database management system (RDBMS). The result can be fast, direct access to
your data records.
2 Using Informix Dynamic Server with WebSphere

Informix Extended Parallel Server (XPS)
Informix Extended Parallel Server (XPS) is designed for the largest, most demanding, and
complex data warehouse applications. It provides comprehensive, but flexible, data
warehousing features enabling integration of business systems through a sophisticated
shared-nothing underlying architecture. It delivers industry-leading performance, flexibility,
and scalability, and enables fast, informed decision making from complex, query intensive
analytical applications.

1.2 Understanding Informix Dynamic Server (IDS)
The database focus of this book is on the IDS product. This section provides an overview of
the IDS functions and features that contribute to the value of integration with WebSphere.

IDS is a fast and powerful OLTP oriented relational database management system. It is
based on the multi-threaded Dynamic Scalable Architecture (DSA) developed by Informix.
This architecture requires fewer processes to take care of multiple database activities. That
means that as more users are added to the system, we can dynamically add the necessary
resources the server needs to manage those user transactions. DSA was designed to provide
efficient resource utilization so you need less hardware to support your growing business
needs. It also uses object relational technology (but only in Version 9) that can dramatically
increase the performance and efficiency of enterprise applications.

IDS architecture
The IDS architecture can be described in terms of three components:

� Multi threaded implementation
� Database server
� Client-server connectivity

Next we briefly describe these components and explain how they are related.

Multi threaded Implementation
IDS uses a multi threaded architecture. To better explain this implementation, we should first
understand the concept of a thread. A thread is a set of instructions that are executed in a
program. When many threads are running in a single process, it is called multithreading. A
program that does not implement support for threads is called a single threaded process.

A multi threaded process can run multiple threads in a single process. Each thread runs
sequentially and gives up control to another thread at a specific point in time. Each process is
initiated by the operating system (OS), which takes time and resources. Multi threading then
provides a method of executing many iterations of a process for different users, without
having to incur the overhead of instantiating new OS processes. So, minimizing the number
of processes that must be started, controlled, and ended, saves time and resources — with
the result being improved performance.
Chapter 1. Informix Dynamic Server: An overview 3

See Figure 1-1 for a comparison of single threaded and multi threaded processes.

Figure 1-1 Single threaded process versus Multi threaded process

Database server
The database server consists of three major components: processes, disk, and shared
memory. This is depicted in Figure 1-2. Each of these components plays an important part in
determining the overall server performance, which includes workload capacity, response time,
availability, reliability, and resource consumption.

Figure 1-2 IDS database server
4 Using Informix Dynamic Server with WebSphere

� Process Component: The Process Component consists of a set of Virtual Processors
(VPs). They are called Virtual Processors because they process and schedule the
activities of their own threads. At the OS level each of these processes have the name of
oninit. A VP belongs to a VP class that is responsible for specific tasks in the database
server. The most common VP classes are:

– CPU: The Central Processing Unit is where all processing activity is performed. All
user threads, and some system threads, run on CPU class VPs. The CPU processes
are usually very busy and attempt to fully exploit the processing cycles granted by the
Operating System. The administrator can increase or decrease the number of CPU
processes as needed with the server in online mode. This dynamic resource
management capability is one of cornerstones of DSA.

– AIO: Asynchronous Input/Output processes are responsible for executing I/O
operations to disk. AIO processes also perform all I/O to server associated files, such
as the IDS log message file. They are automatically configured when the server is
initialized, but more can be dynamically configured while the server is running.

– PIO: Physical Input/Output runs internal threads to perform I/O on a special disk
component called Physical Log. The Physical Log is a collection of contiguous disk
pages and it is used for recovery purposes. It does this by storing before-images (first
copies) of data pages that have been modified in shared memory

– LIO: Logical Input/Output runs internal threads to perform I/O on a disk component
called Logical Log. Logical Log files are collections of contiguous pages used for
transaction records. They are used for logical recovery of databases with logging
transactions enabled.

– ADT: Runs threads for auditing purposes.

– MSC: Performs miscellaneous tasks, such as user authentication.

– ADM: Handles the timer that is used for activities that are scheduled to run for a certain
period of time. For instance, some threads go to sleep for a certain number of seconds.
It is the timer’s responsibility to mark the time of these threads.

� Shared Memory Component: The Shared Memory Component in the database server is
divided in three parts, that are described below:

– Resident: The resident part contains the buffer pool and other system information. The
buffer pool holds pages from database tables and consumes the largest amount of
memory. It can be configured to remain resident in the main memory if this feature is
supported by the Operating System.

– Virtual: The virtual part contains the information about the threads and sessions, and
the data used by them. This portion grows and shrinks frequently so it is the database
server responsibility to allocate or deallocate memory for this part.

– Message: This part holds the buffers that are used in communication between the
clients and the server when the communication method is configured as shared
memory.

� Disk Component: The database server requires disk space to store data. This space is
assigned through physical and logical units; the primary units are described below:

– Chunks: A chunk is a contiguous unit of space that is assigned to the server. The
server manages the use of space within that chunk.

– Pages: A chunk is comprised of units called pages, which are the smallest unit of I/O
for the database server. All database and system information is stored in pages.

– Extents: These are defined contiguous collections of disk pages, that get assigned to
applications for use.
Chapter 1. Informix Dynamic Server: An overview 5

– Dbspaces: A dbspace is a logical collection of chunks, and it must have at least one
chunk assigned to it.

– Tablespaces: A tablespace is a logical collection of extents and can be thought of
essentially as a database table. It contains all pages that contain data or indexes for
the table.

– Blobspaces: A blobspace is a special type of Dbspace. It is created to store special
data types called large objects. There are two types of large objects: TEXT and BYTE.
The TEXT data type is used to store large amounts of ASCII text, such as source code
and scripts. BYTE is used to store any kind of binary data, such as digitized images or
sound.

– Sbspaces: An sbspace is also a special type of dbspace, for storing smart large
objects. Smart large objects include built-in data types, such as Character Large
OBjects (CLOBs) and Binary Large OBjects (BLOBs), third-party customized indexes,
and User-Defined Data Types (UDTs).

– Physical Log: The server has a special log that is used for automatic recovery
purposes, called the physical log. The physical log is a collection of contiguous pages
on disk. When a page is read into a shared memory buffer and modified by a user, a
copy of the page in its original condition is written to the physical log. This copy of the
page is known as a before image (the copy of the page before it was changed). Only
the first change to a page in a buffer causes a before image to be written to the
physical log. Any subsequent changes to that same page do not cause additional
before images to be written to the physical log. These before images are used by an
automatic recovery mechanism.

– Logical Log: The logical-log files are collections of contiguous pages on disk that are
used to store transaction records for the server. These transaction records are used to
track all the changes made to databases that were created with logging. All databases
share the same set of logical-log files, and each server must have at least three
logical-log files.

Client-server connectivity
There are four methods for a client application to connect to the database server:

� Shared memory: When the client application and the database server are on the same
host computer, this is the preferred method of communication. The client application and
the server attach to the same segment of shared memory. The application leaves
messages for the server and picks up messages left for the server using this memory.

� Stream pipes: This is a local inter-process communication protocol that uses UNIX
streams. This is a UNIX specific method.

� TCP/IP: Using the TCP/IP protocol a client application can connect to either a local or
remote database server. There are two types of TCP/IP implementations: Socket and
Transport Layer Interface (TLI).

� IPX/SPX: This is a specific protocol to connect to NetWare Servers.

When an application attempts a connection to a database server, some basic information is
needed to enable the connection. This information is held, by default, in a file called
$INFORMIXDIR/etc/sqlhosts, and must be maintained by the system administrator. The user
running the application must set the INFORMIXSERVER environment variable to a key name
that points to the entry in sqlhosts. For a server connection, the key name is the same value
as the DBSERVERNAME or DBSERVERALIASES parameter found in the configuration file
(onconfig). The key name can be any unique name within the sqlhosts file. Once the
application finds the correct entry in the sqlhosts file, it has the information necessary to
connect to the database server.
6 Using Informix Dynamic Server with WebSphere

The sqlhosts file has four main columns that follows the format illustrated in Figure 1-3.

Figure 1-3 SQLHOSTS file

To better understand how the client application environment variables, the database server
configuration file (onconfig) and the sqlhosts relate, see Figure 1-4, which has actual values
in all the columns.

Figure 1-4 Relationship between sqlhosts, onconfig and environment variables

DBSERVERNAME NETTYPE HOSTNAME SERVICENAME

demo_on onsoctcp neon demo_on_tcp

Corresponds to the INFORMIXSERVER
environment variable and DBSERVERNAME
or DBSERVERALIASES in the ONCONFIG file

Communication protocol

Name of the host machine

Unique name within sqlhosts. For
TCP/IP connections this is the TCP/IP
port number configured for the
connection in the /etc/services file.

Client Application Environment Variables

$INFORMIXDIR/etc/sqlhosts

$INFORMIXDIR/etc/$ONCONFIG

INFORMIXSERVER=dem o_on

demo_on onsoctcp neon demo_on_tcp

DBSERVERNAME=demo_on

/etc/hosts

/etc/services

9.1.38.76 neon

demo_on_tcp 1533
Chapter 1. Informix Dynamic Server: An overview 7

The “Big Picture”
We can now modify Figure 1-2 on page 4 based on the information and concepts described in
the previous sections regarding the IDS architecture. This will give us the “Big Picture” of how
it all relates. This is depicted in Figure 1-5.

Figure 1-5 The “Big Picture” of IDS

1.3 Feature highlights
This section describes some of the IDS features and explain the benefits of each for an
Enterprise System. IDS has some important features that provide better performance,
enables server high availability, and improves reliability.

Many of the features discussed here are valid for both IDS Version 7 and 9, and some of the
extended features for Version 9 are also presented. Specifically, we will focus on versions
7.31 and 9.30. In Chapter 2, “Installing and configuring IDS V9.40” on page 21, we describe
some of the new features in IDS 9.40, the latest IDS version that is now available.

Table and index partitioning (fragmentation)
Fragmentation is the distribution of data from one table across many dbspaces. What this
means is that even though the table is distributed in many dbspaces, it is still treated as a
single table by SQL. This is depicted in Figure 1-6.

Database Server

Disk

Server
Processes

Resident Portion
Shared Memory

Virtual Portion Message Portion

CPU VP 1

thread1 thread2 thread3

Page
Page
Page
Page

Customer (extent)

Page
Page
Page
Page

Logical Log

Page
Page
Page
Page

Physical Log

Dbspace2Dbspace1

AIO VP 1

thread1 thread2

Chunk1 Chunk2 Chunk3

INFORMIXSERVER=demo_on
ONCONFIG=onconfig.demo_on

INFORMIXSERVER=demo_on_tcp
ONCONFIG=onconfig.demo_on

INFORMIXSERVER=demo_on_str
ONCONFIG=onconfig.demo_on

Environment Variables

Environment Variables
Environment Variables

Shared memory TCP/IP Stream Pipe

demo_on onipcshm neon demo_on_shm
demo_on_str onipcstr neon demo_on_str
demo_on_tcp onsoctcp neon demo_on_tcp

SQLHOSTS
ONCONFIG

DBSERVERNAME=demo_on
DBSERVERALIASES=demo_on_tcp,demo_on_str
8 Using Informix Dynamic Server with WebSphere

Figure 1-6 Table fragmentation

The main advantages of table and index partitioning are as follows:

� Parallel scans and other parallel operations: When the database server is configured
for Decision Support System (DSS) environments, we can enable a feature called Parallel
Data Query (PDQ). With this feature we get parallel fragment scans. DSS systems get a
significant performance advantage with parallel scans, particularly since their queries
typically need to read large volumes of data.

� Balanced I/O: Fragmentation of tables also balances the I/O across multiple disks,
meaning that we avoid disk contention and bottlenecks. This is particularly good for
On-Line Transaction Processing systems (OLTP) where a high throughput is critical.

� Archive and Restore: Fragmentation provides a finer granularity in terms of backup and
restore. Since the table is split in different dbspaces, the backup or restore can be
performed at the fragment level.

� Higher Availability: You can configure whether the server should skip unavailable
fragments. This is especially advantageous in DSS systems, when a high volume query
has been running for a long time and then encounters a fragment that is not available. The
query would have taken significant time and resources, but would no have completed.

High-Availability Data Replication (HDR)
HDR provides synchronous and asynchronous replication of an entire database server
(instance) on different servers that, in some cases, can be located in different sites. The
advantages of HDR include:

� Performance: Clients at the site where the database server was replicated experience
improved performance, since they can access the database locally.

� High Availability: Clients at all sites experience higher availability of the data. Even if the
local system is unavailable they can still connect to the remote database server.

In an HDR environment, we have two servers involved: one is called the primary database
server and the other secondary database server. In this high-availability context, a database
server that does not implement HDR is called a standard database server. During normal
operation, clients can connect to the primary server and use it as they typically would. They
can also use the secondary server, but only for read activity. The secondary server does not
permit update operations.
Chapter 1. Informix Dynamic Server: An overview 9

As illustrated in Figure 1-7, the secondary database server is dynamically updated.

Figure 1-7 Primary and secondary server in an HDR implementation

If the primary server fails, you can change the secondary server to a standard database
server and redirect all client connections, as illustrated in Figure 1-8.

Figure 1-8 HDR servers and clients after a failure

Clients connect to an HDR server the same way they would connect to a standard database
server. In a case of a failure they might be redirect to the secondary server, so they continue
to be fully operational. The database server does not provide a transparent way to redirect
client applications to the secondary server, but there may be other ways to automate this
process:

� Automatic Redirection with DBPATH: The DBPATH redirection method relies on the
fact that when an application does not explicitly specify a database server in the
CONNECT statement, and the database server specified by the INFORMIXSERVER
environment variable (variable used to specify the database server for client connections)
is unavailable, the client uses the DBPATH environment variable to locate the database
(and database server).

� Administrator-controlled redirection with connectivity information: Clients can be
redirected by the server administrator. The connectivity configuration file (sqlhosts) can be
used to make the necessary changes for the clients.

� User-controlled redirection with INFORMIXSERVER: When an application does not
specify the database server name in the CONNECT statement, the connection is
performed to the value specified in the INFORMIXSERVER environment variable. In case
of a failure in an HDR environment, applications that use that database server can reset
their INFORMIXSERVER variable to the other server in the HDR pair.

For more information about HDR, see the IBM Informix Dynamic Server Administrator's
Guide, Version 9.4, G251-1249-00.
10 Using Informix Dynamic Server with WebSphere

Enterprise Replication (ER)
Enterprise Replication implements asynchronous data replication based on using log data
capture as the source for the replication.

Asynchronous replication means that updates on databases that reside at a replicated site
occur after the primary database has committed the changes. The delay to update the
replicated-site databases can vary depending on the business application and user
requirements. However, the data eventually synchronizes to the same value at all sites.
The major benefit of this type of data replication is that if a particular database server fails,
the replication process can continue, and the original transaction is not directly affected by
replication.

Enterprise Replication uses a log-based transaction capture mechanism to capture executed
transactions. A log-based transaction capture minimizes the impact on transaction processing
performance because it captures changes from the log rather than competing with
transactions that access production tables. Enterprise Replication reads the logical log to
obtain the row images for tables that participate in a replication process. Enterprise
Replication marks these rows when your transactions are logged. These rows are then
passed to Enterprise Replication for further evaluation.

Enterprise Replication supports the following replication models:

� Primary-Target: Unidirectional updates from a primary database server to many target
database servers, or from many target database servers to a primary database server.

� Workflow: A database is updated at one location, then the updates are passed to another
location for update, then passed to another location for update, and so on.

� Update-Anywhere: All databases have read and write capabilities. Updates are applied
at all databases.

In order to use ER, we first need to configure the database servers for replication (Enterprise
Replication server) and then create replicates, which are the ER objects that replicate data.
The replicates contain information such as replication type, participant ER servers, database
name, table owner, table name, and SELECT statement. The replicates are defined at a table
level and use a SELECT statement to specify which columns or rows of this table are to be
replicated among the ER participant servers.

The primary difference between ER and HDR is that HDR replicates the entire instance to a
remote site, while in ER the replicates are defined at a table level and support different
models to be implemented (Primary-Target, Workflow, and Update-Anywhere). Also, HDR
supports both synchronous and asynchronous data replication while ER only supports the
asynchronous mode.

For more detailed information about Enterprise Replication, see the IBM Informix Dynamic
Server Enterprise Replication Guide, Version 9.4, G251-1254-00.

Parallel backup and restore
IDS performs parallel backup and restore through ON-Bar, which is one of its Backup and
Restore utilities. The other is ontape, but it only performs backup and restore serially.

ON-Bar can be used to make a backup copy of your database server data and logical logs to
be used as insurance against lost or corrupted data. Data might be lost or corrupted for
reasons that range from a program error to a disk failure to a disaster that damages the
facility in which your computer resides. To recover data, restore the database in two steps:
First restore the backup copy of the data and then restore the logical logs to bring data as
close as possible to the most recent state.
Chapter 1. Informix Dynamic Server: An overview 11

ON-Bar works in conjunction with another software layer called Storage Manager and they
communicate to each other using the X/Open Backup Services Application Programmer’s
Interface (XBSA). IDS comes with a simple Storage Manager called Informix Storage
Manager (ISM), but ON-Bar can also work along with IBM Tivoli® Storage Manager (TSM)
and also other third-party Storage Managers, such as HP Omniback.

The ON-Bar components include:

� Both onbar and onbar_d — onbar is a script shell that calls the binary file onbar_d
� Storage spaces (dbspaces, blobspaces) and logical logs to be backed-up or restored
� The ON-Bar catalog tables stored in the sysutils database
� IDS
� The XBSA interface shared library for each storage manager that your system uses
� Backup data on storage media
� The ON-Bar activity log
� The ON-Bar emergency boot file

Figure 1-9 shows the ON-Bar system and its components.

Figure 1-9 ON-Bar components

For speed and efficiency, ON-Bar can perform parallel backup and restore. For example,
ON-Bar can back up multiple storage spaces concurrently. However, you can also configure
ON-Bar to perform this task serially.

ON-Bar performs parallel backup and restore based on a configuration parameter,
BAR_MAX_BACKUP. When ON-Bar receives a request, it determines how many objects are
involved. If the request involves more than one object, ON-Bar creates a new onbar_d
process for each object up to the limit that you specified in the BAR_MAX_BACKUP
configuration parameter. Each new instance of ON-Bar creates a new XBSA session.
12 Using Informix Dynamic Server with WebSphere

For more information about ON-Bar and Parallel Backup and Restore, see the IBM Informix
Backup and Restore Guide, Version 9.4, G251-1240-00.

High-Performance Loader (HPL)
The HPL is a feature of the database server that allows you to load and unload large
quantities of data efficiently to or from a database. The HPL lets you exchange data with
tapes, data files, and programs, and converts data from these sources into a format
compatible with Informix databases. The HPL also allows you to manipulate and filter the data
as you perform load and unload operations. HPL is much faster than other load/unload
utilities, such as SQL load/unload commands, onload/onunload, and dbload.

HPL uses a client-server architecture, and is composed of these three utilities:

� ipload utility: This is the graphical user interface, where you create load and unload jobs.
These jobs are stored in the onpload database.

� onpload utility: The onpload utility performs the actual activity of converting and moving
data. The onpload utility uses information from the onpload database to run the load or
unload, and to convert the data.

� onpload database: The onpload database contains information that the onpload utility
requires to perform data loads and unloads.

For more information about HPL, see the IBM Informix High-Performance Loader User's
Guide, Version 9.4, G251-1255-00.

Extended features of IDS 9.x
All the features previously mentioned are common to both IDS Versions 7.x and 9.x. However,
the extended features presented below are only valid for Version 9.x.

Before describing the extended features of IDS 9.x, we first should mention that IDS 9.x is not
a Relational DataBase Management System (RDBMS) such as IDS 7.x. Rather, IDS 9.x uses
an object-relational model and is referred to as an Object-Relational DataBase Management
System (ORDBMS).

Relational Database Management Systems (RDBMS) support is limited to simple data types
and pre-existing functionality defined in the database server. Data types provided by a
traditional RDBMS are adequate to describe most business models. However, there are more
complex models that work with more complex data, such as large arrays of data, points in a
grid, maps, and images. Object Relational Database Managements Systems (ORDBMS)
provide support for these complex data types. The functionality provided by a robust RDBMS,
such as scalability, security, transaction recovery, and online backup and restore, is also
required and provided in a ORDBMS. The object-relational model brings us a step closer to
the business model. A ORDBMS takes advantage of the object-oriented concepts and
addresses the shortcomings of the relational model.

IDS 9.x is a ORDBMS and provides both relational and object-oriented capabilities. The
database server enables you to extend your database by defining new data types and
user-defined routines (UDRs) to perform operations on those new data types. You can create
UDRs in stored procedure language (SPL), C, or Java to extend the functionality of the
database.

DataBlade modules are a packaging of data-type definitions and the functions that operate on
them. IBM Informix and third-party vendors package some data types and their access
methods into DataBlade modules or shared-class libraries. DataBlade modules allow you to
store and manipulate complex data without having to create all the definitions and routines.
They often plug directly into the components of the Dynamic Server for immediate use.
Chapter 1. Informix Dynamic Server: An overview 13

In Figure 1-10 we present the architecture of the IDS implementation of a ORDBMS. It is
followed by further explanations of some of the extended features of IDS 9.x.

Figure 1-10 IDS 9.x architecture

User-Defined Routines (UDRs)
A routine is a collection of program statements that perform a specific task, and are used to
extend the database capabilities. A user-defined routine is a routine that can be invoked in an
SQL statement (such as a SELECT), by the database server or by another UDR. UDRs are
also supported on IDS 7.3, but they can only be written using the Stored Procedure Language
(SPL). The difference with IDS 9.x is that the UDRs can also be written in the C and Java
programming languages.

The advantage is the flexibility that you get when writing your UDRs. Using powerful
Programming Languages like C and Java provide the necessary tools to create routines for
more complex tasks.

Creating UDRs using the SPL language is basically the same on both IDS 7.x and IDS 9.x,
but in order to create a UDR using C or Java, we need to follow these steps:

1. Write the UDR using one of the supported Programming Language

2. Compile the routine and store the code in a shared library

3. Register the function in the database server with the CREATE FUNCTION or CREATE
PROCEDURE statement.

User Defined Routines created using a Programming Language other than SPL are called
external UDRs.

Notes:

� To write routines in C, you need a C compiler and the IBM Informix ESQL/C compiler.

� To write routines in Java, you must have J/Foundation. You also must install the Java
Development Kit (JDK).

� You may use wrappers for some other languages, such as C++.
14 Using Informix Dynamic Server with WebSphere

The best way to help you understand how to create an external UDR is to show you a simple
example. Refer to Example 1-1, which is a simple routine that tests for negative numbers and
returns a positive 1, otherwise it returns a zero.

Example 1-1 Creating a UDR using the C programming language

First of all we need to write the UDR using the chosen Programming Language, which in this
case is the C Language.

#include "/home/IDS9.40/incl/public/mi.h"
mi_boolean is_negative(int x)
{
 if (x<0)
 return 1;
 else
 return 0;
}

Notice that we include the $INFORMIXDIR/incl/public/mi.h header file. The set of header,
data types and functions files in the public directory are called the Datablade API.
After writing our UDR using the C language we need to compile it and make it a shared
library object. On Linux we use the GNU compiler, gcc, and these are the steps to compile
the source code (myudrs.c) and link it as a shared library:

gcc -I/home/IDS9.40/incl/public -I/home/IDS9.40/incl -I/home/IDS9.40/incl/esql -c -fPIC
myudrs.c
ld -shared -soname myudrs.so -o myudrs.so -lc ./myudrs.o

These commands create a shared library called myudrs.so. Now we need to register the UDR in
the database server using dbaccess:

create function is_negative(integer)
returning boolean;
external name '/home/eduardo/myudrs.so(is_negative)'
language C
end function

Finally we can run our UDR on dbaccess:

execute function is_negative(-5);

This is the output that we get:

(expression)
t

For more information about creating UDRs using C, see these documents:

� IBM Informix DataBlade API Programmer's Guide, Version 9.4, G251-1258-00
� IBM Informix DataBlade API Function Reference, Version 9.4, G251-1257-00

User-Defined Data Types (UDTs) and Complex Data Types
On IDS 7.x the only data types available for use are the built-in data types. Those include data
types such as CHAR, VARCHAR, INTEGER, and DECIMAL. On IDS 9.x we have all the
built-in data types plus a new set of Extended data types. Since we can create our own data
type, the maximum number of data types is unlimited.
Chapter 1. Informix Dynamic Server: An overview 15

The diagram in Figure 1-11 shows the set of data types available on IDs 9.x.

Figure 1-11 Data Types on IDS 9.x

Built-in data types usage is the same as on IDs 7.x, so here we focus on the description of the
Extended data types:

� Collection data types: A Collection data type is composed of the SET, MULTISET, and
LIST data types. They differ among each other based on the fact that the data stored is
ordered/unordered and whether duplicates are allowed.

� Row data types: A Row data type can be created as NAMED or UNNAMED Row type.
The main difference is that the NAMED Row type is identified by its name, while the
UNNAMED one is identified by its structure. Another major difference is that NAMED Row
type has inheritance properties and is used to create typed tables and columns.

� User-defined data types (UDTs): This set of data types is composed of DISTINCT and
OPAQUE data types. Distinct types have the internal structure of an existing data type.
When you create a distinct type, you base it on any of the built-in or user defined data
types in the database server. You can define distinct functions that make the distinct type
act differently than the source data type. An opaque type has a structure that is unknown
to the database server. You must define the internal structure, functions, and operations.

There are other extended data types, but an explanation of all of them is beyond the scope of
this book. However, to aid you in understanding some of what we have already described, we
present Example 1-2, showing how to use a NAMED row type. The example shows the
creation of a named row type and demonstrates how we can insert and select data.

Data Types

Built-in Data
Types

CHAR
VARCHAR
INTEGER

SMALLINT
FLOAT

SMALLFLOAT
MONEY

DECIMAL
SERIAL
DATE

DATETIME
INTERVAL

TEXT
BYTE

Built-in Data
Types

introduced
with IDS 9.0

INT8
SERIAL8

BOOLEAN
LVARCHAR

CLOB

Extensible Data
Types

User-Defined Data
Types

Complex Data
Type

OPAQUE
DISTINCT

Row Data
Types

NAMED
UNNAMED

Collection
Data Types

SET
MULTISET

LIST
16 Using Informix Dynamic Server with WebSphere

Example 1-2 Creating and manipulating a NAMED row type

First we create the named row type:

CREATE ROW TYPE dimension_t(
length DECIMAL,
width DECIMAL,
height DECIMAL,
weight DECIMAL);

Notice that, in order to create the Row type, we use the CREATE ROW TYPE command.
Now, we can create a table using the named row type as the data type of the columns:

CREATE TABLE part (
part_id SERIAL PRIMARY KEY,
part_name VARCHAR(30),
part_desc LVARCHAR,
cost DECIMAL,
part_dimension dimension_t);

Here we insert one row into the table created:

INSERT INTO part VALUES(
0,
"J/M1862-old",
"Muffler, VW Bug",
168.34,
ROW(16.0,8.0,6.0,175.0)::dimension_t);

To query this row we run the following SELECT statement:

SELECT part_dimension.weight FROM part;

The NAMED Row type and typed tables (tables created using the named row types) also
provide another particular feature of IDs 9.x: Table Hierarchy and Inheritance. Creating a
hierarchy enables a database object to inherit the structure and behavior of an existing
database object. The basic steps to achieve that is to first create the named row type
hierarchy and then the table hierarchy.

In Example 1-3 we show how to create the named row type hierarchy and then the table
hierarchy.

Example 1-3 Naming example

First we define the NAMED Row Type Hierarchy:

CREATE ROW TYPE person_t (
person_id SERIAL,
name name_t,
address address_t);

CREATE ROW TYPE employee_t (
salary MONEY(9,2),
hire_date DATE)
UNDER person_t;

Now, we create the table Hierarchy:

CREATE TABLE person
OF TYPE person_t;
Chapter 1. Informix Dynamic Server: An overview 17

CREATE TABLE employee
OF TYPE employee_t
UNDER person;

The subtable (employee) inherit all properties of the supertable (person) such as columns
and constraints definitions, storage options, triggers, indexes, and access methods.

The introduction of Extended data types provides a very flexible environment for the users.
However, every function to manipulate (for instance, conversion to other data types) the
user-created data types have to be coded through UDRs.

SQL Statement Cache
In earlier versions of IDS (such as IDS 7.x), each session generated and stored its own SQL
statement information. Starting with Version 9.2, the database server allows sessions to
share the SQL statement information that is generated. This allows multiple sessions that are
executing identical statements to share the information stored in internal data structures. The
SQL statement cache feature reduces memory utilization at the session level and eliminates
the need to reparse and reoptimize statements that have been executed by other sessions.

The database server maintains the SQL statement cache in the virtual portion of shared
memory. As SQL statements are executed by various sessions, they are parsed, optimized,
and stored in this cache. Only data manipulation language (DML) statements (SELECT,
INSERT, UPDATE, and DELETE) are cached. The main purpose of the SQL Statement
Cache is to reduce the usage of memory, but some performance gains might also be noticed.

Figure 1-12 shows a comparison between sessions utilizing their private memory area and
sessions using a shared SQL Statement memory area.

Figure 1-12 Memory usage comparison

SQL Statement Cache

Prior to S tatem ent Cache W ith S tatem ent Cache
18 Using Informix Dynamic Server with WebSphere

We can configure SQL Statement cache at the global level and at the application level. To
configure it globally, there are two configuration parameters (onconfig) that need to be
specified:

� STMT_CACHE: A STMT_CACHE value of 0 disables statement caching. A value of 1
enables the statement caching but is, by default, turned off for sessions. A value of 2
enables statement caching and, by default, turns on caching for sessions. The default
value for this parameter is 0.

� STMT_CACHE_SIZE: Set the STMT_CACHE_SIZE configuration parameter to the size,
in kilobytes, to use for the statement cache. The default is 72 kilobytes. Regardless of
the parameter value, if the cache becomes full and all the statements are active, new
statements cause the cache to grow! When an SQL statement is no longer needed in the
cache, the memory is freed until the size of the statement cache is less than or equal to
the STMT_CACHE_SIZE.

You can set the SQL Statement cache at the application or session level, using either the
STMT_CACHE environment variable or the SQL Command SET STMT_CACHE. However it
only takes effect if the global configuration parameter STMT_CACHE is set to a value greater
than 0.

Fuzzy checkpoints
The checkpoint is a major event on the database server. It can be defined as a
synchronization between memory and disk. Pages in memory are written on disk and during
the checkpoint operation the system is frozen and no database activity can occur. The flush of
these pages is very costly and depending on the number of pages in memory the system can
be unavailable for a critical period of time.

To reduce the checkpoint duration IBM introduced on IDS 9.2 a new feature called Fuzzy
Checkpoints. The old checkpoint method still exists, but now it is referred as full or sync
checkpoint. The idea to solve this performance issue is to write fewer pages to disk during a
checkpoint. To accomplish this, a certain subset of database operations have been
designated as fuzzy. The buffers modified by these fuzzy operations are flagged, and are not
written to disk when a checkpoint occurs. Fuzzy operations are inserts, updates and deletes.
However, they are only flagged as fuzzy operations if they are executed against a database
that has logging and the buffered page to be changed is not considered old (as determined by
an internal timestamp comparison).

The problem with this approach is that some pages in memory are not going to be consistent
with the disk. Every change that is made to these pages is tracked in the logical logs, so that
in case of a system crash the server will take more time processing these pages and they can
get logically consistent again.

Note: All manuals mentioned in the foregoing sections can be found at:

http://www-3.ibm.com/software/data/informix/pubs/library/ids_94.html
Chapter 1. Informix Dynamic Server: An overview 19

http://www-3.ibm.com/software/data/informix/pubs/library/ids_94.html

20 Using Informix Dynamic Server with WebSphere

Chapter 2. Installing and configuring IDS
V9.40

In the previous chapter we described some of the functions and features of IDS that make it a
very powerful DBMS. However, to get maximum benefit from IDS requires that you install and
configure it properly. In this chapter we provide some guidelines that will enable you to do this
quickly and easily.

To develop the installation guidelines, the redbook team installed and configured IDS and
then documented the process. We provide step-by-step instructions along with screen
captures taken from our installation to make it even easier for you to follow.

Topics included in this chapter are:

� The new features of IDS 9.40 and how you can benefit from them
� Installation of IDS and configuration of a server instance
� Configuration of the IDS environment for integration with WebSphere

2

© Copyright IBM Corp. 2003. All rights reserved. 21

2.1 Taking advantage of new IDS 9.40 features
IDS 9.40 is the latest database server release available. It is a state-of-the-art ORDBMS that
provides the necessary components for enterprise and workgroup computing needs. It
contains the robust RDBMS functionality and performance of IDS 7.x, and all the extended
features and object-oriented architecture of previous IDS 9.x releases. In addition, IDS 9.40
also introduces new features that significantly improve performance, reliability, and
scalability, and make IDS 9.40 the most suitable release for today's highly available and
demanding global e-business environments.

In this section we describe features introduced in IDS 9.40, focusing in the following major
areas of enhancement:

� Security
� Increased scalability and usability
� Performance
� Data availability
� SQL and extensibility
� Backup and restore

Security enhancements
In today’s extremely competitive market, security is an important consideration for every
enterprise. System administrators are increasingly concerned about the security of the data
within their corporate databases. This concern is particularly directed at that portion of the
overall data management system that is most likely to be a target of interest by unauthorized
users: the network.

IDS 9.40 supports encrypting data transmissions over the network using the encryption
communication support module (ENCCSM). This module provides complete data encryption
with the openSSL library, and has many configurable options. A message authentication
code (MAC) is transmitted as part of the encrypted data transmission to ensure data integrity.
A MAC is an encrypted message digest. The encryption algorithms use openSSL 0.9.6 as the
code base. Distributed queries can also be encrypted.

The security enhancements provide secure client connections to the server, secure server to
server connections, ability to prohibit unencrypted connections, and support for plug-in
authentication modes.

Increased scalability and usability enhancements
IDS 9.40 features some new scalability and usability enhancements to meet the
unpredictable challenges of today’s on demand e-business environments. These features
provide a much more scalable and easy-to-use database server for systems administrators.
In the following sections we provide examples of some of the new enhancements.

Increased maximum size of chunks and maximum number of chunks
Enterprise systems are using databases to store more and more complex files such as
documents, graphics, spreadsheets, HTML pages, and video. As a result, database tables
are steadily increasing in size. Corporate consolidation, globalization trends, and
management requirements for keeping data online for a longer periods of time, are also
contributing to the continuous growth in the size of databases.

Pre-9.40 versions of IDS have a instance size limitation that is increasingly impacting large
database installations. This limitation is associated with two factors, the maximum size of a
chunk (2GB) and the maximum number of chunks (2047). These result limit the maximum
size of an instance to around 4 TB (terabytes).
22 Using Informix Dynamic Server with WebSphere

There are two categories of problems associated with the pre-9.40 IDS chunk size and chunk
number system limits. These are the maximum instance size and the associated system
administration effort required to deal with these two limits.

For IDS 9.40, these limits have been increased. The maximum chunk size is now 4 TB, and
the maximum number of chunks is 32766. With these increases, the maximum size of an
instance has been increased to 128 PB (petabytes). This equates to 128 quadrillion bytes!

As disk drive capacity moves into the terabyte range, the entire drive can be allocated as a
single chunk to contain this new 4 TB chunk size. And now, up to 32,767 of these
mega-chunks (4 TBs each) can be handled by a single instance of IDS 9.40.

Increased number of dbserver aliases
IDS was originally designed to provide only one server alias for each protocol. However,
customers have been using server aliases for other purposes. For example, many customers
use different server aliases for the different applications that connect to the server. And that
has created a requirement to support the configuration of multiple server aliases. To meet this
requirement, the maximum number of DBSERVERALIASES has been increased from 10 to
32. Since a single line in the onconfig is limited to 255 characters, 32 aliases could overflow
this limit. To prevent that from happening, multiple lines for DBSERVERALIASES can now be
used in the onconfig.

Performance enhancements
Performance is always the major topic of discussion when a product upgrade is considered
for an enterprise system. With the extensibility features in versions 9.x, the database server
was also generally much larger than IDS 7.x. This became a concern for many system
administrators because of the potential impact on performance. Even though their new
business models required more and more of the features provided only on a ORDBMS, this
became and obstacle and some were hesitant to migrate to the new release.

However, with the performance enhancements introduced on IDS 9.40 that obstacle is gone.
Performance on IDS 9.40 is expected to be the same or better than IDS 7.x, even with the
new functionality. Internal benchmarks have validated this performance boost. Now
administrators can be comfortable with the migration to IDS 9.40 and their ability to take
advantage of the new functions and features.

To meet the performance requirements, a number of fundamental database server resource
management algorithms have been substantially reworked and streamlined. The following
sections describe some of the primary IDS components and the changes that were made to
help achieve the performance goals.

Optimized index cleaning
The database server uses an index to quickly find a particular row of data. However, these
indexes need to be maintained and kept clean to perform at maximum levels. What does it
mean to be kept clean?

An index is arranged as a hierarchy of pages in a data structure called a B-tree and is
composed by a set of nodes that contain keys and pointers which are arranged in a balanced
tree structure hierarchy. The leaves of the tree are linked sequentially to also enable fast
sequential access to data.

The B-tree is organized into levels. The leaf nodes contain pointers, or addresses, to the
actual data. The other levels contain pointers to nodes on lower levels that contain keys
which are less than or equal in value to the key in the higher level. Figure 2-1 illustrates the
structure of a B-tree.
Chapter 2. Installing and configuring IDS V9.40 23

Figure 2-1 B-tree structure

When a DELETE operation is performed by a user, the B-tree entries also have to be
removed and the B-tree itself needs to be rebalanced. This has been the responsibility of a
system thread called btcleaner. Basically when a deleted item is committed, its page number
is put in the B-tree cleaner queue. The btcleaner thread reads the pool occasionally and
removes all committed deleted items on each page.

However, there were some potential problems with the B-tree cleaner system. Here are some
examples:

� There has always been only one B-tree cleaner thread and during heavy OLTP
processing, which could get overwhelmed with cleaning requests.

� Pages that were freed and then reused, often contained left-over data that could result in
invalid requests for btcleaner.

� A single B-tree cleaner queue often resulted in contention.

� Priority issues needed to be considered with submitted requests.

� Long lists of committed deleted items left a bloated index, which reduced available space
and, more importantly, introduced performance problems.

Solving these issues by changing the B-tree cleaner system was a complex task, which
would require many parts of the source code to be rewritten. To avoid this issue, IDS 9.40
introduced a new index cleaning method, and eliminated the btcleaner thread. The new
B-tree cleaning system is called the B-tree scanner.

The B-tree scanner uses new and different methods to solve the issues with the B-tree
cleaner. For example, it improves transaction processing for logged databases when rows
are deleted from a table with indexes, and it removes deleted index entries and rebalances
the index nodes. Here is how it accomplishes that:

� The workload for cleaning indexes is now prioritized. For example, the index that causes
the server to do the most work will be the next index cleaned.

� An index will have its leaf level examined, searching for deleted items. The B-tree scanner
will test lock the found item, then do a foreground remove of the item and possibly
compress the page.

� Dynamic configuration of threads to allow for configurable workloads. New B-tree scanner
threads can be added to, or removed from, the database server. The new threads can
also be tuned through new onmode options.
24 Using Informix Dynamic Server with WebSphere

Some new terms have also been introduced, with which administrators should become
familiar:

� Dirty count or hits: The number of times a user or administrative thread has encountered
an committed deleted item while performing work.

� Hot list: The list of indexes that need to be cleaned

� B-tree scanner: The new threads that are responsible to clean the indexes.

Improved priority management for the buffer manager
Memory management and tuning is a very important requirement to achieve high
performance when a large number of users are processing database activities on the same
database server. IDS uses Least Recently Used Queues (LRU queues) to manage access to
the buffer pool in the resident portion of shared memory. The free or unmodified page list is
referred to as the FLRU queue of the queue pair, and the modified page list is referred to as
the MLRU queue. The two separate lists eliminate the need to search a queue for a free or
unmodified page.

When a user thread needs a buffer, the server selects one from the Least Recently Used end
of a FLRU queue. If the page is subsequently modified, it is placed in a buffer at the Most
Recently Used end of the MLRU queue. If the page has been read but not modified, the
pointer to the buffer is returned to the Most Recently Used end of the FLRU queue.

The LRU queues are divided into different priority regions. Prior to IDS 9.40, these were:
HIGH, MED_HIGH, MED_LOW and LOW. With this prior buffer management system, some
design assumptions were made to categorize a page in one of the priority levels. For
instance, root nodes of an index were always set as priority HIGH, branch nodes were given
MED_HIGH priority, and leaf nodes and data paged were set a MED_LOW priority.

This categorization resulted in many OLTP systems using multiple indexes per table, and
could result in the index using more space than the actual data. With the algorithm used to set
the LRU priority, the buffer pool could become swamped with index pages. Then the data
pages would be displaced to disk, which typically results in degraded performance.

Figure 2-2 illustrates this scenario.

Figure 2-2 Buffer pool swamped with index pages

With IDS 9.40, the prioritization of pages has been changed, and is based on a simple but
efficient approach. Pages that are more frequently utilized by users have higher priorities, and
would be candidates to stay in the buffer pool for a longer period of time.
Chapter 2. Installing and configuring IDS V9.40 25

Now the four priorities have been reduced to two:

� HIGH: Managed by FIFO1 queue
� LOW: Managed by LRU queues

The maximum size of HIGH priority band is fixed, whereas with prior versions it could grow
indefinitely. And now, the HIGH priority buffers can no longer consume the entire buffer pool.

More precise LRU maximum and minimum settings
The configuration parameters LRU_MIN_DIRTY and LRU_MAX_DIRTY determine how
frequently the MLRU queue buffers are flushed to disk. Depending on how these parameters
are set, most of the synchronization between memory and disk is performed during the
checkpoint and can cause the system to encounter a significant slow down.

The LRU_MAX_DIRTY parameter defines the maximum percent of an LRU queue pair that is
permitted to be dirty before page-cleaner activity begins. The LRU_MIN_DIRTY defines the
minimum percent of an LRU queue pair that is permitted to remain modified after the page
cleaning activity finishes. So, if these parameters are set to a small value more page flushes
will occur between the checkpoints, leaving less I/O work to be performed by the checkpoint
itself.

The default values for the LRU_MAX_DIRTY and LRU_MIN_DIRTY parameters are 60 and
50 respectively. In previous IDS versions they only accepted integer values, which could
result in performance problems when there was a huge buffer pool. This is because 1% (the
minimum integer value) of a large buffer pool could represent a large value that could impact
the checkpoint duration.

In IDS 9.40 these two parameters can be configured with decimal values. Now you have
more control and precision in tuning the frequency of the disk flush, and consequently the
duration of the checkpoints.

Data availability enhancements
As we mentioned in the previous chapter, HDR and ER play a very important role in
supporting high availability of data. In IDS 9.40 new features and extensibility are introduced
for both ER and HDR.

First let us look at the new data types and objects supported for enterprise replication. ER
now supports the following data types: ROW, NAMED, and UNNAMED, and collection data
types (LIST, SET, and MULTISET).

HDR now supports replication of the following extended objects: All built-in and extended
data types, user-defined routines (with some limitations), user-defined types, and R-tree
indexes (a different access method).

With IDS 9.40, ER and HDR can co-exist on the same database server, which was not
possible on prior releases. Therefore, if high availability is critical, you can use HDR in
conjunction with ER. HDR uses synchronous data replication between two database servers.
For example, a primary serve can participate in enterprise replication, and a secondary server
can be read-only and not participate in enterprise replication. If a primary server in an HDR
pair fails, you switch the secondary server to be the primary server, allowing it to participate in
enterprise replication. Client connections to the original primary server can be automatically
switched to the new primary server

Figure 2-3 shows a hypothetical scenario of HDR and ER configured to work together.
26 Using Informix Dynamic Server with WebSphere

Figure 2-3 HDR and ER coexistence scenario

SQL and extensibility enhancements
New SQL features are also introduced on IDS 9.40. These enable support for more ANSI
standard features, improve compatibility for migrating from other DBMS vendors, and provide
better integration with other IBM products such as WebSphere. In this section we describe
some of the primary enhancements.

Triggers on views
Applications, for security and other reasons, often use views to hide portions of a table from
users. Views are a good solution for applications that need to service a large set of users but
without exposing all available data. However, prior to IDS 9.40, views were non-updatable so
users could only query the data. Thus, other applications were required for this purpose.

With IDS 9.40 a view can now be updated. This is accomplished with the use of new
INSTEAD OF Triggers on views. With the INSTEAD OF trigger feature one can perform DML
operations [insert, update or delete] on a non-updatable [complex] view, and thus direct the
server to perform operation on the underlying tables of the view. Example 2-1 shows an insert
on a view.

Example 2-1 Inserting data on a view using INSTEAD OF trigger

CREATE TABLE dept(
deptno INTEGER PRIMARY KEY,
deptname CHAR(20),
manager_num INT);

CREATE TABLE emp(
empno INTEGER PRIMARY KEY,
empname CHAR(20),
deptno INTEGER REFERENCES dept (deptno),
startdate DATE);

/* The view manager_info lists all the managers for
each department */

CREATE VIEW manager_info AS
SELECT d.deptno, d.deptname, e.empno, e.empname
Chapter 2. Installing and configuring IDS V9.40 27

FROM emp e, dept d
WHERE e.empno = d.manager_num;

/* The INSTEAD OF trigger manager_info_insert handles inserts on
the manager_info view */

CREATE PROCEDURE instab(dno INT, eno INT)
INSERT INTO dept (deptno, manager_num) values(dno,eno);
INSERT INTO emp(empno, deptno) VALUES(eno, dno);
END PROCEDURE;

CREATE TRIGGER manager_info_insert
INSTEAD OF INSERT ON manager_info REFERENCING NEW as n
FOR EACH ROW
(EXECUTE PROCEDURE instab(n.deptno, n.empno));

INSERT INTO manager_info(deptno,empno) VALUES(08,4232);

/* The insert on the view should work fine at this point */

Enhanced SELECT statement syntax
Existing applications rely on the ability to order query results based on values that are not in
the select list, or the results need to be ordered by an expression. This was not permitted on
prior versions of IDS. Now, on IDS 9.40, the ORDER BY clause is more flexible — which now
makes this query valid, as shown in Example 2-2.

Example 2-2 SELECT statement with enhanced ORDER BY clause

SELECT d.dept_num
FROM dept d, employees e
WHERE d.dept_num = e.dept_num
GROUP BY d.dept_num
ORDER BY AVG(e.salary);

ANSI join syntax
The syntax of the SELECT statement has been enhanced to support the ANSI/ISO syntax for
cross joins, right outer joins, and full outer joins. The keywords CROSS, RIGHT, and FULL,
are now supported in the context of queries that join two or more tables and can be used with
the ON clause. This makes the new syntax more compliant with the SQL-99 standard, and
also enables enhanced integration of IDS with WebSphere.

Stored procedures return parameters
Prior to IDS 9.40, the return values of a stored procedure did not have a label for the column
name. Now you can specify names for each one of the parameters that are returned. See
Example 2-3 for a comparison.

Example 2-3 Code samples with and without named return parameters

/* Code Sample without Named Return Parameters */

create table t1 (c1 int , c2 int);
insert into t1 values (10,20);

create procedure proc()
returning int, int;
define n ,m int ;
FOREACH curA FOR SELECT * INTO n,m FROM t1
return n,m with resume;
28 Using Informix Dynamic Server with WebSphere

END FOREACH;
end procedure;

execute procedure proc();
 => Dbaccess Output:

(expression) (expression)
 10 20

/* Code Sample with Named Returned Parameters */

create table t1 (c1 int , c2 int);
insert into t1 values (10,20);

create procedure proc()
returning int as procc1, int as procc2;
define n ,m int ;
FOREACH curA FOR SELECT * INTO n,m FROM t1
return n,m with resume;
END FOREACH;
end procedure;

execute procedure proc()
 => Dbaccess Output:

procc1 procc2
 10 20

Sequence objects
IDS 9.40 introduced new DML statements (CREATE SEQUENCE, ALTER SEQUENCE,
RENAME SEQUENCE, DROP SEQUENCE) for sequence generators. A sequence is a user
defined database object that generates a sequence of numbers in a monotonically
ascendent/descendent order based on the options specified when the sequence was created.
Concurrent users can generate sequence numbers (unique, if required) using a sequence
generator. A sequence object provides functionality that is similar to the SERIAL type in IDS.
Example 2-4 shows the syntax of the new DML statements.

Example 2-4 SQL syntax for SEQUENCE objects

CREATE SEQUENCE <sequence_name> [INCREMENT [BY] <increment_value>]
[START [WITH] <start_value>]
[MAXVALUE <max_value> | NOMAXVALUE]
[MINVALUE <min_value> | NOMINVALUE]
[CYCLE | NOCYCLE]
[CACHE <cache_num> | NOCACHE]
[ORDER | NOORDER]

ALTER SEQUENCE <sequence_name>
[INCREMENT [BY] <increment_value>]
[MAXVALUE <max_value> | NOMAXVALUE]
[MINVALUE <min_value>| NOMINVALUE]
[RESTART [WITH] <restart_value>]
[CYCLE | NOCYCLE]
[CACHE <cache_num> | NOCACHE]
[ORDER | NOORDER]

DROP SEQUENCE <sequence_name>

RENAME SEQUENCE <sequence_name> TO <new_sequence_name>
Chapter 2. Installing and configuring IDS V9.40 29

Backup and restore enhancements
The backup and restore mechanisms on IDS 9.40 have also been enhanced to better
facilitate many of the administration tasks.

Full use of storage media
Prior to version 9.40, the system administrator was required to specify the size of the storage
media that was being used by backup and restore utilities, and risked wasting storage space
when the size of the media was not correctly specified. The size of the storage media now is
specified through configuration parameters or command line options. The backup and restore
utilities include: ontape, onload/onunload, dbimport/dbexport, and HPL. Except for HPL, you
can now specify a value of 0 for the size of the storage media. This means that the storage
media is used to the end by all server utilities mentioned above.

Increased file size limit
Prior to version 9.40, there was a file size limit of 2 GB. This limitation applied to many server
utilities, such as the UNLOAD and LOAD statements of SQL, onspaces, ontape, and
dbimport and dbexport utilities. This forced systems administrators to partition data across
multiple files. The new file size limit is 4 TB, and applies to all utilities mentioned above.

Chunks redirection during a cold restore
Prior to version 9.40, a backup of a server could only be restored to another server having
identically named devices or files as the original server. This was a very limiting restriction
considering that sometimes the device might not be available. This was also an impact
anytime the system administrator needed to restore a server instance to a different server.

IDS 9.40 eliminated that issue by enabling the renaming of chunks during a cold restore. A
cold restore is a restore that occurs when the root dbspace, or the dbspace that holds the
logs, is inaccessible, and it is performed with the server in offline mode. During a cold restore
you can now change the target chunks using either the ON-Bar or ontape utilities. The chunk
remapping is done directly through the command line, or indirectly through a referenced file.
Example 2-5 shows an example of command line chunk mapping.

Example 2-5 Command line chunk mapping

/* Command line chunk mapping */

Onbar
onbar -r -rename -p /dev/dsk/c1s0t2d1 -o 0
-n /ifmx/instance2/rootdbs.c0 -o 20000

Ontape
ontape -r -rename -p /dev/dsk/c1s0t2d1 -o 0
-n /ifmx/instance2/rootdbs.c0 -o 20000

/* The actual syntax is */

onbar
onbar -r [{-rename -p <old chunk path> -o ,old offset>
-n <new chunk path> -o <new offset>}...]

ontape
ontape -r [{-rename -p <old chunk path> -o ,old offset>
-n <new chunk path> -o <new offset>}...]

Example 2-6 shows an example of file-based chunk mapping.
30 Using Informix Dynamic Server with WebSphere

Example 2-6 File-based chunk mapping

Onbar
onbar -r -rename -f chunks_file

Ontape
ontape -r -rename -f chunks_file

/* chunks_file: place each entry on a separate line
<old chunk path> <offset> <new chunk path> <offset> */

/dev/dsk/c1s0t2d1 0 /ifmx/inst2/rootdbs.c0 20000
/ifmx/inst1/blobspc.c1 10000 /ifmx/inst2/blobspc.c1 0

2.2 Installing IDS 9.40 on SuSE Linux V8
In this section we describe the procedures to install and configure IDS on Linux, along with
some basic IDS administration commands that are used. We chose IDS 9.40 for all the
extensibility benefits and new features previously discussed, and because it is the newest
and best IDS version available. The actual package installed was IDS 9.40 with J/Foundation.
This enabled us to run Java procedures on the database server. However, for simplicity, the
term IDS 9.40 is used throughout this book. We chose Linux as the operating system
because it is an open source platform that is powerful, reliable, and secure. We used SuSE
Linux 8.0 for the installation of both IDS 9.40 and WebSphere Application Server 5.0.

We have divided our discussion of this topic into two main sections: Planning and Installing.

Planning
Before installing the products there are some pre-installation tasks that need to be performed
and verified.

System requirements
Here are some hardware and software recommendations when installing IDS on Linux:

� Pentium® III
� CPU - Intel® 32 bits
� Minimum of 500 MB of disk space
� Minimum of 128 MB of memory
� Linux kernel 2.4.7 or higher

Kernel parameters
We recommend that some of the OS kernel parameters are tuned according to the machine
notes. These are the values used to build IDS 9.40, and is a good starting point. Some
applications may require these parameters to be tuned differently.

� SHMMAX: 33554432
� SHMMIN: 1
� SHMMNI: 128
� SHMSEG: 128
� SHMALL: 4194304
� SEMMNI: 128
� SEMMSL: 250
� SEMMNS: 32000
� SEMOPM: 32
Chapter 2. Installing and configuring IDS V9.40 31

These parameters, and other valuable information, are documented in the release notes
directory, located in $INFORMIXDIR/release/en_us/0333. We recommend that you read
these documents, especially the following files:

� ids_unix_install_docnotes_9.40.html: The documentation notes file for your version of
this guide describes features that are not covered in the guide or that were modified since
publication.

� ids_unix_release_notes_9.40.html: Release notes files describe compatibility issues,
feature differences from earlier versions of IBM Informix products, and how these
differences might affect current products. Release notes also contain information about
any known problems and their workarounds.

� ids_machine_notes_9.40.txt: The machine notes file describes any special actions that
you must take to configure and use IBM Informix products on your computer. Machine
notes are named for the product described.

Creating the users and groups
In this section we discuss the creation of users and groups.

Creating the user and group Informix
If you are installing IDS for the first time on a determined host machine, you need to create a
user called informix and a group called informix. Their IDs should be greater than 100.

On Linux we used the useradd and groupadd commands to accomplish that:

1. Log in as user root and start a terminal session.

2. Create the group informix using the groupadd command. For example:

groupadd -g 200 informix

3. Create the user informix using useradd. For example:

useradd -u 200 -g informix -d /home/informix informix

Creating the user itso — used with our sample applications
Notice that creation of this user is not mandatory for the installation of IDS. We are creating
the user itso because it will be used later as we develop the sample applications in this book.

On Linux we used the useradd to accomplish that:

1. Log in as user root and start a terminal session.

2. Create user itso using useradd. For example:

useradd -g users -d /home/itso itso

Installation directory and environment variables
Now you must choose a directory where the product will be installed. After that, the
INFORMIXDIR and PATH environment variables should be set. For instance, in our case the
informix directory is /home/IDS9.40. We have to set this in our INFORMIXDIR and include it

Note: The user informix is the database equivalent of the UNIX® or Linux root account, so
that anyone logged in as user informix has complete access to any IBM Informix products
and databases. Keep the user informix password confidential.

IBM Informix products use group informix internally to control database access. Make user
informix the only member of group informix. Any person who belongs to group informix is a
database server administrator.
32 Using Informix Dynamic Server with WebSphere

in the PATH variable as well. On our Linux installation we used the bash command shell and
we set the variables as follows:

export INFORMIXDIR=/home/IDS9.40

export PATH=$INFORMIXDIR/bin:$PATH

If you use C shell, the commands to set the variables are:

setenv INFORMIXDIR /home/IDS9.40

setenv PATH ${INFORMIXDIR}/bin:${PATH}

Installing
The process of installing IDS 9.40 varies depending on the product distribution format that
you have. Usually IBM Informix products are distributed in CD-ROM, where the UNIX bundle
installer and other files are already expanded. However, if you download the product from an
FTP site, you might get the product in a cpio, tar, or Redhat Package Manager (RPM) format.

In our case we downloaded the product from an internal site and it came in a tar format. The
only difference is the command that you run to extract the bundle installer and installation
files. Here we show how to expand these files using the tar command and then how to use
the installation script to install IDS 9.40, using some screen captures to illustrate this process.

1. Since our product came in a tar file we needed a temporary space to expand the
distribution files and the installation scripts. It requires about 500 MB of disk space to
expand these files. Use the tar command to extract the files.

First, log in as user root. Then copy the .tar file you downloaded into the temporary
directory. Now go to the temporary directory and run the tar command that uncompresses
the file, using the following commands:

cd /home/informix/tmp

tar -xvf IDS9.40.tar

This following command can then be used to list all the files being extracted, and when it
finishes the temporary directory will contain the following files and directories:

[root@neon tmp]# ls

BDMA DBLD ICONNECT ids_install images JDBC README.html SERVER
SVR_ADM

IMPORTANT: Refer to Chapter 13, “Implementation hints and tips” on page 295 before
you begin your IDS installation. For SuSE 8.0, a new library needs to be installed.

Note: If your product distribution comes in a cpio format, run this command in the
temporary directory:

cpio -icvdumB < IDS9.40.cpio

For RPM distributions, run the command:

rpm -iv IDS9.40.rpm

If you have IDS 9.40 on CD-ROM, you should already have this structure and won’t
need the extra disk space.
Chapter 2. Installing and configuring IDS V9.40 33

2. Run the ids_install bundle installer by entering the following command:

[root@neon tmp]# ./ids_install

The installation menu shown in Figure 2-4 appears.

Figure 2-4 IDS 9.40 installation menu

3. Choose option 0, so all products are installed. Next the installation script will ask about the
product directory (INFORMIXDIR). Since our INFORMIXDIR environment variable is set
to /home/IDS9.40 this is the default directory. Press Enter to continue and then specify the
directory for the jdbc driver. In this case it should be a directory different than
INFORMIXDIR. In our case we chose /home/JDBC, and the installation script created this
directory and installed the jdbc files there. The menu shown in Figure 2-5 appears.
34 Using Informix Dynamic Server with WebSphere

Figure 2-5 Installation directory information

4. Next the installation script asks about the installation of the Informix Server Administrator
(ISA) components, such as the Apache web server and the Perl environment. It also asks
to confirm the hostname and choose a TCP/IP port for ISA. Press Enter for all questions,
so everything will be installed and configured automatically. Finally it asks for an email
address to be set in the Apache configuration file (httpd.conf). See Figure 2-6.
Chapter 2. Installing and configuring IDS V9.40 35

Figure 2-6 Informix Server Administrator (ISA) components

5. Next you are asked if you want a confirmation email to the address that you just entered.
You will also be asked for a new password for ISA. See Figure 2-7.
36 Using Informix Dynamic Server with WebSphere

Figure 2-7 Password for ISA

6. Here the installation script asks if you want to add read-only users to ISA. We added our
generic user called itso, which is later used in some of the sample applications. See
Figure 2-8.
Chapter 2. Installing and configuring IDS V9.40 37

Figure 2-8 Adding read-only users to ISA

7. To use Java-enabled ISA features, you need to install JRE 1.2.2 or 1.3. In our case we
had downloaded the JRE 1.3 from the Sun Web site at www.javasoft.com. A servlet
engine is also installed to support this feature and the installation script asks for another
TCP/IP port number. See Figure 2-9.
38 Using Informix Dynamic Server with WebSphere

Figure 2-9 Java-enabled ISA features installation

8. Next you are asked if the /etc/services file should be updated with the ISA TCP/IP ports.
Enter yes for that. Then the installation script starts the Apache HTTP server configured
for ISA and begins the installation of all products previously selected. See Figure 2-10.
Chapter 2. Installing and configuring IDS V9.40 39

Figure 2-10 Starting ISA Apache server

9. IDS 9.40, I-Connect and the JDBC are installed. The installation script on IDS 9.40
provides a demo database server configuration. It creates an instance for you and
updates all the configuration files. It also creates a file with the environment variables
settings that you can include in the users profiles or execute it when accessing the
database server. We used this demo server for our applications. See Figure 2-11.
40 Using Informix Dynamic Server with WebSphere

Figure 2-11 Installation of IDS 9.40, I-Connect and JDBC

10.The installation process is complete and an instance of the database server should be up
and running. To verify that the installation was successful and that the demo instance is
running do the following:

cd $INFORMIXDIR/demo/server

cat ./profile_settings

INFORMIXSERVER=demo_on

INFORMIXDIR=/home/IDS9.40

ONCONFIG=onconfig.demo

INFORMIXSQLHOSTS=/home/IDS9.40/etc/sqlhosts.std

PATH=/home/IDS9.40/bin:/home/IDS9.40/bin:/home/IDS9.40/bin:/usr/local/sbin:/usr/local/
bin:/sbin:/bin:/usr/sbin:/usr/bin:/usr/X11R6/bin:/root/bin:/usr/java/j2sdk1.3.1_08/bin:/usr/loc
al/bin:/bin:/usr/bin:/usr/X11R6/bin:/home/informix/bin:/home/informix/bin:/root/bin:/usr/java
/j2sdk1.3.1_08/bin:/opt/netscape/netscape:.

export INFORMIXSERVER INFORMIXDIR ONCONFIG INFORMIXSQLHOSTS PATH

. ./profile_settings

onstat -
Chapter 2. Installing and configuring IDS V9.40 41

You should then see the following:

Informix Dynamic Server Version 9.40.UC1 -- On-Line -- Up 00:10:42 -- 27920
Kbytes

You should see that the instance is On-Line,

Congratulations! You have successfully installed IDS 9.40 and configured a demo
instance!

11.The demo applications that are developed throughout this book use the stores_demo
database, so after the installation is complete we must create this demo database. Follow
these steps:

a. Log into the Linux server as user itso, so the database owner is the user itso.

b. Since you will login as a new user you need to set the environment parameters to point
to the correct server instance (demo_on). You might want to use the
$INFORMIXDIR/demo/server/profile_settings file to do that.

c. Run the following command to create the stores_demo database:

dbaccessdemo -log

12.We also need to make sure that the TCP/IP connection protocol is enabled in our server
instance, since we are going to have WebSphere connect to IDS from a remote server.

The best way to verify that is through the environment variables, onconfig, and sqlhosts
files. You might also need to check OS files, such as /etc/services:

a. The first thing to verify is your INFORMIXSERVER environment variable:

[informix@neon IDS9.40]$ echo $INFORMIXSERVER

demo_on

b. Verify that this is also the value in your server configuration file (onconfig). The value
demo_on should also be configured in either the DBSERVERNAME or
DBSERVERALIASES parameters:

[informix@neon IDS9.40]$ echo $ONCONFIG

onconfig.demo

[informix@neon IDS9.40]$ grep DBSERVER $INFORMIXDIR/etc/$ONCONFIG

DBSERVERALIASES # List of alternate dbservernames

DBSERVERNAME demo_on

c. Now verify that demo_on uses a TCP/IP protocol in the sqlhosts file. The column in
question to verify that is the second one, which specifies the NETTYPE value. On
Linux it should be onsoctcp. First find the sqlhosts file. If you are not setting the
INFORMIXSQLHOSTS environment variable, the sqlhosts file defaults to
$INFORMIXDIR/etc/sqlhosts. In our case we use $INFORMIXSQLHOSTS.

[informix@neon IDS9.40]$ cat $INFORMIXSQLHOSTS

#**

Title: sqlhosts.demo

Sccsid: @(#)sqlhosts.demo 9.2 7/15/93 15:20:45

TIP: During the database creation the IDS logical logs may fill up and the system will wait
for a log backup. To avoid this situation in a test environment, you can change the
LTAPEDEV configuration parameter to /dev/null. You can change this through ISA or by
editing the $ONCONFIG file.
42 Using Informix Dynamic Server with WebSphere

Description:

Default sqlhosts file for running demos.

#**

demo_on onsoctcp neon demo_on_tcp

d. Based on the sqlhosts file we know that the TCP/IP port name is demo_on_tcp (forth
column). To get the exact port number, look for this name in the /etc/services file:

[informix@neon IDS9.40]$ grep demo_on_tcp /etc/services

demo_on_tcp 1533/tcp

Finally we verify that our server instance has the TCP/IP protocol enabled and that it uses
port number 1533.

Configuring ISA to manage the demo instance
During the IDS 9.40 installation process we chose Informix Server Administrator (ISA) to be
installed as well. ISA is a web based application that is used to manage IDS instances, either
locally or remotely. Here we show how to configure it to manage the demo instance.

1. After finishing the installation open a web browser and use this URL format:

http://<host>:<ISA port number>

For example, in our case this is:

http://neon:1025

The page shown in Figure 2-12 should be loaded.

Note: If your server instance still uses only the shared memory protocol (onipcshm), make
the following changes:

1. Take the server offline: onmode -ky

2. Edit the sqlhosts file and edit the line that corresponds to your INFORMIXSERVER
value. Change the NETTYPE value (second column), from onipcshm to onsoctcp

3. Include the value specified in the forth column in the /etc/services file and assign an
unique port number to it.

4. Bring the server online: oninit

Note: On step 4 of the installation process we have to specify a TCP/IP port number for
ISA. In our case we chose the default port, 1025.
Chapter 2. Installing and configuring IDS V9.40 43

Figure 2-12 ISA page

2. You will notice that this page does not show any server instance configured for ISA. We
need to specify some parameters to have ISA manage our demo instance. Click the
Specify Local Informix Servers... button, and you should get the screen shown in
Figure 2-13.
44 Using Informix Dynamic Server with WebSphere

Figure 2-13 Configuration screen

3. Scroll down and follow the configuration instructions. Basically to configure a new local
instance in ISA we just have to set the environment variables that identify the server. Go
to the end of the configuration file and add your parameters. In our case the values (same
values as configured in $INFORMIXDIR/demo/server/profile_settings) are shown in
Figure 2-14.
Chapter 2. Installing and configuring IDS V9.40 45

Figure 2-14 Specifying instance environment variables

Click the Save button and you should see the demo_on server configured, as shown in
Figure 2-15.
46 Using Informix Dynamic Server with WebSphere

Figure 2-15 Demo instance configured to be managed by ISA

4. ISA is now ready to use. Click the server name (demo_on) to open the monitoring and
configuration page of this instance. The first page shows the IDS log file (online.log) and
on the left frame you see all the options available in ISA to manage the server instance, as
shown in Figure 2-16.

5. With ISA you can perform the following tasks:

– Change the server mode (online, quiescent, offline). The quiescent mode is the
administrative mode of IDS, where only the user informix has access to the database
server.

– Check and change configuration parameters.

– Monitor logical and physical logs, memory, users, etc.

– Check the database integrity.

– Run shell commands.

– Configure and monitor ER.

– Configure and monitor backup utilities, like ISM and ON-Bar.

– Create a new server instance.
Chapter 2. Installing and configuring IDS V9.40 47

Figure 2-16 Main page for managing the demo instance

Command-line option to manage IDS 9.40
In the last section we showed how to configure ISA to manage the administration tasks of
IDS. Even though this is a very good option (GUI oriented, easy to use, web tool), many
informix administrators still prefer to use the command line utilities. Here we show the most
common utilities and some of their options. Some of the utilities have to be run as user
informix.

oninit
This utility is used to initialize the server. It can either initialize only the shared memory of a
configured instance or it can be used to initialize both the disk and the shared memory for a
new instance (-i option).

Example 2-7 and Example 2-8 show these oninit options.

Example 2-7 Bringing the server to online mode

/* If the server is offline this command brings it to online mode: */
[informix@neon bin]$ oninit

Important: All the utilities are located in the $INFORMIXDIR/bin directory, so make sure to
include it in the PATH environment variable.
48 Using Informix Dynamic Server with WebSphere

Example 2-8 Initialize shared memory and disk structures

/* The next command initializes both the disk and the shared memory: */
[informix@neon bin]$ oninit -i

onmode
The onmode utility is used for many administrative tasks, such as:

� Change the server mode. We use onmode to change IDS to all modes except online,
which is performed using the oninit utility.

� Kill server sessions and transactions.

� Add or remove resources to the database server, like shared memory segments or virtual
processors. This task is performed dynamically with the server in online mode.

� onmode is also used to downgrade the server to an earlier version.

� Controls server mode (primary, secondary, standard) of a HDR server

Example 2-9, Example 2-10, and Example 2-11 show some of the onmode options.

Example 2-9 Changes server to maintenance mode (quiescent)

/* This option changes the server mode to quiescent. It waits for the users to finish their
work, so it is also referred as a graceful shutdown. If you don’t want to wait for the
users you can use the -u option */
[informix@neon bin]$ onmode -s

Example 2-10 Take server offline

/* The following option take server offline without waiting for users and answering yes to
all questions used in the -k option. */
[informix@neon bin]$ onmode -ky

Example 2-11 Adding a new VP dynamically

/* You can add a new VP to the server using onmode. For instance, to add a new CPU vp: */
[informix@neon bin]$ onmode -p +1 CPU

oncheck
The onchek utility is basically used to accomplish three tasks: to check disk structures for
inconsistencies (corruptions), to repair indexes, or to display information about disk
structures.

Example 2-12 and Example 2-13 show some of these oncheck options.

Example 2-12 Checking data and index consistency

/* Command to check the consistency of data and index pages on database wsad5: */
[informix@neon bin]$ oncheck -cDI wsad5

Attention: The -i option of the oninit utility has to be used with care, because it can
reinitialize the disk and all data stored in the databases is lost!! Only use this option if you
are configuring a new instance or if you do not care about the data stored in the existing
instance.
Chapter 2. Installing and configuring IDS V9.40 49

Example 2-13 Showing detailed table information

/* Command to display the information about a table on database wsad5 */
[informix@neon bin]$ oncheck -pt wsad5:customer
TBLspace Report for wsad5:itsobank.customer

 Physical Address 1:83
 Creation date 04/07/2003 11:09:27
 TBLspace Flags 901 Page Locking
 TBLspace contains VARCHARS
 TBLspace use 4 bit bit-maps
 Maximum row size 85
 Number of special columns 2
 Number of keys 0
 Number of extents 1
 Current serial value 1
 First extent size 8
 Next extent size 8
 Number of pages allocated 8
 Number of pages used 2
 Number of data pages 1
 Number of rows 11
 Partition partnum 1048646
 Partition lockid 1048646

 Extents
 Logical Page Physical Page Size
 0 1:9651 8

 Index 100_1 fragment in DBspace rootdbs

 Physical Address 1:84
 Creation date 04/07/2003 11:09:27
 TBLspace Flags 801 Page Locking
 TBLspace use 4 bit bit-maps
 Maximum row size 85
 Number of special columns 0
 Number of keys 1
 Number of extents 1
 Current serial value 1
 First extent size 4
 Next extent size 4
 Number of pages allocated 4
 Number of pages used 4
 Number of data pages 0
 Number of rows 0
 Partition partnum 1048647
 Partition lockid 1048646

 Extents
 Logical Page Physical Page Size
 0 1:9659 4

onstat
The onstat is the major utility to monitor database activities, display shared memory
structures, and show statistics for performance tuning purposes.

Note: The onstat command has a subset of options called MT options. In order to use the
MT commands you also have to specify the -g option.
50 Using Informix Dynamic Server with WebSphere

Example 2-14, Example 2-15, and Example 2-16 show these onstat options.

Example 2-14 Checking disk space (dbspaces and chunks)

/* Command to show chunks and dbspaces information: */
[informix@neon bin]$ onstat -d
Informix Dynamic Server Version 9.40.UC1 -- On-Line -- Up 00:28:50 -- 27920 Kbytes

Dbspaces
address number flags fchunk nchunks flags owner name
0x30c887d8 1 0x1 1 1 N informix rootdbs
 1 active, 2047 maximum

Chunks
address chunk/dbs offset size free bpages flags pathname
0x30c88928 1 1 0 15000 5189 PO--
/home/IDS9.40/demo/server/online_root
 1 active, 2047 maximum

Expanded chunk capacity mode: disabled

Example 2-15 Showing users sessions

/* Command to show user sessions (MT option): */
[informix@neon bin]$ onstat -g ses
Informix Dynamic Server Version 9.40.UC1 -- On-Line -- Up 00:01:04 -- 27920 Kbytes

session #RSAM total used dynamic
id user tty pid hostname threads memory memory explain
22 informix - 0 - 0 12288 7888 off
21 itsobank - -1 dhcp3910 1 45056 30344 off
20 eduardo 3 1566 neon 1 36864 29888 off
4 itsobank 2 1440 neon 1 36864 29888 off
3 informix - 0 - 0 12288 9096 off
2 informix - 0 - 0 12288 7888 off

Example 2-16 Showing profile of activity on the server

/* Command to show profile of activity. This option is used mostly to tune the server */
[root@neon server]# onstat -p
Informix Dynamic Server Version 9.40.UC1 -- On-Line -- Up 00:03:30 -- 27920 Kbytes
Profile
dskreads pagreads bufreads %cached dskwrits pagwrits bufwrits %cached
323 454 45373 99.29 164 869 15085 98.91

isamtot open start read write rewrite delete commit rollbk
32252 3982 4718 7516 3166 537 53 151 1

gp_read gp_write gp_rewrt gp_del gp_alloc gp_free gp_curs
0 0 0 0 0 0 0

ovlock ovuserthread ovbuff usercpu syscpu numckpts flushes
0 0 0 3.06 0.42 2 4

bufwaits lokwaits lockreqs deadlks dltouts ckpwaits compress seqscans
11 0 12159 0 0 0 1020 91

ixda-RA idx-RA da-RA RA-pgsused lchwaits
11 0 0 11 0
Chapter 2. Installing and configuring IDS V9.40 51

There are many other utilities that are used to mange an Informix instance, such as
onmonitor, onspaces, dbexport/dbimport, onparams, onlog, ontape, and onbar. We do not
show all of them here, if you want more information about the command line utilities see the
Informix Dynamic Server Administrator’s Reference manual (G251-1250-00).

Data administration on IDS
In the last sections we showed how the database server administrator can manage IDS using
either ISA or the command-line utilities. In this section we show how a data administrator
(sometimes it is the same person that administer the server) and developers can manage the
database objects (databases, tables, indexes, constraints) and run SQL statements.

There are two primary tools for running and managing database objects: You can either use a
character-based tool called dbaccess, or a third-party GUI tool called Server Studio.
Dbaccess is installed during the IDS installation process. However if you prefer to use Server
Studio you will need to download and install it. Here we show an overview of both tools.

Dbaccess
Dbaccess is a character-based tool that is installed along with the database server, and for
many server and data administrators it is the preferred tool to manage data and run SQL
commands.

The dbaccess binary resides in the $INFORMIXDIR/bin directory, so if it is configured in the
PATH environment, you can just type dbaccess and a menu-driven application is loaded, as
shown in Figure 2-17.

Figure 2-17 Dbaccess first screen

The menu provides five options, and most of them have sub-menus with related options.
Here are some brief descriptions of these options:

� Query-Language: Use this option to run SQL statements.

� Connection: This option is used to connect to either local or remote databases that are
configured in the sqlhosts file.
52 Using Informix Dynamic Server with WebSphere

� Database: This option is used to manage databases. You can create a new database on
this server, drop an existing database, select a database from a list, get information, or
close a selected database.

� Table: Use this option to manage a table in a selected database. You can create a new
table, alter or drop an existing one, or get information about it.

� Session: Retrieve information about the current dbaccess session

For example, to run a select statement on the customers table, follow these steps:

1. Open a terminal window on the database server using either the console or a telnet
session. The stores_demo was previously created as user itso, so log into the server
using this user id.

2. If not set, configure the PATH environment variable:

export PATH=$INFORMIXDIR/bin:$PATH

3. Run dbaccess, choose Query-Language and select the stores_demo database

4. Select New and specify the following SQL command:

select * from customer

5. Press the ESC button when you are finished editing and choose Run to execute the
query. Figure 2-18 shows the expected result.

Figure 2-18 Retrieving data from the customers table

TIP: You may have problems trying to navigate on dbaccess using the arrow keys. This is
probably related to your terminal settings. To correct the problem, set the TERM and
TERMCAP environment variables as follows:

export TERM=vt100

export TERMCAP=$INFORMIXDIR/etc/termcap
Chapter 2. Installing and configuring IDS V9.40 53

For more information about the dbaccess utility, see the IBM Informix DB-Access User's
Guide, Version 9.40 (G251-1239-00).

AGS Server Studio
Server Studio is a GUI administration tool provided by AGS. The basic modules of the tool
are: SQL editor, object explorer, and the table editor.

Server Studio is available for download (Java and Win32 versions are available) at:

http://www.serverstudio.com/downloads.html

On the same URL you will find the system requirement and also the installation instructions
for Server Studio (we used the Java version). Once Server Studio is installed in your chosen
directory, we just have to launch the program:

C:\ServerStudioJE>ServerStudioJE

This is what you should see (Figure 2-19).

Figure 2-19 Server Studio - Profile validation

Before using Server Studio you need to create a new user profile and request a new user
certificate. Basically you have to register as a new AGS user and a certification file (used with
a password authentication) is mailed to you via email. Just follow the screen instructions to
obtain this file.

Once you receive the certification file you can continue creating your new profile, as shown in
Figure 2-20.
54 Using Informix Dynamic Server with WebSphere

http://www.serverstudio.com/downloads.html

Figure 2-20 Creating new profile

After the profile is created the NetUpdate window is displayed. NetUpdate is an agent that
checks for new versions of Server Studio that are available for an update. On this window you
can set the frequency of this checking procedure. We chose to have a version checking now.

After the version update you are ready to explore the databases objects on IDS 9.40. First
you need to create and configure a connection to the server:

To do this we will be referring to Figure 2-21. To configure use the following steps:

1. Right-click the connection frame and select New -> Connection, and then connection
window appears.

2. In the connection manager window choose a name for your connection. These are
highlighted with an ellipse around them. We chose IDS9.40. Then for DBM, choose IBM
Informix 9.x.

3. Now select the database. Here we must configure the server instance to which we will
connect, the host where the instance resides, and the user id and password. In our case
we used, demo_on, 9.1.38.76, 1533, and itso. These are highlighted with a large ellipse.
Although not shown on the figure, we need to enter the database name, which in our case
was stores_demo.

4. Click the Connect button to verify the configuration.
Chapter 2. Installing and configuring IDS V9.40 55

Figure 2-21 Configuring connection to IDS

Now you can control all database objects of this connection (provided that you have the
necessary privileges). You can access such elements as tables, views, and triggers. You can
also run SQL commands, import and export data, and run update statistics.

AGS also provides add-on modules that helps you have better control over your data and
even administer the server (as a option for ISA). For more information about AGS server
studio, check the following site:

http://www.serverstudio.com/

2.3 Configuring IDS for use with WebSphere
In this section we describe the procedure to configure the IDS 9.40 environment to be
integrated with WebSphere. It is not our intention to show how to tune IDS 9.40 to work on a
OLTP or DSS system (although we do provide some general guidelines in the chapter on
Hints and Tips), for this kind of configuration we recommend specialized performance and
tuning publications. The objective here is to show the basic configuration that needs to be
performed in order to enable IDS to work with WebSphere products.
56 Using Informix Dynamic Server with WebSphere

http://www.serverstudio.com/

In this book we use WebSphere Studio Application Developer 5.0 on Windows/2000, and
WebSphere Application Server 5.0 on a Linux server. These two products are described in
the following chapters. But, it is important to note that the WebSphere family constitutes the
IBM solution for an e-business infrastructure. It is also important to note that WebSphere is
based on the J2EE industry standard, and uses various Java technologies. What that means
is, that from the IDS standpoint, we need to configure IDS to work with Java applications.
Java programs need to be able to connect to the database server, run queries and execute
transactions. This is accomplished through Java database connectivity (JDBC).

JDBC and the JDBC drivers
Java database connectivity (JDBC) is the JavaSoft specification of a standard application
programming interface (API) that allows Java programs to access database management
systems. The JDBC API consists of a set of interfaces and classes written in the Java
programming language. Using these standard interfaces and classes, programmers can write
applications that connect to databases, send queries written in structured query language
(SQL), and process the results.

The JDBC API defines the Java interfaces and classes that programmers use to connect to
databases and send queries. A JDBC driver implements these interfaces and classes for a
particular DBMS vendor. There are four types of JDBC drivers:

� JDBC-ODBC bridge plus ODBC driver, also called Type 1.
� Native-API, partly Java driver, also called Type 2.
� JDBC-Net, pure-Java driver, also called Type 3.
� Native-protocol, pure-Java driver, also called Type 4.

The Informix JDBC driver is a native-protocol, pure-Java driver (Type 4). A type 4 JDBC
driver provides direct connection to the database server, without a middle tier. The informix
JDBC driver version that we use in this book is 2.21.JC4 and it is based on version 2.0 of the
JDBC API.

Installation and configuration of Informix JDBC driver
The JDBC driver was installed along with IDS 9.40 in Section , “Installing” on page 33.
However, note that some IDS versions do not come with JDBC bundled in the distribution
files. So, if you need to download the Informix JDBC driver, go to the following URL:

http://www-3.ibm.com/software/data/informix/

On the left frame, click the Downloads link, and it redirects you to the download page of
Informix products. In the search field only the keyword Informix is specified. Add the keyword
jdbc and select the all keywords button. This will filter the results and make the search
more effective.

Our JDBC driver was previously installed in the /home/JDBC directory (Step 3 on page 34).
The configuration requirement is to set the CLASSPATH environment variable and include the
JDBC jar files in it. For example, in our case:

export CLASSPATH=/home/JDBC/lib/ifxjdbc.jar:/home/JDBC/lib/ifxjdbcx.jar

TIP: Set the CLASSPATH environment variable in every user profile that will connect to
IDS using JDBC. In our case we added this variable in the profile_settings file and loaded
this script in the user profiles that ran Java applications against IDS 9.40.
Chapter 2. Installing and configuring IDS V9.40 57

http://www-3.ibm.com/software/data/informix/

By including the Informix JDBC driver in the CLASSPATH we make available the necessary
packages that a Java application needs to access to connect to an Informix server. Inside the
application code we have to import the JDBC packages, load the JDBC driver, and then
connect to the database.

Configuration checking using a sample application
The best way to test the IDS and JDBC configuration is to execute a simple Java application
that connects to IDS using a JDBC connection. If this works fine we verify that the IDS
environment is ready to be integrated with WebSphere.

In this section we use a sample Java application that loads the JDBC driver, uses a
connection URL to specify configuration parameters, and connects to the stores_demo
database. If it connects successfully data is retrieved from the customer table.

Before running this demo you need to follow these steps:

1. Install a Java environment package in your Linux server. In our case we downloaded a
Java 2 Platform, Standard Edition (J2SE) version 1.3.1 from
http://www.java.sun.com/j2se/downloads.html

2. Include the bin directory of J2SE in the PATH environment variable (Java on Linux servers
is usually installed in the /usr directory):

export PATH=$PATH:/usr/java/j2sdk1.3.1_08/bin

3. Verify that your environment variables are properly set. IDS variables should be pointing
to the correct server instance, PATH should include Informix and Java bin directories, and
CLASSPATH should include the Informix JDBC jar files and the current directory. In our
case we included all these settings in our $INFORMIXDIR/demo/server/profile_settings
file. This is how it looked:

INFORMIXSERVER=demo_on

INFORMIXDIR=/home/IDS9.40

ONCONFIG=onconfig.demo

CLASSPATH=/home/JDBC/lib/ifxjdbc.jar:/home/JDBC/lib/ifxjdbcx.jar:.

PATH=/home/IDS9.40/bin:/home/IDS9.40/bin:/home/IDS9.40/bin:/usr/local/sbin:/usr
/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/usr/X11R6/bin:/root/bin:/usr/java/j2s
dk1.3.1_08/bin:/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/home/informix/bin:/
home/informix/bin:/root/bin:/usr/java/j2sdk1.3.1_08/bin:/opt/netscape/netscape:
.

export INFORMIXSERVER INFORMIXDIR ONCONFIG PATH CLASSPATH

4. After setting these variables you should be able to run IDS commands (as long as you
have the necessary permissions), compile and run normal Java programs, and also
compile and run JAVA programs to access IDS using the Informix JDBC driver.

Compiling and running the demo application
Now you are ready to compile and run the application. This program is a modified version of
the SimpleConnection demo program that comes with the JDBC driver. You can find the
SimpleConnection demo, and others, in the <JDBC_HOME>/demo directory. Example 2-17
shows the source code of our program.
58 Using Informix Dynamic Server with WebSphere

http://www.java.sun.com/j2se/downloads.html

Example 2-17 Source code of the VerifyIDSConfigForWAS program

import java.sql.*;
import java.util.*;

public class VerifyIDSConfigForWAS {

 public static void main(String[] args)
 {
 String url =
"jdbc:informix-sqli://neon:1533/stores_demo:informixserver=demo_on;user=itso;password=itso"
;
 String testName = "Simple Connection";
 Connection conn = null;
 Statement stmt = null;
 ResultSet rs = null;
 int i = 0;

 System.out.println(">>>" + testName + " test.");
 System.out.println("URL = \"" + url + "\"");

 try
 {
 Class.forName("com.informix.jdbc.IfxDriver");
 }
 catch (Exception e)
 {
 System.out.println("FAILED: failed to load Informix JDBC driver.");
 }

 try
 {
 conn = DriverManager.getConnection(url);
 }
 catch (SQLException e)
 {
 System.out.println("FAILED: failed to connect!");
 }

 try
 {
 stmt = conn.createStatement();
 rs = stmt.executeQuery("select * from customer");

 System.out.println("");
System.out.println("****************** Customer Information ***********************");
 System.out.println("");
 System.out.print("Customer ID");
 System.out.print(" First Name");
 System.out.print(" Last Name");
 System.out.println(" Company");

System.out.println("===");
 System.out.println("");
Chapter 2. Installing and configuring IDS V9.40 59

 while(rs.next() && i < 4)
 {
 String custID = rs.getString("customer_num");
 String fName = rs.getString("fname");
 String lName = rs.getString("lname");
 String company = rs.getString("company");
 System.out.print(" " + custID);
 System.out.print(" " + fName);
 System.out.print(lName);
 System.out.println(company);
 i++;
 };
 }
 catch (Exception e)
 {
 System.out.println("Failed to run query!");
 }

 try
 {
 conn.close();
 }
 catch (SQLException e)
 {
 System.out.println("FAILED: failed to close the connection!");
 }
 System.out.println("");
 System.out.println(">>>End of " + testName + " test.");
 }
}

The most important information here that might need to be changed is the URL. Notice that in
our case it is set to:

jdbc:informix-sqli://neon:1533/stores_demo:informixserver=demo_on;user=itso;password=itso

where neon is the name of our host machine, 1533 is our TCP port number to connect to
IDS, stores_demo is our database name, demo_on is our server instance name
(INFORMIXSERVER), and itso is our user.

To compile and run the program follow these steps (on the same terminal session that has
the environment variables set) :

1. Copy the source code into your working directory and name it:
VerifyIDSConfigForWAS.java

2. Compile the program:

[itso@neon itso]$ javac VerifyIDSConfigForWAS.java

3. Run the program:

[itso@neon itso]$ java VerifyIDSConfigForWAS

Example 2-18 shows the expected results.

Attention: Don’t forget to change the connection URL information to the values used in
your configuration if it is different from our values - before you go to step 2!
60 Using Informix Dynamic Server with WebSphere

Example 2-18 Simple connection test

>>>Simple connection test.
URL =
"jdbc:informix-sqli://neon:1533/stores_demo:informixserver=demo_on;user=itso;password=itso"

****************** Customer Information ***********************************
Customer ID First Name Last Name Company
==
 101 Ludwig Pauli All Sports Supplies
 102 Carole Sadler Sports Spot
 103 Philip Currie Phil's Sports
 104 Anthony Higgins Play Ball!
>>>End of Simple Connection test.

Receiving the above query results from the stores_demo database verifies that IDS is
installed properly, that you can connect to it using JDBC, that you can access it with a Java
application, and that it is ready to be integrated with WebSphere.

The following chapters will overview WebSphere, step you through the installation and
configuration of WebSphere, and guide you through the integration of IDS with WebSphere.
You will actually be stepped through the development of an application, using WebSphere
Studio Application Developer, that validates the integration of IDS with WebSphere.
Chapter 2. Installing and configuring IDS V9.40 61

62 Using Informix Dynamic Server with WebSphere

Chapter 3. WebSphere V5: An overview

WebSphere is IBM’s strategic software platform for e-business. As such, WebSphere
represents a number of product packages that address all aspects of e-business. The
WebSphere family represent a powerful and flexible application development and deployment
environment. For a complete overview of all WebSphere product packages, please see the
WebSphere product pages on the IBM Web site (http://www.ibm.com®).

The objective of this redbook is to demonstrate how WebSphere can be used in an integrated
environment with Informix Dynamic Server (IDS). The focus of this section will be on those
WebSphere product packages that were implemented in the development of this redbook, to
meet that objective. The WebSphere product packages are grouped into the following three
categories:

� Business Integration
� Reach and User Experience
� Foundation and Tools

In this section we focus primarily on the category of Foundation and Tools. We provide a brief
overview of this selected set of the product packages that includes the basic architecture and
some of the functions and features. This is not intended to be an exhaustive overview, but
rather, more of an introduction for those not already familiar with WebSphere. There are more
detailed descriptions of the implementation process and the use of those selected product
packages in subsequent chapters of this redbook.

3

© Copyright IBM Corp. 2003. All rights reserved. 63

http://www.ibm.com

3.1 What is WebSphere?
This section provides a brief introduction to WebSphere and discusses why it is important in
today’s fast moving, online, and Internet ready environment.

WebSphere is IBM’s infrastructure software for dynamic e-business. It has evolved from its
start as a Web application server, to a full set of related products and offerings with a common
base. Founded on open standards, the WebSphere family of product packages is now the
most comprehensive and fastest growing e-business platform on the market.

One of the main components of this e-business infrastructure is the WebSphere Enterprise
Application Server. To understand what this really means we have to examine what problem
WebSphere is designed to solve, and then the definition Enterprise Application Server will
make much more sense. To understand the problem, we need to take a brief tour of the
history of client-server architecture.

Early client server computing history: connection based
A very long time ago, dating as far back as the late 1980’s and 1990’s, two-tier client server
computing was the defacto standard for open systems. The architecture looked as shown in
Figure 3-1.

Figure 3-1 Client-server computing model

The communication between the client computer on the left of the illustration and the server
on the right was connection based. You are already familiar with this concept; the screen
capture is designed to help clarify the definition.
64 Using Informix Dynamic Server with WebSphere

When the dbaccess session shown executes the statement:

>database stores_demo

it is requesting a connection to the stores_demo database.

The following message indicates that this was successful:

Database selected.

A connection has been established, and the session can be viewed with onstat –g ses.

We can demonstrate a connection failure by forcing the server to stop by using onmode -yuk.

The following message reminds us that the active communication between the client and
server has been violated, and that a session between the client and server no longer exists:

25582: Network connection is broken.

Connection oriented computing made client server computing straightforward. But in the
mid-1990s, the World Wide Web thrust connectionless computing into center stage, and the
relatively simple days of two-tier client server computing would never be the same.

The World Wide Web: Connectionless Computing
The original design of the World Wide Web was to publish documents for easy browsing.
Connection computing was rejected, because a typical server didn’t have to resources to
track hundreds, if not thousands, of sessions over what was often a slow or unreliable
network.

By eliminating the connection, and need to track the state of the clients connecting to the
server, a much smaller server could handle many clients on the net, as shown in Figure 3-2.

Figure 3-2 Connectionless computing

A simple text markup language, HyperText Markup Language (HTML), was not sufficient to
provide access to important data sources such as databases, so the Communications
Gateway Interface (CGI) was created. CGI allows Web servers to run programs at the
operating system level of the Web server. In very short order, CGI was mated with Perl and
other languages in order to get access to databases.

The issue of connections and sessions still had to be addressed, and this was remedied by
the use of cookies. A cookie is a unique identifier for the client that is sent by the browser
back to the Web server with each page request.

This is not a good replacement for the robust two-tier client server model. Then, to add even
more complexity, a new language called Java became extremely popular for Web
development.

Connectionless based client
server communication

Webserver
Database
Server
Chapter 3. WebSphere V5: An overview 65

Early Java computing
The Java programming language added great flexibility and function to the Web environment,
and also cemented the need for application server technology, as shown in Figure 3-3.

Figure 3-3 Early Java Computing

The initial Java design used a command line run time Java Virtual Machine (JVM) to launch
applets or a run time environment hosted by a browser.

The scalability issues are obvious. For example, the application can’t be very large if the run
time is resident in the client browser. And, the applications had to be downloaded to the
browser which introduced network bandwidth issues. Database connections used either CGI
or Java Database Connectivity (JDBC). With a direct JDBC connection between the client
and the database, connection pooling couldn’t be leveraged.

Other issues were spawned by the browser wars due to incompatibilities between JVMs in
different browsers. The security model of the JVM dictated no local access to the surrounding
operating system, again limiting the power of the applications.

WebSphere to the rescue
WebSphere is specifically designed to address the issues raised in our brief survey of Web
client-server computing, as shown in Figure 3-4.

Figure 3-4 Application model

Here is a simple definition of WebSphere:

WebSphere is an industrial strength home for your Java applications.

WebSphere addresses the session persistence issues, JVM issues, and database access
and pooling, all while conforming to open industry Java 2 Enterprise Edition (J2EE) Java
architecture (for more details, see http://www.javasoft.com).

The client session state is maintained by cookies, and WebSphere uses robust database
technology to make the session information persistent. This provides scalability and fault
tolerance as many servers can access the database containing session information.

WebSphere
and
Webserver

Database
Server

JDBCHTTP

View (thin) control model
66 Using Informix Dynamic Server with WebSphere

http://www.javasoft.com

WebSphere application development is in industry standard environments including Java
Server Pages (JSP) and Enterprise Java Beans (EJB). The MVC – Model, View, Control
architecture significantly improves programmer productivity. The MVC architecture will be
explored in greater detail in “Application model” on page 69.

WebSphere runs as a middle tier server. It can be hosted on anything from a laptop to a high
end server. Vertical and horizontal scaling provides even greater scalability. This solves the
issues associated with running large Java applications on the client desktop. The middle tier
also provides database connection pooling, so the overhead of connecting to the database is
eliminated.

So, WebSphere has become the IBM infrastructure for dynamic e-business. It has evolved
from its start as a Web application server, to a full set of related products and offerings with a
common base. Founded on open standards, the WebSphere family of product packages is
now the most comprehensive and fastest growing e-business platform on the market.

Now let’s take a brief look at some of the WebSphere family of products.

3.2 WebSphere product family
Designed as a pyramid, the WebSphere platform model illustrates the depth and breadth of
the WebSphere product family. The product packages that comprise the WebSphere family
are categorized in three groups, as depicted in Figure 3-5.

� Foundation and tools: These products represent the functional infrastructure. Included
are WebSphere Application Server, WebSphere Studio, and WebSphere Host Integration.
The Application Server is the runtime environment of choice. It represents an
enterprise-level runtime environment and provides workload management, scalability, and
security. WebSphere Studio provides the development environment. It has a range of
tools and functions for the development and testing of Web based applications.

� Reach and user experience: These products extend range of the applications and
enable them to reach new customers. For example, they can help a company move their
business from traditional channels to the internet, and enable the creation of online stores.
Included are WebSphere Portal, WebSphere Everyplace®, and WebSphere Commerce.

� Business integration: The products in this category are WebSphere Business
Integration, and WebSphere MQ Integrator Broker. They help customers enable
interoperability by interconnecting and integrating the various sources of data and
information. WebSphere MQ provides an underlying message-oriented infrastructure,
Java Messaging Services (JMS) support, a channel for Simple Object Access Protocol
(SOAP) message exchange, and other options such as HTTP and HTTPS.

WebSphere is a robust, comprehensive family of product packages. The focus of this
RedBook is WebSphere Application Server (WAS) and WebSphere Studio Application
Developer (WSAD). However, we do provide some discussion of other WebSphere products
in this redbook, such as Portal Server and WebSphere MQ.

In addition, redbooks are available that provide more detail on all products in the WebSphere
family. For information on other WebSphere products, go to:

http://www.redbooks.ibm.com
Chapter 3. WebSphere V5: An overview 67

http://www.redbooks.ibm.com

Figure 3-5 WebSphere platform model

3.3 WebSphere Application Server (WAS)
WebSphere Application Server is a key element of a business-on-demand infrastructure.
Version 5 provides an integration of the deployment model, administration point, programming
model, and integrated application development environment, and is fully J2EE 1.3 compliant.
It is available in multiple packages to satisfy a wide range of user requirements. The range is
from a simple single server to a clustered, highly available, high-volume environment. The
product packages are also available for a range of platforms, including Windows NT/2000/XP,
Linux, AIX®, Sun Solaris, HP-UX, and z/OS®.

In this section we present some of the J2EE concepts and model, the system architecture of
WebSphere Application Server and its components, and finally we show a table comparison
of the different application server editions that are available.

3.3.1 J2EE: Overview
WebSphere is IBM’s software platform for e-business and it is based on the J2EE industry
standard model. In this section we present a conceptual overview of the J2EE standard and
describe the architecture features of WebSphere Application Server.

What is J2EE?
The acronym J2EE stands for Java 2 Platform, Enterprise Edition. The J2EE platform is the
standard for developing, deploying, and running multi-tier enterprise applications. J2EE
simplifies enterprise applications by basing them on standardized, modular components, by
providing a complete set of services to those components, and by handling many of the
details of application behavior automatically, without complex programming. The standard
architecture defined by J2EE is composed of the following elements:

� Standard application model for developing multi-tier applications.

� Standard platform for hosting applications.

� Compatibility test suite for verifying that J2EE platform products comply with the J2EE
platform standard.

� Reference implementation providing an operational definition of the J2EE platform.

WebSphere Portal Server

WebSphere Everyplace

WebSphere Commerce

WebSphere Application Server

WebSphere Studio

WebSphere MQ

WebSphere Business Integration

WebSphere MQ
Integrator Broker

Business Business
IntegrationIntegration

ReachReach
& User& User

ExperienceExperience

FoundationFoundation
and Toolsand Tools

WebSphere
68 Using Informix Dynamic Server with WebSphere

The J2EE platform specification describes the runtime environment for a J2EE application.
This environment includes application components, containers, and resource manager
drivers. The elements of this environment communicate with a set of standard services that
are also specified.

J2EE benefits
The J2EE standard empowers customers, so they can compare J2EE offerings from vendors
and know that they are comparing apples with apples. Comprehensive, independent
Compatibility Test Suites ensure vendor compliance with J2EE standards.

These are some benefits of deploying to a J2EE-compliant architecture:

� A simplified architecture based on standard components, services and clients, that takes
advantage of the write-once, run-anywhere Java technology

� Services providing integration with existing systems, including Java DataBase
Connectivity (JDBC); Java Message Service (JMS); Java Interface Definition Language
(Java IDL); JavaMail; and Java Transaction API (JTA and JTS) for reliable business
transactions

� Scalability to meet demand, for example, by distributing containers across multiple system
and using database connection pooling

� A better choice of application development tools, and components from vendors providing
off-the-shelf solutions

� A flexible security model that provides single sign-on support, integration with legacy
security schemes, and a unified approach to securing application components

The J2EE specifications are the result of an industry-wide effort that has involved, and still
involves, a large number of contributors.

J2EE application and programming model
Here we describe the J2EE multi-tier application (system) model, explaining the different tiers
and what software is typically installed on each of them. We also present the J2EE
programming model, as well as their parts and how they relate to each other.

Application model
The J2EE application model is comprised by a n-tier environment where a number of tiers of
application logic and business services are separated into components that communicate
with each other across a network. The basic form is a logical three-tier computing model,
which we depict in Figure 3-6.
Chapter 3. WebSphere V5: An overview 69

Figure 3-6 J2EE Application model

The three tiers can be described as follows:

� First Tier (View): This tier consists of thin clients. Their main function is to present
information and results, produced by an application, to the user. They are called thin
clients because little or no application logic is executed on the client, hence relatively little
software is required to be installed on the client. The common element that ties these
clients to the Web application server is their implementation of a set of widely supported
Internet-based technologies and protocols, along with Java, which enables them to
provide interaction between users and applications. Examples of thin clients are Web
browsers (Netscape or Internet Explorer), PDA’s, and mobile phones.

� Middle Tier (Control): This tier is typically comprised of a standard-based Web server
(for example, IBM HTTP Server) that interacts with the client tier and defines user
interaction. The Web application server (for example, WebSphere Application Server)
executes business logic independently of the client type and user interface style. It is
implemented using various Internet and Java technologies, including the HyperText
Transfer Protocol (HTTP) server and the Enterprise Java services that enable rapid
development and deployment of applications in a distributed network environment.

Java Servlets, Java Server Pages, and Enterprise Java Beans are examples of the
components deployed in the Web application server. These server-side components
communicate with their clients and other application components via HTTP or IIOP, and
use the directory and security services provided by the network infrastructure. They can
also leverage database, transaction, and groupware, facilities. This middle tier can also be
logically divided into the presentation tier and the business logic tier. Typically Enterprise
Java Beans process the business logic, and JSPs and Servlets are responsible for
presenting the results to a client request.

Note: These are logical tiers, so it does not mean that they necessarily are running on
three different physical servers.

First Tier
(View)

Middle Tier
(Control)

Third Tier
(Model)

Thin Clients:
Browser,

PDA,
Mobile Phones

HTTP
Server

Information
Systems

servlets

JSP

Web Container

EJB

EJBContainer

Application Server

Presentation Business Logic

EJB
70 Using Informix Dynamic Server with WebSphere

� Third Tier (Model): This tier primarily consists of the Customer Information Control
System (CICS®) server, legacy applications developed on mainframes, and legacy
systems, or relational databases such as IDS.

Programming model
The J2EE programming model (Figure 3-7) categorizes enterprise applications into
components, containers, and connectors, as follows:

� Components: These are the key focus of application developers, whereas system
vendors implement containers and connectors to conceal complexity and promote
portability. Typical J2EE components include: Servlets and Java Server Pages (JSP),
Enterprise Java Beans (EJB), application clients, and Applets.

� Containers: These intercede between clients and components by providing services
transparently to both, including transaction support and resource pooling. Container
mediation allows many component behaviors to be specified at deployment time, rather
than in program code. Containers are provided by application server vendors, an example
being IBM WebSphere application server. An application server provides containers for
components listed above, so Enterprise Java Beans are executed by the EJB container,
servlets and JSP are executed by the Web container, application clients are executed by
the application client container, and finally applets are executed by the applet container.

� Connectors: These sit beneath the J2EE platform, defining a portable service API to plug
into existing enterprise vendor offerings. Connectors promote flexibility by enabling a
variety of implementations of specific services. Connectors are usually implemented by
database vendors, such as IBM provides with Informix Dynamic Server.

Figure 3-7 J2EE programming model

3.3.2 WebSphere Application Server: Architecture
IBM WebSphere Application Server, Version 5 has completed the full J2EE certification test
suite. The product supports all of the J2EE 1.3 APIs, and exceeds many with its extensions.
In this section we look at the architecture of WebSphere Application Server and describe its
major components, including the application server itself, the Web container, and the EJB
container, and describe how they map to the J2EE model. See Figure 3-8.

ContainersComponents

C
O
N
N
E
C
T
O
R
S

Chapter 3. WebSphere V5: An overview 71

Figure 3-8 WAS architecture

Node
A node is the physical machine (server) where the application server is installed.

Application server
The application server collaborates with the Web server to return customized response to a
client request. Application code, including servlets, JSPs, EJBs, and their supporting classes,
run in an application server. In keeping with the J2EE component architecture, servlets and
JSPs run in a Web container, and EJBs run in an EJB container. You can define multiple
application servers, each running in its own Java Virtual Machine (JVM).

� Web container: Servlets and JavaServer Pages (JSP) are server-side components used
to process requests from HTTP clients, such as Web browsers. They handle presentation
and control of the user interaction with the underlying application data and business logic.
They can also generate formatted data, such as XML, for use by other application
components. The Web container processes servlets and JSP files. When handling
servlets, the Web container creates a request object and a response object, then invokes
the servlet service method. The Web container invokes the servlet destroy method when
appropriate and unloads the servlet, after which the JVM performs garbage collection.

� EJB container: The EJB container provides the runtime services needed to deploy and
manage EJB components, known as enterprise beans. It is a server process that handles
requests for session, entity, and message-driven beans. The enterprise beans (inside EJB
modules) installed in an application server do not communicate directly with the server;
instead, an EJB container provides an interface between the enterprise beans and the
server. Together, the container and the server provide the bean runtime environment. The
container provides many low-level services, including threading and transaction support.

Enterprise
Bean

EJB Container

Application Server

Admin Console
http://localhost:9090/admin

Admin.Repository
(XML Files)

Application
(EAR File)

Application
Database

Embedded
HTTP Server

ServletsJSP

Web Container

Embedded
JMS Server

Node

Client Container

JavaClient

Admin ServerXML Config

IBM
HTTP
Server

Plugin

Web
Browser

Web
Browser

Web
Browser
72 Using Informix Dynamic Server with WebSphere

From an administrative viewpoint, the container manages data storage and retrieval for the
contained beans. A single container can hold more than one EJB jar file.

HTTP server
The WebSphere Application Server works with an HTTP server, or Web server, to handle
requests for dynamic content, such as servlets from Web applications. The HTTP server and
application server communicate using the WebSphere HTTP plug-in for the HTTP server. The
HTTP plug-in uses an easy-to-read XML configuration file to determine whether a request
should be handled by the Web server or the application server. It uses the standard HTTP
protocol to communicate with the application server. It can also be configured to use secure
HTTPS, if required. The HTTP plug-in is available for popular Web servers.

Application client container
Application clients are Java programs that typically run on a desktop computer with a
graphical user interface (GUI). They have access to the full range of J2EE server-side
components and services. The application client container handles Java application programs
that access enterprise beans, Java Database Connectivity (JDBC), and Java Message
Service message queues. The J2EE application client program runs on client machines. This
program follows the same Java programming model as other Java programs; however, the
J2EE application client depends on the application client run time to configure its execution
environment, and uses the Java Naming and Directory Interface (JNDI) namespace to access
resources.

Embedded JMS server
The embedded JMS server provides built-in support for Java Message Service (JMS)
messaging between WebSphere applications, including message-driven beans.

Embedded HTTP server
The embedded HTTP server enables HTTP clients to connect directly to the application
server. Or, as previously described, an HTTP client can connect to a Web server and the
HTTP plug-in can forward the request to the application server.

3.3.3 WebSphere Application Server: Packages
Here we provide brief descriptions of the WebSphere Application Server product packages
that are currently available (a high level function/feature comparison of the different packages
is given in Table 3-1 on page 74):

� WebSphere Application Server - Express offers an affordable solution for managing
simple dynamic Web sites. It is Java-based and supports a development environment
using WebSphere Studio. With it you can convert static Web sites into dynamic Web
applications. It is an entry-level configuration, but has a migration path to other
WebSphere Application Server packages for growth and investment protection.

� WebSphere Application Server is also a Java-based application server, with integrated
enterprise data and transaction support for the e-business world. It offers a set of
application services to enable and manage heterogeneous Web services, increased
security, performance, availability, connectivity, and scalability. It supports standards such
as XML, SOAP, and Web services description language (WSDL). It also extends the Java
2 Enterprise Edition (J2EE) 1.3 programming model by providing an infrastructure to
support production-ready deployment of Web services-based applications. This makes it
possible to deploy Web services with the communication mechanism of your choice,
including SOAP and HTTP, Java Message Service (JMS), or Remote Method Invocation
Internet Inter-ORB Protocol (RMI-IIOP).
Chapter 3. WebSphere V5: An overview 73

� WebSphere Application Server Network Deployment provides advanced Web services
and clustering capabilities. It offers a private UDDI registry for easier deployment of
internal Web services applications and the Web Services Gateway for external
applications that request Web services from an internal Web services provider application.

� WebSphere Application Server Enterprise Edition provides an advanced application
server configuration that simplifies build-to-integrate tasks, accelerates application
development, and enables dynamic application flexibility. It offers build-to-integrate
capabilities such as advanced application adapters, application workflow composition and
choreography, extended messaging, dynamic rules-based application adaptability and
internationalization, and asynchronous processing. It delivers more integration capabilities
than WebSphere Application Server Network Deployment through extensions beyond the
specifications of the J2EE standards

WebSphere Application Server has many benefits, among them are:

� Full J2EE 1.3 compatibility, modular, and standards based, means easier and less
expensive application development.

� Seamless configurations and administration, based on Java Management Extensions
(JMX), with a browser-based administration facility.

� Improved programmer productivity and simplified enterprise development with JMS API. It
includes standards, such as XML, SOAP, and WSDL, as well as enhanced options, such
as the Web Services Gateway, and a private UDDI registry.

� Enhanced security model supports open standards-based Java specifications, such as
Java 2 Security, JAAS, and WebSphere’s pluggable security architecture.

For more information on IBM WebSphere Application Server, refer to:
http://www-3.ibm.com/software/webservers/

WebSphere Server V5.x: Product package comparisons

Table 3-1 provides a comparison of the various product packages.

Table 3-1 Product comparisons for WebSphere Server

Description Exp AS ND Ent

Java Programming Model

Support for JavaServer Pages 1.2 and Java Servlets 2.3 x x x x

Full J2EE 1.3 Support x x x

Support for some features planned for J2EE 1.41 x x

Full XML Support x x x x

Web services
Full Web services support x x x x

Support for private UDDI registries x x

Web Services Gateway x x

Database support and Connectivity
JDBC Connection Management for Informix x2 x2 x2 x2

Application Development
Sample Applications x3 x x x

Development tool based on WebSphere Studio x

Integrated J2EE Technology-based workflow engine x

Business rule beans x

Business process beans x
74 Using Informix Dynamic Server with WebSphere

http://www-3.ibm.com/software/webservers/

Asynchronous processing x x x x

Internalization Service x

Web server support
Embedded HTTP Server x x x x

IBM HTTP Server included4 x x x

Web server plug-ins x5 x x x

Performance support
Enhanced features for performance such as dynamic caching, IBM Tivoli
Performance Viewer, integration with third-party tools

x x x

CORBA C++ SDK x

Security
Basic authentication and authorization for secure access to Web Resources x x x x

Enhanced authentication and authorization through Common Secure
Interoperability (CSI), Version 2.0, single sign-on and support for LDAP

x5 x x x

Advanced Authentication and Authorization, such as Java authentication
authorization service (JAAS) and Java Cryptographic Extension (JCE) for
enhanced Security

x5 x x x

Convenient security administration through embedded admin console x5 x x x

Application Connectivity
Full Java Message Service (JMS) supported message driven beans, including
embedded JMS transport

x x x

Microsoft Common object model architecture to EJB support for integration with
ActiveX client and server resources

x x x

Restricted WebSphere MQ license included x

Advanced transaction support x

Application profiling x

Dynamic and extended query capabilities x

Container managed messaging x

Administration and workload management
Simplified administration using the development tool interface x

Browser-based administration for remote administration across firewalls x5 x x x

Intelligent workload distribution across a cluster x x

Failure bypass x x

Clustering support x x

Migration Support
Migration Documentation x5 x x x

Migration tools and assistance x5 x x x

COLUMN HEADING DEFINITIONS:
EXP = WebSphere Application Server -Express 5.x
AS = WebSphere Application Server - 5.x
ND = WebSphere Application Server -Network Deployment 5.x
ENT = WebSphere Application Server -Enterprise 5.x

VALUE NOTES (Superscripts):
1 - Features which are currently planned for J2EE 1.4 Spec.
2 - Not supported for iSeries™
3 - Samples are integrated with the tool for quick-start development
4 - IBM HTTP Server included with IBM OS/400®
5 - Available on WebSphere application Server - Express for iSeries, V5.0 only

Description Exp AS ND Ent
Chapter 3. WebSphere V5: An overview 75

IBM WebSphere Application Server, Version 5
In this section we list the hardware requirements for supported operating systems.

Disk and hardware requirements — all systems
� Minimum of 200 MB available disk space for installation (including IBM Software

Developer Kit)

� CD-ROM Drive

� Support for a communications adapter

Recommended memory requirements all systems
� Minimum of 256 Mb memory, 512Mb recommended

Operating system and processor requirements
In this section we cover the requirements for the operating system and processor.

Windows NT® Windows 2000
� An Intel technology-based PC running Microsoft Windows NT Server, Version 4.0 Service

Pack 6a or higher; or Windows 2000 Server or Windows 2000 Advanced Server with
Service Pack 3 or higher

� Intel Pentium processor at 500Mhz or faster

AIX
� IBM RS/6000® or RS6000 SP running IBM AIX, Version 4.3.3 with 4330-10

recommended maintenance package, or Version 5.1 with the 5100-02 recommended
maintenance package

� IBM RS/6000 604e workstation at 375Mhz or faster

Linux operating environment on Intel
� Red Hat Linux Advanced Server 2.1, Red Hat Linux Server 7.2 or 8.1 SuSE 7.3, or SLES

7.0, based on kernel 2.4

� Intel x86 processor at 500Mhz or faster

� Support for TCP/IP and an appropriate communications adapter

� Legacy application support RPMs installed

Red Hat Linux on IBM eServer™ zSeries® operating environment
� zSeries with Linux distribution SuSE 7.0 or Red Hat Linux 7.2 or 8.1, based on kernel 2.4

� G5, G6, or higher processor

� Legacy application support RPMs installed

Sun Solaris operating environment
� A workstation running Sun Solaris operating environment, Version 8 at maintenance level

of July 2002 or higher

� Sparc workstation at 440Mhz or higher
76 Using Informix Dynamic Server with WebSphere

3.4 WebSphere Studio Application Developer (WSAD)
In this section we focus on Web application development. WebSphere Studio Application
Developer is a set of development tools for enterprise e-business Java-based applications.
WebSphere Studio can be tailored to meet the specific development needs of your growing
business — from simple Web site creation to complex e-commerce and enterprise application
development.

We begin the section with the background of Eclipse, since WebSphere Studio is a
commercial implementation of the Eclipse project. Then we show the role-oriented
development model of the Eclipse/WebSphere Studio workbench and the WebSphere Studio
packages that are available. Finally we list some of the benefits of using Studio as a
development environment, and briefly discuss the development roadmap for Informix 4GL
and its evolution towards integration with WebSphere Studio.

Eclipse
One of the primary challenges for a software developer is to integrate existing tools that are
supplied from different vendors. Typically tools from different vendors do not work together or,
if they do, the task of making them interact smoothly with each other can be very time
consuming and resource intensive.

One proposed solution for this problem is an open and extensible tool platform that provides
improved developer productivity, reliability, extensions through plug-ins, and a broad array of
tool providers. Having this vision in mind a new open source community was created, called
eclipse.org. Industry leaders like IBM, Borland, MERANT, QNX Software Systems, Rational®
Software, Red Hat, SuSE, TogetherSoft, and Webgain2 formed the initial eclipse.org Board
of Stewards in November 2001. Since then many other companies have joined the Board of
Stewards and all of them have made a commitment to releasing Eclipse Platform compatible
product offerings to the community of users, researchers, and developers.

The Eclipse platform defines the set of frameworks and common services that collectively
make up integration-ware required to support a comprehensive tool integration platform.
These services and frameworks represent the common facilities required by most tool
builders including a standard workbench user interface and project model for managing
resources, portable native widget and user interface libraries, automatic resource delta
management for incremental compilers and builders, language-independent debug
infrastructure, and infrastructure for distributed multi-user versioned resource management.

WebSphere Studio Application Developer is one of the WebSphere Studio family of products
that has been developed based on the Eclipse Workbench. The WebSphere and Eclipse
Workbench is depicted in Figure 3-9.
Chapter 3. WebSphere V5: An overview 77

.

Figure 3-9 WebSphere and Eclipse workbench

3.4.1 Role-based development model
In essence, the workbench provides an integrated development environment (IDE) that has
flexible perspectives. It is designed to provide special support for a particular e-business
development role, or for a range of roles. These perspectives contain views and editors that
provide a common way for members of the development team to create, manage, and
navigate resources. For example, a Java developer would work most often in the Java
perspective, while a Web designer would work in the Web perspective.

Within the workbench based products, task-oriented perspectives filter out much of the
overall Web and Java development complexity, and present the developer only with those
functions that are relevant to the task at hand. Users can switch perspectives depending on
what they are working on at any given moment, or depending on their current role in the
project. Because different developers are accustomed to working in different ways, any
perspective can be further customized. Since they are built using the Eclipse Workbench
technology, all tools and perspectives share a common look and feel, which reduces learning
curves and helps maximize developer productivity.

Most of the perspectives use a similar layout, depicted in Figure 3-10.

w w w .E c lip s e .o rgw w w .E c lip s e .o rg

W ebSp here S tud io W orkbenchW ebS phere S tud io W orkbenc h

IB M S erverIB M S erver
& M idd lew are & M idd lew are

To olsTo ols

W ebS ph ere S tud io W ebS ph ere S tud io

P artne r To ols P artn er Tools
& M idd le w are& M idd lew are

C o n trib u teC o n trib u te

A d op tAd op t
78 Using Informix Dynamic Server with WebSphere

Figure 3-10 Generic perspective layout

The left side of the above figure depicts views that help you to navigate through your project’s
files, while in the center of the workbench you find a larger frame, usually for the source editor
or the design frame. This allows you to change the code and design files in your project. The
right side of the figure depicts the Outline or the Properties views. In some perspectives you
can see that the editor frame is a little larger and the Outline or Properties view is placed at
the bottom left corner of the perspective. The content of the views is synchronized. This
means if you would change, for example, a value in the Properties view, the Editor view is
automatically updated to reflect the change. These are the primary perspectives:

� J2EE Perspective: The J2EE Perspective provides views that you would typically use
when you develop resources for enterprise application, EJB, Web, and application client
or connector projects or modules.

� Resource Perspective: The Resource Perspective is a very simple perspective that
shows the resources that are present in the workbench.

� Web Perspective: The Web Perspective contains many views and is used by Web
developers. They can use the Web perspective to build and edit Web resources, such as
servlets, JSPs, HTML pages, Style sheets, and images, as well as the deployment
descriptor file, web.xml.

� Java Perspective: The Java Perspective supports developers who create, edit, and build
Java code.

� Server Perspective: The Server Perspective is used to manage the server test
environments you use when testing, debugging, and profiling your applications.

� Data Perspective: The Data Perspective lets you access relational databases tools, and
you can create and manipulate the data definitions for your project. This perspective also
lets you browse or import database schemas in the DB Servers view, create and work with
database schemas in the Data Definition view, and change database schemas in the table
editor. You can also export data definitions to another database installed either locally or
remotely.
Chapter 3. WebSphere V5: An overview 79

� XML Perspective: The XML Perspective contains several editors and views that can help
a developer when building XML files, XML schemas, DTDs, stylesheets, and integrating
data extracted from relational databases and XML.

For more information about the WebSphere workbench perspectives, see WebSphere Studio
Application Developer Version 5 Programming Guide (SG24-6957-00)

3.4.2 WebSphere Studio Application Developer - Packages
The WebSphere Studio family has several member product packages. All of the packages
are based on the common Eclipse Workbench, but there are also many accompanying tools
and plug-ins that are tailored to the different needs of the developers. Following are
descriptions of the WebSphere Studio product packages:

� IBM WebSphere Studio Site Developer: The Site Developer package is a set of tools
and perspectives targeted for developers of Web sites and Web applications. The tools
support open Web standards such as XML, JavaServer Pages, and Web services. The
tools inherited from the Workbench also support Java and JavaScript development. In
addition, there is a rich set of media tools required for developing a high-quality user
interface. The Web services tools include those for creating services from Java
components and publishing their descriptions to a UDDI registry. It is possible to browse a
UDDI registry for available services and link to them from the Web application via
JavaServer Pages (JSP). The Common Versions System (CVS) repository interface is a
part of the Studio Workbench. In addition, Site Developer provides an interface to
Rational's ClearCase® LT and includes a ClearCase LT repository. A WebSphere test
environment is also part of the package.

� IBM WebSphere Studio Application Developer: Application Developer contains all the
functionality of the Site Developer. In addition, it contains the tools for J2EE 1.2 and J2EE
1.3 development, as well as a set of profiling tools. The WebSphere test environment
provides full J2EE support, including EJBs.

� IBM WebSphere Studio Application Developer Integration Edition: Application
Developer Integrated Edition is targeted for professional developers of J2EE applications
and Enterprise Extensions. It contains all the functionality of the Application Developer. In
addition, it contains J2C support, Web services invocation framework, workflow and Web
flow modeling tools, an enhanced WSDL editor, and an integrated WebSphere Application
Server Enterprise Edition.

� IBM WebSphere Studio Enterprise Developer: Enterprise Developer is targeted to
developers and integrators, who can make use of advanced tooling such as RAD or visual
modeling. It contains all the functionality of the Application Developer. In addition, it
provides tools for remote edit-compile-debug for host COBOL and PL/I applications, a
visual builder for adapters and microflows, and tools for visual modeling and RAD (based
on VisualAge® Generator technology).
80 Using Informix Dynamic Server with WebSphere

ED

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

WebSphere Studio: Product package comparisons
Table 3-2 provides a comparison of the various product packages.

Table 3-2 Product comparisons for WebSphere Studio

WebSphere Studio Application Developer V5 became available at the end of 2002. For more
information on IBM WebSphere Studio Site Developer, refer to:
http://www.ibm.com/software/ad/studiositedev/

For more information on IBM WebSphere Studio Application Developer, refer to:
http://www.ibm.com/software/ad/studioappdev/

Description HPB DD SD AD

Tools Support

Eclipse technology-based user interface X X X

Web Tools X X X

Struts support X X

Relational database tools X X

XML tools X X

Web Services X X

Java tools X X X

Team support X X X

Integrated unit test environment X X

Profiling and tracing tools X X

J2ME tools X

J2EE tools X

Generated EJB test client X

Clear case LT (included) X

Java Message Service (JMS) tools

Java Connector Architecture (JCA) tools IE

Visual workflow tools IE

Service-oriented architecture IE

Assembler, COBOL and PL/1 tools

Enterprise Generation Language (EGL) tools

Runtime Support
Tomcat X X X

WebSphere Application Server - Express X X

WebSphere Application Server X X

WebSphere Application Server Enterprise IE

WebSphere Micro Environment X

COLUMN HEADING DEFINITIONS:
HPB = Homepage Builder
DD = Device Developer
SD = Site Developer
AD = Application Devleoper
ED = Enterprise Developer

VALUE NOTES:
IE - Feature only available with Integration Edition.
Chapter 3. WebSphere V5: An overview 81

http://www.ibm.com/software/ad/studiositedev/
http://www.ibm.com/software/ad/studioappdev/

There are many benefits of WebSphere Studio as an Application development environment.
Table 3-3 provides a summary of some of the highlights of selected WebSphere Studio
product packages.

Table 3-3 Summary of WebSphere Studio product packages

Here are some of the specific benefits of WebSphere Studio:

� It helps reduce the skills needed to develop component-based Web applications.

� It lets developers rapidly create well-structured e-business systems that integrate
WebSphere software and traditional transactional environments, including CICS and
IMS™.

� It promotes the reuse and transformation of existing applications to reduce costs and
shorten the development cycle.

� It automates the adoption of industry-standard e-business architecture through visual
construction facilities based on open Struts implementation.

� It helps developers create dynamic Web applications, with support for J2EE,XML, and
Web services technologies.

� It improves productivity to develop z/OS system-based applications while making the
transition to e-business architecture.

Product Package Highlights

IBM WebSphere Studio Homepage Builder Create and publish Web sites with ease with a
user-friendly interface, easy-to-use wizards,
templates and support for popular development
languages like JavaScript, Dynamic HTML, and
Cascading Style Sheets (CSS).

IBM WebSphere Studio Site Developer Build, test, and maintain dynamic Web sites,
applications, and Web services, using Java,
JavaScript, and JavaServer Pages.

IBM WebSphere Studio Application Developer Optimize and simplify J2EE application
development through best practices, templates,
code generation, and a comprehensive
development environment with WebSphere
Studio Application Developer. WebSphere Studio
Application Developer Integration Edition
accelerates development by adding visual
workflow to build and integrate complex
applications.

IBM WebSphere Studio Enterprise Developer Give J2EE capabilities, rapid application
development and team support to diverse
enterprise application development
organizations.

IBM WebSphere Studio Device Developer Create and test applications that will be deployed
on handsets and other mobile computing
devices.

IBM WebSphere Studio Asset Analyzer Maintain and extend existing enterprise assets
through impact analysis and graphical application
understanding.

IBM WebSphere Studio Application Monitor Resolve performance problems with J2EE
applications running on the IBM WebSphere for
z/OS ™ platform, without requiring modification
to the application code.

Toolkits for IBM WebSphere Studio Quickly and easily add new function and tools
targeted at application development needs.
82 Using Informix Dynamic Server with WebSphere

� It helps transform and enable developers by facilitating skill transfer and knowledge in
mission-critical enterprise technologies.

� It supports team-member collaboration across the process of development, testing, and
deployment of multitiered, mixed-workload applications.

WebSphere Studio: Highlights
With WebSphere Studio you can build powerful Java2 Platform, Enterprise Edition
(J2EE)technology-compliant applications. These J2EE applications can help reduce the cost
and complexity of developing multitier, enterprise services, and can be rapidly deployed and
easily enhanced. For example, WebSphere Studio gives your development team access to
databases and links to transaction-processing systems. Developers can use the tools they
need to create, edit, and validate enterprise application archive files. The development
environment in WebSphere Studio provides testing and support for IBM WebSphere
Application Server, which allows you to quickly and easily create J2EE applications.

WebSphere Studio reduces development complexity by providing application workflow to
help you visually manage the flow of information between application components, Web
services, and back-end systems. It also simplifies integration by leveraging a
services-oriented architecture that allows developers to interact with all application artifacts in
the same way, regardless of their underlying implementations, providing continuity within the
development team.

The built-in Web services tools in WebSphere Studio support standards like Simple Object
Access Protocol (SOAP), Universal Description, Discovery and Integration (UDDI), Web
Services Description Language (WSDL), and Web Services Inspection Language (WSIL).You
can construct applications by visually composing components as services.These application
services can be accessed through the Web or implemented as local Java services
(JavaBeans or Enterprise JavaBeans) or legacy assets. By working with all components as
services, you have the flexibility to mix and match functions from different sources, bringing
innovative processes, services and value chains to market quickly and efficiently.

In addition to programming, WebSphere Studio enables developers to test and deploy their
application from a common environment. Tasks are simplified through the use of the rich set
of utilities and wizards, that can significantly improve developer productivity. Studio is based
on an open-source project called the Eclipse Workbench - which was originally contributed by
IBM. It provides a general platform that enables different tools to share the same
look-and-feel and operate in an integrated fashion. The WebSphere Studio Workbench will
continually incorporate the features of new releases of the Eclipse Workbench as the
open-source community makes them available.

These are some of the highlights of WebSphere Studio:

� It helps reduce the skills needed to develop component-based Web applications.

� It lets developers rapidly create well-structured e-business systems that integrate
WebSphere software and traditional transactional environments, including CICS and IMS.

� It promotes the reuse and transformation of existing applications to reduce costs and
shorten the development cycle.

� It automates the adoption of industry-standard e-business architecture through visual
construction facilities based on open Struts implementation.

� It helps developers create dynamic Web applications, with support for J2EE,XML, and
Web services technologies.

� It improves productivity to develop z/OS system-based applications while making the
transition to e-business architecture.
Chapter 3. WebSphere V5: An overview 83

� It helps transform and enable developers by facilitating skill transfer and knowledge in
mission-critical enterprise technologies.

� It supports team-member collaboration across the process of development, testing and
deployment of multitiered, mixed-workload applications.

3.5 WebSphere Studio integration with Informix 4GL
The Informix 4GL language is being enhanced, and 4GL constructs will be incorporated in the
Enterprise Generation Language (EGL) to provide sophisticated Internet-based Rapid
Application Development (IRAD) capabilities. EGL is also a fourth-generation language, and
with it customers can leverage their existing Informix 4GL language skills but with the power
of industry-leading WebSphere Studio Integrated Development Environment (IDE) to develop
data-driven Web applications. With the integration of EGL and WebSphere Studio, customers
will be able to deploy their legacy and modern 4GL applications using both Informix and DB2
databases.

IBM plans to continue supporting Informix 4GL and Four J’s customers indefinitely. To
accomplish the smooth integration of existing Informix 4GL customers, IBM is enhancing
Informix tools and connectivity. To support bringing Informix into the IBM family of products,
IBM is working to enable the tools to connect natively with DB2. Along with this closer
integration with DB2, IBM plans to incorporate the 4GL language with WebSphere Studio V5.
There will also be utilities provided to perform 4GL to EGL conversions to make the task
easier for customers.

To support existing customers and development teams, IBM intends to support these
initiatives with the latest releases of Informix Dynamic 4GL Four J’s Business Development
Suite. New releases are expected in 2003 and beyond. IBM will also continue to sell and
support Informix SQL (I-SQL) for existing customers for as long as they require. Informix tools
and connectivity are being functionally enhanced so they will continue to provide the best
support possible to legacy Informix customers.

The Informix 4GL language has been a great benefit to many customers and, by
incorporating the language into EGL, IBM hopes to achieve the best of both worlds. IBM is
dedicated to maintaining a good relationship with its partner Four J’s and plans to continue to
promote and support both 4GL-WebSphere and Four J’s products as complementary
offerings.
84 Using Informix Dynamic Server with WebSphere

Chapter 4. Installing and configuring
WebSphere Studio V5

In Chapter 2, “Installing and configuring IDS V9.40” on page 21 we described how to install
and configure IDS. In the current chapter we now provide similar information relative to
WebSphere Studio Application Developer (WSAD).

The following topics are discussed:

� Installing WebSphere Application Developer 5.0 on Windows: This section provides
an overview of the installation process.

� Configuring WebSphere Studio for use with IDS: We also verify that WebSphere
Studio is configured properly by developing a database Web page that connects to IDS.
That Web page enables you to query data from the stores_demo database that is
packaged with Informix Dynamic Server. Retrieval of the data verifies that the
configuration is correct.

� Sample application using Database Web Pages: WSAD makes this sample process
easier because it has an Application Server built into it. We will deploy the sample
application to the WSAD Application Server.

In Chapter 7, “Working with IDS and WebSphere” on page 143, we will develop a more
complex sample application and deploy it to a distributed WebSphere Application Server.

4

© Copyright IBM Corp. 2003. All rights reserved. 85

4.1 Installing WSAD on Windows/2000
WebSphere Studio Application Developer can be installed from CD-ROM or an electronic
image of WebSphere Studio Application Developer. We installed WSAD from an electronic
image that was downloaded from the WebSphere Studio Trial Program site found at:

http://www7b.boulder.ibm.com/wsdd/downloads/WSsupport.html

Pre-installation tasks
Before you install the product, check the following items:

� In addition to the space required to install the product, you must have at least 50 MB free
on your Windows system drive, and your environment variable TEMP or TMP must point
to a valid temporary directory with at least 10 MB free.

� You must not have the IBM HTTP server or WebSphere Application Server, Version 3.5
running.

Install from electronic image: WebSphere Studio Application Developer
There are twelve downloadable parts for WebSphere Studio Application Developer. All twelve
parts are self-extracting archives. You must extract the first nine parts and the twelfth part; the
other parts are optional.

Steps to install WSAD from electronic image:

1. Log in as an administrator whose ID does not contain double-byte characters.

2. Download all required parts, and any other desired optional parts.

3. Each part is a self-extracting archive. Extract each part into the same temporary directory.

4. From the temporary directory, run setup.exe.

5. The WebSphere Studio Installation Launcher window will open, and it contains several
links. Select Install IBM WebSphere Studio Application Developer.

6. Follow the on-screen instructions for tasks such as specifying the target installation
directory.

7. Click Next and then click Install to install WebSphere Studio Application Developer.

8. When WebSphere Studio Application Developer is installed, click Finish to close the
installation window.

Install from the CD-ROM
You can also install WebSphere Studio Application Developer from the CD-ROM.

Steps to install WSAD from CD-ROM:

1. Insert the CD-ROM into your CD drive.

2. Log in as an administrator whose ID does not contain double-byte characters.

3. Run setup.exe from the root of the CD drive.

Then follow the instructions above for installing from electronic image, starting from step 5.

Important: Do not install into a directory whose name contains double-byte characters or
special characters such as a dollar sign. Doing so may cause undesirable results, such as
class path problems, in the WebSphere test environment.
86 Using Informix Dynamic Server with WebSphere

http://www7b.boulder.ibm.com/wsdd/downloads/WSsupport.html

4.2 Configuring WSAD for IDS
In this section we explain how to configure WebSphere Studio Application Developer for IDS.

Installing JDBC driver on the development server
In Chapter 2, “Installing and configuring IDS V9.40” on page 21, we described how to install
IDS 9.40 in a Linux operating environment. The bundle installer also installed the Informix
JDBC driver, so if desired, one can also install WebSphere Studio on the Linux server and
create and deploy the demos on one single server. This is an interesting approach if you have
limited servers available for developing applications, but is not typical.

So, we decided to implement the development environment on a separate Windows server.
That being the case, we needed to install the Informix JDBC driver on the Windows server as
well, to enable WebSphere Studio on Windows to interact with IDS on the Linux server.

Downloading and installing Informix JDBC driver on the server
Follow these steps to download and install Informix JDBC driver on the server with
WebSphere Studio:

1. You can download (get the latest version available) the JDBC driver alone from:

http://www-3.ibm.com/software/data/informix/

2. The installation is very straightforward, but needs a Java Development Kit (you can
download it from http://www.javasoft.com) installed, and its bin directory needs to be
configured in the PATH environment variable. On Windows/2000 you can perform this
task by selecting Start -> Settings -> Control Panel -> System -> Advanced ->
Environment Variables).

Unzip the downloaded file with WinZip, then double-click the setup.jar file. Then just follow
the installation instructions.

Verifying the configuration
Configuration of WebSphere Studio Application Developer for use with IDS can be verified by
creating a sample application to access IDS and perform a data retrieval operation. This is
how we verified our configuration. It is a very simple application, but is all that is needed at
this point. For example, it will be deployed to a WebSphere Application Server for execution.
However, it is an Application Server internal to WSAD. The application architecture is
depicted in Figure 4-1.

In Chapter 7, “Working with IDS and WebSphere” on page 143, using more complex
functions, we will demonstrate how to implement a more rigorous sample application and
deploy to a separate WebSphere Application Server.

To access IDS, an application can use a data source / database URL. To test the
configuration of WebSphere Studio Application Developer for IDS, we will use this method to
develop and test a sample application in WebSphere Studio Application Developer. This
application development made easier because we can do it all by using a graphical interface.
It will require some knowledge of Java, but does not require a skilled Java programmer.

Architecture of the sample application
The ITSO Stores sample application performs a search operation for a given customer ID,
returns the matching customer details, and displays it on the browser screen (Figure 4-1).
Chapter 4. Installing and configuring WebSphere Studio V5 87

http://www-3.ibm.com/software/data/informix/
http://www.javasoft.com

Figure 4-1 Architecture of ITSOStores sample application

4.3 A sample application using Database Web Pages
The section describes the development of a sample application, ITSO Stores, using
Database Web Pages, a feature of WSAD. Database Web Pages provide a graphical
environment for developing Web applications. These Web applications can be used to
perform search, insert, update, and delete operations on database tables. But in this section
we will only develop the sample application to perform a select operation on the data from
the stores_demo database table.

However, we will develop another sample application to perform select, insert, update, and
delete operations, in Chapter 7, “Working with IDS and WebSphere” on page 143. That
sample application will demonstrate the use of additional technologies, such as Java beans,
entity beans (EJB), Java Server Pages (JSP), Java Message Services (JMS) and IDS, and
Container Managed Persistent Beans. This is to demonstrate more of the robust capabilities
of WebSphere and IDS.

Steps to develop a sample application using Database Web Pages
This section steps you through the development of a sample application to perform a select
operation on the Stores_demo database residing on IDS.

Note: This section takes you through step-by-step instructions to develop a sample
application using Database Web Pages. If you prefer not to go through the exercise of
developing your own sample application, you can simply download the already developed
demo sample application file called SampleApps.Zip from Appendix D, “Additional
material” on page 343.

Inside the zipped download file are six folders. Open the folder named SelectApplication.
Inside is the actual sample demo application, called ITSOStoresDBPages.ear. First, import
this file into your WSAD workspace. Then follow the development instructions in steps 31
to 44 given in the section “A sample application using Database Web Pages” on page 88.
88 Using Informix Dynamic Server with WebSphere

1. Open Web Sphere Studio Application Developer.

2. Open J2EE Perspective (Figure 4-2).

In the Main Menu, click Window -> Open Perspective -> Other.

Figure 4-2 Opening a J2EE Perspective

3. A dialogue box pops up to select the perspective, as just shown in Figure 4-2. Select
J2EE(default) from the list of perspectives. Click the OK button and the J2EE Perspective
will be opened.

4. Find the J2EE Hierarchy view in the left pane of the J2EE Perspective as shown next in
Figure 4-3. The J2EE Hierarchy tab is highlighted with a red colored ellipse.

5. Create an Enterprise Application Project and a Web Project:

a. In J2EE Hierarchy view, right-click the Enterprise Application and then click New ->
Other... as shown in Figure 4-3. A wizard will pop up to take the parameter value to
create a Project.

b. In the Wizard select J2EE from the left pane and you will find various options in the
right pane. Select Enterprise Application Project from the right pane, then click Next
as shown in Figure 4-3. A new wizard will be displayed to accept the J2EE
Specification Version.

c. Select Create J2EE 1.3 Enterprise Application Project and click the Next button.
Refer to Figure 4-4.

d. Enter Enterprise application project name as ITSOStoresDBPages. Uncheck the
Application client module and EJB module. Make sure that Web module is
checked. After entering all these details, the wizard should look as shown in Figure 4-4.
Click the Finish button.

e. In the J2EE Hierarchy, view the two projects that will be created. One is under
Enterprise Applications and the other is under Web Modules.
Chapter 4. Installing and configuring WebSphere Studio V5 89

Figure 4-3 Creating Enterprise Application Project

Figure 4-4 Creating Enterprise Application Project
90 Using Informix Dynamic Server with WebSphere

6. Open a Web Perspective.

7. Find Projects ITSOStoresDBPages and ITSOStoresDBPagesWeb in the J2EE Navigator
view, as shown in Figure 4-5. The J2EE Navigator view is circled with a red ellipse.

8. Expand project ITSOStoresDBPagesWeb. Find the WebContent folder under
ITSOStoresDBPages.

9. Right-click the WebConnect folder and then click New -> Other. A wizard will be opened
as shown in Figure 4-5.

10.In the wizard, select Web from the left pane and then Database Web Pages from the right
pane. Click the Next button as shown in Figure 4-5. The Database Web Pages and a
wizard will be opened.

Figure 4-5 Creating Database Web Pages

11.Enter name of the Java package as itso.stores. Select SQL Statement Type as Select
Statement, Model as IBM Database Access Tag Library - Select Statement. Cross-check
the values from Figure 4-6. Click the Next button. The contents of Data Base Web Pages
Wizard will be changed to Choose SQL Method.

12.Select How would you like to create your SQL statement? as Be guided through
creating an SQL statement and Choose a database model for the SQL statement as
Connect to a database and import a new database model. Cross-check the values from
the Figure 4-6 Creating Database Web Pages on page 92. Click the Next button. The
contents of Data Base Web Pages Wizard will be changed to Connection Page.

Note: To open a Web Perspective, follow steps 2 and 3 in the list “Open J2EE Perspective
(Figure 4-2).” on page 89. Select Web instead of J2EE(default) from the list of
perspectives. For more information on perspectives, please refer to section 3.1 in the
redbook, Linux Application Development using WebSphere Version 5, SG24-6431, which
can be downloaded from the Redbooks Web site, http://www.redbooks.ibm.com.
Chapter 4. Installing and configuring WebSphere Studio V5 91

http://www.redbooks.ibm.com

Figure 4-6 Creating Database Web Pages

13.Enter the Connection name as ConnToIDS, Database as stores_demo, User ID as itso,
Password as password of the itso user. Select Database vendor type as Informix
Dynamic Server, V 9.3, JDBC driver as INFORMIX JDBC NET DRIVER, Host as the
ipaddress of the IDS server, Port number as port number of the server instance
demo_on, Server name as demo_on, Class location as the <JDBC Driver Installed
Directory>\lib\ifxjdbc.jar. After entering all the values, then cross-check the values with
Figure 4-7. Click the button Connect to Database. The contents of the Data Base Web
Pages wizard will be changed to Construct An SQL Statement.

Notes:

� To find the port number of the server instance, refer to 13.1.4, “Determining the port
number of IDS on Linux” on page 305.

� If you have questions with any of the aforementioned connection parameters, contact
your IDS System Administrator.

� If you get an error when you click the button Connect to Database, recheck the port
number and server name.
92 Using Informix Dynamic Server with WebSphere

Figure 4-7 Connection to IDS

14.Find the available tables in left pane. Select itso -> Tables -> itso.customer and click the
button >. Find the itso.customer table under the Selected Tables list. Refer to Figure 4-8.

15.Click the Columns Tab. Here we will select the required columns that we want to see in
the output of the search. Select all the columns under the table itso.customer and click
the > button. Find all the columns under the list of Selected Columns. Refer to
Figure 4-8.

16.Select the tab Conditions. Here we can specify the condition to select a record from IDS.
We will specify to select a record that matches our customer number.

Find the columns Column, Operator, Value, And/Or. Cells in the first row display
combox boxes as soon as you click them. For example, if you click the cell under Column,
then a combox box with a list of column names will be displayed. From the combox box,
select itso.customer.Customer_num. Similarly select column Operator as = , and
Value as Build Expression... For more clarity, please refer to Figure 4-9. To build an
expression, the Expression Builder wizard will be displayed. We are building this
expression to link the customer number of interest to an SQL statement.
Chapter 4. Installing and configuring WebSphere Studio V5 93

Figure 4-8 Construct an SQL statement

Figure 4-9 Conditions tab

17.In the Expression Builder wizard, select the type of expression to build as Constant -
numeric, string or host variable, and click Next, as shown in Figure 4-10. The contents
of the Expression Builder wizard will be changed to Constant Options Page.

18.Select Constant type as String constant and click Next. The contents of the Expression
Builder wizard will be changed to String Constant Builder Page to take the name of the
variable which contains customer number entered by the user.

19.Enter the Host variable name as custNum and select String constant type as the Host
variable name. Cross-check the values from Figure 4-10. Click the Finish button. You will
be taken back to the Database Web Pages wizard.

20.After finishing the foregoing steps, the contents under the Conditions tab should be as
depicted in Figure 4-11. Click the Next button in the Database Web Pages wizard. The
contents of the Database Web Pages wizard will be changed to SQL Statement Page.
94 Using Informix Dynamic Server with WebSphere

21.In the SQL Statement Page, find the SQL statement which we have built. Test the SQL
statement by clicking on the button Execute... Dialogue box Execute SQL Statement will
be opened.

22.Click the Execute button. Dialogue box Specify Variable Values will be opened to accept
our customer number. Enter the customer number 102 under the column Value by
double-clicking in the cell. After entering the customer number press the Tab key and click
the Finish button as shown in Figure 4-12.

23.You will find the details of customer102, depicted as in Figure 4-12. Congratulations, you
have successfully connected to IDS from WebSphere Studio. Now we will finish the
Web application and deploy it on WebSphere application server.

Figure 4-10 Host variable

Figure 4-11 Search condition

24.Close the dialogue box Execute SQL Statement by clicking the button Close.

25.Click the Next button in SQL Statement Page (Database Web Page). The contents of
Database Web Pages wizard will be changed to Runtime Connection Pages.

26.Select the database connection as Use driver manager connection.
Enter Driver name as com.informix.jdbc.IfxDriver, URL as
jdbc:informix-sqli://<hostname>:<portnumber>/stores_demo:INFORMIXSERVER=demo_
on; , User ID as itso, Password as <password of user itso>, Re-enter password as
Chapter 4. Installing and configuring WebSphere Studio V5 95

<password of user itso>. Click the Next button and the contents of the Database Web
Pages wizard will be changed to Controller Page.

Figure 4-12 Executing SQL statement

27.Select the radio button Do not use a Front Controller, then click the Next button. The
contents of the Database Web Pages wizard will be changed to Design the Input Form.
This form is used to specify our interested customer number.

28.Click the Next button and the contents of the Database Web Pages wizard will be
changed to Design the Select View. This form is used to specify the interested columns
to display in the result page. Select all Result set columns from the left pane.

29.Click the Next button and the contents of the Database Web Pages wizard will be
changed to Specify Prefix. Click the Finish button.
96 Using Informix Dynamic Server with WebSphere

30.WebSphere will generate the itso_customerInputForm.html and
itso_customerSelectView.jsp in the Web Content folder in the project
ITSOStoresDBPagesWeb. Refer to Figure 4-13. Development of our application is
finished. Now we need to configure the test environment for our application.

Figure 4-13 Files created by Database Web Pages

Creating a new Server Instance and Server Configuration:

31.Select the Server perspective (Window -> Open Perspective -> Server).

32.In Server Configuration view, select Servers and right-click the it. Select New -> Server
and Server Configuration. The Create a New Server and Server Configuration wizard
will pop up. Refer to Figure 4-14.

33.Enter the Server name as ITSOStoresAppServer, Folder as Servers, Server type as
Test Environment. Keep things as default and click the Next button. The contents of
Create a New Server and Server Configuration wizard will be changed to WebSphere
Server Configuration settings. Refer to Figure 4-14.

Figure 4-14 Creating a new Server

34.Enter HTTP port number as 9080, and click the Finish button. Wait for some time and
the Server and Server Configuration will be created.
Chapter 4. Installing and configuring WebSphere Studio V5 97

35.Find the created server ITSOStoresAppServer, under Servers in Server Configuration
view. The View should be changed to Advanced, to see the existing server
configurations.

36.Click the drop-down menu of the Server Configuration view as shown in Figure 4-15.
Click View -> Advanced. Find the ITSOStoresAppServer under Server Configurations
as highlighted with the red ellipse in Figure 4-15. Congratulations, you have
successfully finished the creation of Server Instance and Server Configuration.

Figure 4-15 Server Configuration view

Configuring WebSphere Test Environment (WebSphere Studio) for IDS:

37.Open ITSOStoresAppServer server configuration, by double-clicking on it. It will be
opened as shown in Figure 4-16. Find the various tabs called Configuration, Paths,
Environment, Web, and Data source.

38.Go to the Paths tab that is highlighted in Figure 4-16. Add files <JDBC Driver Installed
Dir>\lib\ifxjdbc.jar and <JDBC Driver Installed Dir>\lib\ifxjdbcx.jar to classpath, by clicking
on the button Add External Jars, under Class Path as shown in Figure 4-17. Save and
close the ITSOStoresAppServer configuration. Congratulations, you have
successfully finished the Configuration of WebSphere Studio for IDS. Now we need
to deploy the application to our test server, ITSOStoresAppServer.
98 Using Informix Dynamic Server with WebSphere

Figure 4-16 Server Configuration

Figure 4-17 Server Classpath

Deploying the Web application in the test server:

39.In the Server Configuration View, select ITSOStoresAppServer under Server
Configurations and right-click the it. We will now add our application ITSOStoresDBPages
EAR file. Select Add -> ITSOStoresDBPages, as shown in Figure 4-18.
ITSOStoresDBPages will be deployed in test server ITSOStoresAppServer.
Chapter 4. Installing and configuring WebSphere Studio V5 99

Starting the test server:

40.In the Servers view, find the server ITSOStoresAppServer. Right-click it and select Start
as shown in Figure 4-19. The server will take a few minutes to start. In the Servers view,
status of server, ITSOStoresAppServer will be changed to started.

Running the ITSOStoresDBPages application on an application server:

41.Go to Web Perspective (Window -> Open Perspective -> Web)

42.In the J2EE Navigator view, right-click the file ITSOStoresDBPagesWeb -> Web Content
-> itso_customerInputForm.html, and select Run on Server, as shown in Figure 4-20.

Figure 4-18 Deploying the application

Figure 4-19 Starting the test server
100 Using Informix Dynamic Server with WebSphere

Figure 4-20 Invoking the application

43.A page entitled Input Form will be displayed, as shown in Figure 4-21. Now our
application is ready to do search operations on IDS and give us details on the customers
of interest.

Figure 4-21 Input Form

44.Enter customer_num as 102, and click the Submit link. The Select Result View page
will be displayed with the customer details of customer number 102, as shown in
Figure 4-22. Congratulations, you have successfully finished the testing of the
ITSOStoresDBPages application in WebSphere Studio. Our next step is to deploy the
application in the WebSphere Application Server. This will be discussed in “Deploy the
ITSOStoresDBPages application in WAS” on page 115.
Chapter 4. Installing and configuring WebSphere Studio V5 101

Figure 4-22 Customer Results

4.3.1 Deploying the application in WebSphere Application Server
As previously mentioned, we will deploy this sample application to an application server that
is internal to WSAD. This keeps the exercise very simple and easy. In Chapter 7, “Working
with IDS and WebSphere” on page 143, we will develop a more complex application and
deploy it to WebSphere Application Server.

To deploy an application in any WebSphere Application Server (even this WSAD internal
application server), it should be bundled as a EAR file. From WSAD, export the application as
an EAR file.

Here are the steps to deploy the application in WAS:

45.In WSAD, go to J2EE perspective (Window -> Open Perspective -> J2EE).

46.Right-click Enterprise Applications -> ITSOStoresDBPages. Click the Export button
and a wizard will be displayed.

47.In Export Wizard, select EAR file and click Next. The contents of the Export wizard will
be changed to EAR Export.

48.Select What resources do you want to export? as ITSOStoresDBPages and Where do
you want to export resources to? as C:\Demos\ITSOStoresDBPages.ear (Any
temporary directory). Click the Finish button. The ITSOStoresDBPages.ear file will be
exported to C:\Demos\.

4.3.2 Summary
In this chapter, we developed the sample application and tested it with WebSphere Studio.
We also deployed the application to a TEST application server, within WebSphere Studio.
In the next chapter, we will describe how to install and configure a REAL WebSphere
Application Server. Then, in subsequent chapters, we will develop a more rigorous
application and deploy it on the real WebSphere Application Server.
102 Using Informix Dynamic Server with WebSphere

Chapter 5. Installing and configuring
WebSphere Application Server

In previous chapters we have described the installation and configuration of IDS on Linux and
WSAD on Windows. Now we need to complete our environment by installing the WebSphere
Application Server. We have used the Application Server for exercises in Chapter 4,
“Installing and configuring WebSphere Studio V5” on page 85, for example, but it was an
application server internal to WebSphere Studio Application Developer (WSAD).

In the current chapter we provide step-by-step instructions for installing and configuring the
WebSphere Application Server (WAS) product.

We cover the following topics:

� Installing WebSphere Application Server 5.0, Enterprise Edition on Linux.
� Configuring WebSphere Application Server for IDS.
� Administration Repository in WebSphere Application Server 5.0.

5

© Copyright IBM Corp. 2003. All rights reserved. 103

5.1 Installing WAS on SuSE Linux V8.0
Prior to WebSphere Application Server 5.0 Version, one of the prerequisites to install
WebSphere Application Server was to have a database, which was used as administration
repository for WebSphere Application Server. In WebSphere Application Server Version 5.0,
that has changed. Now XML configuration files are used as the administration repository, thus
removing the dependency of WAS on a database. However, a database is still needed, for
example, to store the session information.

Pre-installation tasks
Before installing the IBM WebSphere Application Server V5.0 Enterprise Edition for Linux, a
few pre-installation checks and tasks need to be completed:

� Create embedded JMS server user and groups
� Check IP ports are unused
� Stop Web server processes

Create the embedded JMS server user and groups:

The installation program does not automatically create the embedded JMS server user and
groups, but it does check to see if the prerequisite user and groups for embedded messaging
are configured. If they have not been created, the installation of WebSphere Application
Server will stop and display an error message indicating that this needs to be done.

You need to create the mqm user and two groups, mqm and mqbrkrs. The user you define to
control WebSphere (root in our case) and the mqm user must be members of both groups. To
do this requires some familiarity with Linux commands. We used Linux SuSE V8 for our
implementation.

Follow these steps to create the embedded JMS server user and groups:

1. Log in as root and start a terminal session.

2. Create two new groups:

groupadd mqm
groupadd mqbrkrs

3. Create a user mqm and add it to the mqm and mqbrkrs groups.

useradd -g mqm -G mqbrkrs -m mqm

4. Add the root user to the mqm and mqbrkrs groups.

� Open the file /etc/group with the command:

– vi /etc/group

� search for mqm. Find the entries as follows:

– mqm:x:500:mqm
– mqbrkrs:x:501:mqm

� Add root user to groups mqm and mqbrkrs, by editing the file /etc/group as follows:

– mqm:x:500:mqm,root
– mqbrkrs:x:501:mqm,root

Note: WebSphere will not install if the required user and groups for the embedded
messaging are not configured, and you choose the embedded JMS installation option.
104 Using Informix Dynamic Server with WebSphere

5. Log off and then on again to get the new permissions.

Check that IP ports are unused:

Check to see that there are no existing active services that use the following IP ports on the
server:

� 80 (HTTP)
� 443 (HTTPS - optional)
� 2809 (Bootstrap port)
� 9080 (HTTP transport)
� 9443 (HTTPS transport - optional)
� 9090 (HTTP Administrative Console port)
� 5557 (Internal JMS server)
� 5558 (Internal JMS server)
� 5559 (Internal JMS server)
� 7873 (Data replication service port)
� 8880 (SOAP connector port)

We suggest using the following command for this task:

netstat -l

Installing WebSphere Application Server V5.0
This section describes the installation of WebSphere Application Server. It has step-by-step
instructions to help you accomplish the task with minimum configuration effort.

To install WebSphere Application Server on Linux, follow the steps outlined below:

Typically WebSphere Application Server is distributed on CD-ROMs, but trial versions are
also distributed as .tar files. There are no major differences in the installation of WebSphere
Application Server from CD-ROM or .tar files. But for clarity, both alternatives are presented
below.

WAS Installation from tar file:

1. Log in as root and start a terminal session

2. Go to the directory where the .tar file is located. Decompress the file using the following
command.

tar -xvf ./WAS5.0_Enterprise.tar

After decompressing the file, you will find a directory called linuxi386 has been created.

3. Go the directory linuxi386 and find the file named LaunchPad.sh

After finishing the steps described above, please read the Attention note below and then
continue at Step 4.

Note: Instead of using the interactive installation procedure described here, you could
optionally elect to install WebSphere using the automated or silent installation procedure.
See the WebSphere InfoCenter article “Installing silently” for details at the following URL:

http://publib7b.boulder.ibm.com/wasinfo1/en/info/aes/ae/tins_runSilent.html
Chapter 5. Installing and configuring WebSphere Application Server 105

http://publib7b.boulder.ibm.com/wasinfo1/en/info/aes/ae/tins_runSilent.html

WAS Installation from CD-ROM:

1. Log in as root and start a terminal session.

2. Insert and mount the WebSphere Application Server V5.0 CD-ROM, using the command:

mount /mnt/cdrom

3. Go to CD-ROM directory.

cd /mnt/cdrom

4. After reading the Attention note above, start the WebSphere Application Server
LaunchPad.

./LaunchPad.sh

5. In the language selection window, select English and click OK.

6. In the WebSphere Application Server LaunchPad window, click Install the product, as
shown in Figure 5-1.

Attention: If you are running X-windows with either the Gnome or KDE window manager,
the CD-ROM may automatically be mounted for you. To verify this, use the command:

mount | grep /mnt/cdrom

If you receive any output, that means the CD-ROM has already been mounted.

Attention: To install WebSphere Application Server on SuSE Version 8.0, we need to
comment out two lines in LuanchPad.sh. Open LaunchPad.sh using the following
command

vi LaunchPad.sh and comment as shown below

#!/bin/sh

#LD_ASSUME_KERNEL=2.2.5

#export LD_ASSUME_KERNEL

LPDIR=`dirname $0`

cd $LPDIR

./jdk/java/bin/java -jar launchpad.jar

For more details, please refer to Chapter 13, “Implementation hints and tips” on page 295.

Tip: On slower servers, it might take a few seconds for the application to respond when
you click Install the product. Please be patient, as multiple clicks will launch multiple
installation programs.
106 Using Informix Dynamic Server with WebSphere

Figure 5-1 WebSphere Application Server, Launch Pad

7. In the Wizard language selection window, select English and click OK.

8. In the Welcome to WebSphere Application Server window click Next to continue, as
shown in Figure 5-2.

Figure 5-2 Welcome to WAS
Chapter 5. Installing and configuring WebSphere Application Server 107

9. In the software license agreement window, select I accept the terms in the license
agreement and click Next to agree to the terms of the agreement, as shown in Figure 5-3.

Figure 5-3 Software License Agreement

The installation Wizard will check the system prerequisites, then display the setup type
window:

10.In the setup type window, select the Custom setup type option, as shown in Figure 5-4,
and click Next.

Figure 5-4 Setup types
108 Using Informix Dynamic Server with WebSphere

11.In the setting the installation directories window, you can either accept the default, or
change the installation path for the WebSphere Application Server. Click Next.

12.In the next window, take a look at the different features of WebSphere Application Server
as shown in Figure 5-5. By default, all the required features will be selected to be installed.
Then click Next.

Figure 5-5 Features of WAS 5.0

13.In the node name and host name window, enter the node name and host name for your
installation. In our case we set the node name and host name to neon, as shown in
Figure 5-6. Click Next.
Chapter 5. Installing and configuring WebSphere Application Server 109

Figure 5-6 Node Name and Host Name

14.In the next window, verify your installation settings as shown in Figure 5-7, and click Next
to start the installation.

The installation of IBM WebSphere Application Server V5.0 will commence. Depending on
the speed of your server, the install will finish in only a few minutes.

Figure 5-7 Summary of Installation settings

15.Once the installation is complete, click Finish in the Installation Wizard finished window.
110 Using Informix Dynamic Server with WebSphere

After the successful installation of IBM WebSphere Application Server V5.0, the window
shown in Figure 5-8 will automatically start. If for some reason the First Steps window does
not appear, it can be started from the command line by running the script
<WAS_HOME>/bin/firststeps.sh.

Figure 5-8 First Steps

5.1.1 Verifying the installation
To verify that WebSphere Application Server V5.0 was installed correctly, click Verify
Installation in the First Steps window. This command will attempt to start the WebSphere
Application Server. During the startup process, additional information will be displayed in the
log pane at the bottom of the First Steps window. Alternatively, the Verify Installation utility
can also be started from the command line as follows:

cd <WAS_HOME>/bin/ivt.sh

The output should look similar to the list in Example 5-1.

Example 5-1 Output from ivt script

IVTL0095I: defaulting to host appsrv1l and port 9080
IVTL0010I: Connecting to the WebSphere Application Server appsrv1l on port: 9080
IVTL0020I: Could not connect to Application Server, waiting for server to start
IVTL0025I: Attempting to start the Application Server osName = Linux
IVTL0030I: Running /opt/WebSphere/AppServer/bin/startServer.sh server1
>ADMU0116I: Tool information is being logged in file
><WAS_HOME>logs/server1/startServer.log
>ADMU3100I: Reading configuration for server: server1
>ADMU3200I: Server launched. Waiting for initialization status.
>ADMU3000I: Server server1 open for e-business; process id is 1400
IVTL0050I: Servlet Engine Verification Status - Passed
IVTL0055I: JSP Verification Status - Passed
IVTL0060I: EJB Verification Status - Passed
IVTL0070I: IVT Verification Succeeded
IVTL0080I: Installation Verification is complete
Chapter 5. Installing and configuring WebSphere Application Server 111

Application server up and running
Once WebSphere Application Server is up and running, you can launch the Administrative
Console. You have a choice to either launch the Administrative Console from the First Steps
window, shown in Figure 5-8, or by entering the URL in your browser:

� To Launch Administrative Console from the First Steps window, click Administrative
Console.

� To Launch Administrative Console from the browser, enter the following URL:

– http://localhost:9090/admin

You should see the Administrative Console Login page, as shown in Figure 5-9.

Figure 5-9 Administrative Login Page

WebSphere Application Server security is not enabled yet so we can enter any User ID to
login to the Administrative Console. In our example, we used admin to login.

Tip: To start and stop the application server, two shell scripts are available in the
<WAS_HOME>/bin directory.

startServer.sh

The command to start server1 is:

<WAS_HOME>/bin/startServer.sh server1

stopServer.sh

The command to stop server1 is:

<WAS_HOME>/bin/stopServer.sh server1
112 Using Informix Dynamic Server with WebSphere

The page in Figure 5-10 will be displayed after logging in.

Figure 5-10 Administrative Console

Updating the Web server plug-in configuration
Changing certain WebSphere configuration properties makes it necessary to regenerate the
Web server plug-in configuration. To accomplish this, do one of the following:

� From the Administrative Console, select Environment -> Update Web Server Plugin in
the navigation tree, then click OK, as shown in Figure 5-11.

Note: After installing WebSphere Application Server, you must update the Web Server
Plug-in configuration. Updating Web Server Plug-in is described in the Redpaper, IBM
WebSphere V5.0 for Linux, Implementation and Deployment Guide WebSphere Handbook
Series, REDP3601. We have extracted the Updating the Web server plug-in configuration
section from that Redpaper and have included it in the next section below.
Chapter 5. Installing and configuring WebSphere Application Server 113

Figure 5-11 Regenerating the Web server plug-in configuration from the console

� Use the script GenPluginCfg.sh script from the command line:

<WAS_HOME>/bin/GenPluginCfg.sh

5.2 Configuring WAS for use with IDS
After installing WebSphere Application Server 5.0 and IDS, we need to configure Informix as
one of the JDBC Providers in WebSphere Application Server. Under Informix JDBC Provider,
required data sources should be configured. Applications deployed in WebSphere Application
Server can then connect to IDS, using the configured data sources / database URL.

WebSphere Application Server supports two Informix JDBC Providers, Informix JDBC Driver,
and Informix JDBC Driver (XA) when there is a need to handle distributed transactions.

5.2.1 Configuring the Informix JDBC Provider
Here are the steps to configure the Informix JDBC Provider:

1. Start the WebSphere Application Server.

2. Open the Administrative Console as described in the section “Application server up and
running” on page 112.

3. Click the Resources -> JDBC Providers link.

4. From the JDBC Providers frame, make sure the scope is set to Node.

5. Click the New button to create a new JDBC Provider.

6. From the New JDBC Provider frame, use the drop-down list box to choose the JDBC
Provider named Informix JDBC Driver (XA).
114 Using Informix Dynamic Server with WebSphere

7. Click the Apply button to see the settings page of your JDBC Provider. Enter the following
properties:

Name:

Informix JDBC Driver (XA)

Classpath:

<Informix JDBC Installed Directory>/lib/ifxjdbc.jar

<Informix JDBC Installed Directory>/lib/ifxjdbcx.jar

In our Demo: /home/jdbc/lib/ifxjdbc.jar

/home/jdbc/lib/ifxjdbcx.jar

Implementation Classname:

com.informix.jdbcx.IfxXADataSource

8. Click the Apply button to set the changes

9. Click the OK button to complete the update

10.. Click Save to save the configuration changes to the master repository.

5.2.2 Verifying the configuration
In Chapter 4, “Installing and configuring WebSphere Studio V5” on page 85, we described
how to create a simple application using a database Web page to query the stores_demo
data on IDS, and display the results on a browser. We used WSAD to create this sample
application. Here we use the same application and deploy it on WAS. By doing this, we can
verify the installation and configuration of WAS for IDS on the Linux server.

The last step described for WSAD was how to export a J2EE project in the form of an EAR
file. Locate the ITSOStoresDBPages.ear file created and follow the steps in the next section
to deploy it on the Application Server.

Deploy the ITSOStoresDBPages application in WAS
Here are the steps to deploy the ITSOStoresDBPages application in WAS:

1. Copy ITSOStoresDBPages.ear file into <WAS Installed Directory>\installableApps
directory of the Application Server. We installed WebSphere Application Server on Linux.
So, we copied this file to the /home/WAS_ENT/installableApps, using FTP. Now the
application is ready to deploy to the Application Server.

2. Open the Administrative Console of WebSphere using the following URL:

http://<server IP Address>:9090/admin

Verify that the server is running. For more information on starting and stopping the server,
refer to the section “Application server up and running” on page 112. We can perform remote
administration of the Application Server, so we accessed the Administrative Console from
Windows 2000 client using the above-mentioned URL.

3. Enter User ID as admin. Click the OK button.

Note: For performing distributed transactions, use Informix JDBC Driver (XA), otherwise
use Informix JDBC Driver.

Note: Find the newly configured Informix JDBC Provider under the list of JDBC Providers.
Chapter 5. Installing and configuring WebSphere Application Server 115

4. Click Applications -> Install New Application as shown in Figure 5-12. In the right pane,
the page, Preparing for the application installation, will be displayed.

5. Select Path as Server Path and enter the path of the application as <Application Server
Server Installed Directory>\installableApps\ITSOStoresDBPages.ear. We entered
/home/WAS_ENT/installableApps/ITSOStoresDBPages.ear. Click Next and the contents
of the right pane will be changed.

Figure 5-12 WebSphere Administrative Console

6. Click the Next button repeatedly, until you reach the Finish button. The default settings
are fine for this application. Before clicking Finish, be sure to verify your summary page
with Figure 5-13.

7. Click the Finish button. Wait for few minutes, then you will get the page shown in
Figure 5-14.

8. Click the link Save to Master Configuration as shown in Figure 5-14.

9. Click Save to save all the information into the master configuration. We have now
successfully deployed the ITSOStoresDBPages application on server. Now we need to
start the application and run it.
116 Using Informix Dynamic Server with WebSphere

Figure 5-13 Summary page

Figure 5-14 Save to Master Configuration

Starting the application:

10.Click Applications -> Enterprise Applications as shown in Figure 5-15. Find the list of
applications in the right pane.

11.Select the application ITSOStoresDBPages as shown in. If you do not see the
application, just scroll down the list of applications until you find it.
Chapter 5. Installing and configuring WebSphere Application Server 117

Figure 5-15 Starting the application

12.Click the Start button and the application will be started. The status of the application
ITSOStoresDBPages is displayed as a green arrow mark, as shown in Figure 5-16. It
indicates that we have successfully started the application. The only remaining task is to
run the application.

Figure 5-16 Status of application

Running the application:

13.Open the browser and enter the following URL:

http://<I P Address of Server>:9080/ITSOStoresDBPagesWeb/itso_customerInputForm.html

An Input form will be opened:

14.Enter the customer_num as 102. The Customer details will be displayed in Select
Result View.

This completes the deployment of our simple WSAD developed application in the WebSphere
Application Server. In subsequent chapters we will develop a more complex application,
which also demonstrates deployment in a distributed environment.

5.3 WebSphere Administration Repository
Previous versions of WebSphere Application Server used a relational database to store the
administration repository data. That meant that there was a prerequisite and dependency on
having a relational database. However, WebSphere Application Server 5.0 uses XML files for
this purpose, thus eliminating the dependency on a relational database.
118 Using Informix Dynamic Server with WebSphere

The repository documents are stored in a directory tree starting at the configuration directory
under the product installation root. At the top of the hierarchy is the cells directory, which
contains a subdirectory for each cell. The names of the cell subdirectories match the names
of the cells. For example, a cell named mycell stores its configuration documents in the
directory, cells/mycell. In Application Server 5.0, there is always a single cell.

Each cell subdirectory contains the following files and subdirectories:

The cell.xml file, which provides configuration data for the cell, is located here.

Files such as security.xml, virtualhosts.xml, resources.xml, and variables.xml, provide
configuration data that applies across every node in the cell.

The clusters subdirectory holds a subdirectory for each cluster defined in the cell. The names
of the subdirectories under clusters match the names of the clusters. Each cluster
subdirectory holds a cluster.xml file, which provides configuration data specifically for that
cluster.

The applications subdirectory holds a subdirectory for each application deployed in the cell,
and the nodes subdirectory holds a subdirectory for each node in the cell. The names of the
subdirectories under nodes match the names of the nodes.

Each node subdirectory contains files such as variables.xml and resources.xml, which
provide configuration data that applies across the node. Recall that these files have the same
name as those in the containing cell's directory. The configurations specified in these
node-level documents override the configurations specified in cell-level documents that have
the same name. For example, if a particular variable is in both cell- and node-level
variables.xml files, all servers on the node use the variable definition in the node-level
document and ignore the definition in the cell-level document.

Each node subdirectory also contains a serverindex.xml file that stores the definitions of all
ports used by servers on that node. Keeping this information in one document makes it easier
to find any port conflicts between servers on a node.

Each node directory contains a subdirectory for each server defined on the node. The names
of the subdirectories match the names of the servers. This directory always contains a
server.xml file, which provides configuration data specific to that server. There might also be
security.xml, resources.xml and variables.xml files, which provide configuration data that
applies only to the server and overrides the configurations specified in the containing cell and
node documents that have the same name.

The names of the applications subdirectories match the names of the deployed applications.
The original EAR file for the application is stored in each application subdirectory. Also, under
the application subdirectory is a deployments directory. You can deploy one application
multiple times with different bindings for each deployment.

Each deployment subdirectory contains a deployment.xml file that contains configuration data
about the application deployment. Each deployment subdirectory also contains a META-INF
subdirectory that contains a J2EE application deployment descriptor file along with IBM
deployment extensions and bindings files. Deployed application directories also have
subdirectories for all WAR files and entity bean JAR files in the application. Only the metadata
for the application is stored in the deployment subdirectories. The binary code for the
application is stored in the location that the administrator specified when installing the
application.
Chapter 5. Installing and configuring WebSphere Application Server 119

Figure 5-17 Administration repository files and their directory structure

Note: Refer to Figure 5-17 for the location of some of the repository XML files. The
directories are highlighted in blue and the files are highlighted in green. For a description of
each repository XML file, and recommendations for editing those files, refer to the
information at the following URL:

http://publib7b.boulder.ibm.com/wasinfo1/en/info/aes/ae/rrun_rconfdoc_descriptions.html

Cells

ITSOCell

nodes

ITSONode

Server

ITSO Server

nodeAgent

application

DefaultApplication.ear

deployments

DefaultApplication

META-INF

node.xml, resources.xml, serverindex.xml, serverindex.xml

adminauthz.xml,cell.xml, resources.xml,security.xml,
variables.xml, variables.xml

resources.xml, server.xml, variables.xml

server.xml

deployment.xml

application.xml, ibm-application-ext.xmi
120 Using Informix Dynamic Server with WebSphere

http://publib7b.boulder.ibm.com/wasinfo1/en/info/aes/ae/rrun_rconfdoc_descriptions.html

Chapter 6. Integrating IDS and WebSphere

The real power and benefit of Informix Dynamic Server and WebSphere significantly
increases when you integrate the two together. We will demonstrate the integration in
Chapter 7, “Working with IDS and WebSphere” on page 143, when we develop a sample
application using IDS with WebSphere Studio, and deploy it to the WebSphere Application
Server. In the current chapter we provide some of the background information and steps
necessary to begin that integration.

The first step in this integration is to simply enable WebSphere to communicate with IDS. In
preparation for that, we cover the following topics:

� Scenarios for deploying WebSphere and IDS: This topic describes the different
environment configurations that can be used.

� Systems architecture: This topic gives an overview of the architecture we used when we
configured IDS and WebSphere for our sample applications.

� Making the connection: This topic discusses connecting with IDS using a data source
configuration on WebSphere Studio Application Developer.

6

© Copyright IBM Corp. 2003. All rights reserved. 121

6.1 Scenarios for deploying IDS and WebSphere
WebSphere is an integrated environment that is fully J2EE compliant. In Chapter 3,
“WebSphere V5: An overview” on page 63, we showed the conceptual n-tier model of J2EE
and described the benefits. In this section we present considerations and scenarios for
deploying WebSphere and IDS, using the J2EE model. We discuss topics regarding
scalability considerations, and present guidelines that can be followed during your
implementation. We also describe some different models that may be considered when
deploying a e-business system.

Scalability considerations
Understanding the scalability of the components of your e-business infrastructure, as well as
applying appropriate techniques, can greatly improve availability and performance. Scaling
techniques are especially important in multi-tier architectures. They enable you to evaluate
components associated with dispatchers or edge servers, Web presentation servers, Web
application servers, and data and transaction servers.

You can use the following high-level steps to classify your Web site and identify scaling
techniques that are applicable to your environment:

� Understand the application environment: For existing environments, the first step is to
identify all components and understand how they relate. The most important task is to
understand the requirements and flow of the existing application(s) and what can or
cannot be altered. The application is key to the scalability of any infrastructure, so a
detailed understanding is mandatory to scale effectively. The transaction type and volume
among the logical tiers should be analyzed closely so the correct resources are applied on
each one of them. For example, for online banking, most of the latency typically occurs in
the database server, whereas the application server typically experiences the greatest
latency for online shopping and trading sites.

� Categorize your workload: Knowing your workload pattern (publish/subscribe or
customer self-service, for example) determines where to focus your scalability efforts, and
which scaling techniques to apply. For example, a customer self-service site, such as an
online bank, needs to focus on transaction performance and the scalability of databases
that contain customer information used across sessions. These considerations would not
typically be significant for a publish/subscribe site. At this stage it is important to
categorize your e-business site. Typically they fall under known classification types (online
shopping, customer self-service, business-to-business, etc) and they tend to follow
particular workload patterns.

� Determine the components most impacted: This step involves mapping the most
important site characteristics to each component. Once again, from a scalability viewpoint,
the key components of the infrastructure are the dispatchers or edge servers, the Web
application servers, security services, transaction and data servers, and the network.

� Select the scaling techniques to apply: When the information gathering is as complete
as it can be, it is time to consider matching scaling techniques to components. There are
some typical guidelines that can be applied on the specific components of the multi-tier
model, such as use faster servers, aggregate user data, and create a pool of
pre-established connections.

� Apply the techniques: Do so in a test environment first, to evaluate the performance and
scalability impacts to a component, as well as to determine how each change affects the
surrounding components and the end-to-end infrastructure. You do not want a situation
where improvements in one component result in an increased load on another
component.
122 Using Informix Dynamic Server with WebSphere

� Reevaluate: As with all performance related work, tuning will be required. This is a task
that involves frequent reevaluation of what was implemented on previous stages. The
goals are to eliminate bottlenecks, scale to a manageable status those that cannot be
eliminated, and work around those that cannot be scaled.

6.1.1 Implementation scenarios
While a variety of factors come into play when considering the appropriate model for a
WebSphere deployment, the primary factors include security, performance, throughput,
availability, maintainability, and session state.

The emphasis of our server model scenarios will be on how to apply different techniques and
component associations to provide scalability, load balancing, and failover.

Single server model
This is the simplest scenario that we can have when we deploy WebSphere and IDS. We
compact all logical tiers on one single server. See Figure 6-1.

Figure 6-1 Single server model

This model requires fewer physical resources, since it utilizes only one server (for example a
Linux server) to host the Web server, the application server, and the database server. This
scenario is not normally used or recommended on a production system, but it is a good
configuration for development and test purposes.

Here are some reasons to use a single server model:

� Maintainability: It is easy to install, administer, and maintain. This configuration is most
suitable as a start-up configuration to evaluate and test the basic features of WebSphere
and related components. The installation is automated by tools supplied with the
WebSphere distribution.

� When performance, security and availability are not critical goals: This may be the
case for development, testing, and some intranet environments. We are limited to the
resources of a single server, which are shared by all components.

� Low cost: This model is economical.

Note: This is the deployment model used in our demo applications. Even though this
configuration requires only one server, we recommend that it have plenty of memory and
disk space. For instance, the server should have at least 512 MB.

Internet

Server A

IBM
HTTP
Server

WAS

IDS

Plugin

Firewall
Chapter 6. Integrating IDS and WebSphere 123

Two-server model
For this scenario we use two servers to deploy our J2EE system. There are different
configurations that can be selected, depending on the business needs. You can choose to
isolate either the application server or the database server.

Here we illustrate one of the possible configurations, where we keep the database server on
a dedicated server. By doing this we can perform specific tuning configuration, such as
focusing on the database activities in a high data volume environment. If the system requires
significant processing of business logic processing, and less database activity, you would
most likely isolate the application server on a dedicated server instead.

Installing the database on a different server, in a two-server configuration model as depicted
in Figure 6-2, represents a good practice with several advantages. These servers were used:

� Server A: IBM HTTP Server, WebSphere Application Server
� Server B: IBM Informix Dynamic Server

Figure 6-2 Two-server model with dedicated database server

Some of the advantages for separating the database servers are as follows:

� Performance: There is less competition for resources. If both the database and
application server are placed on the same server, then under high load there are two
processes. The application server and the database server compete for increasingly
scarce resources, the CPU and the memory. In general, we can expect significantly better
performance by separating the application server from the database server.

� Performance: Differentiated tuning is possible. By separating the servers, we can
independently tune them to achieve optimal performance. The database server is typically
sized and tuned for database performance, which may differ from the optimal
configuration for the application server. On many UNIX servers, installing the database
involves modification of the OS kernel. This database-specific tuning is often detrimental
to the performance of application servers located on the same server.

� Availability: It allows use of already established highly available database servers.
Many organizations have invested in high-availability solutions for their database servers,
reducing the possibility of the server being a single point of failure in a system. If not,
having the servers separated makes that task much easier.

� Maintainability: Individual components can be reconfigured, or even replaced, without
affecting the installation of the other components.

Internet

Server B

IBM
HTTP
Server

WASPlugin

Server A

IDS

Firewall
124 Using Informix Dynamic Server with WebSphere

Three-server model
This configuration consists of the Web server, application server, and database server
installed in three different physical servers. Even though this scenario requires more
hardware resources and administration work, it also provides more scalability, performance,
and security than the other models. By using this model, you can fine-tune the servers for the
particular tasks on each server. See Figure 6-3.

Figure 6-3 Three-server model

There many other configurations that can be considered. We have shown three typical
configurations that are fairly basic and common ones. For more detailed information on the
different deployment options and scalability, see the redbook entitled IBM WebSphere V4.0
Advanced Edition Scalability, SG24-6192.

6.2 High availability considerations
In the previous section we focused on issues of performance and scalability, demonstrating
models that can be used to take best advantage of the winning combination of WebSphere
and IDS. In other chapters of this book we discuss other technologies such as JSPs and Java
servlets, as well as more advanced topics such as Enterprise Java Beans (EJBs) and Web
services.

Since most Java enterprise developments will be deployed in a real world application server
scenario, typically driving critical e-business and on-demand applications, you should design
for their scalability, but even more important, the high availability of such a system. This
section discusses the topic of high availability and provides scenarios for its deployment.

A typical WebSphere e-business application uses a three-tier approach (see Figure 6-4):
the client tier (for example, a Web browser), the J2EE application server tier (1-n WebSphere
application servers), and a database tier for the applications legacy data plus transactional
EJB persistence. In some cases the database tier also maintains the application server
configuration information.

Internet
IBM

HTTP
Server

WAS

Server A

IDS

Server B Server C

P
L
U
G
I
N

Firewall
Chapter 6. Integrating IDS and WebSphere 125

Figure 6-4 A typical three tier WebSphere architecture

On the WebSphere tier, high availability can be achieved by configuring multiple WebSphere
application servers that handle the incoming client requests. Having multiple application
servers also helps with the overall scalability and load balancing of such a system.

So how can we increase the availability for the underlying database system (IDS) which is a
critical component for the overall reliability of most J2EE applications?

Before we discuss possible solutions to this problem we’ll take a brief look at the information
that could be stored in a WebSphere database.

What kind of data is stored in a J2EE database?
The data for a J2EE application, accessed through a WebSphere application server, can be
defined in three categories:

� Legacy data for the application: This category includes customer records and order
entries. Those data are typically provided by ERP applications such as SAP R/3,
Peoplesoft, and Baan. In large scale applications the legacy database is normally
separated from the WebSphere database.

� Persistent storage for WebSphere EJBs: Between each invocation of an EJB the bean
needs to store its contents in the database to assure that it is available to the client, even if
one of the application servers fail. Since an EJB could contain, for example, critical order
entry records for an e-business application, one has to make sure that the persistent EJB
storage is always accessible.

� Method of storing configuration information: WebSphere application server (WAS)
4.0.5 uses relational databases (including Informix Dynamic Server) for its configuration
information. However, starting with version 5.0 of WAS, the configuration data is stored
locally in XML files.

Since the first case is somewhat independent from the WebSphere specific databases, we’ll
focus on the high availability of the persistent EJB storage and the WAS (prior to version 5)
configuration database.

Servlet

JSP

EJB

Client
Browser

WebSphere application server

Client Tier J2EE Server Tier Database Tier

Informix

IDS

View

Controller

Model

Servlet

JSP

EJB

Client
Browser

WebSphere application server

Client Tier J2EE Server Tier Database Tier

Informix

IDS

View

Controller

Model
126 Using Informix Dynamic Server with WebSphere

6.2.1 IDS high availability and WebSphere
In addition of being one of the leading high-end OLTP database systems in the market, and
one that already addresses most of the WebSphere scalability requirements, IDS also offers
one of the leading high availability technologies: High-Availability Data Replication (HDR).
HDR is a built-in, no cost option in IDS 7 and IDS 9 that allows application transparent
replication of critical transactional data to a failover (secondary) server.

Why is HDR better than simple disk mirroring? Mirrored disks can protect you against a local
disk failure and are a very good choice to increase the availability of a local IDS instance but
they can’t protect you against a catastrophic failure of a computer on which the IDS server is
running — as can HDR. Using such a replication technology also allows the setup of a remote
database replica hundreds of miles away from the primary database.

The next sections gives an introduction into the topic of HDR and how to configure a JDBC
connection to utilize a replicated IDS database.

6.2.2 High availability with HDR
The IDS database server implements nearly transparent data replication of entire database
servers. All the data that one database server manages is replicated to, and dynamically
updated on, another database server, typically at a different geographical location. HDR
provides a way to maintain a backup copy of the entire database server that applications can
access quickly in the event of a catastrophic failure.

HDR server pairs are composed of a primary and a secondary server. The primary server is
the default server. The secondary server is read-only, so update operations are not allowed.
The secondary server in a HDR scenario can be used to off load read-only transactions from
the primary server, if required.

Type of data replicated
HDR replicates data in dbspaces and sbspaces, but not in blobspaces, and it replicates all
built-in and extended data types. User-defined types (UDTs) must be logged and reside in a
single database server. Data types with out-of-row data are replicated if the data is stored in
an sbspace or in a different table on the same database server. For data stored in an sbspace
to be replicated, the sbspace must be logged. HDR does not replicate data stored in
operating system files or persistent external files or memory objects associated with
user-defined routines.

Replication modes supported
The primary database server sends the contents of the internal HDR buffer to the secondary
database server either synchronously or asynchronously. The value of the ONCONFIG
configuration parameter, DRINTERVAL, determines whether the database server uses
synchronous or asynchronous updating. For more information on DRINTERVAL, see the
chapter on configuration parameters in the IBM Informix IDS Administrator’s Reference.

HDR failures, and actions taken in failure situations
An HDR failure is a loss of connection between the database servers in a replication pair. Any
of the following situations might cause a data replication failure:

� Catastrophic failure (such as fire or earthquake) at the site of one of the database servers.
� Disruption of the networking cables that join the two database servers.
� Excessive delay in processing on one of the database servers.
� Disk failure on the secondary database server that is not resolved by a mirrored chunk.
Chapter 6. Integrating IDS and WebSphere 127

Detection of an HDR failure
The database server interprets either of the following conditions as an HDR failure:

� A specified time-out value was exceeded.

During normal HDR operation, a database server expects confirmation of communication
from the other database server in the pair. Each database server in the pair has an
ONCONFIG parameter, DRTIMEOUT, that specifies a number of seconds. If confirmation
from the other database server in a pair does not return within the number of seconds that
DRTIMEOUT specifies, the database server assumes that an HDR failure has occurred.

� A database server does not respond to the periodic messaging (pinging) attempts over the
network.

Each of the database servers sends a ping to the other database server in the pair when
the number of seconds specified by the DRTIMEOUT parameter on that database server
has passed. The database servers ping each other regardless of whether the primary
database server sends any records to the secondary database server. If a database
server does not respond to four ping attempts in a row, the other database server
assumes that an HDR failure has occurred.

Actions to take if the primary server fails
If the primary database server fails, the secondary database server can behave in the
following ways:

� The secondary database server can remain in logical-recovery mode. In other words, no
action is taken. This would be the case if you expect the HDR connection to be restored
very soon.

� Use manual switchover to change the database server mode. Manual switchover means
that the administrator of the secondary database server changes the type of the
secondary database server to standard. The secondary database server rolls back any
open transactions and then comes into online mode as a standard database server, so
that it can accept updates from client applications. A manual switchover doesn’t have to be
manual since the primary failure also triggers an optional execution of any kind of shell
script which could execute the necessary commands to change the secondary server
mode. So a failover can be handled within a few seconds!

For a more detailed description of HDR, how to configure HDR and how to react in the
different failure situations, please refer to the IBM Informix IDS Administrator’s Guide.

6.2.3 JDBC support for IDS and HDR
The IBM Informix JBDC driver supports connections to server pairs in an HDR replication
scenario. In order to activate HDR support, one has to the set following secondary server
properties in the connection URL:

� INFORMIXSERVER_SECONDARY = <secondary_server>;
� PORTNO_SECONDARY = <secondary_portnumber>;
� IFXHOST_SECONDARY = <secondary_hostmachine>;
� ENABLE_HDRSWITCH = true;

Example 6-1 shows a connection URL for an HDR server pair named hdr1 and hdr2.

Example 6-1 Example JDBC connection URL with HDR support

jdbc:informix-sqli://123.45.67.89:1533/testDB:INFORMIXSERVER=hdr1;IFXHOST=host1;PORTNO=1500
;user=rdtest;password=test;INFORMIXSERVER_SECONDARY=hdr2;IFXHOST_SECONDARY=host2;PORTNO_SEC
ONDARY=1600;ENABLE_HDRSWITCH=true;
128 Using Informix Dynamic Server with WebSphere

When using a DataSource object, you can set and get the secondary server connection
properties with setXXX() and getXXX() methods.

Using HDR with connection pooling
IBM Informix JDBC Driver implementation of connection pooling provides the ability to pool
connections with database servers in an HDR pair:

The primary pool contains connections to the primary server in an HDR pair.
The secondary pool contains connections to the secondary server in an HDR pair.

You do not have to change application code to take advantage of connection pooling with
HDR. Set the IFMX_CPM_ENABLE_SWITCH_HDRPOOL property to true to allow switching between
the two pools. When switching is allowed, the Connection Pool Manager validates and
activates the appropriate connection pool.

When the primary server fails, the Connection Pool Manager activates the secondary pool.
When the secondary pool is active, the Connection Pool Manager validates the state of the
pool to check if the primary server is running. If the primary server is running, the Connection
Pool Manager switches new connections to the primary server and sets the active pool to the
primary pool.

If IFMX_CPM_ENABLE_SWITCH_HDRPOOL is set to false, you can force switching to the other
connection pool by calling the activateHDRPool_Primary() or
activateHDRPool_Secondary() methods:

public void activateHDRPool_Primary(void) throws SQLException
public void activateHDRPool_Secondary(void) throws SQLException

The activateHDRPool_Primary() method switches the primary connection pool to be the
active connection pool. The activateHDRPool_Secondary() method switches the secondary
connection pool to be the active pool.

For more detailed information about the JDBC support for HDR, please refer to the IBM
Informix JDBC Driver Programmer’s guide.

Summary
The Informix Dynamic Server HDR capability provides a unique infrastructure that can enable
WebSphere based applications to increase their availability. This is accomplished by a
transparent replication mechanism. All IDS/WebSphere based J2EE applications that have
the need for persistent and reliable EJB storage, or WAS 4.0.5 users that require a reliable,
highly available configuration database, should consider using the HDR technology in their
environment.

6.3 Systems architecture
In this section we show the architecture used in our installation. In the following chapters we
will demonstrate the development and execution of some small sample applications, built in
WebSphere Studio Application Developer and deployed in WebSphere Application Server,
which are integrated with IDS.

Since our implementation is used primarily for testing and education purposes, we
concentrated most of the software components in one single host server (the single-server
model). WebSphere Studio Application Developer was installed on a separate server.
Chapter 6. Integrating IDS and WebSphere 129

These are the products that we used:

� Linux SuSE 8.0: WebSphere Application Server 5.0, Informix Dynamic Server 9.40
� Windows 2000: WebSphere Studio Application Developer 5.0

The demo applications presented in this book were developed along with explanations of the
technology used, so each application uses the appropriate Java components that are
relevant to the explanations.

The illustration in Figure 6-5 shows the architecture of the configuration used for development
of our demo applications. We first developed and tested the applications on WebSphere
Studio, which was installed on a Windows client. WS Studio has its own embedded
application and Web server, so if the application ran on our Windows client we could be
confident it would run perfectly when deployed on the WS Application Server. We
implemented the components and designed the sample applications to be developed in WS
Studio, and to minimize the use of, and requirement for, detailed Java programming.

Figure 6-5 Systems architecture

6.4 Connecting IDS and WebSphere
To query an IDS database, we had to first establish a connection between the Informix
database server and WebSphere. You can establish a connection by completing two actions:

1. Load the Informix JDBC Driver. The Informix JDBC Driver is based on Version 2.0 of the
JDBC API.

2. Create a connection to either a database server, or a specific database, in one of the
following ways:
– Use a Data Source object.
– Use the DriverManager.getConnection method.

Enterprise
Bean

EJB Container

WAS 5.0

Admin Console
http://localhost:9090/admin

Admin.Repository
(XML Files)

Application
(EAR File)

Embedded
HTTP Server

ServletsJSP

Web Container

Embedded
JMS Server

Admin Server

IBM
HTTP
Server

Plugin

Web
Browser

Web
Browser

Web
Browser

Informix JDBC

Informix JDBC

stores_demo

customer orders

IDS 9.40

Mapping
130 Using Informix Dynamic Server with WebSphere

6.4.1 Using a Data Source object
Using a Data Source object is preferable to using the DriverManager.getConnection method
because a Data Source object is portable and makes the details if the underlying data source
transparent to the application. The target data source implementation can also be modified,
or the application can be redirected to a different server, without impacting the application
code. A Data Source object can also provide support for connection pooling and distributed
transactions. In addition, Enterprise Java Beans and J2EE require a Data Source object.

In JDBC 1.0 the only way to establish a database connection was by using the driver
manager interface. This was expensive in terms of performance because a connection was
created each time you needed to access the database from your program, resulting in
substantial processing overhead. In the JDBC 2.0 Standard Extension API, an alternative
means of handling database connections was introduced.

By using Data Source objects you have access to a pool of connections to a data source.
Then, by using connection pooling you get the following advantages:

� It improves performance. Creating connections is expensive, a Data Source object
creates a connection as soon as it is instantiated.

� It simplifies resource allocation. Resources are only allocated from the Data Source
objects, and not by the code.

� It simplifies connection calls. To get a connection in JDBC 1.0, you had to call
Class.forName() on the class name of the database driver, before making DriverManager
calls.

Data Source objects work as follows:

� When a servlet or other client wants to use a connection, it looks up a Data Source object
by name from a JNDI (Java Native Directory Interface) server.

� The Data Source object then returns a connection to the client.

� If the Data Source object has no more connections, it may ask the database manager for
more connections (as long as it has not exceeded the maximum number of connections).

� When the client has finished with the connection, it is released.

� The Data Source object then returns the connection to the available pool. The next time
the connection is needed, it is already created and can be reused without the overhead of
recreating the connection.

In the following sections we show how to create and configure an Informix data source on
both WebSphere Studio and WebSphere Application Server. This chapter is in preparation
for the following ones, where we develop a sample application to demonstrate how IDS and
WebSphere work well together. The sample application is built using WSAD and deployed on
WAS, so they both need to have the resources created.

Note: The Java Naming and Directory Interface (JNDI) is an application programming
interface (API) that provides naming and directory functionality to applications written using
the Java programming language. The JNDI architecture consists of an API and a service
provider interface (SPI). Java applications use the JNDI API to access a variety of naming
and directory services. The JNDI is included in the Java 2 SDK, v1.3 and later releases
and includes three service providers for the following naming/directory services:
Lightweight Directory Access Protocol (LDAP), Common Object Request Broker
Architecture (CORBA) Common Object Services (COS) name service and Java Remote
Method Invocation (RMI) Registry
Chapter 6. Integrating IDS and WebSphere 131

6.4.2 Configure Informix Data Source on WebSphere Studio
In this section we show, step by step, how to configure a data source connection to IDS 9.40
using WebSphere Studio.

Overview steps for the configuration process
Here are the overview steps to configure an Informix data source on WebSphere Studio:

1. Locate the ITSOStoresAppServer server configuration in the Server Perspective.

2. Create a new JDBC provider using Informix JDBC driver.

3. Create a new JAAS authentication entry for the server configuration.

4. Create the data source using the Informix JDBC provider.

Detailed steps to configure an Informix Data Source on WSAD
1. Open WebSphere Studio and select your testing workspace.

2. Select the Server perspective (Window -> Open Perspective -> Server) and locate the
server configuration called ITSOStoresAppServer that was created in 4.3, “A sample
application using Database Web Pages” on page 88 (in step 32).
You should find this in the Server Configuration window.

3. Next, double-click the ITSOStoresAppServer server configuration. A new window will
open on the top right frame.

a. Select the Data Source tab.

b. Add a new JDBC provider. See Figure 6-6.

Figure 6-6 Adding a new JDBC provider
132 Using Informix Dynamic Server with WebSphere

c. Select Informix as the Database type.

d. Select Informix JDBC Driver (XA) as the JDBC provider type.

e. Select a name for the JDBC provider. In our case we named it Informix JDBC Driver
(XA).

f. Remove the default jar files.

g. Add the jar file with the correct paths. You can browse through your computer and look
for the ifxjdbc.jar and ifxjdbcx.jar in the <JDBC_DIR>/lib directory.

h. Click Finish. See Figure 6-7.

Figure 6-7 Configuring JDBC provider

i. The last step in the ITSOStoresAppServer server configuration is to configure a user
authentication mechanism called JAAS.

Note: The Informix JDBC driver has been previously installed — see section 4.2,
“Configuring WSAD for IDS” on page 87.

Note: The Java Authentication and Authorization Service (JAAS) is a package that
enables services to authenticate and enforce access controls upon users. It implements
a Java version of the standard Pluggable Authentication Module (PAM) framework, and
supports user-based authorization.
Chapter 6. Integrating IDS and WebSphere 133

j. Click the security tab and add a new JAAS authentication entry. Select a name and the
user and password that will be registered. In our case we called it IDS_Credentials
and we registered the itso user with its appropriate password. Click OK and you will
see a new entry in the JAAS list. See Figure 6-8.

Figure 6-8 Adding a new JAAS entry

4. Now we need to create a new Data Source using the Informix JDBC provider previously
created. Follow these steps:

a. Select the Data Source tab again.

b. Select the Informix JDBC provider in the JDBC provider list.

c. Click the Add button in the Data Source list.

d. Choose the Informix JDBC provider (XA) and use version 5.0 for the Data Source.
See Figure 6-9.
134 Using Informix Dynamic Server with WebSphere

Figure 6-9 Adding new data source

e. In the Modify Data Source window, enter the name and the JNDI name for the Data
Source. We used the names ITSOStoresDS and jdbc/ITSOStoresDS. Also specify
the JAAS configuration (IDS_Credentials) in the Component-Managed Authentication
alias and Container-Managed Authentication alias. Click Next.

f. Now we need to fill out the configuration parameters that are specific to the Informix
JDBC driver (Create a Data Source window). There are four mandatory parameters
that need to be specified. They are:

• databaseName: Database name (stores_demo)
• serverName: Informix server instance (demo_on)
• portNumber: TCP/IP port number used for the connection (1533)
• ifxIFXHOST: Host name or IP address (9.1.38.76)

g. Click the Finish button and you’ll see a new entry in the Data Source list.
See Figure 6-10.
Chapter 6. Integrating IDS and WebSphere 135

Figure 6-10 Configuring the Informix data source

Now that an Informix data source was created, we are ready to create demo applications.
This data source will be used in Chapter 7, “Working with IDS and WebSphere” on page 143,
when a full application is developed in WebSphere Studio.

6.4.3 Configure Informix Data Source on WebSphere Application Server
After you create an application on WSAD, you need to deploy it on WAS. Usually the
connection to the database server is performed through a data source, so in most of our
demo applications, we use this method to connect to IDS. Therefore, before deploying the
created application, we need to prepare the WAS environment. In this section we explain how
you can create an Informix data source using the WAS Administrative Console.

Overview steps for the configuration process
Here are the overview steps to configure an Informix data source on WAS:

1. Log into the Administrative Console.

2. Create a new JAAS authentication entry on the security tab.

3. Use the Informix JDBC provider (configured earlier in chapter 5) to create a new data
source.

136 Using Informix Dynamic Server with WebSphere

Detailed steps to configure an Informix Data Source on WAS
1. Open a Web browser and log into the Administrative Console:

http://localhost:9090/admin

2. Before creating the data source, we first need to create a new JAAS authentication entry.
To do that, expand the security tab on the left frame and choose J2C authentication
Data. Click the New button to add a new entry. See Figure 6-11.

Figure 6-11 Adding a new J2C entry

3. Fill out the J2C fields and then click OK. See Figure 6-12. In our case we use:

– Alias: IDS_Credentials
– User ID: itso
– Password: itso
– Description: IDS Server Credentials
Chapter 6. Integrating IDS and WebSphere 137

Figure 6-12 Fill out the J2C entries

4. Now the new J2C entry is shown in the list. See Figure 6-13. Notice that a message box is
displayed saying that we have to apply the changes to the master configuration. Click
Save.

Figure 6-13 The added J2C entry is listed

5. Click the Save button to save the changes to the master repository. See Figure 6-14.
138 Using Informix Dynamic Server with WebSphere

Figure 6-14 Applying changes to master configuration

6. Now that we have an authentication method, we can create an Informix data source.
To do that, click the Resources tab on the left frame and choose JDBC Providers.
See Figure 6-15.

Figure 6-15 Creating an Informix data source
Chapter 6. Integrating IDS and WebSphere 139

7. Notice that the Informix JDBC provider is already listed (configured in Chapter 5,
“Installing and configuring WebSphere Application Server” on page 103). Select this JDBC
provider and its configuration is displayed. Scroll down and select Data Sources on the
Additional Properties window. Then click the New button and the data source
configuration window is displayed. See Figure 6-16.

Figure 6-16 Data source configuration window

8. In this window, specify the following fields (showed with our settings):

– Name: ITSOStoresDS
– JNDI Name: jdbc/ITSOStoresDS
– Container managed persistence: Select the check button.
– Component-managed Authentication Alias: Select IDS_Credentials JAAS entry.
– Container-managed Authentication Alias: Select IDS_Credentials JAAS entry.

Click OK and save the changes to the master configuration (Message window). See
Figure 6-17.
140 Using Informix Dynamic Server with WebSphere

Figure 6-17 Message window

9. Select the data source created again (JDBC Providers -> Informix JDBC Driver (XA) ->
Data Sources -> ITSOStoresDS). See Figure 6-18. Scroll down and select the Custom
Properties in the Additional Properties window. Here we have to set the specific
connection configuration for our Informix data source. The custom properties are
composed of 4 configuration pages, but actually only 4 fields are mandatory, and these
are the ones that we configured:

– databaseName: stores_demo (page1)
– ifxIFXHOST: 9.1.38.76 (page1)
– portNumber: 1533 (page3)
– serverName: demo_on (page4)
Chapter 6. Integrating IDS and WebSphere 141

Figure 6-18 Selecting the data source

10.Go back to the first configuration windows of the ITSOStoresDS data source and click
OK. Save the changes to the master configuration and the process is complete.

We now have the connections defined and have configured the Informix Data Source on
WebSphere Application. We are now ready to develop a sample application and demonstrate
the integration of WebSphere and Informix Dynamic Server.
142 Using Informix Dynamic Server with WebSphere

Chapter 7. Working with IDS and
WebSphere

In this chapter we present a number of advanced topics regarding application development
and the use of WebSphere and IDS. We demonstrate the robust and powerful capabilities of
WebSphere and its integration with IDS. These capabilities will be important to you as you
design, architect, and implement your application development environment. Built on open
standards, an environment based on IDS and WebSphere can provide you with the power
and flexibility you need to be a fast moving and highly competitive business.

We describe a number of advanced topics, but we also maintain a practical approach by
guiding you through the development of sample applications using the technologies and
capabilities we describe. The following topics are discussed:

� Creating an application using Database Web Pages
� Creating a Java Server Page
� Creating a J2EE container managed persistent bean
� Working with Java Message Services and IDS
� Creating a sample application to demonstrate IDS and WebSphere capabilities
� Managing transactions

7

© Copyright IBM Corp. 2003. All rights reserved. 143

7.1 Introduction to the sample applications
WebSphere Studio Application Developer (WSAD) is the product used to develop the sample
applications in this chapter. These sample application use the above described technologies
and functional capabilities. They demonstrate capabilities such as performing select, insert,
update, and delete operations on IDS. They also demonstrate development using Database
Web Pages, Java Beans, Container Managed Persistence, and Java Messaging Services for
running in a physically or logically distributed environment.

There are four sample applications, for which you are given step-by-step instructions to
develop, in this redbook. In addition, for those who may prefer not to go through the
exercises, we have provided already developed sample applications that are downloadable
from the Redbooks Web site. See Appendix D, “Additional material” on page 343 for
instructions on how to download those applications.

Here are the names and a brief description of the four sample applications. All of them access
the Stores_demo database on IDS:

1. SelectApplication: This is a sample application named “ITSOStoresDBPages” that only
performs a select operation against IDS. It was developed with Database Web Pages.
The development and deployment of this application is described in Chapter 4, “Installing
and configuring WebSphere Studio V5” on page 85.

2. FullApplication: This is a sample application that is also called “ITSOStoresDBPages”.
(Be careful — it has the same name as the SelectApplication!) It is actually the same
application base, but has been expanded and now performs a select, insert, update, and
delete operation against IDS. It was also built with Database Web Pages.

3. ITSOStores: This is a sample application called “ITSOStores”. It is similar to the
FullApplication described above, but is developed with different technology and has
expanded capabilities. For example, it was not developed with Database Web Pages, but
rather includes the use of such things as Java Beans and Container Managed
Persistence. It was developed to run in a single server environment.

4. ITSOStoresJMS: This is a sample application called “ITSOStoresJMS”. It is similar to the
sample application ITSOStores described above, but has been further enhanced to run in
a distributed environment (although it will also run in a single server environment). To
enable it to run in a distributed environment we have added Java Messaging Services.

Going through the stet-by-step instructions and developing these sample applications with
WebSphere Application Developer, and deploying them on WebSphere Application Server,
will be great education and a great training exercise for you. You will then have first-hand
knowledge of these products and their capabilities.

7.2 Extending the Database Web Pages sample application
In Chapter 4, “Installing and configuring WebSphere Studio V5” on page 85, we described
how to create a Database Web Page application to perform a select operation on the
Stores_demo database in IDS. That application was intended to demonstrate the connectivity
between WSAD and IDS, and get you started towards a better understanding of WSAD,
WAS, and IDS.
144 Using Informix Dynamic Server with WebSphere

In this section we develop a more complex application, using some of the advanced
capabilities available to you with IDS and WebSphere. We named it the FullApplication.
For example, it will demonstrate select, insert, update, and delete operations against IDS.
However, it still uses Database Web Pages. We will extend the sample application developed
in Chapter 4, “Installing and configuring WebSphere Studio V5” on page 85 to demonstrate
this. Later in this chapter we develop sample applications based on different technology.

To extend the sample application using Database Web Pages, we will use WSAD to get you
more familiar with its capabilities for application development. WSAD generates application
code and masks many of the technical development details, and thereby reduces the
requirement for skilled Java programmers. This should, in turn, minimize the application
development time. This application is developed and documented with the intent that it be
understandable by non-Java programmers, and required minimal use of skilled Java
programming.

We also demonstrate advanced capabilities in this chapter, such as distributed applications,
messaging, transaction management, and application persistence. Although in a simple
application in this redbook, these capabilities enable the implementation of a robust and
flexible application development environment.

7.2.1 Steps to extend the sample application
In this application there are four modules to demonstrate our four database operations of
search, insert, update, and delete. We show the steps to extend the initial SelectApplication.
First we will create each module and then integrate them using one Java Server Page (JSP),
which we call MainMenu.jsp.

Search Module:

We have already described the steps for creating a query application in Chapter 4, and it is
the same as our search module here. So, we will use those same steps again in this section.

1. Follow step “Open Web Sphere Studio Application Developer.” on page 89 to step Step 30
on page 97.

Database Model:

To connect to the database from WSAD, we must provide information such as the name of the
database, user ID, password, and host, as shown in Figure 4-7 on page 93. Typically, for
every connection, we need to enter all information again and again. But instead of that, we
will describe how to create a Database Model and then connect to the database just by
referring to the database model. In WSAD, do the following:

2. Go to Data perspective (Windows -> Open Perspective -> Other -> Data).

3. Go to DB Servers view (Windows -> Show View -> Other -> DB Servers).

4. In DB Servers view we are going to create a connection. Right-click in DB Servers view
and select New Connection. Wizard New will be opened to enter the connection details.

5. Enter Connection name as ConnToIDS, Database as stores_demo, User ID as itso,
Password as password of the itso user. Select Database vendor type as Informix
Dynamic Server, V 9.3, JDBC driver as INFORMIX JDBC NET DRIVER, Host as
ipaddress of the IDS server, Port number as port number of the server instance
demo_on, Server name as demo_on, Class location as the <JDBC Driver Installed
Directory>\lib\ifxjdbc.jar. After entering all the values, please cross check values with the
Figure 4-7. Click the Finish button. Refer to step Step 13 on page 92 and read the note
below it. A new connection ConnToIDS will be created. You can find it in the DB Servers
view. We have now completed the creation of the connection.
Chapter 7. Working with IDS and WebSphere 145

6. We are going to import the schema of stores_demo into WSAD workspace using the
connection ConnToIDS. Right-click the connection ConnToIDS and then click Import to
Folder.... Wizard Import will be opened.

7. Enter Folder as Databases. Click the Finish button. As folder Databases does not exist,
the confirmation dialogue box to create a folder will be opened. Click the Yes button. It will
create folder called Databases.

8. Go to the Data Definition view. Find the stores_demo, database model in the Databases
folder. If you expand it, you can find the schema of the stores_demo database. Now we
are ready with a database model, that is connected to the stores_demo database in IDS.

Insert Module:

9. Go to the Web perspective.(Window -> Open Perspective -> Web).

10.Expand project ITSOStoresDBPagesWeb. Find the WebContent folder under
ITSOStoresDBPages.

11.Right-click the WebConnect folder and then click New -> Other. A Wizard New will be
opened.

12.In the Wizard select Web from left pane and then Database Web Pages from the right
pane. Click the Next button. The Database Web Pages wizard will be opened.

13.Enter name of the Java package as itso.stores. Select SQL Statement Type as Insert
Statement, Model as IBM Database Access Tag Library - Insert Statement. Click the Next
button. The contents of Data Base Web Pages Wizard will be changed to Choose SQL
Method.

14.Select How would you like to create your SQL statement? as Be guided through
creating an SQL statement and Choose a database model for the SQL statement as
Use existing database model. Click the Browse button, to select existing database model
stores_demo under Databases folder. The Wizard Data resource selection, will then be
opened.

15.Select Databases -> stores_demo. Click the OK button. Now you will be back to the Data
Base Web Pages Wizard, as shown in Figure 7-1.

Figure 7-1 Choosing database model

16.Click the Next button. The contents of Data Base Web Pages Wizard will be changed to
Construct An SQL Statement.

17.Find two tabs Tables and Insert, in this page. Select itso -> itso.customer table in the
left pane of the Tables tab. Click the button > to select itso.customer table.

18.Go to the Insert tab. You will find the list of column names of the itso.customer table.
Under the Insert tab, we need to map each column name of the customer table with a
host variable name. Host variables holds customer information.
146 Using Informix Dynamic Server with WebSphere

19.Enter customer_num’s value as 0. All the cells under Value, will become editable by
double-clicking them.

20.Map column fname with a host variable by building an expression. Double-click the value
cell of fname and a combo box will be displayed. Select Build Expression... from the
combo box list. The Expression Builder Wizard will be displayed.

21.In the Expression Builder Wizard, select the type of expression to build as Constant -
numeric, string or host variable and click Next as shown in Figure 4-10 on page 95. The
contents of the Expression Builder Wizard will be changed to Constant Options Page.

22.Select Constant type as String constant and click Next. The contents of the Expression
Builder Wizard will be changed to String Constant Builder Page to take the name of the
variable which contains customer number entered by the user.

23.Enter Host variable name as fName and select String constant type as Host variable
name. Click the Finish button. You will be taken back to the Database Web Pages
Wizard.

24.Repeat the Step 20 on page 147 to Step 23 on page 147, for the remaining column
names, lname, company, address1, address2, city, state, zipcode and phone. But take
care during Step 23 on page 147 to enter unique Host variable name.

25.After finishing the above steps, the contents under the Insert tab should look as shown in
Figure 7-2. Click the Next button in Database Web Pages wizard. Contents of Database
Web Pages wizard will be changed to SQL Statement Page.

Figure 7-2 Mapping columns names - Insert Module

26.Click Next button in SQL Statement Page (Database Web Page). Contents of Database
Web Pages wizard will be changed to Runtime Connection Pages.

27.Select database connection as Use driver manager connection.
Enter Driver name as com.informix.jdbc.IfxDriver, URL as
jdbc:informix-sqli://thorium:<portnumber>/stores_demo:INFORMIXSERVER=demo_on; ,
User ID as itso, Password as <password of user itso>, Re-enter password as <password
of user itso>. Click the Next button. Contents of Database Web Pages wizard will be
changed to Controller Page.

28.Select radio button Do not use a Front Controller. Click the Next button. Contents of
Database Web Pages wizard will be changed to Design the Input Form. This form is
used to specify our customer number of interest.

Note: Field customer_num is a primary key of customer table. So unique numbers
have to be inserted. As this is of type serial, if you insert a record with customer_num
as zero, IDS will generate a unique customer number and inserts a new record into IDS.
Chapter 7. Working with IDS and WebSphere 147

29.Click the Next button. Contents of Database Web Pages wizard will be changed to
Design the Insert View. This form is used to display the result of insert operation.

30.Click the Next button. Contents of Database Web Pages wizard will be changed to
Specify Prefix.

31.Click the Finish button.

32.It will generate the customerInputForm.html and customerInsertView.jsp under Web
Content folder in the project ITSOStoresDBPagesWeb. Development of insert module is
finished.

Update Module:

33.Development of this module is very similar to the development of Insert module. So we will
discuss only the steps which differ.

34.Perform Step 9 on page 146 to Step 16 on page 146, but during Step 13 on page 146,
select SQL Statement Type as Update Statement, Model as IBM Database Access Tag
Library - Update Statement.

35.Find three tabs Tables, Update and Conditions in Construct An SQL Statement
(Database Web Pages) page. Select itso -> itso.customer table in the left pane of the
Tables tab. Click the button > to select itso.customer table.

36.Go to the Update tab. You will find the list of column names of itso.customer table. We
need to map each column name of customer table with a host variable name. Host
variables holds customer information.

37.We have shown the mapping of fName with a Host variable, from Step 20 on page 147 to
Step 23 on page 147. Similarly follow the same steps to map lname, company,
address1, address2, city, state, zipcode and phone. But don’t enter anything against
customer_num. Because it is primary key.

38.After finishing the above steps, contents under Update tab should look as in Figure 7-3.

Figure 7-3 Mapping columns names - Update Module

39.Go to Conditions tab. Specify the condition to update the record whose customer_num is
same as the number entered by user. To specify this condition, refer Step 16 on page 93
to Step 20 on page 94.

40.Now we specified condition, so we are ready to finish the Update module.

41.Click the Next button. Contents of Database Web Pages wizard will be changed to SQL
Statement Page.

42.The remaining steps are very similar to Insert module. Follow the Step 26 on page 147 to
Step 31 on page 148. but during Step 28 on page 147, design the input form as shown in
Figure 7-4. The customer_num should be the first field on the page. Use the up arrow
button as highlighted, to adjust the placement of the field customer_num.
148 Using Informix Dynamic Server with WebSphere

Figure 7-4 Input form - Update modules

43.As part of update module, one input form and update view files will be created. Update
module also is finished.

Delete Module:

44.Development of the Delete Module is very similar to previous modules. We will discuss
only those items specific to the delete module. Select SQL Statement Type as Delete
Statement, Model as IBM Database Access Tag Library - Delete Statement and specify
the same condition as Update module, during construction of SQL Statement as shown in
Figure 7-5.

Figure 7-5 Delete condition

45.As part of the delete module, two files will be created. One to take inputs from user and
the other to perform the delete operation and to display results to the user. With this we
have finished the development of different modules. Now we must integrate these
modules.

7.2.2 Creating a JSP to integrate the application modules
Creation and design of the JSP is Wizard driven, and straight forward. We are going to create
MainMenu.jsp which contains links to the search, insert, update and delete modules.

Steps to integrate all the modules:

46.Go to Web Perspective.

47.Click File -> New -> JSP file.

48.Select Folder as ITSOStoresDBPagesWeb -> Web Content, File Name as MainMenu.

49.Click the Finish button.
Chapter 7. Working with IDS and WebSphere 149

50.Go to J2EE Navigator view. Find MainMenu.jsp under the folder
ITSOStoresDBPagesWeb -> Web Content.

51.Close all files opened in WSAD editor.

52.Open only MainMenu.jsp.

53.Click the Design tab of MainMenu.jsp.

54.Replace the text Place Test.jsp's content here with Welcome to ITSOStores. This is
going to be the title of our page. Remember, to do these tasks we must be in design mode
of MainMenu.jsp. If you are not able to find the text Place Test.jsp's content here on
MainMenu.jsp, refer to the foregoing note.

55.From the J2EE Navigator view, drag and drop the input file of the search module onto
WSAD onto the design page of MainMenu.jsp. The Insert File dialogue box will pop up,
providing different options for inserting a file as shown in Figure 7-6.

56.Select Insert a link to this file and click the OK button.

57.Find the inserted link to the search module. The name of the link will be Input Form. Edit
it to Search. Links and titles can be aligned by using tables. But we will just a create
working model.

58.Repeat Step 55 on page 150 to Step 57 on page 150, for rest of the modules Insert,
Update, Delete and name the links as Insert, Update, Delete. After doing the formatting,
the main page should look like Figure 7-7. Save and close the MainMenu.jsp.

59.To provide navigation from modules to Main page, close the MainMenu.jsp and open each
input form and view form, drag and drop the MainMenu.jsp on to these files to provide
navigation from these pages to MainMenu.jsp.

Congratulations, the application is now ready to deploy on either the WSAD or WS
Application Server.

Note: Design mode of JSP helps us to design the page. If you have any problem in
reading the content you have typed in design mode of MainMenu.jsp, then download the
Master.css file from the Redbooks additional material Web site. Import it into your
workspace under the folder, ITSOStoresDBPagesWeb -> Web Content and add the
following code to the source of MainMenu.jsp in between <head> </head>:

<STYLE type="text/css">
@IMPORT url("/ITSOStoresDBPagesWeb/Master.css");</STYLE>

Note: This section takes you through step-by-step instructions to develop a sample
application using Database Web Pages. If you prefer not to go through the exercise of
developing your own sample application, you can simply download the already developed
demo sample application file called SampleApps.Zip from Appendix D, “Additional
material” on page 343.

Inside the zipped download file are six folders. Open the folder named FullApplication.
Inside is the actual sample demo application, called ITSOStoresDBPages.ear. First, import
this file into your WSAD workspace. Then follow the development instructions in Steps 39
to 44 in the Section “A sample application using Database Web Pages” on page 88.
150 Using Informix Dynamic Server with WebSphere

7.2.3 Deploying the application
In this section we explain how you can deploy the application.

Deploying the application in WSAD
1. To deploy the application on WebSphere Studio, follow the instructions in “Deploying the

Web application in the test server:” on page 99.

2. Restart the server and access the application using the following URL:

http://<I P Address of test server>:9080/ITSOStoresDBPagesWeb/MainMenu.jsp

Figure 7-6 Inserting a link in Main Menu

Figure 7-7 Design of Main Page

Congratulations, you have deployed the sample application on WSAD application
server.
Chapter 7. Working with IDS and WebSphere 151

Deploying an application on the Application Server
1. Get ITSOStoresDBPages.ear file from WS Studio and follow the instructions in “Deploy

the ITSOStoresDBPages application in WAS” on page 115. Access the application using
the following URL:

http://<I P Address of application server>:9080/ITSOStoresDBPagesWeb/MainMenu.jsp

7.3 Sample application: Container Managed Persistent Bean
In this section we describe a sample application using a Container Managed Persistent Bean.

7.3.1 The ITSOStores sample application
This sample application (ITSOStores) is designed to demonstrate the connectivity of IDS
using a J2EE container managed persistent bean from WebSphere. A Container Managed
Persistent (CMP) Bean is mapped with the customer table in IDS. This application performs
search, insert, update, and delete operations on the customer table in the Stores_demo
database.

Figure 7-8 Architecture of ITSOStores applications

Components in the ITSOStores application
Around the CMP bean customer, some Java Server Pages (JSP) and Servlets are added to
perform search, insert, update, and delete operations. For example, to perform a search
operation, a JSP is added to accept search criteria such as the customer number. These
details are passed to a servlet called Search.java, which uses the CMP to perform the search
operation. The results are passed to another JSP, SearchResults.jsp, using ResultBean.java.
In a similar fashion, the remaining files are added to build a complete application. Utility.java
is used to perform common/frequently used operations across applications.

7.3.2 Steps for creating a CMP bean
In this section we provide the steps to create the customer entity bean.

1. Go to J2EE perspective.

2. Click File -> New -> Enterprise Application Project.

3. Select J2EE1.3 Enterprise Application project and click Next.

4. Enter Enterprise application project name as ITSOStores. Uncheck Application client
module. Click the Finish button.

 WebSphere Studio Application Developer

Windows ServerWindows Server

Linux Server

Browser

IDSIDS

Customer
 CMPCMPServletServlet

WebSphere Test
Environment
152 Using Informix Dynamic Server with WebSphere

5. Right-click the project ITSOStoresEJB under EJB Modules.

6. Select New -> Enterprise Bean. Enterprise Bean Creation and a Wizard will pop up.

7. Select EJB Project as ITSOStoresEJB. Click Next.

8. Select Enterprise Bean with container-managed persistence (CMP) fields and CMP
2.0 Bean. Enter bean name as customer. Default package as itso.stores. Click Next.

9. Select Remote client view and Local client view. Click the button Add, to CMP attributes.
Create CMP Attribute and a Wizard will pop up.

10.Enter Name as customer_num and Type as int. Select Key field to specify this field as a
primary key. Click Apply.

11.Repeat Step “Expand project ITSOStoresDBPagesWeb. Find the WebContent folder
under ITSOStoresDBPages.” on page 146, for entering fName, lName, company,
address1, address2, city, state, zipcode, and phone. All these are CMP fields of type
String. For these fields uncheck Key field. After entering all CMP fields, click the Close
button on Create CMP Attribute Wizard.

12.Click the Finish button, and the CMP bean is created.

Mapping the CMP Bean customer to the database table customer
13.Right-click the project ITSOStoresEJB and select Generate -> EJB to RDB Mapping.

14.Select Create a new backend folder and click Next.

15.Select Meet In The Middle and click Next.

16.Enter the database connection parameters the same as described in Step “Enter
Connection name as ConnToIDS, Database as stores_demo, User ID as itso, Password
as password of the itso user. Select Database vendor type as Informix Dynamic Server, V
9.3, JDBC driver as INFORMIX JDBC NET DRIVER, Host as ipaddress of the IDS server,
Port number as port number of the server instance demo_on, Server name as demo_on,
Class location as the <JDBC Driver Installed Directory>\lib\ifxjdbc.jar. After entering all the
values, please cross check values with the Figure 4-7. Click the Finish button. Refer to
step Step 13 on page 92 and read the note below it. A new connection ConnToIDS will be
created. You can find it in the DB Servers view. We have now completed the creation of
the connection.” on page 145, or as described in previous sections, and click Next.

17.Select itso -> customer from the list of tables and click Next.

18.Select None.

19.Map.mapxmi file will be opened in editor. In the left pane, Enterprise Beans details will be
there, and in the right pane, relational database table details will be there. EJB project
ITSOStoresEJB and relational database stores_demo are already mapped. Drag CMP
customer onto the relational database table customer. Now CMP and table are mapped.
In the same way, map attributes of CMP and columns of the database table.

20.Save the file Map.mapxmi and close it.

Generating Deploy and RMIC Code
21.Right-click EJB Project ITSOStoresEJB and select Generate -> Deploy and RMIC

Code... A Wizard to Generate Deploy and RMIC Code will pop up.

22.Select customer bean and click Finish.

Completing the deployment descriptor
Before we can test the entity bean, we must update the deployment descriptor with
WebSphere-specific binding information:
Chapter 7. Working with IDS and WebSphere 153

23.In the J2EE Hierarchy view, double-click the ItsoStoresEJB module (or select Open With
-> Deployment Descriptor Editor (context).

24.In the Overview pane of the deployment descriptor editor, we add two values for the CMP
Factory Connection Binding:

– For the JNDI name, enter jdbc/ITSOStoresDS. This is the JNDI name we used for the
data source definition during the setup of the WebSphere Test Environment

– For the Container authorization type, select Per_Connection_Factory.

25.Check that the correct current Backend ID is selected (INFORMIX_V93_1). The Container
Managed Persistent bean is ready to test and use in the application.

Congratulations, you have succeeded in creating a CMP entity bean.

Download the application
Download the demo sample application file called SampleApps.Zip from Appendix D,
“Additional material” on page 343. Inside the zipped download file are four folders. Open the
folder named ITSOStores. Inside is the actual sample demo application, called
ITSOStores.ear.

7.3.3 Deploying the application
In this section we explain how you can deploy the application.

Deploying the application in WSAD
Prerequisites:
1. Configure Informix data source ITSOStoresDS, under Informix JDBC Provider. For

details, refer to “Detailed steps to configure an Informix Data Source on WSAD” on
page 132.

Steps to deploy application in WSAD:
2. Import the ITSOStores.ear file into workspace. You should see projects named

ITSOStoresWeb and ITSOStoresEJB in your workspace.

3. Right-click ITSOStoresWeb project and click Properties. Properties of ITSOStoresWeb
Wizard will pop up.

4. Select Java Build Path from the left pane.

5. In the right pane, go to the Projects tab and select ITSOStoresEJB.

6. Go to the Libraries tab and click the Add External Jars button to select ifxjdbc.jar and
ifxjdbcx.jar.

7. Add application ITSOStores, to test server.

8. Restart the test server and the new application should be functional.

Congratulations, you have developed a sample application using a CMP Bean!

Note: There is a potential problem inserting a new record into customer table using CMP:

In the table customer, customer_num is of type serial and it is a primary key. IDS should
generate a unique value for customer_num if a record is inserted with customer_num as 0.
However, when we tried to insert a record with customer_num as zero, it did not function
properly. So we generated a unique key before calling CMP, by using a sequence
database object and then inserted a new record. For more details, refer to 13.1.5, “Using
sequence objects rather than serial data type” on page 307.
154 Using Informix Dynamic Server with WebSphere

Deploying the application in WAS
Prerequisites to deploy in WAS:
9. Configure Informix JDBC Provider in the application server. For details, refer to 5.2.1,

“Configuring the Informix JDBC Provider” on page 114.

10.Configure data source ITSOStoresDS, under Informix JDBC Provider. For details, refer to
6.4.3, “Configure Informix Data Source on WebSphere Application Server” on page 136.

Steps to deploy the application in WAS:
Deploy the application in ITSOStores.ear. Refer to instructions in “Deploy the
ITSOStoresDBPages application in WAS” on page 115. Start the application with the URL:

http://<ipaddress of application server>:9080/ITSOStoresWeb/MainMenu.jsp

The sample application using a CMP Bean
Figure 7-9 depicts the Main Menu page for the ITSO Stores Demo sample application. It
looks more sophisticated than the previous sample applications. We have used some of the
capabilities of WebSphere Studio Application Developer to create an interface for the user
that is more graphical and easier to use and understand.

Figure 7-9 Main Menu page for the ITSO Stores Demo

With this application we have the option to search for a particular or to insert a new customer.
If we elect to search for a customer, we simply click the word Search. The query page will be
displayed, as depicted in Figure 7-10.
Chapter 7. Working with IDS and WebSphere 155

Figure 7-10 Customer Query Page

To perform a query, enter a customer number. If the customer number is found, results will be
displayed as in Figure 7-11. If not, an error page is displayed.

Figure 7-11 Customer Query Results

We now have an option to see more details on this particular customer, by clicking the
highlighted word Details, shown in Figure 7-12. The Customer Detail Record is displayed.
156 Using Informix Dynamic Server with WebSphere

Figure 7-12 Customer Details Record

We can now choose an action to perform on this returned information by clicking the
appropriate word. If we click Orders, as shown in Figure 7-12, we will retrieve the Customer
Order information as depicted in Figure 7-13.

Figure 7-13 Customer Order Detail
Chapter 7. Working with IDS and WebSphere 157

This is a simple application, but demonstrates some very robust technology and capabilities.
The next sample application will be similar, but uses JMS to demonstrate the capability to
implement applications using IDS and WebSphere in a distributed environment.

7.4 A sample application using JMS and IDS
In this section we describe our next sample application, which uses JMS and IDS.

Using JMS with the ITSO Stores sample application
This sample application is designed to demonstrate IDS, WebSphere MQ, and WebSphere
Application Server, working together. We have named it ITSOStoresJMS. This sample
application is to demonstrate the capability for deploying our sample application, using IDS
and WebSphere, in a distributed environment. Distribution can be demonstrated both
physically and logically, because the concepts are the same. It is the separation of the system
components — in this case, the application, IDS, and WebSphere.

Separation of the components can, and in our example does, require the application to be
split into multiple applications to enable them to interact with the appropriate distributed
components. In our sample application, there is an application to accept input from the
WebSphere user and an application to interact with IDS. There are several ways to
implement and support this distribution. WebSphere has a powerful capability to support this,
called WebSphere MQ.

However, for our example, we have chosen a simpler way, since we are only working with a
sample application. We do not require the very robust capabilities of WebSphere MQ. So, we
use Java Message Services (JMS), which can be thought of as a scaled-down version of
WebSphere MQ. This is a very simple approach for our sample application, because
WebSphere Studio Application Developer and WebSphere Application Server have a JMS
Provider embedded in them. Figure 7-14 depicts the design of our sample application
environment.

Figure 7-14 Design of ITSO Stores JMS application

Queue (Q1)

Queue (Q2)

JSP

App1

IDSIDS

 Entity BeanEntity Bean

MDBMDB

App2

JJ
MM
SS

JJ
MM
SS
158 Using Informix Dynamic Server with WebSphere

As mentioned above, there are two sample applications used, TestJMS (App1) and
ITSOStoresJMS (App2). The functionality of App2 includes inserting new customer records
into the IDS stores_demo database. The TestJMS application, App1, accepts customer detail
information from the user, puts it into a JMS queue, and displays the results of the operation
to user. ITSOStoresJMS then reads the customer details from queue and inserts a new
customer record into IDS.

The two sample applications demonstrate the use of MQ in a distributed environment, using
MQ (JMS) as the vehicle for communications between them. Communication between these
applications could have been achieved in number of other ways. Here are a few examples:

� Using RMI: Using Remote Method Invocation, communication between software
components could be established but each component must be aware of the API of the
other. If the API of one software component changes, it effects the communication
between these components. So communication between software components using RMI
is tightly coupled, which may not be desired and is certainly not as flexible. In addition,
RMI only supports synchronous communications. And, to communicate, both software
components must be up and running (which is not a requirement with WebSphere MQ).
So, RMI would only be used when the requirements dictate these particular capabilities.

� Writing software adapters: Another way to establish communication between different
applications is developing software adapters, which can understand both applications. So
this adapter will act a mediator between the applications. But if there is a need to establish
a communication between a huge number of applications, it is typically not practical to
develop an adapter that can understand them all.

� Message Oriented Middleware (MOM): This is an interesting way to communicate
between different applications. There are two primary approaches for application
communications. In one case the applications must release their own API to the external
world, and in the other adapters are written after the applications are developed. Message
Oriented Middleware is a type of adapter which is written ahead of the applications.
Certain vendors developed message oriented middleware and released their own API. So
applications can use these APIs to send and receive messages from the MOM, by using
queues. If two applications want to communicate, one will put message into the queue of
MOM and the other will read the message from that queue. Here, the communications is
through messages. These queues can store the messages if receiving component is not
currently available when a message is received. Stored messages are forwarded to
receiving application when it becomes available. This is an example of asynchronous
communications. WebSphere MQ is the IBM implementation of MOM.

� Java Messaging Service (JMS): Message Oriented Middleware is the defacto approach
for inter-application communication. However, with multiple vendors implementing their
own version of a MOM, support, maintenance, and integration were always issues. As an
attempt to standardize the MOM approach. Sun, IBM, and other MOM vendors developed
a common messaging API, and it was called JMS.

7.4.1 The ITSOStoresJMS sample application
Coming back to our example, two applications were designed and communications between
these components was established using JMS, as depicted in Figure 7-14 on page 158.

A Message Driven Bean (MDB), Container Managed Persistent Bean (CMPB), JSPs, and
Servlets are used in this application. Listener ports, queues, and queue connection factory,
are configured in the server to enable the application.
Chapter 7. Working with IDS and WebSphere 159

The application begins with module Insert.jsp, which accepts new customer details from the
user and puts them into queue Q1, using the JMS API. The Message Driven Bean (MDB), in
App 2, will be listening for the queue, Q1. As soon as there is a message in Q1, the
onMessage method in the MDB will be executed. The customer details are extracted from Q1
and, with the help of the Container Managed Persistent Bean (CMPB), a new customer
record is inserted into customer table, and the customer number of inserted record is placed
into queue Q2 as a response. The Java Server Page (JSP) in App1 will be listening for queue
Q2, and retrieve the customer number of the newly inserted customer and display it to user.

Downloading the application
The example applications in this redbook were designed to enable you to develop them as an
implementation exercise. However, they can also be download directly from our redbook
download Web site.

Download the demo sample application file called SampleApps.Zip from Appendix D,
“Additional material” on page 343. Inside the zipped download file are six folders. Open the
folder named ITSOStoresJMS. Inside is the actual sample demo applications, called
ITSOStoresJMS.ear and TestJMS.ear. You will use these files later in“Steps to deploy the
application in WSAD:” on page 162 and in “Steps to deploy an application in WAS:” on
page 163.

However, to run the applications, you must still install and configure WebSphere Studio
Application Developer, WebSphere Application Server, and Informix Dynamic Server. So,
there is some preparation work to be done even with this approach.

7.4.2 Preparing the sample application for deployment
In this section we explain how you can prepare the sample application for deployment.

Preparing the sample application for deployment in WSAD
Prerequisites :
The following configuration steps must be finished to enable the sample application to be
deployed in WSAD.

Enable the administration client
1. Switch to the Server perspective and select the WebSphere V5.0 Test Environment.

(Servers ->WebSphere V5.0 Test Environment). Right-click Open.

2. Select the Configuration notebook tab and enable the check box: Enable
administration client. The Ports Notebook tab will show the Admin host port: 9090.

3. Press Ctrl+S to save changes and close the editor using Ctrl+F4.

4. Start test server:

a. If your V5.0 test server has already started, then restart the Web server. To restart,
select the WebSphere V5.0 Test Environment in the server’s view, and right-click
Restart.

b. If your server is not started, then right-click Start from the pop-up menu.

5. After the server starts, check the WebSphere console log in the server’s Console view.
You should find following messages:

ApplicationMg A WSVR0221I: Application started: adminconsole.
160 Using Informix Dynamic Server with WebSphere

Configuring Listener Port LP0
6. Open the Administration Client by using the following URL:

http://<I P Address of WSAD>:9090/admin

7. In the Navigation pane, select Servers -> Application Servers. This displays the
properties of the application server in the content pane. Select your-app-server from the
Application Server’s list.

8. In the Additional Properties table, select Message Listener Service. This displays the
Message Listener Service properties in the content pane.

9. In the Content pane, select Listener Ports. This displays a list of the listener ports.

10.In the Content pane, click New.

11.Specify appropriate properties for the listener port (refer to Figure 7-15).
Enter all required fields:

a. Name (LP0)
b. Initial State (Started)
c. Connection factory JNDI name (jms/itso/QCF)
d. Destination JNDI name (jms/itso/Q0)

12.Click OK.

13.To save your configuration, click Save on the task bar of the administrative console
window. In the application pane you must click Save again.

Figure 7-15 Listener Port

Configuring Queue Q0
14.To map queue name to their corresponding JNDI names for the WebSphere JMS

provider, select Resources->WebSphere JMS Provider in the Navigation tree view.

15.You should find the WebSphereJMSProvider screen with an Additional Properties table.

16.Now select the WebSphere Queue Destinations, click the New button and fill in Name
(Q0), JNDI Name (jms/itso/Q0) and select Node localhost. Finish the configuration by
clicking the OK button.

Configuring Queue Connection factory QCF
17.To map queue name to their corresponding JNDI names for the WebSphere JMS

provider, select Resources->WebSphere JMS Provider in the Navigation tree view.

18.You should find the WebSphereJMSProvider screen with an Additional Properties table.

19.Click WebSphere Queue Connection Factories and click the New button. Provide the
Configuration menu with a Name (QCF), a JNDI Name (jms/itso/QCF), and select Node
as localhost. Click the OK button.
Chapter 7. Working with IDS and WebSphere 161

Configuring Listener Port LP1
20.Follow“Configuring Listener Port LP0” on page 161, but enter the following values:

a. Name as LP1.
b. Connection factory JNDI name as jms/itso/QCF.
c. Destination JNDI name as jms/itso/Q1.

Configuring Queue Q1
21.Follow the instructions in “Configuring Queue Q0” on page 161, but enter Name as Q1

and JNDI Name as jms/itso/Q1.

Set JMS server properties
22.We now have to set the JMS server properties. Select of Server -> Application Server

and select server1.

23.In the Additional Properties table select Server Components. The Server Component
table appears. Select JMS Servers and you will see the general properties for the
Internal JMS Server.

24.In section General Properties for the Internal JMS Server, type the Queue names as Q0
and Q1, select Initial State as Started from the drop-down combo box.

25.Click the OK button and save your changes to the master configuration.

Configuring a Data source, ITSOStoresDS
26.Refer “Configure Informix Data Source on WebSphere Studio” on page 132.

Steps to deploy the application in WSAD:
27.Import ITSOStoresJMS.ear file and the TestJMS.ear file into the workspace. You should

see projects named ITSOStoresJMSEJB and TestJMSWeb.

28.Right-click ITSOStoresJMSWeb project and click Properties. Properties of
ITSOStoresJMSWeb Wizard will pop up.

29.Select Java Build Path from the left pane.

30.In right pane, go to the Projects tab and select ITSOStoresJMSEJB.

31.Go to the Libraries tab and click the Add External Jars button to select ifxjdbc.jar and
ifxjdbcx.jar.

32.Add the ITSOStoresJMS and TestJMS applications to the test server.

33.Restart test server and access with application by entering the following URL :

http://<ipaddress of test server>:9080/TestJMSWeb/insert.jsp

Deploying the application in WAS
Prerequisites :
34.To run our demo ITSOStoresJMS, WebSphere Application Server has to be configured

for JMS resources. Open WebSphere Application Server, administration client, by using
the following URL:

http://<ipaddress of application server>:9090/admin

35.The remaining steps for the configuration are very similar to configuration steps just
presented for WSAD. Follow the steps beginning at Step “In the Navigation pane, select
Servers -> Application Servers. This displays the properties of the application server in the
content pane. Select your-app-server from the Application Server’s list.” on page 161,
through Step “Click the OK button and save your changes to the master configuration.” on
page 162.
162 Using Informix Dynamic Server with WebSphere

Configuring Informix JDBC Provider in application server
36.Refer to Section “Configuring the Informix JDBC Provider” on page 114.

Configuring a Data source ITSOStoresDS under Informix JDBC Provider
37.Refer to Section “Configure Informix Data Source on WebSphere Application Server” on

page 136

Steps to deploy an application in WAS:
38.Deploy the applications ITSOStoresJMS.ear and TestJMS.ear in ITSOStores as you did

with the other sample applications. Refer to section on “Deploy the ITSOStoresDBPages
application in WAS” on page 115.

39.Start the application with following URL:

http://<ipaddress of application server>:9080/TestJMSWeb/Insert.jsp

Congratulations, you have completed deployment of the application ITSOStoresJMS
on WebSphere Application Server. We show an example of the execution of that sample
application in the next section.

7.4.3 Store and forward mechanism
Now we are going to demonstrate the store and forward mechanism of WebSphere MQ.
The store and forward mechanism is a part of asynchronous communications. It enables
messages to be sent to users that are currently not available. Then when the user becomes
available, the messages are automatically forwarded. This is just one scenario where store
and forward mechanism can be used. This mechanism is extensively used in managing
transactions.

Using our demo, we can demonstrate the store and forward mechanism. The TestJMS
application has to collect customer information from user and send it to the application
ITSOStoresJMS. But what will happen to the data sent by TestJMS, if the ITSOStoresJMS
application is not available to receive it. If you are not using a MOM approach to
communications, the process will not complete. With a MOM approach, such as WebSphere
MQ or JMS, the data will be stored in a queue until the ITSOStoresJMS application becomes
available and formally receives the data. MQ guarantees the delivery of the data, whenever
the receiving application becomes available.

The store and forward mechanism of WebSphere MQ
These steps can be used to demonstrate the store and forward mechanism of MQ. In our
example we actually used JMS, but the process is the same since JMS is based on MQ:

1. Stop the application ITSOStoresJMS in WebSphere Application Server using the
administrative console.

2. Access the insert page of the TestJMS application, as depicted in Figure 7-16, by entering
the following URL in your browser:

http://<ipaddress of Application Server>:9080/TestJMSWeb/insert.jsp
Chapter 7. Working with IDS and WebSphere 163

Figure 7-16 Insert Page for JMS sample application

3. Enter customer details into the template in Figure 7-16 and click submit. This application
will put customer details in the JMS queue, but the ITSOStoresJMS application is not
available to receive them. In this situation if we use RMI for communication between these
applications, it will return a “link failure error”. But the JMS queues store the customer
details when the ITSOStoresJMS application is not available, and then forwards it as soon
as the ITSOStoresJMS application becomes available.

4. Now start the application ITSOStoresJMS. Confirmation of the insertion of customer
details into IDS is displayed on the browser, as depicted in Figure 7-17.
164 Using Informix Dynamic Server with WebSphere

Figure 7-17 Insert complete status page for JMS sample application

5. Check the database for the customer record, and you will see that the new customer
information record has been inserted. So our demo application completed successfully.
And it demonstrates that the store and forward mechanism works, and can support real
time transactions.

7.5 Managing transactions
A transaction is the execution of a set of activities as one unit-of-work. This unit-of-work is a
set of activities that relate to each other and must be completed together. If any of these
activities fail, the entire unit-of-work must be undone. Determining when a transaction begins
and ends is called transaction demarcation.

The transaction system itself provides a mechanism to ensure this and it guarantees the four
main properties of a transaction: atomicity, consistency, isolation, and durability (ACID).

ACID properties of a transaction
A transaction has the following four properties:

Atomic: A transaction must execute completely or not at all. Every activity in a transactional
unit-of-work must execute successfully. If any activity fails, the entire transaction is aborted
and all the data changes are rolled back. If all activities execute without an error, the
transaction completes and all data changes are committed.
Chapter 7. Working with IDS and WebSphere 165

Consistent: A transaction must not leave a system inconsistent after it completes. This
means that it guarantees the integrity of the underlying data store. For example, in typical
funds transfer operation; there must not be a negative balance in an account after the transfer
is complete. The developer should usually enforce consistency.

Isolated: All transactions must be allowed to execute without interference from other
processes or transactions. Any intermediate states are transparent to other transactions,
allowing multiple transactions to execute serially.

Durable: All data changes committed during a transaction must be written to a persistent
data store and should survive hardware or software failures. If a failure occurs, the data can
be recovered by using transactional logs.

7.5.1 Java Transaction Service (JTS)
Transactions in EJBs rely on the transaction APIs provided as part of the J2EE specification.
JTS defines a low-level API that is meant to be used by the application server provider. JTS is
the Java implementation of the OMG CORBA Object Transaction Service (OTS).

Transactions in J2EE
A J2EE application server makes transactions very easy to use because it masks the
complexity of distributed transactions from the developer. It is important to understand the
basic terminology of the participants in transaction management:

Resource: Any persistent store on which you can read or write. It could be a database, a
JMS queue, or a JCA connector.

Resource manager: Responsible for managing a resource, and is typically a product such
as a relational database or message provider.

Transactional object: A component involved in a transaction. In our example, the session
bean is a transactional object.

Transaction manager: Component or system responsible for managing the transactional
operations. For example, WebSphere is a transaction manager. When an application uses
more than one resource manager in one transaction, an external transaction manager is
needed. A typical example is reading from a message queue and writing to a database in one
transaction. This is a distributed or global transaction. WebSphere can provide that service.

XA protocol: XA is the standard interface between a transaction manager and a resource
manager. The transaction manager coordinates a distributed transaction. It typically uses the
XA protocol to interact with the database.

Two-phase commit: Resource managers that want to participate in a two-phase commit
have to implement the XA protocol, which ensures that the result of a transaction is consistent
across all resource managers participating in the transaction. It is used only in distributed
transactions. The protocol operates in distinct phases to ultimately commit or abort a
transaction:

� Phase one: Evaluates the status of each resource manager. The transaction manager
checks with each local resource manager whether they are ready to commit the
transaction. Each resource manager responds that they are ready or not. A transaction
can commit only when all participating resource managers agree during this phase one.
This phase is called the prepare phase

Note: EJB developers should use the Java Transaction API (JTA). JTA provides a
programming model that developers may leverage for explicit transaction demarcation.
166 Using Informix Dynamic Server with WebSphere

� Phase two: Concludes the transaction. Based on the response from each resource
manager, the transaction manager instructs all resource managers to commit the
transaction if all agree, or to roll back the transaction if at least one disagrees. This phase
is called the commit phase.

7.5.2 Local and global transactions in WebSphere
When an application uses only one resource during a transaction, for example, when writing
to two tables in the same database, then its resource manager can perform the role of
transaction manager. This is called local transaction optimization and is transparent to the
application. Transactions in this scenario engage in a one-phase-commit (1PC) transaction.

Global transaction is a transaction that uses an external resource manager. A distributed
transaction is a transaction over a multi-tier deployment with several transaction participants,
such as a database or JCA connection, within the same transaction. A global transaction
manager is required to manage distributed transactions, and will coordinate the updates
across multiple resources. This is called a two-phase-commit (2PC). The resource manager
can only participate in a distributed transaction if it supports the XA protocol. If you want your
resources to be part of global 2PC transactions, then you have to ensure that the resources
you define in WebSphere associate to XA-compliant drivers. See Figure 7-18.

In this context for Informix Dynamic Server

com.informix.jdbcx.IfxConnectionPoolDataSource(1PC)

com.informix.jdbcx.IfxXADataSource(2 PC)

Figure 7-18 Distribution transaction processing

TM API

XA

Distribution Transaction Processing ModelDistribution Transaction Processing Model

PesistentPesistent
StoreStore

Application ProgramApplication Program

Transaction ManagerTransaction Manager

Transaction ManagerTransaction Manager
Chapter 7. Working with IDS and WebSphere 167

EJB transaction demarcation
Determining when a transaction begins and ends is called transaction demarcation. Bean
providers can choose to either control when transactions begin and end programmatically, by
using bean-managed transaction (BMT) demarcation, or can delegate this to the container
through container-managed transaction demarcation (CMT).

7.5.3 Bean-managed transactions (BMT)
When a developer explicitly manages the bean demarcation levels in the code, they are said
to be employing bean-managed transactions (BMT). Bean-managed transactions must
declare when transactions start, what behavior is part of the transaction, and when they end.

This is accomplished through the use of the javax.transaction.UserTransaction interface as
defined in the Java Transaction API (JTA). This interface provides methods to explicitly begin,
commit, and roll back transactions. Only beans that are declared to use bean-managed
transactions may use the UserTransaction interface within their code. To do otherwise results
in exceptions being by the container. To declare a bean as using bean-managed transactions
you must set the <transaction-type> deployment descriptor attribute:
<transaction-type>Bean</transaction-type>

7.5.4 Container-managed transactions (CMT)
BMT can be rather more complicated. A simpler and more elegant solution is to let the
container manage the transactions for you. There is no need to write any transaction logic,
because this is handled by the container at runtime. The code becomes cleaner, because
transaction demarcation is not intertwined in the code. The developer simply has to declare
the transactional behavior in the deployment descriptor. One of the most powerful features of
EJBs is their ability to employ declarative transaction management.

To declare a bean as using container-managed transactions means setting the
<transaction-type> deployment descriptor attribute:
<transaction-type>Container</transaction-type>

Figure 7-19 depicts an EJB object being invoked by a non transactional client. As the client
does not have a transactional context, the client creates a new transactional context before
dispatching the remote method on EJB object (A). EJB (A) updates database A and then
invokes EJB (B), which also updates a database. The processing done by both the EJB
objects is with the same transaction context created by the container.

Note: Bean-managed transactions are only available to session and message-driven
beans; they are illegal for entity beans. Spanning a transaction across many methods is
only allowed in stateful session beans. Stateless session beans, and the onMessage
method of message-driven beans, must end or roll back the transaction they start in the
method call.

Note: The scenario assumes that EJB (B) has the appropriate transaction attribute, such
as TX_REQUIRED, but not TX_NOT_SUPPORTED OR TX_REQUIRES_NEW
168 Using Informix Dynamic Server with WebSphere

Figure 7-19 Container managed demarcation

In addition, the developer or deployer can declare additional transactional attributes that
govern the behavior of the beans in the transactions. The transactional attribute behavior of
CMTs can be set at either the bean globally, or the individual methods within a bean.
Depending on how the transaction attributes are defined, the container will either start,
continue, suspend, ignore, stop, or throw an exception on a transaction when a bean method
is executed.

The bean provider is not required to call explicit commit or rollbacks in the code. A transaction
starts when a method is called that requires a transaction. The transaction boundary, or
scope, is for the length of this method. If the method executes successfully, then the
transaction is automatically committed when the method ends.

How does the container know when it should or should not commit? If the bean method (or
any other bean method that it subsequently calls) calls the setRollbackOnly method (using
the EJBContext object), then the transaction is marked for a rollback. The container
guarantees that the transaction is rolled back when completed, but does not force an end of
the transaction immediately. The bean developer can use the getRollbackOnly method to
determine if a transaction has been marked for rollback, and not continue with the current
code sequence if they choose.

There are a number of DBMS features and capabilities of interest when discussing
transaction management. The following are a few examples:

� Database locking strategies: Relational databases typically use different locking
schemes to help isolate access to data. The following are the four types of locks:

a. Read locks: Prevent transactions from changing data read during a transaction until
the transaction ends, thus preventing non repeatable reads.

a. Write locks: Used for updates, and prevents other transactions from changing the
data until the current transaction is complete. But it does allow dirty reads.

a. Exclusive write locks: Used for updates, and prevents other transactions from
reading or changing the data until the current transaction is complete. It prevents dirty
reads.

C o n t a in e r M a n a g e d D e m a r c a t io nC o n t a in e r M a n a g e d D e m a r c a t io n

X AX A

C O M M IT

W e b S p h e r eW e b S p h e r e
A p p S e r v e rA p p S e r v e r

 B E G I N

D a t a b a s eD a t a b a s e
AA

D a t a b a s eD a t a b a s e
BB

R e s o u r c eR e s o u r c e
M a n a g e rM a n a g e r

(R M 2)(R M 2)

R e s o u r c eR e s o u r c e
M a n a g e rM a n a g e r

(R M 2)(R M 2)

T r a n s a c t io n M a n a g e rT r a n s a c t io n M a n a g e r
(T M)(T M)

E J BE J B
(A)(A)

E J BE J B
(B)(B)
Chapter 7. Working with IDS and WebSphere 169

a. Snapshots: Some databases provide snapshots, which are frozen views of data. They
can prevent dirty reads, non repeatable reads, and phantom reads, but can be
problematic because they are not actual data.

� Deadlocks: A deadlock occurs when two concurrent transactions place a shared lock on
the same resource (table or row) when they read it-then attempt to update the information
and commit.

� Isolation Level: An isolation level represents a particular locking strategy employed in the
database system to improve data consistency with regard to the problems of dirty, non
repeatable, and phantom reads. Isolation levels are specified for Enterprise JavaBeans
similar to transaction attributes. Since isolation applies only to databases, it is applicable
only to enterprise beans using JDBC (either CMP or BMP) to access a database resource.
We can either specify a strict isolation or a relaxed isolation. It is a trade-off between
concurrency control and performance. That is, a strict isolation level can only be achieved
at the expense of performance. The isolation level can be set for a bean, or for individual
methods.

� Limits: Because locking physically prevents other concurrent transactions from accessing
the data, major performance problems may arise. In addition, deadlock of transactions can
also occur that may cause stability concerns with the applications. An example of
deadlock is when two concurrent transactions are waiting for each other to release a lock.
This should be considered when employing an appropriate isolation strategy for your
application.

Isolation levels in JDBC
JDBC in particular also deals with transaction and supports its own set of isolation levels.
They correspond exactly to the isolation levels supported by enterprise beans. The only
exception is the TRANSACTION_NONE isolation level in JDBC, which is not supported by
enterprise beans. The equivalent of this isolation level can be achieved by specifying the
bean transaction attribute as Never.

Resource access intent
In WebSphere 5.0 the isolation level and read only method level modifiers that could be
defined for EJB1.1 are now part of the access intent mechanism of WebSphere. Isolation
levels were specific to JDBC, but because the persistence mechanism is now based on J2C
resources, a more abstract mechanism was needed. If the underlying resource is a JDBC
resource, then the access intent hints will still be translated to JDBC isolation levels under the
covers. If the resource is not a relational database, then the access intent will be translated to
the mechanism appropriate to that resource.

An access intent policy is a named set of properties (access intents) that governs data
access for EJB persistence. You can assign a policy to individual methods on an entity bean's
home, remote, or local interfaces during assembly. Access intents are available only within
EJB 2.x-compliant modules for entity beans with CMP 2.x and for BMPs.

Access intent enables developers to configure applications so that the EJB container and its
agents can make performance optimizations for entity bean access. Entity bean methods are
configured with access intent policies at the module level. A policy is acted upon by either the
combination of the WebSphere EJB container and persistence manager (for CMP entities) or
by BMP entities directly. Note that access intent policies apply to entity beans only. The intent
of the access intent mechanism in WebSphere Version 5 is to allow developers to supply the
container with optimization hints. The container will use these hints to make decisions about
isolation levels, cursor managements, and so forth. The hints are organized into groups called
policies. The policies are defined at the module level and applied to individual methods on the
bean’s interface (local or remote).
170 Using Informix Dynamic Server with WebSphere

7.5.5 Transactional programming considerations
This section addresses the various programming considerations of transaction management
that a bean developer has to consider.

Client-managed transaction: Client-managed transaction refers to the situation in which a
client of an EJB manages the transaction demarcation. The client could be a servlet, or
another EJB, such as a session bean calling entity beans. For example, this can be a Java
servlet that updates records in a database and starts, ends, or rolls back a transaction based
on some external criteria. As with bean-managed transactions, we use the UserTransaction
interface. Here it can be obtained by a JNDI lookup of java:comp/UserTransaction

New J2EE 1.3: Obtaining a lookup to a user transaction object in previous releases was
accomplished using the JNDI context of jta/usertransaction. This is now changed to
java:comp/UserTransaction

When the client is demarcating a transaction, it is recommended that the bean methods that
the client calls be enabled for container-managed transaction. This simplifies the application
and protects the developer from many problems.

Transactions and message-driven beans
Message-driven beans do not have a traditional client, as is the case with session and entity
beans. The client exists as a completely disconnected process separated by the JMS
provider. Because MDBs do not have a client per se, a message-driven bean cannot
participate in a transaction that already exists at the client side. This is not to say that MDBs
cannot be transactional, because they can be, but only on the server side in the context under
which they execute. Rather, this client restriction implies that the invocation of the MDB
cannot be part of a transaction that may have been started on the client side. But clients do
not invoke the MDBs directly. They do so by sending a message to a JMS destination, either
queue or topic. If the client is utilizing transactions, then the JMS send may be part of the
transaction, but not the actual MDB execution itself. This is because the message is only sent
when the transaction commits on the client side. Therefore, the MDB would never execute
until after the client transaction has actually ended.Having the message listener just stop
delivering messages also has its obvious drawbacks. The application, essentially, has just
stopped, and messages will continue to queue up, all because of one poison message.

Luckily, using a full-fledged WebSphere MQ implementation for the JMS provider can help in
this situation. This is because MQ can be configured to not attempt re-delivery of a message
after a certain number of retries of the message within MQ itself, and can put these messages
on a special queue destination for temporary holding until a problem can be resolved. For
example, WebSphere MQ will attempt to keep a re-delivery count per message, and when the
message reaches a pre-determined maximum re-delivery count, say 2, it will put the message
on a temporary error queue instead. This would solve the problems of the listener just
stopping, the messages queuing up and flooding the queue, or the application becoming
unavailable. Of course, a problem still exists that would have to be investigated, but the
application continues function for good messages.

Transaction attributes
A transaction attribute is a value associated with a method of session or entity bean’s home or
component interface or with onMessage method of message driven bean. It specifies how the
container must manage transactions for a method when a client invokes via the
home/component interface the result of arrival of a JMS message.

Enterprise JavaBeans define the following values for the transaction attribute:

� NotSupported
Chapter 7. Working with IDS and WebSphere 171

� Required
� Supports
� RequiresNew
� Mandatory
� Never

7.5.6 General guidelines for using transactions
Here are some guidelines you may find helpful:

� Use long-running read-only transactions to cache static data only.

� Avoid referring to dynamic data in long-running read-only transactions, because the
repeatable-read transaction isolation prevents detecting changes committed by other
transactions.

� Properly demarcate transaction boundaries and complete transactions quickly.

� The recommended way to manage transactions in EJB is through container-managed
demarcation.

� Entity beans must always use container-managed transaction demarcation. Session and
message-driven beans can use either container-managed or bean-managed transaction
demarcation.

� Bean-managed transaction demarcation should be used when it is the only way to
address a problem.

� Stateless session beans must always either commit or roll back a transaction before the
business method returns.

� Implement short commit cycles. A commit cycle should not span user think time. A
session facade supports this strategy because a method invocation is processed within a
single unit of work. Set the transaction demarcation in session beans implicitly through the
container (CMT) or as part of the method implementation (BMT).

� The default choice for a transaction attribute is Required. Enterprise beans with the
Required transaction attribute can be easily composed to perform work under the scope of
a single JTA transaction.

� The RequiresNew transaction attribute is useful when the bean method has to commit its
results independent of other transactions, enabling normal transactions to be isolated from
critical transactions.

� Session beans that implement the interface SessionSynchronization must have either the
Required, RequiresNew, or Mandatory, transaction attribute.

� Message-driven beans may only have a transactional attribute of Required or
NotSupported.

� The transaction attributes Mandatory and Never reduce composition of a component by
putting constraints on the calling client's transaction context.These attributes can be used
when it is necessary to verify the transaction association of the calling client.

� The transaction attribute Supports is not recommended. It has transactional behavior
depending on the client association with a transactional context, which is a violation of
ACID properties.

� If the message receipt of a message-driven bean is to be part of the transaction, then the
MDB must use the Required transactional attribute.

� Try to avoid using Supports and NotSupported, because if the application accesses
multiple entities with container-managed persistence in a single high-level business
operation, such as a servlet invocation, you may experience unexpected results.
172 Using Informix Dynamic Server with WebSphere

General guidelines for application transaction programming
Here are some guidelines you may find helpful:

� Although not required, application beans should explicitly make the decision to cause a
rollback and not leave it to the container. They can do this by calling the
EJBContext.setRollbackOnly method. Remember, application exceptions result in a
commit unless you explicitly call the setRollbackOnly method.

� Note that setRollbackOnly is only available for container-managed transactions;
bean-managed transactions must use the rollback method of the UserTransaction object.

� When calls are returned from downstream EJBs, application beans should check if their
transaction has been marked for rollback using the EJBContext.getRollbackOnly method,
and act accordingly. They should not just rely on getting this notification as a result of a
rollback exception.

� Note that getRollbackOnly is only available for container-managed transactions;
bean-managed transactions must call the getStatus method of the UserTransaction object.

� An application can invoke setRollbackonly without necessarily throwing an exception,
although this should be avoided.
Chapter 7. Working with IDS and WebSphere 173

174 Using Informix Dynamic Server with WebSphere

Chapter 8. IDS, WebSphere, and XML

In this chapter we give a brief introduction into XML, and discuss the different options one can
use with XML in combination with IDS. We then focus on the XML support options in
combination with WebSphere Application Developer (WSAD) V5.

We cover these topics:

� XML, a brief overview
� IBM Informix Dynamic Server and XML
� Dynamic XML mapping with WSAD and IDS

8

© Copyright IBM Corp. 2003. All rights reserved. 175

8.1 An introduction to XML
In today’s technology, XML is becoming a key piece of software infrastructure. It is an industry
standard that supports integration and interoperability by enabling data and document
interchange. The main idea is extremely simple. It is a structured document language like
HTML and is text based, but the document structure is rigidly enforced, and therefore can be
built upon easily. XML documents may use a Document Type Definition (DTD) or an XML
Schema.

XML background
XML stands for “eXtensible Markup Language” and is a standard format for describing and
exchanging structured data and documents. Unlike HTML, that focuses on the data
representation, XML focuses on the data structure which enables easy validation and
conversion. Since XML is a meta-language, it allows the definition of your own markup
language. See Example 8-1.

Example 8-1 A sample XML document

<address>
<name>

<title>Mr.</title>
<first-name>Alexander</first-name>
<last-name>Koerner</last-name>

</name>
<street>20 Oskar-Messter-Street</street>
<city>Ismaning</city>
<state>Bavaria</state>
<zip digits=”5”>85737</zip>
<country>Germany</country>

</address>

Historically speaking, XML is based upon the Standard Generalized Markup Language or
SGML. XML is actually a subset of SGM, which has been around for many years. The
development of SGML goes back to the late 60s and in based on the work of an IBM
employee, Charles Goldfarb and two of his colleagues, Edward Mosher and Raymond Lorie.

In 1998 the World Wide Web Consortium (W3C) approved Version 1.0 of the XML
specification. It has since been further developed which has lead to the submission of a
working draft of XML 1.1 in April 2002.

One of the success factors for XML in today’s e-business infrastructures has been simplicity
and a very broad acceptance in the market.

These are the key features of XML:

� Extensibility through user defined tags
� Separation of the data structure and the presentation format
� Support for deep structures (schema, hierarchies)
� Schema or metadata to describe tags or relationship between tags
� Easy validation and format conversion

The last feature has been an important factor contributing to the current success of XML in
the market.
176 Using Informix Dynamic Server with WebSphere

8.1.1 XML usage scenarios
In the late 90s there had been a lot of hype around XML and its usage for potential
applications. Some XML vendors even positioned XML as the perfect solution for many
existing IT issues far beyond pure data exchange. One could describe this phase as “XML to
the rescue”.

As the new millennium began, IT companies took a more realistic approach to the usage of
XML and started to focus on the strong areas of XML: Information Exchange, Device
Independent Publishing and Document Management.

Let’s take a brief look at these areas...

Information exchange
One could say that the information exchange is probably the most popular usage scenario for
XML these days. Until the introduction of XML and related standards (for example, XSL, XSLT
etc.) companies were limited to using more costly ways of doing their data interchange such
as EDI (Electronic Data Interchange) or EDIFACT (Electronic Data Interchange For
Administration, Commerce and Transport). Since XML is freely available and lots of tools
have been already developed around XML, even small companies and companies in
developing countries can participate in an XML based B2B information flow.

The following list represents typical applications for XML based information exchanges:

� Business to Business data exchange
� Web Services
� Workflow management
� Import and Export of Data

Device independent publishing
Since the introduction of very powerful mobile devices (for example, smart portable phones,
PDAs, tablet PCs, and lightweight notebooks) into the market, there has been an increased
demand for flexible support of these devices in combination with existing e-business
applications. Most of these devices support some kind of internet browser, but typically each
has very different kinds of capabilities. Some smart phones support the WAP standard, while
others prefer i-mode (or CHTML), some devices have small viewing areas (for example,
phones) while others have large screens (for example, tablet PCs). There is a requirement to
support information exchange between those different types of devices. A good approach
would be to utilize the format conversion capabilities of XML.

Typical device independent publishing XML usages could include, but are not limited to:

� Support for mobile and wireless devices
� On-the-fly format conversions
� More flexible replacement for HTML

Document management
Another very important usage of XML and somehow related to the originating history of XML
and SGML, is the management of documents in a structured, but document editor
independent way. XML allows easy formatting of even very complex structured documents
and related technologies like XPath (XML Path Language) or XQuery (XML Query), allow
very sophisticated operations on these documents to support searches and modifications.

Examples of document management centric XML applications could be:

� Easy Format Conversion
� Media Independent Editing
Chapter 8. IDS, WebSphere, and XML 177

XML document types
Based on the type of applications mentioned in section 8.1.1, we can classify the XML
document types listed in Table 8-1.

Table 8-1 XML document types

Throughout this redbook we will focus on the more data-centric and mixed approached
documents, since they typically require the dynamic inclusion of data from a database, in our
case from IBM Informix Dynamic Server.

XML standards and standard groups
In order to keep XML an open and freely accessible standard to everyone, IBM engages
actively in the different leading XML standard groups. In addition the reader will find lots of
very useful XML related tools and applications on the IBM alphaworks Web site.

Important XML standards
Here are some of the important XML standards as recommended by W3C:

� XML Specification 1.0: Core language syntax, grammar (DTDs)
� DOM Specification 2.0: API of parsed objects
� XSL Specification 1.0: Transforming and presenting XML
� XPath Specification 1.0: Queries, addressing XML docs
� XHTML Specification 1.0: HTML in XML form
� XML Schema: Big improvements over DTDs

Document type Example

Data-centric documents
(structured, regular, typed)

Example: B2B data exchange, product catalog

<order>
 <customer>Meyer</customer>
 <position>
 <isbn>1-234-56789-0</isbn>
 <number>2</number>
 <price currency=”Euro”>30.00</price>
 </position>
</order>

Document-centric documents
(unstructured, irregular, untyped)

Example: Webpage, book, article

<content>
XML builds on the principles of two
existing
 languages, <emph>HTML</emph> and
<emph>SGML</emph> to create a simple
mechanism ..
The generalized markup concept.
</content>

Mixed approaches
(data-centric and document centric segments)

Example: Online publications

<book>
 <author>Neil Bradley</author>
 <title>XML companion</title>
 <isbn>1-234-56789-0</isbn>
 <content>
 XML builds on the principles of two
existing
 languages, <emph>HTML</emph> and ..
 </content>
</book>
178 Using Informix Dynamic Server with WebSphere

Figure 8-1 Interaction between the different XML standard groups

Here are some of the works in progress:

� DOM 3.0 (Document Object Model)

� XML Query: a more powerful XML query mechanism

� XPointer (XML Pointer Language), XLink (XML Linking Language)

� XML Signature (Signature of Web resources and portions of protocol messages), XML
Encryption (eEncrypting/decrypting digital content including XML documents)

� XML Protocol (SOAP 1.2)

� WSDL (Web Services Description Language)

These are some other standards:

� SAX 2.0 (defacto standard, not from W3C)
� SOAP 1.1 (defacto standard, now under development @ W3C)

As an interesting side note, XML turned five in February 2003!

8.2 IBM Informix Dynamic Server (IDS) and XML
In this section we start with an overview of functional requirements. We first describe the
functionality a typical RDBMS should have in order to successfully support the handling of
XML documents, like the ones described in the previous section. As soon as we have laid out
the requirements, we zoom into the specific XML support for IDS and discuss the different
options a developer might have.
Chapter 8. IDS, WebSphere, and XML 179

8.2.1 XML support in database systems
XML support in database systems can be defined in four categories: inserting XML, querying
XML documents, retrieving XML and XML storage. So let’s take a look at the different
requirements:

Getting XML in
An XML enabled application has either the need to take an XML document (which could be
also an XML fragment) and put it as a whole piece into the database or needs to map the
content of an XML document to existing tables in the database.

The first scenario is very common if the documents should be archived as is and later be
processed for validation or conversion. Examples of such documents are invoices or any kind
of legal documents which could have been part of an intra company workflow, for example.
This kind of requirement is also very common for most document-centric XML applications.

In the second scenario the application has to deal with data-centric XML documents and
primarily uses XML as a data exchange format, for example, in B2B situations. In this case it
is typically important to extract data from an XML document and map it to tables in the
(O)RDBMS. This process is often called shredding of XML documents. Shredding of XML
documents is mostly done by using a middleware layer, sometimes by extensions in the
database, or even by built-in database functions.

XML queries
After XML related data have been stored into the database, one would like to be able to query
these data or documents for further processing or retrieval.

Due to the hierarchical and semi-structured aspects of XML document layout, its not a very
good fit to use plain SQL to query document-centric XML fragments in a database. For this
kind of purpose you will find different approaches in the database industry:

� The usage of XPath and/or XQuery to be able to work more XML-like on these documents

� Full text search extensions to the database with some kind of XML support built-in

� Client- or server-side XML parser which operates on XML data stored, for example, in
BLOBs

As soon as the components of an XML document have been mapped into regular database
tables, one can utilize the power of the existing SQL language again to operate on the
elements of the document.

There already have been hybrid approaches to the query problem. For example, by shredding
an existing XML document into its hierarchical components, storing it into a database table
with some kind of enhanced support for hierarchical structures (Brown, Paul G. “An
Object-Relational Approach® to Building a High-Performance XML Repository”, in XML Data
Management: Native XML and XML-Enabled Database Systems by Akmal B. Chaudhri,
Awais Rashid, Roberto Zicari), and then applying SQL to query the data.

Based on that technique, one could also write a converter which takes XPath syntax, for
example, and creates SQL statements to query the shredded elements in the table. In order
to keep the original XML document for legal or archival purposes, it could make sense to
store an unmodified version in a BLOB in addition to the shredded one. In order to better
support the storage of shredded XML documents in IDS, one could use a hierarchical
extension to the database through a special node type1.

1 http://www7b.boulder.ibm.com/dmdd/zones/informix/library/techarticle/db_node.html
180 Using Informix Dynamic Server with WebSphere

Getting XML out
Based on the initial storage of the XML document, as one piece or shredded, there are
different ways to retrieve or re-create the document. In addition there might be the need to
create a completely new data-centric XML document from data stored in existing relational
tables.

In the case of a complete XML document the process is very simple: just select the document
column which could be a CLOB or long VARCHAR (LVARCHAR) data type and send the
content to the client application.

If you need to re-construct a document which has been originally shredded into components
in a table, you need to construct an SQL statement that will combine the elements back to a
complete document or just to an XML fragment. This document reconstruction can be either
done in the database server or by using an application server approach (middleware).

One of the most common requirements for constructing XML documents is the dynamic
assembly based on data stored in regular (O)RDBMS tables for further processing, especially
for the purpose of data exchange and/or Web Services. This kind of processing is sometimes
supported in databases through SQL extensions (for example, SQLX), add on databases
extensions, or (again) on an application server level.

Storing XML
Although already mentioned in the Getting XML In section, let’s take a brief look at the
storage options.

Whole XML documents will be typically stored BLOB or long VARCHAR data types, while
shredded documents will end up in regular tables, maybe enhanced with better support for
hierarchical structures.

Some databases do support the concept of an XML data type, if the database does support
the extension through user defined types. Those types have associated user defined routines
or methods which allow for easy document queries and storage and retrieval.

8.2.2 What’s available with IDS
Now, after having discussed the typical requirements for XML support in databases, let’s take
a closer look at what’s available in combination with IBM Informix Dynamic Server. Some of
the following approaches work with IDS 7 and IDS 9 while some require functionality only
found in IDS 9. To make it easier for the reader to determine which technology is working
against which IDS version, we have labelled the following sections accordingly as IDS 7, IDS
9, or IDS 7/9.

IBM WebSphere Application Developer V5 (IDS 7/9)
WebSphere Application Developer V5 (WSAD5) is a very complete environment for any kind
of Web application oriented development. One major part in WASD is focused on the
development of XML oriented applications and supports such development through different
kinds of wizards and libraries.

Of special interest for IBM Informix IDS customers who have a need for dynamic XML
mapping against their data stored in tables are two Java libraries: sqltoxml.jar and
xmltosql.jar in combination with two wizards: the SQL to XML wizard and the XML to SQL
wizard. Additionally, there is the option to generate XML Schemas from DDL statements by
using the DDL to Schema wizard.
Chapter 8. IDS, WebSphere, and XML 181

In 8.3, “Dynamic XML mapping with WSAD V5 and IDS” on page 186 we cover the aspects of
the SQL to/from libraries and wizards in greater detail.

Another strong area in WSAD5 is the built-in support for Web services, that are using XML
formatted documents for their data exchange and service description. The Web services
development with WSAD V5 against IDS is covered in chapter 9.

XML generation and transformation with stored procedures (IDS 9)
The extensibility features in IDS 9, through extended data types and user defined routines
(UDR) in C Java and Stored Procedure Language (SPL), allow for easy enhancement of the
basic functionality of the underlying database server. Having such flexibility gives you the
capability to implement new features in the server without having to wait for the database
vendor to provide it.

Following this approach one could very easily implement user defined routines which can
return dynamically generated XML, for example, a given table and attributes of this table.

A very good example for such a user defined routine (or stored procedure) can be found on
the IBM Informix Developer Zone2. In this article, for example, the author, Jacques Roy,
describes a function genxml, which can be used to generate an XML fragment or, in
combination with some helper routines, a complete XML document.

Example 8-2 shows how the genxml function can be called and how the output might look.

Example 8-2 The genxml function (stored procedure)

SQL Statement:

SELECT genxml("customer", customer)
FROM customer;

Output of the Statement above:

<customer>
<customer_num>101<//customer_num>
<fname>Ludwig </fname>
<lname>Pauli </lname>
<company>All Sports Supplies </company>
<address1>213 Erstwild Court </address1>
<city>Sunnyvale </city>
<state>CA</state>
<zipcode>94086</zipcode>
<phone>408-789-8075 </phone>

</customer>

In addition to the XML generating function above, there is also an XSLT (XSL
Transformations) DataBlade available on the IBM Alphaworks Web site3. This DataBlade
allows the transformation of XML documents by the means of the XSL/XSLT mechanism into
a new target format. The XSLT DataBlade stores the XSL documents in LVARCHAR or
CLOB data types which allow very complex XSL transformations. It even supports the HTML
data type of the Web DataBlade, discussed in the next section.

2 http://www7b.software.ibm.com/dmdd/zones/informix/library/techarticle/0302roy/0302roy2.html.
3 http://www.alphaworks.ibm.com/tech/xsltblade
182 Using Informix Dynamic Server with WebSphere

Web DataBlade (IDS 9)
The Web DataBlade is an optional extension of IDS 9 and supports the dynamic generation of
any kind of markup language in combination with dynamic data from the IDS 9 database. The
initial purpose for the Web DataBlade had been dynamic HTML publishing based on IDS, but
it has been extended, for example, to produce XML or SGML documents.

The Web DataBlade utilizes user defined tags within the used markup language, in this case
XML. The XML template pages are stored in the database which allows the utilization of IDS
9 server features like replication (ER, HDR), transaction security, and centralized backup.

In combination with the XSLT DataBlade it can be a very powerful way of producing dynamic
XML documents, especially for very flexible publishing applications. There is a very detailed
article available on the Informix DeveloperZone which covers the combination of the Web
DataBlade and the XSLT DataBlade4.

Although the Web DataBlade is perfect for producing dynamic XML pages, it doesn’t solve the
issue how to consume XML documents, for example, and map them to database tables. This
functionality will be covered in 8.3, “Dynamic XML mapping with WSAD V5 and IDS” on
page 186, and the IBM Informix Object Translator is covered under “IBM Informix Object
Translator (IDS 7/9)” on page 185.

JAXP support in IBM Informix JDBC Driver (IDS 7/9)
The currently available Java API for programmatically accessing XML documents in the
database is called JAXP (Java API for XML Parsing).

The API has the following two subsets:

 SAX (Simple API for XML) is an event-driven protocol, that has the programmer provide the
callback methods that the XML parser invokes when it analyzes a document.

 DOM (Document Object Model) is a random-access protocol, which converts an XML
document into a collection of objects in memory that can be manipulated at the programmer’s
discretion. DOM objects have the data type Document.

JAXP also contains a plugability layer that standardizes programmatic access to SAX and DOM
by providing standard factory methods for creating and configuring SAX parsers and creating
DOM objects.

IBM Informix extensions to the JDBC API facilitate storage and retrieval of XML data in
database columns. The methods used during data storage assist in parsing the XML data,
verify that well-formed and valid XML data is stored, and ensure that invalid XML data is
rejected. The methods used during data retrieval assist in converting the XML data to DOM
objects and to type Input-Source, which is the standard input type to both SAX and DOM
methods. The IBM Informix extensions are designed to support XML programmers while still
providing flexibility regarding which JAXP package the programmer uses.

The IBM Informix JAXP API supports all text related data types in IDS 7 and IDS 9, including
BLOB data types such as TEXT (IDS 7) or CLOB (IDS 9) and the LVARCHAR data type.

For more details about how to use the JAXP API in the IBM Informix JDBC driver, you can
refer to the IBM Informix JDBC Driver Programmers Guide.

4 http://www7b.software.ibm.com/dmdd/zones/informix/library/techarticle/0303cline/0303cline.html
Chapter 8. IDS, WebSphere, and XML 183

BYTE/TEXT/BLOB/CLOB/LVARCHAR data types (IDS 7/9)
The usage of Binary Large OBjects (BLOB) for the storage of XML documents in IDS is very
straightforward and simple. XML documents can be either stored in the IDS 7 data types
BYTE and TEXT or in the IDS 9 data types BLOB, CLOB and LVARCHAR.

These data types can be used in combination with the JAXP API or can be indexed (IDS 9
only!) to allow full text searches across the stored XML documents (Excalibur Text DataBlade
and Verity Text Search DataBlade). These data types will be typically used for the archival of
document-centric XML documents, for example, to fulfill legal requirements.

IBM Verity Text Search DataBlade (IDS 9)
Although the Verity Text Search (VTS) DataBlade is no longer available to new IBM Informix
customers, we want to make customers who have a license of this DataBlade aware that it
does support searches in XML documents. In addition to a full text search, as is available with
the Excalibur Text DataBlade, the VTS DataBlade allows a search within certain XML tags.

In order to query the XML document in Example 8-3 with the VTS DataBlade and apply the
following XML-like Query path “invoice/entries/entry” which identifies all entry elements that
are a child of an entry element, which is in turn a child of an invoice element, one has to use
the SELECT statement in Example 8-4.

For more details about how to use the VTS DataBlade for XML searches, you can refer to the
IBM Verity Text Search DataBlade Module User’s Guide 1.3.

Example 8-3 XML document for the SQL query in Example 8-4

<?xml version="1.0"?>
<invoicecollection>

<invoice>
<customer> Wile E. Coyote, Death Valley, CA </customer>
<annotation>
Customer asked that we guarantee return rights
if these items should fail in desert conditions.
This was approved by Marty Melliore, general
manager.
</annotation>
<entries n="2">

<entry quantity="2" total_price="134.00">
<product maker="ACME" prod_name="screwdriver" price="80.00"/>

</entry>
<entry quantity="1" total_price="20.00">

<product maker="ACME" prod_name="power wrench" price="20.00"/>
</entry>

</entries>
</invoice>
<invoice>

<customer> Camp Mertz </customer>
<entries n="2">

<entry quantity="2" total_price="32.00">
<product maker="BSA" prod_name="left-handed smokeshifter" price="16.00"/>

</entry>
<entry quantity="1" total_price="13.00">

<product maker="BSA" prod_name="snipe call" price="13.00"/>
</entry>

</entries>
</invoice>

</invoicecollection>
184 Using Informix Dynamic Server with WebSphere

Example 8-4 XML search with the IBM Verity Text Search DataBlade

SELECT * FROM table1 WHERE vts_contains
(text, ' * <in> entry <in> entries <in> invoice);

IBM Informix Object Translator (IDS 7/9)
IBM Informix Object Translator (OT) has been part of the former Informix Internet Foundation
bundle or has been sold separately to Informix customers. Its still available to IBM Informix
customers, although new customers are encouraged to take a look at more complete toolsets
such as WSAD V5 that covers most of the OT functionality.

So what does OT do, from an XML/IDS perspective?

In a nutshell: OT allows the dynamic, bi-directional mapping between tables in the database
and XML template documents through the creation of a Java intermediate layer. After doing a
drag and drop mapping of database tables to intermediate objects and a further drag and
drop mapping of these intermediate objects to XML templates, it generates the necessary
Java classes that provide a getXml and a setXml method. These methods can then be called
from within a servlet engine or a Java application server. OT even supports the SOAP
protocol for Web services deployment.

Due to the fact that OT generates Java code, existing OT applications can be easily migrated
to a WSAD V5 environment.

IBM Informix Spatial DataBlade 8.20 (IDS 9)
Since version 8.20 of the IBM Informix Spatial DataBlade, this DataBlade has supported the
conversion of geometry objects into GML (Geography Markup Language) fragments. GML is
based on XML. The conversion of any of geometry object can be accomplished by calling the
SE_AsGML() user defined routine in the blade.

Here is a description of the routine and an example:

Typically, you use SE_AsGML() to retrieve the GML representation of a spatial primitive from
the server and send it to a client, as in:

SELECT SE_AsGML(geomcol) FROM mytable

The return type of SE_AsGML() is defined as ST_Geometry to allow GML representations
greater than 2 kilobytes to be retrieved by a client application. IBM Informix Dynamic Server
automatically casts the output of the SE_AsGML() function to the proper data type for
transmission to the client.You can extend the functionality of the IBM Informix Spatial
DataBlade module by writing new user-defined routines (UDRs) in C or SPL. You can use
SE_AsGML() to convert an ST_Geometry to its GML representation. If you pass the output of
SE_AsGML() to another UDR whose function signature requires an LVARCHAR input, you
should explicitly cast the return type of SE_AsGML() to LVARCHAR, as in:

EXECUTE FUNCTION MySpatialFunc(SE_AsGML(geomcol)::lvarchar)

In Example 8-5, the SE_AsGML() function converts the location column of the table mytable
into its GML description.
Chapter 8. IDS, WebSphere, and XML 185

Example 8-5 How to use the SE_AsGML() function

CREATE TABLE mytable (id integer, location ST_Point);

INSERT INTO mytable VALUES(1, ST_PointFromText('point (10.02 20.01)', 1000));

SELECT SE_AsGML(location) FROM mytable WHERE id = 1;

<gml:Point srsName="UNKNOWN">
<gml:coord><gml:X>10.02</gml:X><gml:Y>20.01</gml:Y></gml:coord>

</gml:Point>

8.3 Dynamic XML mapping with WSAD V5 and IDS
In the previous sections we discussed the currently available XML features for IBM Informix
Dynamic Server outside of the WebSphere environment. Now let’s take a closer look into the
tools that are provided by WebSphere.

Customers who might have a need for very powerful XML / IDS integration should definitely
evaluate the following options related to WSAD and WAS.

Before we focus on the specifics of the XML mapping options in WSAD let’s take a brief look
at the available XML tools in WSAD in general.

8.3.1 XML tools in WSAD V5
WebSphere Studio provides a comprehensive visual XML development environment. The tool
set includes components for building DTDs, XML schemas, XML, and XSL files.

The following XML editor tools are available:

� The XML editor is a tool for creating and viewing XML files. You can use it to create new
XML files, either from scratch, existing DTDs, or existing XML schemas. You can also use
it to edit XML files, associate them with DTDs or schemas, and validate them.

� The DTD editor is a tool for creating and viewing DTDs. Using the DTD editor, you can
create DTDs, generate XML schema files, and generate Java beans for creating XML
instances of an XML schema. You can also use the DTD editor to generate a default
HTML form based on the DTDs you create.

� The XML schema editor is a tool for creating, viewing, and validating XML schemas. You
can use the XML schema editor to perform tasks such as creating XML schema
components, importing and viewing XML schemas, generating DTDs and relational table
definitions from XML schemas, and generating Java beans for creating XML instances of
an XML schema.

� The XSL editor can be used to create new XSL files or to edit existing ones. You can use
content assist and various wizards to help you create or edit the XSL file. Once you have
finished editing your file, you can also validate it. As well, you can associate an XML
instance file with the XSL source file you are editing and use that to provide guided editing
when defining constructions such as an XPath expression.

� You can use the XPath expression wizard to create XPath expressions. XPath
expressions can be used to search through XML documents, extracting information from
the nodes (such as an element or attribute).
186 Using Informix Dynamic Server with WebSphere

� You can use the XSL debugging and transformation tool to apply XSL files to XML
files, transforming them into new XML, HTML, or text files. After the transformation has
taken place, the XSL Debug perspective opens, allowing you to visually step through an
XSL transformation script, highlighting the transformation rules as they are executed. You
can use the views in the XSL Debug perspective to help you debug the XML or XSL files.

� You can use the XML and SQL query wizard to create an XML file from the results of an
SQL query or take an XML file and store it in a relational table. When creating an XML file
from an SQL query, you can optionally choose to create an XML schema or DTD file that
describes the structure of the XML file for use in other applications. Two Java class
libraries SQLToXML and XMLToSQL are included so you can uses them in your
applications at run time. You can use either the SQL query wizard or SQL query builder to
create the SQL queries from which your XML files are generated.

� The XML to XML mapping editor is a tool used to map one or more source XML files to a
single target XML file. You can add XPath expressions, groupings, Java methods, or
conversion functions to your mapping. Mappings can also be edited, deleted, or persisted
for later use. After defining the mappings, you can generate an XSLT script. The generated
script can then be used to combine and transform any XML files that conform to the
source DTDs.

� The RDB to XML mapping editor is a tool for defining the mapping between one or more
relational tables and an XML file. After you have created the mapping, you can generate a
document access definition (DAD) script which can be run by the DB2R XML Extender to
either compose XML files from existing DB2 data, or decompose XML files into DB2 data.
This tool currently does not work with IDS!

8.3.2 The SQLtoXML and XMLtoSQL framework in WSAD
WSAD includes a very simple to use, but still very powerful framework to support the dynamic
mapping of SQL SELECT statements to XML documents and the mapping of XML
documents to SQL INSERT/UPDATE/DELETE operations to allow the development of
bi-directional XML mapping applications.

You will find the necessary jar files, examples and the documentation for sqltoxml and
xmltosql in the directory:

<WSAD5_Installdir>\wstools\eclipse\plugins\com.ibm.etools.sqltoxml_5.0.1

Detailed help information is also included in the WSAD Help, just type sqltoxml into the
search field in the main WSAD help window. In addition, for your convenience we have added
the sqltoxml and xmltosql class references in Appendix A, “SQLtoXML and XMLtoSQL Java
class description” on page 311.

Since SQLtoXML/XMLtoSQL cannot be used without at least a simple servlet or application
framework, we will provide you with a simple Java servlet example that can be used as a
template for any kind XML mapping requirements in combination with SQLtoXML/XMLtoSQL.

So which basic steps are required to utilize the sqltoxml/xmltosql?

In 8.3.3, “Create a wizard based SQLtoXML sample project” on page 188 we will focus on the
SQLtoXML class library and create a sample application by utilizing the wizard driven
interface in WSAD.

In 8.3.4, “Enhance the sample project with the XMLtoSQL class library” on page 200 we will
then enhance the Java demo servlet by adding the XMLtoSQL functionality manually in the
Java demo servlet source code.
Chapter 8. IDS, WebSphere, and XML 187

The primary classes for generating XML documents from an SQL query are shown in
Table 8-2.

Table 8-2 SQLToXML overview

The primary classes for mapping XML documents to relational tables are shown in Table 8-3.

Table 8-3 XMLToSQL overview

8.3.3 Create a wizard based SQLtoXML sample project
In this section we are developing a sample project, based on the SQLtoXML framework. The
sample application is based on a simple, wizard based SELECT statement and does allow
the dynamic XML conversion through XSL stylesheets.

Create a Web project and a connection to the database
You should first start WSAD, then define a new workspace (or choose an existing one), and
create a new Web Project, by selecting File --> New --> Web Project.

Give the new Web project a name and associate it with a new or existing enterprise
application project. In our example we’ll name the project InformixXMLDemo and the EAR
InformixXMLDemoEAR. In the J2EE navigator window you should see two folders, one for
each object.

In our next step we define a connection to our stores_demo database and create a simple
SELECT statement to select all customer data from the demo database.

Switch to the WSAD Data view by selecting Window --> Open Perspective --> Data.
Right-click into the DB Servers window and select New Connection.

In the New Database Connection fill in the correct connection properties to connect to the
stores_demo database. Choose the appropriate Informix Dynamic Server version in the
Database vendor type field. For IDS 9.4 you should use “Informix Dynamic Server, V9.3”
and the JDBC driver Class location should point to a JDBC driver jar file of version 2.21.JC4
or higher.

So the database connection window should look similar to the one in Figure 8-2.

Class Purpose

SQLToXML Generate XML from a SQL query. Optionally,
generates the corresponding DTD, XML schema
and XSL files

QueryProperties Provides database connection and other
parameter settings for calling SQLToXML

Class Purpose

XMLToSQL Insert, update, or delete rows in a database table
using an XML document.

SQLProperties Provides database connection and other
parameter settings for calling XMLToSQL
188 Using Informix Dynamic Server with WebSphere

Figure 8-2 New Database Connection wizard

If you might have a need to filter out any kind of unwanted tables or database objects as soon
as you connect to IDS, you can do so by setting the filter values via the Filters button. A good
example would be to filter out the IDS system tables that are normally owned by user informix.

If the database schema import worked without any problems, you should see the imported
database objects in the DB Servers window, similar to that shown in Figure 8-3.

Now we need to include the StoresDemo connection into our InformixXMLDemo Web
project by right-clicking on the StoresDemo connection name in the DB Servers window
and selecting Import to Folder.
Chapter 8. IDS, WebSphere, and XML 189

Figure 8-3 Imported database schema in WSAD

As the import folder, choose the Web project InformixXMLDemo via the Browse button. Click
Finish and answer Yes to the question as to whether the database folder should be created.

Define a SELECT statement by utilizing the Query Builder
In the Data Definition window, navigate to the InformixXMLDemo --> Web Content -->
WEB-INF --> databases --> stores_demo --> Statements folder. Right-click the
Statements folder and choose New --> Select Statement. Name the Statement, for
example, selectOneCustomer and click OK.

Now you should see the interactive query builder. In the tables window, you need to select
(by right-clicking) the tables you would like to include in the query. In our demo we select only
the table itso.customer as we would like to show the complete customer information. Since
we would like to include all attributes from the customer table, select all customer attributes in
the table attribute check boxes.

We want to select only one customer, therefore we need to define a WHERE condition. To do
this, select the Conditions tab in the lower window of the query builder. Select
itso.customer.customer_num as the column, and choose = as the operator. We also need to
provide a host variable, which acts as a placeholder for different customer_num values later in
the process. Let’s name the host variable :customernum (the colon is important!)

So the query builder windows should look like the one in Figure 8-4.
190 Using Informix Dynamic Server with WebSphere

Figure 8-4 The WSAD interactive Query builder

Now save your statement into the Web project by selecting File --> Save stores_demo -
selectOneCustomer.

Now we have everything in place to start with the XML template generation process.

Generate the SQLtoXML template file (.xst)
While still being in the Data Definition window in the Data view, right-click the
selectOneCustomer statement. In the popup menu select the Generate new XML option. In
the XML from SQL wizard window choose the appropriate options. In our example we select
the Show table columns as Elements and the Generate schema definition as XML Schema
options. Make sure that Recurse through foreign keys has been deselected5.

Also select the Generate query template file option and name the file selectOneCustomer.xst
and the Output folder /InformixXMLDemo/Web Content. By using this folder name, the servlet
will have easy access to the XML template file during runtime.

5 There is currently an issue in the sqltoxml class library that does not support the recursive option in combination
with IDS
Chapter 8. IDS, WebSphere, and XML 191

So the XML from SQL wizard window should look like Figure 8-5.

Figure 8-5 XML from SQL wizard

Now click Finish to start the XML template file generation. The wizard will ask you for a value
for the defined host variable, in our example :customerid. If you might encounter a
setQueryTimeout() not supported error message (depending on the options you might
have choosen in the XML from SQL wizard), you can refer to the Tip on page 193.

In the selected output folder you should see five different files, all with the selectOneCustomer
prefix. Based on the supplied host variable value you will get the query template file (.xst), an
XML file with the query results (.xml), an XML Schema (.xsd) or DTD file (.dtd), an default
XSL stylesheet for a potential XML to HTML conversion of the query results and an already
converted HTML file.

At this time you might want to take a look at the generated XML file to get familiar with the
SQLtoXML XML file structure (Example 8-6 on page 193)
192 Using Informix Dynamic Server with WebSphere

The root element is labelled SQLResult (which cannot be changed) and the element names
are based upon the column names or aliases in the SELECT statement. This XML format can
be very easily converted in any other XML format by applying an XSL stylesheet in
combination with an XSLT processor. Since SQLtoXML already generates a default XSL
sheet for an optional XML to HTML conversion, HTML support can be activated by simply
applying the default XSL stylesheet to the raw XML document(s). See Example 8-6.

Example 8-6 XML format, generated by SQLtoXML

<?xml version="1.0" encoding="UTF-8"?>
<SQLResult xmlns="http://www.ibm.com/customer"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/customer

selectOneCustomer.xsd">
 <customer>
 <customer_num>104</customer_num>
 <fname>Anthony</fname>
 <lname>Higgins</lname>
 <company>Play Ball!</company>
 <address1>East Shopping Cntr.</address1>
 <address2>422 Bay Road</address2>
 <city>Redwood City</city>
 <state>CA</state>
 <zipcode>94026</zipcode>
 <phone>415-368-1100</phone>
 </customer>
</SQLResult>

The generated Query template file (*.xst) contains all the necessary information for the
SQLtoXML class to be able to connect to the database and execute the query. Since the .xst
file is also encoded in an XML format, for example, it can be automatically generated by
another application or converted from/to any other format if necessary.

Since we have now the query template file, we need to continue with the development of our
Java servlet. See Example 8-7.

Example 8-7 Format of the generated .xst file

<?xml version="1.0" encoding="UTF-8"?>
<SQLGENERATEINFORMATION>
 <DATABASEINFORMATION>

Tip:

The sqltoxml class library utilizes the Statement.setQueryTimeout(int) method in the JDBC
driver.

The IBM Informix JDBC driver 2.21.JC4 does support this feature, but only in combination
with a JRE 1.4 or higher. Since the JRE in WSAD5 is based on version 1.3.1 (for
development and internal test deployment) you should apply the following steps as
temporary workaround until WSAD supports JRE 1.4:

1. Add the ’-D java.version=1.4.0’ property to the command line options of the WSAD
startup command.

2. Add the java.version=1.4.0 property to the Environment section of the internal Test
application server configuration (see also Section , “Create a DADX Web service based
on the generated DADX file” on page 226)
Chapter 8. IDS, WebSphere, and XML 193

 <LOGINID>itso</LOGINID>
 <PASSWORD><![CDATA[itso]]></PASSWORD>
 <JDBCDRIVER>com.informix.jdbc.IfxDriver</JDBCDRIVER>

<JDBCSERVER>jdbc:informix-sqli://neon.almaden.ibm.com:1533/stores_demo:INFORMIXSERVER=demo_
on;</JDBCSERVER>
 </DATABASEINFORMATION>
 <STATEMENT>
 <![CDATA[SELECT itso.customer.customer_num, itso.customer.fname, itso.customer.lname,
itso.customer.company, itso.customer.address1, itso.customer.address2, itso.customer.city,
itso.customer.state, itso.customer.zipcode, itso.customer.phone FROM itso.customer WHERE
itso.customer.customer_num = :customernum]]>
 </STATEMENT>
 <OPTIONS>
 <FORMATOPTION>GENERATE_AS_ELEMENTS</FORMATOPTION>
 <RECURSE>FALSE</RECURSE>
 </OPTIONS>
</SQLGENERATEINFORMATION>

Import necessary class libraries into the Web project
Now we need to import the SQLtoXML and XMLtoSQL class libraries into our Web project to
make them available to our Java servlet. Initially we’ll only need the sqltoxml.jar file, but for
our convenience we will import the xmltosql.jar file too.

To import the jar files select File --> Import --> File system and then click the Next button. In
the director, select the sqltomxml jar file directory
(<WSAD_Install_Dir>\wstools\eclipse\plugins\com.ibm.etools.sqltoxml_5.0.1\jars). Then
select the sqltoxml.jar and the xmltosql.jar file. As the destination import folder, select
InformixXMLDemo/Web Content/WEB-INF/lib.

Now we have to do the same for the IBM Informix JDBC driver: Select File --> Import --> File
system and then click the Next button. In the directory, select the ifxjdbc.jar file directory
(<Informix_JDBC_2.21JC4_InstallDir>\lib\ifxjdbc.jar). As the destination import folder, select
again InformixXMLDemo/Web Content/WEB-INF/lib.

Create the demo servlet Java code
To create the Java servlet we first start with an “empty” Java servlet template which we create
by following these steps:

1. Switch to the J2EE perspective by selecting Window --> Open Perspective --> J2EE

2. In the J2EE Navigator window, right-click the Java Source folder

3. Select New --> Servlet

4. Choose a class name. For our example choose: InformixSQLtoXMLServlet

5. Click the Finish button

You should see the generated InformixSQLtoXMLServlet.java file in the Java Source folder. If
it is not already opened in an editor window, double-click it.

Now we need to fill in some Java for a working Java demo servlet.

Let’s start with the import section. You need to replace the import section with the code from
Example 8-8.
194 Using Informix Dynamic Server with WebSphere

Example 8-8 Import section of the demo servlet

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;

import java.util.*;
import java.net.URLEncoder;

import java.sql.Connection;

import com.ibm.etools.sqltoxml.*;
import com.ibm.etools.xmltosql.*;

import org.xml.sax.SAXException;

import javax.xml.transform.TransformerFactory;
import javax.xml.transform.Transformer;
import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.stream.StreamResult;

In the next step we need to fill in the code (Example 8-9) for the doGet() method of the
InformixSQLtoXMLServlet. The code in this example is kept already very flexible to not only
allow the execution of predefined .xst files, but also the execution of SQL queries dynamically.

Since the servlet will be called from an HTML page we need to be able to handle the required
parameters for a later execution. The servlet either accepts an .xst template file or a query
string. As soon as an .xst file is supplied it will override any supplied query string. Since the
.xst file also includes the database connect information, that information will override the
hardcoded connection information in the doGet() method.

The demo servlet also already supports the possible translation of the generated XML format
into another format by applying an optional XSL stylesheet. If there is no supplied XSL sheet,
the servlet will only return the raw XML, as generated by the sqltoxml class library.

Here is a description of how to use the sqltoxml class, step by step:

1. Either set the QueryProperties manually or load them from a pre-defined .xst file

2. Create a new SQLToXML object and initialize it with the QueryProperties

3. Supply any host variables by using the SQLToXML.setParameters() method (the host
variables need to be a comma separated list, in the order of their occurrence)

4. Create a new PrintWriter object which will contain the results of the XML mapping

5. Call the SQLToXML.execute() method to execute the SQL Query and return the XML
document

6. Optional: You can convert the generated XML output document into any other format by
applying an XSL stylesheet through the xmlTransform method.

Example 8-9 The doGet() method

public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

resp.setContentType("text/xml");
 PrintWriter response = resp.getWriter();

Chapter 8. IDS, WebSphere, and XML 195

 String query = getParameter(req,"query");
 String params = getParameter(req,"params");
 String xslFile = getParameter(req,"xslfile");
 String xstFile = getParameter(req,"xstfile");

 try
 {
 QueryProperties prop = new QueryProperties();

prop.setJdbcDriver("com.informix.jdbc.IfxDriver");
 prop.setLoginId("itso");
 prop.setPassword("itso");

prop.setJdbcServer("jdbc:informix-sqli://neon.almaden.ibm.com:1533/stores_demo:INFORMIXSERV
ER=demo_on");

 prop.setFormat("GENERATE_AS_ELEMENTS");
 prop.setRecurse(false);

 if (query != null)
 prop.setStatement(query);

 if (xstFile != null)
 prop.load(getServletContext().getRealPath(xstFile));

 SQLToXML sql2xml = new SQLToXML(prop);

 ByteArrayOutputStream baosXML = new ByteArrayOutputStream();
 PrintWriter xmlWriter = new PrintWriter(baosXML);

 sql2xml.setParameters(params);
 sql2xml.setXMLWriter(xmlWriter);

 sql2xml.execute();

 String xml;

 if (xslFile.length() > 0)
 xml = xmlTransform (baosXML.toString(), xslFile);
 else
 xml = baosXML.toString();

 response.print(xml);
 response.flush();

 xmlWriter.close();
 }
 catch (Exception e)
 {
 error(response, e);
 }
 }

Example 8-10 shows the missing getParameter(), error() and xmlTransform() methods which
are required for the servlet to be executed.
196 Using Informix Dynamic Server with WebSphere

Example 8-10 Additional Servlet methods

private String getParameter(HttpServletRequest req, String param)
 {
 String[] paramValues = null;
 String paramValue = null;

 paramValues = req.getParameterValues(param);

 if (paramValues != null)
 paramValue = paramValues[0];

 return paramValue;
 }

private String xmlTransform(String xml, String xsl)
 throws Exception
 {
 ByteArrayOutputStream baosXML = new ByteArrayOutputStream();

 TransformerFactory tFactory = TransformerFactory.newInstance();
 Transformer transformer =
 tFactory.newTransformer(new
StreamSource(getServletContext().getResource(xsl).toExternalForm()));
 transformer.transform (
 new StreamSource(new StringReader(xml)),
 new StreamResult(baosXML));

 String transformedXml = baosXML.toString();
 baosXML.close();

 return transformedXml;
 }

protected void error(PrintWriter writer, Exception e)
 {
 writer.println("<html>");
 writer.println("<head><title>Error</title></head>");
 writer.println("<body>");
 writer.println("<h2> " + e + "</h2>");

 e.printStackTrace(writer);
 writer.println("</body>");
 writer.println("</html>");
 }

Create a simple HTML page to call the demo servlet
In order to be able to call the servlet, we need a write a simple HTML page. Let’s start with an
empty page first:

1. While being still in the J2EE Navigator view, right-click the Web Content folder. Select
New --> HTML/XHTML File.

2. As the file name enter InformixSQLtoXML and then click Finish.

3. The template HTML file should open in an editor window. Now switch to the HTML source
view.

4. Now replace the content of the file with the HTML code from Example 8-11.
Chapter 8. IDS, WebSphere, and XML 197

Example 8-11 InformixSQLtoXML.html

<HTML>
<HEAD>
<TITLE>InformixSQLtoXML Demo</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF">

<P>

<center>IBM Informix SQLtoXML /
XMLtoSQL Example</center>

Enter a Query and the Params and then
press the Submit button.

<table width=580 border=0 cellpadding=0>
<tr>

<td valign=top>
<FORM name="sqltoxmlsample" METHOD="GET"

ACTION="/InformixXMLDemo/InformixSQLtoXMLServlet">

<table border="0">
<tr>

<td>SQL Query:</td>
<td><input type="Text" name="query"

VALUE="SELECT customer.customer_num, customer.fname, customer.lname,
customer.company, customer.address1, customer.address2, customer.city, customer.state,
customer.zipcode, customer.phone FROM customer WHERE customer.customer_num = :customernum"

SIZE=70 MAXLENGTH=150></td>
</tr>
<tr>

<td>XST File:</td>
<td><input type="Text" name="xstfile" VALUE="/selectOneCustomer.xst"

SIZE=70 MAXLENGTH=150></td>
</tr>
<tr>

<td>Query Param(s):</td>
<td><input type="Text" name="params" VALUE="103" SIZE=50

MAXLENGTH=50></td>
</tr>
<tr>

<td>XSL File:</td>
<td><input type="Text" name="xslfile"

VALUE="/ITSO_Customers.xsl" SIZE=50 MAXLENGTH=50></td>
</tr>
<tr>

<td><input type="Submit" name="submit" value="Submit"></td>
<td></td>

<tr>
</table>
</FORM>

<FORM name="xmltosqlsample" METHOD="POST"
ACTION="/InformixXMLDemo/InformixSQLtoXMLServlet">

<table border="0">
<tr>

<td>XML Document:</td>
<td><textarea name="xmldoc" rows=20 cols=80>

</textarea></td>
198 Using Informix Dynamic Server with WebSphere

</tr>
<tr>

<td><input type="Submit" name="submit" value="Submit"></td>
<td></td>

<tr>
</table>
</FORM>

</td>
</tr>

</table>

</BODY>
</HTML>

The InformixSQLtoXML.html file already contains a submission form for the XMLToSQL
example which will be discussed in 8.3.4, “Enhance the sample project with the XMLtoSQL
class library” on page 200. You can ignore this form at the moment.

Add a simple XSL stylesheet to test the optional XML format conversion
Since the demo servlet allows the XML transformation by applying an XSL stylesheet, we
already have prepared a simple one, which will convert the generic XML into a custom XML
format. To include the XSL file into your Web project, here is what you need to do:

1. While in the J2EE Navigator window, right-click the Web Content folder. Select New -->
Other and then XML --> XSL. Click Next.

2. As the filename enter ITSO_Customers.xsl. Click Finish.

3. The empty XSL template file should open in a window. Replace the content with the XSL
file from Example 8-12.

Example 8-12 ITSO_Customers.xsl

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0"
 xmlns:xalan="http://xml.apache.org/xslt">
<xsl:output method="xml" encoding="UTF-8" indent="yes" xalan:indent-amount="2"/>
<xsl:strip-space elements="*"/>
 <xsl:template match="/">
 <ITSO_Customers>
 <xsl:for-each select="/SQLResult/customer">
 <Customer_Address>
 <Customer_Num>
 <xsl:value-of select="customer_num"/>
 </Customer_Num>
 <First_Name>
 <xsl:value-of select="fname"/>
 </First_Name>
 <Last_Name>
 <xsl:value-of select="lname"/>
 </Last_Name>
 <Company>
 <xsl:value-of select="company"/>
 </Company>
 <Address_1>
 <xsl:value-of select="address1"/>
Chapter 8. IDS, WebSphere, and XML 199

 </Address_1>
 <Address_2>
 <xsl:value-of select="address2"/>
 </Address_2>
 <City>
 <xsl:value-of select="city"/>
 </City>
 <State>
 <xsl:value-of select="state"/>
 </State>
 <Zipcode>
 <xsl:value-of select="zipcode"/>
 </Zipcode>

<Phone>
 <xsl:value-of select="phone"/>
 </Phone>

</Customer_Address>
 </xsl:for-each>
 </ITSO_Customers>
 </xsl:template>
</xsl:stylesheet>

Run the demo html/page servlet on an internal WSAD test server
Now we’re ready to publish and run the demo application. In order to do so, do the following:

1. Verify that your demo database is up and running

2. While being in the J2EE Navigator window, right-click the InformixSQLtoXML.html file
and select Run on Server.

3. In the Server Selection Window, select from the pull down menu the appropriate WAS
server test environment. A good choice for our demo would be the WebSphere V5.0 Test
Environment and then click OK.

4. After a short while a Web Browser window should open and should look like Figure 8-6 on
page 201.

5. As soon as you click the first Submit button (the second one is not working yet!) without
modifying any of the input fields, SQLtoXML should execute the selectOneCustomer.xst
file and apply the ITSO_Customers.xsl stylesheet. The final outcome of this process
should look like Figure 8-7 on page 202.

6. Now you can try different values in the SQL Query input field, if you would like to try an
ad-hoc query or supply a different XSL file in the XSL File input field.

8.3.4 Enhance the sample project with the XMLtoSQL class library
In the previous section we have explained how to utilize the SQLtoXML class library to
generate XML from SQL. Now we will focus on the mapping from an existing XML document
to relational tables in IDS.

For this purpose WSAD supports the XMLToSQL class library as part of the SQLToXML
framework. Based on an existing XML document you can either use the interactive
XMLToSQL wizard in WSAD to map a single XML file to an existing table or use the more
flexible programmatic approach and utilize the class from within an application or servlet.
200 Using Informix Dynamic Server with WebSphere

Figure 8-6 The Informix SQL to XML Demo Application

Let’s take a look at the basic requirements to make the XMLToSQL class work:

1. The root element of the XML document has to be <SQLResult>.

2. The next element(s) should represent the table names in the database

3. Each table element may have sub-elements which represent the columns in the table.

4. It is important that the names of the table and column elements exactly match the
database table and column names

5. If your original XML input document doesn’t match the criteria above, you might have to
write an XSL stylesheet to convert the original format into the required format.

XMLToSQL supports three different operation modes: INSERT, UPDATE, DELETE. In update
mode the primary key cannot be updated.

Example 8-13 shows a valid XML document which can be used, for example, to insert a new
row into the customer table into the stores_demo database.

Example 8-13 A valid XMLToSQL document

<?xml version="1.0" encoding="UTF-8"?>
<SQLResult>
 <customer>
 <customer_num>0</customer_num>
 <fname>Sabrina</fname>
 <lname>Koerner</lname>
Chapter 8. IDS, WebSphere, and XML 201

 <company>Sabrinas Popcorn Parlour</company>
 <address1>6111 San Ignacio Ave.</address1>
 <address2>Appartment 301</address2>
 <city>San Jose</city>
 <state>CA</state>
 <zipcode>95119</zipcode>
 <phone>408-226-7676</phone>
 </customer>
</SQLResult>

Figure 8-7 Result of the Informix SQL to XML demo

OK, now we’re modifying the Java demo servlet code to include support for the XMLToSQL
class file.

Adding the XMLtoSQL support to the demo servlet source code
Switch to the J2EE Navigator by selecting Window --> Open Perspective --> J2EE and
select the J2EE Navigator tab.

In the navigator window select the InformixSQLtoXMLServlet.java file within the Java Source
folder.

In the editor window, replace the doPost() method with the following code (Example 8-14):
202 Using Informix Dynamic Server with WebSphere

Example 8-14 The doPost() method for the demo servlet

public void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

 String xmlInput = getParameter(req,"xmldoc");

 PrintWriter response = resp.getWriter();

 try
 {
 SQLProperties prop = new SQLProperties();

 prop.setJdbcDriver("com.informix.jdbc.IfxDriver");

 prop.setLoginId("itso");
 prop.setPassword("itso");

prop.setJdbcServer("jdbc:informix-sqli://neon.almaden.ibm.com:1533/stores_demo:INFORMIXSERV
ER=demo_on");

 prop.setAction(SQLProperties.INSERT);

 XMLToSQL xml2sql = new XMLToSQL(prop);

 xml2sql.execute(new ByteArrayInputStream(xmlInput.getBytes()));

 }
 catch (Exception e)
 {
 error(response, e);
 }
}

Now save the InformixSQLtoXMLServlet.java file into the Web project.

Finally re-run the demo HTML page as described in “Run the demo html/page servlet on an
internal WSAD test server” on page 200.

You should see the HTML page displayed in the WSAD V5 built-in Web browser as shown in
Figure 8-6 on page 201.

In the XML document field, enter a valid XML document which follows the guidelines for
XMLToSQL documents. You could, for example, cut and paste the XML document from
Example 8-13 on page 201.

As soon as you have entered the XML document correctly, click the Submit button.

To verify that the data has been correctly inserted into the customer table, you could either
use the demo application input form and supply as a query parameter the customerid of the
customer you just entered into the XML document field, or you could connect to the database
directly by using, for example, dbaccess or ServerStudio.

To get familiar with different XMLToSQL behavior, you could modify the
prop.setAction(SQLProperties.INSERT) line with the other supported operations (for
example, SQLProperties.UPDATE or SQLProperties.DELETE).

If the source format of your XML document doesn’t match the required format for the
XMLToSQL class library, you should include an XSL transformation before you call the
xml2sql.execute() method.
Chapter 8. IDS, WebSphere, and XML 203

You can do this by calling the already prepared xmlTransform() method in Example 8-10 on
page 197.

Further information to SQLToXML and XMLToSQL
For your convenience we have included a detailed description of both Java classes in
Appendix A, “SQLtoXML and XMLtoSQL Java class description” on page 311.

8.3.5 Additional dynamic XML mapping options in WSAD V5
In addition to the more database oriented mapping which we have described, WSAD V5 also
supports the following Java oriented XML mappings:

� Generating XML/XSL Files from Java beans
� Generating Java beans from DTDs
� Generating Java beans from XML schema
� Generating an XML schema from a relational table
� Generating a relational table definition from an XML schema

The following sections describe briefly how to achieve the different tasks within WSAD V5.

Creating XSL and XML files from Java beans
You can use the Java Bean XML/XSL client wizard to take any Java bean (including EJBs)
and convert the data in the bean into a DOM tree. The Java Bean XML/XSL client wizard also
generates corresponding XSL stylesheets that work with the DOM tree. As well, a servlet is
generated that will invoke the Xalan transformer to apply the XSL stylesheets to the DOM to
produce an HTML form.

Follow these steps to create XML and XSL files from Java beans:

1. Switch to the XML perspective.

2. To launch the Java Bean XML/XSL client wizard, select File --> New --> Other. Then
select XML --> Java Bean XML/XSL Client and click Next.

3. Click Browse to specify the location into which the generated XSL and XML files will be
placed, as well as where all servlets will be mapped. The Destination folder must be the
Web Content subfolder of a dynamic Web project. The Java package name specifies
where all Java source code will be placed. A default package is assumed if you do not
designate a package name.

4. The Generate XML model is the only model type you can use.

5. The Files field lists the type of XML and XSL files that will be generated from the Java
bean. Select a file to see a description of it. Click Next.

6. Click Browse to locate the bean that will act as the model for your generated XML or XSL
pages. Click Introspect to view the bean's methods. Note: For the purposes of the
wizard, any Java class that has a public constructor is considered to be a bean.

7. Select the bean methods to be executed by the servlet. You can also use the All or None
button to select or deselect the entire list. The wizard should make available the public
void methods() { } that have primitive type parameters from your Java bean. The wizard
also provides additional public methods inherited from any of the superclasses in the
bean's hierarchy. Click Next.

8. Design the input form by specifying the page properties and the bean properties (fields)
that the generated Web page or XML form will expose to the user for input. This page will
show you the public properties of the bean, as well as any parameters that must be
specified for the methods selected on the previous page. The scrolling panel on the right
side of this page approximates the look and layout of the resulting page. You can also use
204 Using Informix Dynamic Server with WebSphere

the All or None button to select or deselect the entire list of properties and method
parameters. Click the up and down arrow buttons to reorder the columns in the input
page. Click Next.

9. Design the results form by specifying the page properties and the bean properties (fields)
that the generated XSL stylesheet will display as output to the user. The wizard should
only make available the public void getMethods() { } from your Java bean. The available
properties that you can specify for the result form include the following:

Page: Page properties include Title, Background, Title Color, and Field Color.

Fields: Field properties include ID, Label, Initial Value, Input Type, size, and max length.
Note that the size property addresses the physical dimensions of the field, and the max
length is a specification of the maximum number of characters or string length allowed.

Click Next.

10.Provide a common prefix for the pages that are generated from the specified beans. Note
that the list of generated pages and resources will reflect any changes to the prefix as you
type in the Prefix field.

11.Click Finish to generate your Java code, XSL files, and XML schema file. Your Web
project's web.xml file will also be updated.

Generating Java beans from a DTD
You can use the DTD editor to generate Java beans from a DTD file. Using these beans, you
can quickly create or load an instance document that conforms to the DTD without coding
directly to the DOM APIs.

To generate beans from a DTD file, follow these steps:

1. Create a project that is configured to work with Java source code. The beans you generate
from your DTD must be contained in a project that is configured to work with Java source
code. Projects such as a Java, Web, or Fragment project are all configured to work with
Java source code. You do not have to store the DTD file in a project that is configured to
work with Java source, however, we recommend it.

2. Switch to the XML perspective.

3. Open the DTD file you want to work with in the DTD editor.

4. Ensure that the DTD editor is in focus (otherwise, the appropriate menu will not be
available). Click DTD --> Generate Java Beans.

5. In the Container field, specify your project. You can also specify a source folder in a project
to contain your Java beans; that is, a folder that is on the Java source path. You can verify
that a folder is on the Java source path by looking in the Source page of the Java Build
Path for the project (Right-click the project and select Properties --> Java Build Path -->
Source). Click Browse to select from a list of all valid projects and folders that exist in the
workbench.

6. Type the name of the package that will contain the beans.

7. Select the name of the Root element for the beans. This can be any element in the DTD.

8. If desired, select the Generate sample test program check box.

9. Click Finish.

10.The beans appear in the Navigator view. Double-click them to edit them in the Java Editor.

The following beans will be generated:

1. A bean for each element in the DTD file. The name of the element will be used as the
name of the bean.
Chapter 8. IDS, WebSphere, and XML 205

2. A Factory bean for class construction. The name of the root element will be used to
construct this class. For example, if the root element is PurchaseOrder, the factory class
will be called PurchaseOrderFactory. You can use the RootElementFactory.java bean as a
starting point for creating a new XML file

3. Optionally, a Sample main program - Sample.java. This bean shows you how to use the
beans you have created. This bean is only generated if you selected the Generate
Sample Test Program check box when you created the beans.

As well, the necessary JAR files are also added to the project so that you can build and run
the beans.

Note: If you want to run the beans, switch to the Java perspective, and click Run --> Run As
--> Java Application. Any output will be displayed in the Console view.

Generating Java beans from an XML schema
To allow developers to quickly build an XML application, the XML schema editor supports the
generation of beans from an XML schema. Using these beans, you can quickly create an
instance document or load an instance document that conforms to the XML schema without
coding directly to the DOM APIs.

To generate beans from an XML schema, follow these steps:

1. Create a project that is configured to work with Java source code. The beans you generate
from your XML schema must be contained in a project that is configured to work with Java
source code. Projects such as a Java, Web, or Fragment project are all configured to work
with Java source code. You do not have to store the XML schema file in a project that is
configured to work with Java source, however, we recommend it.

2. If necessary, switch to the XML perspective.

3. Open the XML schema file in the XML schema editor.

4. Ensure that the XML schema editor is in focus (otherwise, the appropriate menu will not be
available). On the main menu bar, click XSD --> Generate Java Beans.

5. In the Container field, specify your project. You can also specify a source folder in a
project to contain your Java beans; that is, a folder that is on the Java source path. You
can verify that a folder is on the Java source path by looking in the Source page of the
Java Build Path for the project (Right-click the project and select Properties --> Java
Build Path --> Source). Click Browse to select from a list of all valid projects and folders
that exist in the workbench.

6. Type the name of the package.

7. Type the name of the Root element for the beans. This can be any complex type or simple
type in the XML schema.

8. If desired, select the Generate Sample Test Program check box. Click Finish.

9. The beans appear in the Navigator view. Double-click them to edit them in the Java Editor.
To run the beans, switch to the Java perspective and click Run --> Java Application. Any
output will be displayed in the Console view.

The following files will have been generated:

1. A bean for each construct (for example, a complex type, a global element) at the XML
schema file level. The name of the construct will be used as the name of the bean.

2. A Factory class for class construction. The name of the root element will be used to
construct this class. For example if the root element is PurchaseOrder, the factory class
will be called PurchaseOrderFactory.
206 Using Informix Dynamic Server with WebSphere

3. Optionally, a Sample main program.

As well, the necessary JAR files are also added to the project so that you can build and run
the beans.

Generating an XML schema file from an Informix database table
You can generate an XML schema file from a relational table, and then further customize that
file in the XML schema editor. See Figure 8-8.

Figure 8-8 The Generate XML SChema from table wizard

To generate a schema file from a relational table follow these steps:

1. Switch to the XML perspective.

2. Open the Data view (Window --> Show View --> Other --> Data --> Data Definition).

3. In the Data view, click the table that you want to work with.

4. From its pop-up menu, click Generate XML Schema.

5. Select a project or folder to contain the XML file and type a name for it. The name of the
file must end in .xsd. Click Finish.

6. The XML schema appears in the Navigator view.
Chapter 8. IDS, WebSphere, and XML 207

Generating an Informix database table definition from an XML schema
You can generate a relational table definition from an XML schema. To do so, follow these
steps:

1. Switch to the XML perspective.

2. In the Navigator view, click the XML schema that you want to work with.

3. From its pop-up menu click Generate --> DDL.

4. Select the project or folder that will contain the relational table. In the File name field, type
the name of the table, for example MySchemaSQL.sql. The name of your file must end
with the extension .sql. Click Finish.

5. The file appears in the Navigator view. To open it, double-click it.

You should verify that it can be used to create an Informix database table.

Summary
This chapter has clearly shown that IDS is a very good foundation for XML related
applications, and that WebSphere Application Developer provides a powerful framework to
assist an Informix developer in XML development.

IDS 9, through its very flexible, extensible architecture, should support any kind of future
requirements that an Informix based application might have.

In the next chapter we will focus on an even more advanced usage for XML: Web services in
combination with IDS.
208 Using Informix Dynamic Server with WebSphere

Chapter 9. IDS, Web services, and
WebSphere

XML based Web services provide a new way of heterogeneous application interaction by
using standard protocols and the Internet infrastructure for communication.

In this chapter we discuss the use of IBM Informix Dynamic Server as a foundation for the
implementation of Web services. We start with a brief introduction into Web services. Then
we focus on IDS as a Web services provider, and later on, IDS as a Web services consumer.

We cover these topics:

� Introduction to Web services
� IDS as a Web Service provider
� IDS as a Web Service consumer

9

© Copyright IBM Corp. 2003. All rights reserved. 209

9.1 Introduction to Web services
Before we start the Web services introduction, we would like to point you to another redbook,
which covers the topic of Web services in much greater detail: WebSphere Version 5, Web
Services Handbook, SG24-6891. You can refer to this redbook if you have more specific
questions regarding Web services.

In the current chapter, starting in 9.2, “Using IDS as a Web service provider” on page 214, we
will focus more on how to integrate IBM IDS into an overall Web services framework.

Web services
A Web service is a set of related application functions that can be programmatically invoked
over the Internet. Businesses can dynamically mix and match Web services to perform
complex transactions with minimal programming. Web services allow buyers and sellers all
over the world to discover each other, connect dynamically, and execute transactions in real
time with minimal human interaction.

Web services are self-contained, self-describing modular applications that can be published,
located, and invoked across the Web:

� Web services are self-contained: On the client side, a programming language with XML
and HTTP client support is enough to get you started. On the server side, a Web server
and servlet engine are required. The client and server can be implemented in different
environments. It is possible to Web service enable an existing application without writing a
single line of code.

� Web services are self-describing: The client and server need to recognize only the
format and content of request and response messages. The definition of the message
format travels with the message; no external metadata repositories or code generation
tools are required.

� Web services are modular: Simple Web services can be aggregated to form more
complex Web services either by using workflow techniques or by calling lower layer Web
services from a Web service implementation.

Web services might be anything. Some examples, theatre review articles, weather reports,
credit checks, stock quotations, travel advisories, or airline travel reservation processes. Each
of these self-contained business services is an application that can easily integrate with other
services, from the same or different companies, to create a complete business process. This
interoperability allows businesses to dynamically publish, discover, and bind a range of Web
services through the Internet.

Categories of Web services
Web services can be grouped into three categories:

� Business information: A business shares information with consumers or other
businesses. In this case, the business is using Web services to expand its scope.
Examples of business informational Web services are news streams, weather reports, or
stock quotations.

� Business integration: A business provides transactional, “for fee” services to its
customers. In this case, the business becomes part of a global network of value-added
suppliers that can be used to conduct commerce. Examples of business integration Web
services include bid and auction e-marketplaces, reservation systems, and credit
checking.
210 Using Informix Dynamic Server with WebSphere

� Business process externalization: A business differentiates itself from its competition
through the creation of a global value chain. In this case, the business uses Web services
to dynamically integrate its processes. Business process externalization Web services is
exemplified by the associations between different companies to combine manufacturing,
assembly, wholesale distribution, and retail sales of a particular product.

Service roles and interactions
A network component in a Web Services architecture can play one or more fundamental
roles: service provider, service broker, and service client:

� Service providers: Create and deploy their Web services and can publish the availability
of their services through a service registry, such as a UDDI Business Registry.

� Service brokers: Register and categorize published services and provide search
services. For example, UDDI acts as a service broker for WSDL-described Web services.

� Service clients: Use broker services to discover a needed WSDL-described service on
the UDDI Business Registry and then bind to and call the service provider.

Binding involves establishing all environmental prerequisites that are necessary to
successfully complete the services. Examples of environmental prerequisites include
security, transaction monitoring, and HTTP availability. The relationships between these roles
are described in Figure 9-1.

Figure 9-1 Service roles in a Web services scenario

9.1.1 Web service standards
One of the key attributes of Internet standards is that they focus on protocols and not on
implementations. The Internet is composed of heterogeneous technologies that successfully
interoperate through shared protocols. This prevents individual vendors from imposing a
standard on the Internet. Open Source software development plays a crucial role in
preserving the interoperability of vendor implementations of standards.

The following standards play key roles in Web services: Universal Description, Discovery and
Integration (UDDI), Web Services Description Language (WSDL), Web Services Inspection
Language (WSIL), and Simple Object Access Protocol (SOAP). The relationship between
these standards is described in Figure 9-2.

The UDDI specification defines open, platform-independent standards that enable
businesses to share information in a global business registry, discover services on the
registry, and define how they interact over the Internet. For more information on UDDI, refer
to http://www.uddi.org
Chapter 9. IDS, Web services, and WebSphere 211

http://www.uddi.org

WSIL is an XML-based open specification that defines a distributed service discovery method
that supplies references to service descriptions at the service provider's point-of-offering, by
specifying how to inspect a Web site for available Web services. A WSIL document defines
the locations on a Web site where you can look for Web service descriptions. Since WSIL
focuses on distributed service discovery, the WSIL specification complements UDDI by
facilitating the discovery of services that are available on Web sites that may not be listed yet
in a UDDI registry. A separate topic in this documentation discusses the relationship between
UDDI and WSIL. For more information on WSIL, refer to:

http://www.ibm.com/developerworks/webservices/library/ws-wsilspec.html

Figure 9-2 The roles of the different Web services standards

WSDL is an XML-based open specification that describes the interfaces to and instances of
Web services on the network. It is extensible, so endpoints can be described regardless of
the message formats or network protocols that are used to communicate. Businesses can
publish the WSDL documents for their Web services to UDDI and discover the WSDL
documents for other Web services in UDDI. WSDL is described as a separate topic in this
documentation. For more information on WSDL, refer to http://www.w3.org/TR/wsdl

SOAP is an XML-based standard for messaging over HTTP and other Internet protocols. It is
a lightweight protocol for the exchange of information in a decentralized, distributed
environment. It is based on XML and consists of three parts:
212 Using Informix Dynamic Server with WebSphere

http://www.ibm.com/developerworks/webservices/library/ws-wsilspec.html
http://www.w3.org/TR/wsdl

� An envelope that defines a framework for describing what is in a message and how to
process it.

� A set of encoding rules for expressing instances of application-defined data types.

� A convention for representing remote procedure calls and responses.

SOAP enables the binding and usage of discovered Web services by defining a message
path for routing messages (Example 9-1). SOAP may be used to query UDDI for Web
services. For more information on SOAP, refer to http://www.w3.org/TR/SOAP

Example 9-1 Sample SOAP message to call the getCustomer service method

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/1999/XMLSchema"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance">

<SOAP-ENV:Body>
<ns1:getCustomer encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:ns1="urn:itsoCustomerInfo"><customernum xsi:type="xsd:int">103</customernum>
</ns1:getCustomer>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A service provider hosts a Web service and makes it accessible using protocols such as
HTTP GET, HTTP POST, and SOAP/HTTP. The Web service is described by a WSDL
document that is stored on the provider's server or in a special repository. The WSDL
document may be referenced by the UDDI business registry and WSIL documents. These
contain pointers to the Web service's WSDL files.

For more information on Web services, refer to:

http://www.ibm.com/developerworks/webservices

Web services best practices
Although one could describe Web services simply as XML-protocol based remote function
calls, you should avoid treating them as such for certain kinds of applications. Based on some
real world projects which have been implemented at customer sites, most often without any
IBM consultancy, we already have learned quite a few lessons. So, you need to watch out for
the following issues if you’re planning to implement Web services on top of your IBM Informix
infrastructure:

� Do not use Web services between layers of an application or, for example, within a Java
application server. The parsing of every Web service message is very costly and will slow
down your application.

� Do not use Web services if you’re not exposing external interfaces, for example, for
interoperability or if you don’t use an XML document based workflow.

� Use Web services on the edge of your application server to expose external APIs or if you
need to execute remote calls through a firewall.

� If you have a need to execute function calls between Java application servers you might
want to consider other protocols, for example, RMI/IIOP.

9.1.2 WSAD V5 tools for Web services development
WebSphere Studio provides the following tools to assist with Web services development:

� Discover: Browse the UDDI Business Registries or WSIL documents to locate existing
Web services for integration. The Web becomes an extension of WebSphere Studio.
Chapter 9. IDS, Web services, and WebSphere 213

http://www.ibm.com/developerworks/webservices
http://www.w3.org/TR/SOAP

� Create or Transform: Create Web services from existing artifacts, such as Java beans,
enterprise beans, URLs that take and return data, DB2 XML Extender calls, Informix IDS
and DB2 User Defined Routines, and SQL statements (SELECT, INSERT, UPDATE).

� Build: Wrap existing artifacts as SOAP and HTTP GET/POST accessible services and
describe them in WSDL. The Web services wizards assist you in generating a Java client
proxy to Web services described in WSDL and in generating Java bean skeletons from
WSDL.

� Deploy: Deploy Web services into the WebSphere Application Server or Tomcat test
environments using Server Tools.

� Test: Test Web services running locally or remotely in order to get instant feedback.

� Develop: Generate sample applications to assist you in creating your own Web service
client application.

� Publish: Publish Web services to a UDDI v2 Business Registry, advertising your Web
services so that other businesses and clients can access them.

These tools are accessed through the Web Services Client wizard, the Web Services DADX
Group Configuration wizard, the Web Services wizard, Unit Test UDDI wizard, Java Beans for
XML Schema wizard, and the IBM Web Services Explorer.

� Use the Web Services Client wizard to create the Java client to a deployed Web service
and to test the Web service.

� Use the Web Services wizard to create, deploy, test, and publish Web services based on
artifacts such as Java beans, URLs, enterprise beans, and, DADX files.

� The Web Services wizard supports the generation of the Java bean proxy and a sample
application. Then publish your Web service to a UDDI Business Registry.

� The Unit Test UDDI wizard installs, configures, and removes a Private UDDI Registry.

� The Java Beans for XML Schema wizard enables you to generate Java beans from
schema.

� The IBM Web Services Explorer assists you in discovering and publishing your Web
service descriptions.

Web services tooling in WSAD V5 supports the following specifications:

� Web Services Definition Language (WSDL) Version 1.1
� Apache SOAP Version 2.3
� Universal Description, Discovery, and Integration Version 2.0
� Web Services Inspection Language (WSIL) Version 1.0

9.2 Using IDS as a Web service provider
Since we have now learned about the basics of Web services and the tools which are
provided by WSAD V5 for Web services development, now let’s take a closer look at which
kind of Web services are supported in combination with IDS:

9.2.1 IDS 7/9 Web services based on EJBs
This is a very straightforward process. In order to access an IDS based entity bean, you
create a stateless session bean first and then use the Web services wizard in WSAD V5 to
generate the necessary code for accessing the session bean.
214 Using Informix Dynamic Server with WebSphere

Since these kind of Web services are more or less database independent due to the
intermediate abstraction layer (session and entity beans) we didn’t include any example in
this redbook but instead refer you to another redbook which covers this topic in great detail:
Self-Study Guide, WebSphere Studio Application Developer and Web Services, SG24-6407.

9.2.2 IDS 7/9 Web services based on Java beans
Using Java beans for IDS Web services is a very flexible and simple approach. The Java
bean could contain either Informix JDBC calls to the database, IBM’s data access bean code
(a different abstraction layer to a pure JDBC application), calls to the SQLToXML and
XMLToSQL class libraries, or even Java bean code which has been originally generated by
the IBM Informix Object Translator (see “IBM Informix Object Translator (IDS 7/9)” on
page 185 for details).

Since we have already developed a small servlet demo application in chapter 7 which is
based upon the SQLToXML and XMLToSQL class libraries, let’s take this Web project and
enhance it with a Java bean based Web service.

Here are the steps we need to take to achieve this goal:

1. Create a new Java bean called InformixCustomerBean.

2. Use the WSAD V5 Web services wizard to create the WSDL files and generate a simple
Java test client to test the new Web service.

3. Test the Web service with the generated Test client.

Create a new Java bean called InformixCustomerBean
Start WSAD V5 and open the workspace which you have used to develop the Web project in
chapter 7.

Open the J2EE perspective by selecting Window --> Open Perspective --> J2EE

In the J2EE Navigator window, right-click the Java Source folder and then select New -->
Class. In the New Java Class pop-up window just enter the name for the new Java bean:
InformixCustomerBean. Click Finish. The empty bean should open automatically in an
editor window.

The InformixCustomerBean.java code in Example 9-2 and Example 9-3 could be used as a
template Java bean for any future SQLtoXML Web services development. For more details
about that code, refer to the embedded comments. To get your first Web services demo
application up and running, just follow the simple steps below.

Just insert the Java code (the import section) from Example 9-2 at the beginning of the file.

Example 9-2 The import section for the InformixCustomerBean.java file

import com.ibm.etools.sqltoxml.*;
import java.io.*;
import java.util.*;
import org.w3c.dom.*;

import javax.xml.transform.*;
import javax.xml.transform.dom.*;
import javax.xml.parsers.*;
import org.xml.sax.*;

Now replace the public class InformixCustomerBean { } with the code in Example 9-3.
Chapter 9. IDS, Web services, and WebSphere 215

Example 9-3 The InformixCustomerBean class

public class InformixCustomerBean {

public Element getOneCustomer(Integer customer_num) {

Element returnResult = null;

try {
CharArrayWriter charWriter = new CharArrayWriter();
PrintWriter writer = new PrintWriter(charWriter);
QueryProperties props = new QueryProperties();

// Locate the selectOneCustomer.xst file. This file contains the
// SQL statement.
InputStream xstStream =

this.getClass().getResourceAsStream("/selectOneCustomer.xst");

props.load(xstStream);

// Perform the query and generate an XML stream as output.
// Note: this XML stream will be stored in the charWriter buffer
// which we will switch to be an XML input stream below.
SQLToXML sqltoxml = new SQLToXML(props);
sqltoxml.setParameters(customer_num.toString());
sqltoxml.setXMLWriter(writer);
sqltoxml.execute();
writer.flush();

// Create a reader for the XML generated above for the
// transformer code below.
CharArrayReader charReader =

new CharArrayReader(charWriter.toCharArray());

// Now transform the XML generated by the query to the XML
// format required for transmission to the Web services clients.

// Create the transformation factory.
TransformerFactory transFactory = TransformerFactory.newInstance();
DocumentBuilderFactory buildFactory =

DocumentBuilderFactory.newInstance();

buildFactory.setNamespaceAware(true);

// Create a stream for the XSL file.
// This file contains the template of how the input XML stream
// should be transformed into the output XML stream.
InputStream xslStream =

this.getClass().getResourceAsStream(
"/ITSO_Customers.xsl");

DocumentBuilder builder = buildFactory.newDocumentBuilder();
Document xslDoc = builder.parse(xslStream);
DOMSource xslSource = new DOMSource(xslDoc);

xslSource.setSystemId("ITSO_Customers.xsl");

// Create transformation code that uses the XSL document.
Transformer transformer = transFactory.newTransformer(xslSource);

// Create the xmlSource document from the XML stream create above.
InputSource xmlInput = new InputSource(charReader);
216 Using Informix Dynamic Server with WebSphere

Document xmlDoc = builder.parse(xmlInput);
DOMSource xmlSource = new DOMSource(xmlDoc);

// The xmlResult object will contain the results of
// the transformation.
DOMResult xmlResult = new DOMResult();
xmlSource.setSystemId("generatedXML.xml");

// Perform the transformation. The results are stored in xmlResult.
transformer.transform(xmlSource, xmlResult);
returnResult =

((Document) (xmlResult.getNode())).getDocumentElement();

} catch (Throwable e) {
System.out.println("Problem with sqltoxml:" + e.getMessage());
e.printStackTrace();

}
// Send the response XML back to the Web services client.
return returnResult;

}
}

This Java bean now also references the same selectOneCustomer.xst and
ITSO_Customers.xsl file from the demo servlet in Chapter 7. By applying an XSL file to the
generic SQLToXML document, the Web service can be easily customized to the requirements
of the clients which are utilizing the Web service. Save the modified code into the Web
project.

Generate the WSDL files and the test client code
While still being in the J2EE perspective, right-click the InformixCustomerBean.java file in
the Java Source directory of the InformixXMLDemo Web project. Select New --> Other -->
Web Services --> Web Service.
Chapter 9. IDS, Web services, and WebSphere 217

Figure 9-3 The Web service pop-up window

In the Web Services pop-up window (Example 9-3) select Java bean Web Service as a Web
service type from the pull down menu. Also select Start Web service in Web project,
Generate a proxy, Client proxy type: Java proxy, Test the generated proxy and finally
Overwrite files without warning and Create folders when necessary. Click Next.

In the Web Service Deployment Settings window keep all the pre-selected default values
and then click Next.

In the Web Service Java Bean Selection window select the InformixCustomerBean bean
and then click Next.

As with the two previous windows, you also shouldn’t change anything in the Web Service
Java Bean Identity window. Just click Next.

Leave everything as it is in the Web Service Java Bean Methods window. Click Next.

In the Web Service Binding Proxy Generation wizard select Generate proxy, if its not
already pre-selected, and click Next.

In the Methods section of the Web Service Test wizard, de-select the methods
getEndPoint() and setEndPoint(). Make sure that Test the generated proxy and Run test
on server are selected. Then click Next.

On the final wizard window (Web Service Publication) you don’t have to select anything,
since we’re not planning to publish our demo Web service to a UDDI register. Now click
Finish to start the WSDL and test client generation process.
218 Using Informix Dynamic Server with WebSphere

When the generation process completes, WSAD V5 will publish the newly created files,
including the Java based test client, to the built-in WAS V5 test server and will then start an
internal Web browser with the client JSP page displayed (Figure 9-4).

Figure 9-4 The generated Web service test client

In the Inputs window of the test client, enter a valid value into the customerNum input field
and click Invoke.

The test client now calls the getOneCustomer method via the SOAP protocol and displays the
result, converted via the ITSO_Customers.xsl stylesheet into the final format in the Result
window.

Tip: Web services monitoring
Sometimes during the development cycle of a Web services application it can be very helpful
to monitor what is going on behind the scenes — or more specifically, what is being
transferred via the SOAP protocol.
Chapter 9. IDS, Web services, and WebSphere 219

Figure 9-5 Using the WSAD V5 built-in TCP/IP monitor

WSAD V5 has a built-in TCP/IP monitor which can be utilized to do this kind of monitoring.

How to activate the TCP/IP monitor? Just follow the next few steps to run the monitor:

1. Switch to the Server perspective by selecting Window --> Open Perspective -> Server.

2. In the Server Configuration window, right-click Servers and then select New --> Server
and Server Configuration.

3. In the Server name input field, for example, enter TCP Monitor, and as a Server type
select TCP/IP Monitoring Server from the list. Click Next.

4. In the Monitor Server Configuration keep the values at Remote host ‘localhost’ and
Remote port ‘9080’. Click Finish.

5. Now you should see the newly created TCP Monitor entry in your Server Configuration
window under Servers. The TCP/IP monitor should listen on port 9081 and forward any
request to port 9080.

6. If you don’t see an active TCP/IP monitor window, select Window --> Show View -->
(Other --> Server -->) TCP/IP Monitor.

7. Also make sure that your TCP/IP monitor has been started. Right-click the TCP Monitor
entry in the Servers folder in the Server Configuration window and select Control -->
Start.

In order to be able to monitor our test client application we only need to modify the
InformixCustomerBeanProxy.java file to adjust the port number to the listen port of the TCP/IP
monitor, instead of the original Web service port:
220 Using Informix Dynamic Server with WebSphere

1. Switch to the J2EE Navigator window in the J2EE perspective. In the
InformixXMLDemoClient/Java Source folder, open the
proxy.soap/InformixCustomerBeanProxy.java file.

2. Replace the string: “http://localhost:9080/InformixXMLDemo/servlet/rpcrouter”
with “http://localhost:9081/InformixXMLDemo/servlet/rpcroute”
and save the file.

Now rerun the Test Client by doing the following steps:

1. Right-click the TestClient.jsp file in the InformixXMLDemoClient/Web
Content//sample/InformixCustomerBean folder and select Run on Server.

2. Select your existing Test server environment and click Finish.

3. In the Select a Server Client window choose the Web browser only!

4. As soon as the Web Browser window opens, select the getOneCustomer method and
enter a valid value in the customerNum input field (for example, 104).

5. Now click Invoke.

6. As soon as you got the results back you can switch to the TCP/IP monitor window
(Figure 9-5).

7. In the upper window of the TCP/IP monitor, select the
/InformixXMlDemo/servlet/rpcrouter entry.

8. In the lower two windows you should see now in the left window the SOAP message which
has been sent to the Web service, and in the right window you should see the SOAP
encoded reply.

Now you have seen how easy it is to develop a Web service based on Java beans. In the next
section we will introduce an IDS based Web service which doesn’t even require you to write
any Java code. You only need to know WSAD V5 and SQL!

9.2.3 DADX Web services and IDS 7/9
The document access definition extension (DADX) Web services had been originally
developed with IBM DB2 and its XML Extender in mind. It allows you to easily wrap IBM DB2
XML Extender or regular SQL statements inside a Web service.

Fortunately, the non XML Extender related operations also work without any problems when
using IBM Informix IDS 7 and 9. Let’s take a look at the supported DADX functions for IDS:

� Query
� Insert
� Update
� Delete
� Call Stored Procedures (limited support for IDS 71)

The runtime component of DADX Web services is called Web Services Object Runtime
Framework (WORF). WORF uses the SOAP protocol and the DADX files and provides the
following features:

� Resource based deployment and invocation
� Automatic service redeployment, at development time, when defining resource changes
� HTTP GET and POST bindings, in addition to SOAP
� Automatic WSDL and XSD generation, including support for UDDI Best Practices
� Automatic documentation and test page generation

1 In IDS 7 you can only call stored procedures which do not return any results!
Chapter 9. IDS, Web services, and WebSphere 221

So how does WORF handle a Web service request in combination with IDS?

1. WORF receives an HTTP SOAP GET or POST service request.

The URL of the request specifies a DADX or DTD file, and the requested action, which can
be a DADX operation or a command, such as TEST, WSDL, or XSD. A DADX operation
can also contain input parameters. WORF performs the following steps in response to a
Web service request:

– Loads the DADX file specified in the request.

– Generates a response, based on the request.

For operations:

• Replaces parameters with requested values
• Connects to IDS and runs any SQL statements, including UDR calls.
• Formats the result into XML, converting types as necessary.

For commands:

• Generates necessary files, test pages, or other responses required.

– Returns the response to the service requestor.

Figure 9-6 How WORF integrates IDS 7/9

Since it is so easy to implement an IDS based Web service with DADX Web services, in the
next section we will take a look at how to develop such a service.

How to build a DADX Web service with IDS 7/9
In order to build a DADX Web service, we need to have some SQL statements on which the
service should be based.

In our demo application we already defined one SELECT statement, named
“selectOneCustomer” in “Define a SELECT statement by utilizing the Query Builder” on
page 190 of Chapter 7. In addition to this already existing statement, we will define an
INSERT statement to allow new additions to the customer table in the stores_demo
database.

SOAP Service Runtime

WORF

DADX

File

IBM Informix

IDS 7/9

JDBC Calls

SOAP
Service Request

SOAP
Response

SOAP Service Runtime

WORF

DADX

File

IBM Informix

IDS 7/9

JDBC Calls

SOAP
Service Request

SOAP
Response
222 Using Informix Dynamic Server with WebSphere

Add an addition SQL Statement for the demo DADX Web service
Open the WSAD V5 workspace which contains the demo Web project from Chapter 7 and 8.
Switch to the Data perspective by selecting Window --> Open Perspective --> Data. In the
Data Definition window open the InformixXMLDemo/Web
Content/databases/stores_demo folder. Right-click the Statements folder and select New
--> Insert Statement. Name the new statement INSERTONECUSTOMER and click OK.

In the interactive SQL builder window, right-click into the Tables window. Select Add Table
and then from the tables selection menu, select the itso.customer table. Within the
itso.customer table, select all attributes for the INSERT statement. In the window below the
Tables window, we now have to define the host variables as placeholders for the later inserts
which should be executed against the customer table.

To make it simple we’ll name all host variables by using the column name with a colon (:) in
front. To do this, click the Value column for each table attribute and enter the host variable
name, for example, :fname for the fname attribute. Important: since the customer_num
attribute is defined as a SERIAL data type in the database, we set the insert value to zero to
automatically generate a new customer_num value during each insert! So eventually, the
SQL builder window should look like Figure 9-7.

Figure 9-7 SQL Builder being used for the insertOneCustomer statement
Chapter 9. IDS, Web services, and WebSphere 223

As soon as you have defined the INSERT statement, save it into the demo Web project.

Create a DADX group and define its properties
In preparation for the to be generated DADX file, we need first to create a DADX group, which
combines one or more SQL statement into one logical DADX Web service. So it could make
sense, for example, to group all operations on the customer table into one group, while
operations on the account table will be grouped into another DADX group.

Each DADX group also maintains its own database connection properties, so one could also
use different DADX groups to connect to different databases or even different database
servers (vendors).

Figure 9-8 Create a new DADX Group and set the DADX group properties for IDS

To create a new DADX group:

1. Open the J2EE Perspective by selecting Window --> Open Perspective --> J2EE. Then
select the J2EE Navigator window.

2. Select File --> New --> Other --> Web Services --> Web Service DADX Group
Configuration.

3. In the next window, select the InformixXMLDemo folder and then click Add group.

4. For the group name, enter ITSOCustomerService. Click OK.

5. While still being in the same window, now select the
InformixXMLDemo/ITSOCustomerService folder and then click Group properties.

6. In the DADX Group Properties pop-up window, fill in the following information:

DB driver: com.informix.jdbc.IfxDriver
224 Using Informix Dynamic Server with WebSphere

DB URL:
jdbc:informix-sqli://neon.almaden.ibm.com:1533/stores_demo:INFORMIXSERVER=
demo_on;user=itso;password=itso

7. Leave the other fields as-is. Your entries should look like Figure 9-8. Click OK.

8. In the DADX Group Configuration window, click Finish.

Generate the DADX file
Now we can generate the DADX file for the two SQL Statements. To do this:

1. Select File --> New --> Other --> Web Services --> DADX File. Click Next.

2. In the Select SQL Statements window, open the InformixXMlDemo/Web
Content/WEB-INF/databases/stores_demo/Statements folder

3. Since we would like to select both SQL statements (insertOneCustomer,
selectOneCustomer) we need to do the following: Click the insertOneCustomer
statement first and then control-click the selectOneCustomer too. Now both statements
should be selected (highlighted). Click Next.

4. Just click Next in the Select DAD Files window since DAD files are not yet supported with
IBM Informix IDS.

5. In the DADX Generation window enter as the File name: ITSOCustomerService.dadx.
Don’t change the other values. Click Finish.

The generated ITSOCustomerService.dadx file should look the one in Example 9-4. Notice
the XML compliant format and the specific DADX keywords. You’ll find a complete description
of the DADX file format in Appendix B, “DADX file format” on page 327.

Example 9-4 ITSOCustomerService.dadx file

<?xml version="1.0" encoding="UTF-8"?>
<dadx:DADX xmlns:dadx="http://schemas.ibm.com/db2/dxx/dadx"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xsi:schemaLocation="http://schemas.ibm.com/db2/dxx/dadx dadx.xsd">
 <dadx:operation name="selectOneCustomer">
 <dadx:documentation xmlns="http://www.w3.org/1999/xhtml">

 </dadx:documentation>
 <dadx:query>
 <dadx:SQL_query>
<![CDATA[
 SELECT itso.customer.customer_num, itso.customer.fname,
itso.customer.lname, itso.customer.company, itso.customer.address1, itso.customer.address2,
itso.customer.city, itso.customer.state, itso.customer.zipcode, itso.customer.phone FROM
itso.customer WHERE itso.customer.customer_num = :customernum
]]>
 </dadx:SQL_query>
 <dadx:parameter name="customernum" type="xsd:int"/>
 </dadx:query>
 </dadx:operation>
 <dadx:operation name="insertOneCustomer">
 <dadx:documentation xmlns="http://www.w3.org/1999/xhtml">

 </dadx:documentation>
 <dadx:update>
 <dadx:SQL_update>
<![CDATA[
Chapter 9. IDS, Web services, and WebSphere 225

 INSERT INTO itso.customer (customer_num, fname, lname, company, address1,
address2, city, state, zipcode, phone) VALUES (0, :fname, :lname, :company, :address1,
:address2, :city, :state, :zipcode, :phone)
]]>
 </dadx:SQL_update>
 <dadx:parameter name="fname" type="xsd:string"/>
 <dadx:parameter name="lname" type="xsd:string"/>
 <dadx:parameter name="company" type="xsd:string"/>
 <dadx:parameter name="address1" type="xsd:string"/>
 <dadx:parameter name="address2" type="xsd:string"/>
 <dadx:parameter name="city" type="xsd:string"/>
 <dadx:parameter name="state" type="xsd:string"/>
 <dadx:parameter name="zipcode" type="xsd:string"/>
 <dadx:parameter name="phone" type="xsd:string"/>
 </dadx:update>
 </dadx:operation>
</dadx:DADX>

Since the interactive query builder in WSAD V5 only supports SELECT, INSERT, UPDATE
and DELETE statements you might have to edit the generated DADX file manually if you want
to add support for IDS user defined routines (UDR). For more information about UDR support
in DADX files, refer to “DADX support for user defined routines / stored procedures” on
page 229.

Create a DADX Web service based on the generated DADX file
Now let’s generate the necessary files for a DADX Web service based on the DADX file we
generated in the previous section.

First we need to prepare the WSAD V5 built-in WebSphere V5 Test Environment for Informix
IDS database access in combination with the DADX Web service:

1. Open the Server perspective by selecting Window --> Open Perspective --> Server.

2. In the Server Configuration window select your WebSphere V5 Test Environment with
a double-click.
226 Using Informix Dynamic Server with WebSphere

Figure 9-9 WebSphere V5 Test Environment configuration window

3. In the WebSphere V5 configuration window, select the Paths tab.

4. Now add the Informix JDBC driver to the Class Path entries by clicking Add External
JARs. In the file browser select the correct ifxjdbc.jar file and click Open (Figure 9-9).

5. Save the server configuration into the demo Web project and close the server
configuration window (important!).

Now we build the Web service itself:

1. Open the J2EE perspective and click the file ITSOCustomerService.dadx

2. Select File --> New --> Other --> Web Services --> Web Service. Click Next.

3. In the Web Services window select as the Web service type: DADX Web Service. In
addition, check the Start Web service in Web project option and the options, Overwrite
files without warning and Create folders when necessary. Click Next.

4. In the Web Service Deployment Settings leave the default values and as the Web
project choose InformixXMLDemo. Click Next.

5. The DADX file in the Web Service DADX File Selection window should be already set
to:

/InformixXMLDemo/Java Source/groups/ITSOCustomerService/ITSOCustomerService.dadx

If not, enter this file name or use the Browse button to navigate to that file. Click Next.
Chapter 9. IDS, Web services, and WebSphere 227

6. In the Web Service DADX Group properties window verify that the DB driver and the
DB URL input fields are set correctly (see Section , “Create a DADX group and define its
properties” on page 224). Click Next.

7. In the Web Service Binding Proxy Generation window, just click Finish, since we don’t
want to generate a Java proxy for testing purposes. We’re going to use the built-in test
client of the WORF framework.

Figure 9-10 Test client for the DADX Web service: test of the insertOneCustomer method

Let’s test the newly created Web service with the built-in Web browser:

1. Open the Server perspective again.

2. Click the Open Web Browser icon located on the toolbar of Server Perspective window.

3. In the Web browser address field, enter the following URL:

http://localhost:9080/InformixXMLDemo/ITSOCustomerService/ITSOCustomerService.dadx/TEST

4. This URL will activate the WORF built-in test client and allows the access to the
predefined DADX Web service methods (see Figure 9-10 for the results of an
insertOneCustomer method test).

5. Alternatively you could also generate a WSDL file (Figure 9-11) for your DADX Web
service by opening the following URL in the Web browser:

http://localhost:9080/InformixXMLDemo/ITSOCustomerService/ITSOCustomerService.dadx/WSDL
228 Using Informix Dynamic Server with WebSphere

Figure 9-11 WSDL generated by the DADX Web service

DADX support for user defined routines / stored procedures
In addition to standard SQL statements like SELECT, INSERT, DELETE and UPDATE, the
WORF framework also supports the execution of user defined routines or stored procedures
in IDS. In order to do this, the framework utilizes (internally) the JDBC CallableStatement
class which is a very portable way of calling stored procedures and functions in database
servers.

Since this feature is unfortunately not supported through the interactive SQL builder in WSAD,
we need to either create a new DADX file or modify an existing one.

Before we go ahead with an example, let’s take a look a the DADX file syntax for stored
procedures/functions based on the XML schema for DADX files (see Example 9-5).

Example 9-5 DADX call operation (XML schema definition)

<element name="call">

 <annotation>
 <documentation>
 Calls a stored procedure.
 The call statement contains in, out, and in/out parameters using host variable
syntax.
 The parameters are defined by a list of parameter elements that are uniquely named
 within the operation.
Chapter 9. IDS, Web services, and WebSphere 229

 </documentation>
 </annotation>

 <complexType>
 <sequence>
 <element name="SQL_call" type="string"/>
 <element ref="dadx:parameter" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="dadx:result_set" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 <unique name="callParameterNames">
 <selector xpath="dadx:parameter"/>
 <field xpath="@name"/>
 </unique>

 <unique name="callResultSetNames">
 <selector xpath="dadx:result_set"/>
 <field xpath="@name"/>
 </unique>

</element>

As mentioned earlier, the WORF framework utilizes the JDBC java.sql.CallableStatement
interface for the execution of IDS user defined routines. Therefore the syntax for calling
routines in IDS this way should follow the JDBC guidelines. For a simple example in DADX
syntax how to call a user defined routine which doesn’t return any results, take a look at
Example 9-6.

Example 9-6 Simple UDR call in DADX syntax

<dadx:operation name="createOneCustomerSimple">
<dadx:documentation xmlns="http://www.w3.org/1999/xhtml">
</dadx:documentation>
<dadx:call>

<dadx:SQL_call>
<![CDATA[
 { call create_customer_simple (:fname, :lname, :company, :address1, :address2,
:city, :zipcode, :state, :phone)}
]]>

</dadx:SQL_call>
<dadx:parameter name="fname" type="xsd:string" kind="in"/>
<dadx:parameter name="lname" type="xsd:string" kind="in"/>
<dadx:parameter name="company" type="xsd:string" kind="in"/>
<dadx:parameter name="address1" type="xsd:string" kind="in"/>
<dadx:parameter name="address2" type="xsd:string" kind="in"/>
<dadx:parameter name="city" type="xsd:string" kind="in"/>
<dadx:parameter name="zipcode" type="xsd:string" kind="in"/>
<dadx:parameter name="state" type="xsd:string" kind="in"/>
<dadx:parameter name="phone" type="xsd:string" kind="in"/>

</dadx:call>
</dadx:operation>

If you have the need to return results back to the DADX Web service consumer you might
have different options:

� Starting with IDS 9 you can utilize multiple out parameters in the UDR parameter list. To
use these out parameters in combination with DADX you need to declare them as in/out
parameters and the Web service caller might have to supply dummy values (for example,
230 Using Informix Dynamic Server with WebSphere

zero for integer types) to make it work. This behavior seems to be IDS specific and doesn’t
apply to other databases. The UDR create_customer_out in Example 9-7 shows a simple
SPL UDR which uses one out parameter (newcustomernum). Example 9-8 shows the
correct DADX syntax for calling such a UDR. Notice the in/out option for the
newcustomernum parameter.

Example 9-7 IDS 9 UDR with an out parameter (in SPL)

create procedure create_customer_out (fname lvarchar, lname lvarchar,
company lvarchar, address1 lvarchar, address2 lvarchar,
city lvarchar, zipcode lvarchar, state lvarchar,
phone lvarchar, OUT customernum int)

define new_customernum int;
insert into customer values (0, fname, lname, company, address1,

address2, city, zipcode, state, phone);
let new_customernum = dbinfo('sqlca.sqlerrd1');
let customernum = new_customernum;

end procedure;

Example 9-8 DADX syntax fragment for the IDS UDR from Example 9-7

<dadx:operation name="createOneCustomer">
<dadx:documentation xmlns="http://www.w3.org/1999/xhtml">
</dadx:documentation>
<dadx:call>

<dadx:SQL_call>
<![CDATA[
 { call create_customer_out (:fname, :lname, :company, :address1, :address2,
:city, :zipcode, :state, :phone, :newcustomernum)}
]]>

</dadx:SQL_call>
<dadx:parameter name="fname" type="xsd:string" kind="in"/>
<dadx:parameter name="lname" type="xsd:string" kind="in"/>
<dadx:parameter name="company" type="xsd:string" kind="in"/>
<dadx:parameter name="userid" type="xsd:string" kind="in"/>
<dadx:parameter name="address1" type="xsd:string" kind="in"/>
<dadx:parameter name="address2" type="xsd:string" kind="in"/>
<dadx:parameter name="city" type="xsd:string" kind="in"/>
<dadx:parameter name="zipcode" type="xsd:string" kind="in"/>
<dadx:parameter name="state" type="xsd:string" kind="in"/>
<dadx:parameter name="phone" type="xsd:string" kind="in"/>
<dadx:parameter name="newcustomernum" type="xsd:int" kind="in/out"/>

</dadx:call>
</dadx:operation>

� You could simply return a result for a UDR or even complete results sets. See the
following important tip regarding the support in IDS for that feature.

Tip: This restriction seems to be specific to the DADX/IDS combination, since a similar
restriction had been already removed in the IBM Informix JDBC 2.21.JC4 driver (which had
been used for the examples in this redbook) and is no longer valid. Callers need to use
registerOUTparameter() only and they do not need to use setXXX() method on OUT
parameters. A future version of DADX will very likely address this change in the Informix
JDBC driver.
Chapter 9. IDS, Web services, and WebSphere 231

To give you already the information on how the DADX syntax for an UDR what a result set
should look like, take a look at the SPL UDR in Example 9-9 and the associated DADX
syntax in Example 9-10. Notice the display label syntax in the stored procedure
(returning ... as ...) and also the result_set definition and usage in the DADX file
fragment.

Example 9-9 IDS 9 stored procedure with display labels for the result set

create procedure read_address (lastname char(15))
 returning char(15) as pfname, char(15) as plname,
 char(20) as paddress1, char(15) as pcity,
 char(2) as pstate, char(5) as pzipcode;

define p_fname, p_city char(15);
define p_add char(20);
define p_state char(2);
define p_zip char(5);
select fname, address1, city, state, zipcode

into p_fname, p_add, p_city, p_state, p_zip
from customer
where lname = lastname;

return p_fname, lastname, p_add, p_city, p_state, p_zip;
end procedure;

Example 9-10 DADX syntax fragment for the UDR in Example 9-9

<dadx:result_set_metadata name="customerAddress" rowName="customer1">
<dadx:column name="pfname" type="VARCHAR" nullable="true" />
<dadx:column name="plname" type="VARCHAR" nullable="true" />
<dadx:column name="paddress1" type="VARCHAR" nullable="true" />
<dadx:column name="pcity" type="VARCHAR" nullable="true" />
<dadx:column name="pstate" type="VARCHAR" nullable="true" />
<dadx:column name="pzipcode" type="VARCHAR" nullable="true" />

</dadx:result_set_metadata>

<dadx:operation name="readOneCustomer">
<dadx:documentation xmlns="http://www.w3.org/1999/xhtml">
</dadx:documentation>
<dadx:call>

<dadx:SQL_call>
<![CDATA[
 { call read_address (:lname) }
]]>

</dadx:SQL_call>
<dadx:parameter name="lname" type="xsd:string" kind="in"/>
<dadx:result_set name="customer1" metadata="customerAddress" />

</dadx:call>
</dadx:operation>

Tip: IDS 9.40 supports a new feature which allows that the columns of a result set for a
user defined routine can have display labels. The WORF framework requires the usage of
those labels in IDS or one couldn’t use UDRs with result sets. Unfortunately there seem to
be an issue in the release 9.40.UC1 and 9.40.TC1 of IDS which doesn’t return the display
labels correctly in combination with java.sql.CallableStatements. Therefore we can only
show how the DADX syntax should look like, but we have not been able to test it.

This issue will be fixed in IDS 9.40.UC2 and 9.40.TC2.
232 Using Informix Dynamic Server with WebSphere

DADX Web service deployment to a standalone WebSphere V5 server
First, you need to export your InformixXMLDemoEAR file to the file system by following the
steps below:

1. Before you export your EAR file, verify the group.properties file in the
InformixXMLDemo/Java Source/groups.ITSOCustomerService folder if the JDBC
connect information are correct for the deployment server.

2. Open the J2EE perspective and switch to the J2EE Navigator window.

3. Right-click the InformixMLDemoEAR folder and select Export --> EAR file. Click Next.

4. In the EAR Export window use the Browse button to select an export directory in your file
system. You can also select all three Options (Export source files, Overwrite existing
files without warning, and Include project build paths and meta-data files) if required.
Click Finish.

5. Now you can install the exported InformixXMLDemoEAR.ear file in WAS V5 by following
the guidelines in Chapter 5 of this redbook.

6. As soon as the Web service has been installed in the deployment WebSphere server you
can re-generate the WSDL file by using the following:
http://<hostname>:<portnumber>/InformixXMLDemo/ITSOCustomerService/ITSOC
ustomerService.dadx/WSDL and save it into the
InformixXMLDemo/wsdl/ITSOCustomerService folder if required.

9.3 Using IDS 9 as a Web service consumer
In the previous sections we described in detail how to use the WebSphere product family to
enable IBM Informix IDS as a Web service provider.

Now we would like to focus on IDS as a Web service consumer.

This section is intended as a how-to-guide to use IDS 9 as a Web service consumer. It
requires a basic knowledge of the Java language, for example you should know how to edit
and compile a Java program. You should also have a basic understanding of the IDS 9
extensibility features.

Why IDS as a Web service consumer?
In addition to provide Web services, it can be very interesting for an application developer to
integrate existing Web services. Those Web services could be either special B2B scenarios
or public accessible services like currency conversion, stock ticker information, news, weather
forecasts, search engines, and many more. Wouldn’t it be great to have dynamic access to an
official currency conversion service on a database level if the application needs to deal with
this information? Or if an application wants to relate actual business data stored in an IDS
database against news from news agencies?

Sources for public accessible Web services are, for example:

http://www.webservicelist.com
http://www.xmethods.net

Web services rely on very simple open standards like XML and SOAP and be accessed
through any kind of client application. Typically those applications are written in Java, C++, or
C#. For somebody who already has an existing application which is based on an SQL
database and also already utilizes business logic in the database server through user defined
routines, developers might want to integrate access to Web services on the SQL level.
Chapter 9. IDS, Web services, and WebSphere 233

http://www.webservicelist.com or http://www.xmethods.net
http://www.xmethods.net

Some of the advantages of having Web services accessible from SQL would include easy
access through the SQL language and standardized APIs (for example, ODBC, JDBC),
moving the Web service results closer to the data processing in the database server which
could speed up applications, and providing Web service access to the non Java or C++
developers.

What are the basic Web service consumer requirements for IDS?
In order to be able to call a Web service from within IDS, you need to be able to:

� Construct a SOAP message based on a given Web service description and

� Send this SOAP message to the Web service provider via the required protocol (typically
HTTP)

� Finally, be able to receive the Web service response, parse it, and handle the results on
an SQL level.

All of this needs to be executed from the IDS SQL layer to achieve the required portability.

Why IDS 9 and not IDS 7?
Although IDS 7 supports stored procedures with an already very powerful stored procedure
language (SPL), it is somewhat limited if there is a need, for example, to access external
networks or include external libraries.

IDS 9 through its very powerful DataBlade technology allows the easy integration of external
routines written in C or Java into so called user defined routines (UDRs). Those UDRs can
also be written in SPL. So one can say that UDRs are the generalized description of SPL, C,
and Java stored procedures. In addition to the very flexible options of writing UDRs, IDS 9
also supports new data types and user defined types (UDTs).

Having these extensibility technologies available in IDS 9 in combination with the underlying,
proven, high-end OLTP architecture of IDS 7 makes it a perfect choice to develop some
database extensions which will provide access to Web services across standard network
protocols.

Since you have the choice as an IDS 9 developer to either use C or Java for the development
of Web service consumer routines, you could either include, for example, a C based SOAP
framework or a Java based SOAP framework in your final solution.

To be as much platform independent as possible, and also to give you a kick-start on this
topic, we chose the Apache AXIS Java framework for the development of IDS 9 Web service
consumer routines.

The Apache AXIS framework
So what is the Apache AXIS framework?

The Axis framework is a Java-based, open source implementation of the latest SOAP
specification, SOAP 1.2, and SOAP with Attachments specification from the Apache Group.
The following are the key features of this AXIS framework:

� Flexible messaging framework: Axis provides a flexible messaging framework that
includes handlers, chain, serializers, and deserializers. A handler is an object processing
request, response, and fault flow. A handler can be grouped together into chains and the
order of these handlers can be configured using a flexible deployment descriptor.

� Flexible transport framework: Axis provides a transport framework that helps you create
your own pluggable transport senders and transport listeners.
234 Using Informix Dynamic Server with WebSphere

� Data encoding support: Axis provides automatic serialization of a wide variety of data
types as per the XML Schema specifications and provides a facility to use your own
customized Serializer and Deserializer.

� Additional features: Axis provides full support for WSDL as well as Logging, Error, and
Fault Handling mechanisms.

Axis also provides a simple tool set to easily generate Java classes based on given Web
service description files (WSDL) and has tools to monitor Web services.

The latest Axis distribution and more detailed information about Axis can be obtained at:

http://ws.apache.org/axis

9.3.1 IDS 9 and J/Foundation
In this section we present an overview of these topics.

Overview
IDS 9 with J/Foundation enables database developer's to write server-side business logic
using the Java language. Java User Defined Routines (UDRs) have complete access to the
leading extensible database features of the IDS 9 database. Making IDS 9 the ideal platform
for Java database development.

In addition to Java UDRs, IDS conforms to the SQLJ standard for Java-stored procedures,
enabling the use of the standard Java packages that are included in the Java Development Kit
(JDK). Writing UDRs in Java delivers far more flexible applications that can be developed
faster than C, and more powerful and manageable than stored procedure languages.

IDS with J/Foundation provides these advantages over other Java based solutions:

� Better performance and scalability
� Fully certified and optimized standard JVMs for each supported platform
� Simpler application integration
� Easy migration of existing Java applications
� Transaction control through stored data

J/Foundation is provided with IDS on many of the supported IDS 9.40 platforms. Supported
platforms include Sun Solaris 32 bit, HP-UX 32 bit, Microsoft Windows 2000, Windows 2003,
Window XP, Linux, IBM AIX, SGI Irix, and Compaq Tru 64.

Technology
IDS 9 provides the infrastructure to support Java UDRs. The database server binds SQL
UDR signatures to Java executables and provides mapping between SQL data values and
Java objects so that the database server can pass parameters and retrieve returned results.
IDS 9 also provides support for data type extensibility and sophisticated error handling.

Java UDRs execute on specialized virtual processors called Java Virtual Processors (JVPs).
IDS 9 embeds a Java Virtual Machine (JVM) in the code of each JVP. The JVPs are
responsible for executing all server-based Java UDRs and applications.

Although the JVPs are mainly used for Java-related computation, they have the same
capabilities as a CPU VP, and they can process all types of SQL queries. This eliminates the
need to ship Java-related queries back and forth between CPU VPs and JVPs.

For more technical details of J/Foundation, refer to the IBM Informix J/Foundation
Developer’s Guide.
Chapter 9. IDS, Web services, and WebSphere 235

9.3.2 Installation and configuration of IDS 9 and AXIS for the examples

AXIS installation and preparation
First, download the AXIS release from http://ws.apache.org/axis/releases.html — the
release we have been using for the examples below is based on AXIS release 1.1rc2. After
downloading the release, extract the AXIS distribution into a directory of your choice (for
example, directly into the C:\ directory). Make sure that you also extract the folder structure.
If you are finished, you should have an <install_dir>\axis-1_1RC2 directory.

In addition to AXIS we also need a JAXP 1.1 XML compliant parser. The recommended one
is the Apache Xerces: Just download the latest stable version from
http://xml.apache.org/dist/xerces-j (for example, Xerces-J-bin.2.4.0.zip) and extract it
into a local directory (for example, C:\). Eventually you should have an
<install_dir>\xerces-2_4_0 directory.

IDS 9 with J/Foundation configuration for AXIS
Since the AXIS Framework is Java based, we need to configure IDS 9 for Java UDRs. Before
we go ahead, make sure that you’re using an IDS 9 with J/Foundation. You can verify this by
checking the $INFORMIXDIR/extend directory for the existence of a krakatoa subdirectory. If
this directory is missing you don’t have the correct version of IDS.

First, we need to enable J/Foundation for your IDS 9 instance:

1. Create an sbspace to hold the Java JAR files. The database server stores Java JAR files
as smart large objects in the system default sbspace. If you do not already have a default
sbspace, you must create one. After you create the sbspace, set the SBSPACENAME
configuration parameter in the ONCONFIG file to the name that you gave to the sbspace.

2. Add (or modify) the Java configuration parameters in the ONCONFIG configuration file.
The ONCONFIG configuration file ($INFORMIXDIR/etc/$ONCONFIG) includes the
following configuration parameters that affect Java code:

– JDKVERSION
– JVPPROPFILE
– JVMTHREAD
– JVPCLASSPATH
– JVPHOME
– JVPJAVALIB
– JVPJAVAVM
– JVPLOGFILE
– JVPARGS
– VPCLASS

Make sure that these parameters exist or are not un-commented. For an example
ONCONFIG file fragment, see Example 9-11.

Example 9-11 J/Foundation settings for the AXIS framework

VPCLASS jvp,num=1 # Number of JVPs to start with

JVPJAVAHOME C:\informix\extend\krakatoa\jre# JDK installation root directory
JVPHOME C:\informix\extend\krakatoa# Krakatoa installation directory

JVPLOGFILE C:\informix\extend\krakatoa\ol_jvp.log# VP log file

Tip: All of the configuration and installation information in this section is based on Windows
2000, but can be easily also applied to other platforms like Linux or UNIX.
236 Using Informix Dynamic Server with WebSphere

http://ws.apache.org/axis/releases.html

JVPPROPFILE C:\informix\extend\krakatoa\.jvpprops_alexk# JVP property file

JDKVERSION 1.3 # JDK version supported by this server

The path to the JRE libraries relative to JVPJAVAHOME
JVPJAVALIB \bin\

JVPJAVAVM hpi;server;verify;java;net;zip;jpeg

Classpath to use upon Java VM start-up (use _g version for debugging)
JVPCLASSPATH file:C:\informix\extend\krakatoa\jvp_classpath

JVPARGS -Djava.security.policy=C:\informix\extend\krakatoa\informix.policy

In the foregoing example, we also define the JVPCLASSPATH to point to a file in the
krakatoa directory. Having an external file to contain the JVP classpath information gives
us more flexibility regarding the maximal length of the JVPCLASSPATH since the length in
the ONCONFIG file is otherwise limited to 256 characters. See Example 9-12 for an AXIS
compliant classpath file.

Example 9-12 jvp_classpath file for the AXIS integration

C:\informix\extend\krakatoa\krakatoa.jar;C:\informix\extend\krakatoa\jdbc.jar;C:\informix\e
xtend\krakatoa\axis.jar;C:\informix\extend\krakatoa\jaxrpc.jar;C:\informix\extend\krakatoa\
saaj.jar;C:\informix\extend\krakatoa\commons-logging.jar;C:\informix\extend\krakatoa\common
s-discovery.jar;C:\informix\extend\krakatoa\wsdl4j.jar;C:\informix\extend\krakatoa\xercesIm
pl.jar;C:\informix\extend\krakatoa\xmlParserAPIs.jar;C:\informix\extend\krakatoa\axis-ant.j
ar;C:\informix\extend\krakatoa\log4j-1.2.4.jar;

In addition, we also need to modify the default security settings for the Java VM.

Example 9-13 The informix.policy file with AXIS support

grant codeBase "file:/C:/informix/extend/krakatoa/-" {
permission java.security.AllPermission;

};

grant {
permission java.io.SerializablePermission "enableSubstitution";
permission java.lang.RuntimePermission "shutdownHooks";
permission java.lang.RuntimePermission "setContextClassLoader";
permission java.lang.RuntimePermission "reflectionFactoryAccess";
permission java.lang.RuntimePermission "unsafeAccess";
permission java.net.NetPermission "specifyStreamHandler";
permission java.lang.reflect.ReflectPermission "suppressAccessChecks";

Tip: In our examples we’re copying the AXIS class libraries directly into the
$INFORMIXDIR\extend\krakatoa directory to avoid any changes to the informix.policy file. I
would be probably a cleaner approach to keep the AXIS files in their original directories
and adjust the informix.policy file to allow access for the J/Foundation class loader.

Tip: Normally you only need to define the security policies in an informix.policy file in
the JVPHOME directory. Due to a minor bug in IDS 9.40UC1 and 9.40.TC1 it is not
being read by the database server. The workaround is to define the JVPARGS
ONCONFIG parameter to point to a policy file (as in Example 9-11). The policy file for
the usage with AXIS should look like Example 9-13.

This problem will be fixed in IDS 9.40.UC2 and IDS 9.40.TC2.
Chapter 9. IDS, Web services, and WebSphere 237

permission java.util.PropertyPermission "user.language","write";
permission java.util.PropertyPermission "user.dir","write";
permission java.security.SecurityPermission "getPolicy";
permission java.util.PropertyPermission "java.naming.factory.initial","write";
permission java.util.PropertyPermission "java.naming.provider.url","write";

};

grant {
permission java.util.PropertyPermission "java.protocol.handler.pkgs","write";

};

3. Create the JVP properties file (optional). It is optional to define the JVP properties, but
they are often used for debugging Java UDRs. You will find a template file in the
$INFORMIXDIR\extend\krakatoa directory.

4. Set environment variables.You do not need any extra environment variables to execute
UDRs written in Java code. However, since we are developing Java UDRs, you must
include JVPHOME/krakatoa.jar in your CLASSPATH environment variable so that JDK can
compile the Java source files that use Informix Java packages. For a complete description
of the CLASSPATH settings for AXIS UDR development, refer to “Java classpath settings
for AXIS UDR development” on page 238.

5. Now copy all Java class libraries from the AXIS distribution (for example,
c:\axis-1_1RC2\lib) into the $INFORMIXDIR\extend\krakatoa directory.

6. Finally, copy the xercesImpl.jar and the xmlParserAPIs.jar class library from the Xerces
distribution (for example, C:\xerces-2_4_0) also into the $INFORMIXDIR\extend\krakatoa
directory.

Java classpath settings for AXIS UDR development
The Java classpath for developing the AXIS based UDRs should look like the one in
Example 9-14.

Example 9-14 Classpath settings for AXIS UDR development

C:\axis-1_1RC2\lib\axis.jar;C:\axis-1_1RC2\lib\jaxrpc.jar;C:\axis-1_1RC2\lib\saaj.jar;c:\ax
is-1_1RC2\lib\commons-logging.jar;C:\axis-1_1RC2\lib\commons-discovery.jar;C:\axis-1_1RC2\l
ib\wsdl4j.jar;C:\xerces-2_4_0\xercesImpl.jar;C:\xerces-2_4_0\xmlParserAPIs.jar;C:\infor
mix\extend\krakatoa\krakatoa.jar;.

9.3.3 The basic IDS Web service consumer development steps
Before we start to access some Web services from IDS 9, let’s consider the required steps:

1. Obtain access to the WSDL file for the desired Web service, either by downloading it to the
local server or have access to it via the http protocol.

2. Use the AXIS WSDl2Java tool to generate the Web service Java class files.

3. Compile the class files from step 2 (no coding needed!)

4. Write a small Java UDR wrapper to access the generated AXIS classes. You can take the
Java UDR wrappers from the examples below as templates for your own projects.

5. Create a Java jar file which should contain the generated AXIS class files and your Java
UDR wrapper class.

6. Write a simple SQL script to register your Java UDR in the IDS database of your choice.

7. Register your Java UDR in the database of your choice with the SQL script from step 6.

8. Run and test your Java UDRs to access the Web services.
238 Using Informix Dynamic Server with WebSphere

9.3.4 The AXIS WSDL2Java tool
The WSDL2Java tool which part of the org.apache.axis.wsdl.WSDL2Java class is the starting
point to generate Java classes from a given WSDL file.

Its normally being executed by the following command line:

java org.apache.axis.wsdl.WSDL2Java <WSDL-file-URL>

Example 9-15 The wsdl2java.bat file (for Windows platforms)

@echo off
SET TMPCLASSPATH=%CLASSPATH%
SET CLASSPATH=.
SET CLASSPATH=%CLASSPATH%;C:\axis-1_1RC2\lib\axis.jar
SET CLASSPATH=%CLASSPATH%;C:\axis-1_1RC2\lib\jaxrpc.jar
SET CLASSPATH=%CLASSPATH%;C:\axis-1_1RC2\lib\saaj.jar
SET CLASSPATH=%CLASSPATH%;C:\axis-1_1RC2\lib\commons-logging.jar
SET CLASSPATH=%CLASSPATH%;C:\axis-1_1RC2\lib\commons-discovery.jar
SET CLASSPATH=%CLASSPATH%;C:\axis-1_1RC2\lib\wsdl4j.jar
SET CLASSPATH=%CLASSPATH%;C:\xerces-2_4_0\xercesImpl.jar
SET CLASSPATH=%CLASSPATH%;C:\xerces-2_4_0\xmlParserAPIs.jar
SET CLASSPATH=%CLASSPATH%;C:\axis-1_1RC2\lib\axis-ant.jar
SET CLASSPATH=%CLASSPATH%;C:\axis-1_1RC2\lib\log4j-1.2.4.jar
echo ---
echo --= Classpath has been set for AXIS needs =--
echo ---
java org.apache.axis.wsdl.WSDL2Java -p %2 -v %1
SET CLASSPATH=%TMPCLASSPATH%

The wsdl2java.bat script file has two parameters: the WSDL file URL and a package name.
The package name becomes also a local subdirectory to the directory in which you’re
executing the wsdl2java.bat file. The WSDL file URL can be either a local filename or an URL
on the Internet (for example, http://www.someserver.com/webserviceinfo/myservice.wsdl).

9.3.5 A simple IDS Web service example — Currency Exchange project
So let’s start with our first example project, the currency exchange Web service from
http://www.xmethods.net — this Web service allows the currency conversion between
different foreign currencies. You only have to provide the source currency country name and
then the target currency country name.

Now follow the development steps we have outlined in 9.3.3, “The basic IDS Web service
consumer development steps” on page 238:

1. Obtain a copy of the Web service WSDL file:

The WSDL file for this Web service can be obtained from
http://www.xmethods.net/sd/2001/CurrencyExchangeService.wsdl — You can either
download the WSDL file to your local disk or use the above URL directly as input to the
WSDL2Java tool. For your convenience we have also included the WSDL file in
Example 9-16.

Tip: To make the execution of this tool easier for you throughout the examples in the
following sections, we suggest to create a small batch/script file like the one shown in
Example 9-15. Call this file (in a Windows environment) wsdl2java.bat.
Chapter 9. IDS, Web services, and WebSphere 239

http://www.xmethods.net
http://www.xmethods.net/sd/2001/CurrencyExchangeService.wsdl

Example 9-16 The CurrencyExchange WSDL file

<?xml version="1.0"?>
<definitions name="CurrencyExchangeService"
targetNamespace="http://www.xmethods.net/sd/CurrencyExchangeService.wsdl"
xmlns:tns="http://www.xmethods.net/sd/CurrencyExchangeService.wsdl"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<message name="getRateRequest">
<part name="country1" type="xsd:string"/>
<part name="country2" type="xsd:string"/>

</message>
<message name="getRateResponse">

<part name="Result" type="xsd:float"/>
</message>
<portType name="CurrencyExchangePortType">

<operation name="getRate">
<input message="tns:getRateRequest" />
<output message="tns:getRateResponse" />

</operation>
</portType>
<binding name="CurrencyExchangeBinding"

type="tns:CurrencyExchangePortType">
<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="getRate">

<soap:operation soapAction=""/>
<input >

<soap:body use="encoded"
namespace="urn:xmethods-CurrencyExchange"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output >

<soap:body use="encoded"
namespace="urn:xmethods-CurrencyExchange"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>
<service name="CurrencyExchangeService">

<documentation>Returns the exchange rate between the two
currencies</documentation>

<port name="CurrencyExchangePort"
binding="tns:CurrencyExchangeBinding">

<soap:address location="http://services.xmethods.net:80/soap"/>
</port>

</service>
</definitions>

While looking at the WSDL file, you might have already noticed that the two input
parameter (country1 and country2) are of type String and the result is of type float.

2. Now we need to generate the AXIS Java classes for our Web service.

To do this, create a directory of your choice (for example, C:\Redbook2003\AXIS) and
copy the WSDL file into this directory.

From a command line window, run the prepared wsdl2java.bat scrip file with the following
options:

wsdl2java CurrencyExchangeService.wsdl CurrencyExchange
240 Using Informix Dynamic Server with WebSphere

This will generate a subdirectory called CurrencyExchange, and this subdirectory should
contain the following files: CurrencyExchangeBindingStub.java,
CurrencyExchangePortType.java, CurrencyExchangeService.java,
CurrencyExchangeServiceLocator.java (Figure 9-12).

Figure 9-12 Generating and compiling the CurrencyExchange AXIS classes

3. Now you need to compile the generated Java classes from step 2 by simply executing:

javac CurrencyExchange*.java

Before you execute the Java compiler, make sure that you have set the CLASSPATH
environment variable correctly (see Example 9-14) and also that you have the Java
compiler in your PATH environment variable (for example, C:\jdk1.4.0\bin).

4. In order to utilize the generated AXIS class files for the CurrencyExchange Web service
we need to write a simple Java wrapper UDR to call the required methods.

So first take a look at the final code in Example 9-17.

Example 9-17 CurrencyExchangeUDRs..java

import CurrencyExchange.*;

public class CurrencyExchangeUDRs
{

public static double currencyExchange(String country1, String country2)
throws Exception

{
double RetVal;

CurrencyExchange.CurrencyExchangeService service =
new CurrencyExchange.CurrencyExchangeServiceLocator();

CurrencyExchange.CurrencyExchangePortType port =

service.getCurrencyExchangePort();

RetVal = port.getRate(country1, country2);

return RetVal;
}

};
Chapter 9. IDS, Web services, and WebSphere 241

The currencyExchange method implements the Web service API by accepting the two
country descriptions as Java strings and returns a Java double type.

First, we need to create a service instance of type CurrencyExchangeService which can
be achieved by creating a new CurrencyExchangeServiceLocator object.

Then we need to obtain the port object of type CurrencyExchangePortType from the
service object.

And finally we need to call the getRate(String, String) method to generate the SOAP
message which is then being sent to the Web service provider.

The getRate() method is defined in the CurrencyExchangeBindingStub.java file.

Save the Java code from Example 9-17 into your example directory (for example,
C:\RedBook2003\AXIS) as CurrencyExchangeUDRs.java.

Now compile the CurrencyExchangeUDRs.java file:

javac CurrencyExchangeUDRs.java

Figure 9-13 Compile the UDR wrapper and create the jar file

5. In preparation for the registration in your IDS 9 database we need to pack all of our
classes (generated AXIS classes plus the UDR wrapper) into a Java jar file. To do this,
execute this command:

jar cvf CurrencyExchange.jar CurrencyExchangeUDRs.class CurrencyExchange*.class

(Also see the foregoing Figure 9-13.)

6. Now we need to create a simple SQL script to first store our CurrencyExchange.jar file
which contains the UDR wrapper plus the generated AXIS classes into the database and
then connect the Java classes with the SQL layer by defining a Java UDR with the
CREATE FUNCTION SQL statement.

You can use the SQL script from Example 9-18 as a template for similar Java UDRs in the
future. So on the SQL level we’re naming our user defined routine simply
CurrencyExchange. This routine takes two LVARCHARs as parameters and returns a SQL
FLOAT data type which matches the Java double type.
242 Using Informix Dynamic Server with WebSphere

Example 9-18 The register_CurrencyExchange.sql script

execute procedure
install_jar('file:C:/RedBook2003/AXIS/CurrencyExchange.jar','CurrencyExchange');

execute procedure ifx_allow_newline('t');

begin work;

create function CurrencyExchange (lvarchar, lvarchar)
returns float as exchange_rate
external name 'CurrencyExchange:CurrencyExchangeUDRs.currencyExchange(java.lang.String,
java.lang.String)'

language java;

alter function CurrencyExchange (lvarchar, lvarchar)
with (add parallelizable);

grant execute on function CurrencyExchange (lvarchar, lvarchar) to public;

commit work;

The install_jar procedure stores the CurrencyExchange.jar into a smart blob in the default
smart blob space in the IDS 9 instance and gives it the symbolic name
CurrencyExchange. which can be used in the create function statement to reference the
jar file. See Figure 9-14.

Figure 9-14 Register the Java UDR with stores_demo database
Chapter 9. IDS, Web services, and WebSphere 243

The create function finally registers the Java UDR with the database and makes it
available to any SQL compliant application.

7. In order to register your CurrencyExchange UDR you should have a database with logging
enabled. Assuming you might want to register your UDR with the IDS stores_demo
database you only have to run the SQL script by executing:

dbaccess stores_demo register_CurrencyExchange

See also Figure 9-14.

8. Now we’re ready to test the Java UDR to call the Web service. Before you can test the
UDR make sure that you’re connected to the Internet. Then, for example, start dbaccess
to connect to the stores database and execute the CurrencyExchange function. Since
we’re using SQL and SQL doesn’t differentiate between lowercase and uppercase letters
we just simply type:

execute function currencyexchange(“<country1>”, “<country2”>).

See Figure 9-15 for some sample values and results.

Figure 9-15 Test of the currencyexchange Java UDR

For additional valid values for the country parameters, consult the CurrencyExchange
Web service description on the Web site:

http://www.xmethods.net
244 Using Informix Dynamic Server with WebSphere

http://www.xmethods.net

9.3.6 A complex IDS Web service example — Google search
Since we have now learned the basic steps to use IDS 9 as a Web service consumer, let’s
take a look at a slightly more complex example.

This time we are going to implement a Java UDR which accesses the Google search Web
service API. In order to be able to use that service you need to register at the Google API
Web site at http://www.google.com/apis to obtain a license key which allows up to 1000
Google searches a day via their Web service interface. In a second preparation step you
should download the Google API developer’s kit which also contains the WSDL file for their
Web service. Due to its length we haven’t included this WSDL as an example in the redbook.

The Google Web service provides three different callable methods:

� doGoogleSearch (key, q, start, maxResults, filter, restrict, safeSearch, lr, ie, oe)

– Returns doGoogleSearchResponse

� doGetCachedPage (key, url)

– Returns doGetCachedPageResponse

� doSpellingSuggestion (key, phrase)

– Returns doSpellingSuggestionResponse

For the following example we’re just implementing the first and most important method:
doGoogleSearch.

Let’s take a brief look at the parameters of the doGoogleSearch function:

Table 9-1 doGoogleSearch parameters

Tip: If you are behind a firewall, then you might have to set additional properties for the
J/Foundation Java VM via the JVPARGS variable.

So if you typically use a socks compliant proxy, replace the JVPARGS value in the
ONCONFIG file with the following line:

-Djava.security.policy=C:\informix\extend\krakatoa\informix.policy;-DsocksProxyHost=
<SocksProxyhostname>;-DsocksProxyPort=<socksProxyPortvalue>

If you’re using a standard HTTP proxy, you might have to use the following value for
JVPARGS instead:

-Djava.security.policy=C:\informix\extend\krakatoa\informix.policy;-Dhttp.proxyHost=
<httpProxyhostname>;-Dhttp.proxyPort=<httpProxyPortvalue>

For more details about proxy support in the Java VM, consult this Web site:

http://java.sun.com/j2se/1.4.1/docs/guide/net/properties.html

Parameter name Type Function

key string License key from Google

q string Search string

start int Start result (begins with 0)

maxResults int Number of results per query. Maximum is 10.

filter boolean Automatic Google search results filtering
Chapter 9. IDS, Web services, and WebSphere 245

http://www.google.com/apis
http://java.sun.com/j2se/1.4.1/docs/guide/net/properties.html

Out of those parameters we choose q, start, restrict and lr for the Java wrapper UDR which
we will name GoogleSearch. Since the GoogleSearch UDR needs to able to return multiple
resultsets back to the caller we need to write an iterator UDR in Java.

What is an iterator function? An iterator function returns an active set of items. Each iteration
of the function returns one item of the active set. Such a function is normally associated with
a cursor in the calling program. It can be also executed within an SQL script by just do an
EXECUTE FUNCTION call or in combination with an INSERT statement. An iterator function
is similar to an SPL function that contains the RETURN WITH RESUME statement. For more
details on iterator functions and how to implement them in Java, take a look at the IBM
Informix Creating User-Defined Routines and User-Defined Data Types user guide and the
IBM Informix J/Foundation Developer’s Guide.

For our code example we assume that we do have a directory C:\RedBook2003\AXIS which
already contains the GoogleSearch.wsdl file. Now we have to follow again the eight simple
development steps to create our GoogleSearch() Java UDR:

1. We can already skip step 1, since we already obtained and copied the GoogleSearch.wsdl
file into our working directory.

Figure 9-16 Generate and compile the AXIS classes for the Google search service

2. From a command line window, run the prepared wsdl2java.bat scrip file with the options:

wsdl2java GoogleSearch.wsdl Google

This will generate a subdirectory called Google and this subdirectory should contain the
following files: DirectoryCategory.java, GoogleSearchBindingStub.java,
GoogleSearchPort.java, GoogleSearchResult.java, GoogleSearchService.java,
GoogleSearchServiceLocator.java, ResultElement.java.

restrict string Restricts the search to a subset of the Google Web index.

safeSearch boolean Enables filtering of adult content in the search results

lr string Restricts the search to documents within one or more languages.

ie string This parameter has been deprecated and is ignored

oe string This parameter has been deprecated and is ignored

Parameter name Type Function
246 Using Informix Dynamic Server with WebSphere

3. Now you need to compile the generated Java classes from step 2 by simply executing

javac Google*.java

Before you execute the Java compiler, make sure that you have set the CLASSPATH
environment variable correctly (see Example 9-14) and also that you have the Java
compiler in your PATH environment variable (for example, C:\jdk1.4.0\bin).

4. Now we need to write the Java wrapper UDR to call the AXIS methods. The procedure is
basically the same to the simple example in the previous section, except that we need to
write a slightly more complex iterator function. Use the following code in Example 9-19 as
a template for similar routines.

Example 9-19 The GoogleUDRs.java file

import Google.*;
import com.informix.udr.UDRManager;
import com.informix.udr.UDREnv;
import com.informix.udr.UDRLog;

public class GoogleUDRs
{

public int max_results;
public int counter;
public Google.ResultElement[] results;

public static String GoogleSearch
(String searchstring, int start, String language,

String country_topic) throws Exception
{

String New_RetVal;

UDREnv env = (UDREnv) UDRManager.getUDREnv();
int iter = env.getSetIterationState();
UDRLog log = (UDRLog) env.getLog();

New_RetVal = new String();

if (iter == UDREnv.UDR_SET_INIT)
{

 GoogleUDRs state = new GoogleUDRs();

state.counter = 0;
state.max_results = 0;

 Google.GoogleSearchService service =

new Google.GoogleSearchServiceLocator();

 Google.GoogleSearchPort port = service.getGoogleSearchPort();

 Google.GoogleSearchResult RetVal = (Google.GoogleSearchResult)

port.doGoogleSearch("<your_Google_license_key>",
searchstring, start, 10, true, country_topic,
false, language, null, null);

state.results = RetVal.getResultElements();

state.max_results = state.results.length;

env.setUDRState(state);
 env.setSetIterationIsDone(false);
Chapter 9. IDS, Web services, and WebSphere 247

 return null;
}
else if (iter == UDREnv.UDR_SET_END)
{

 env.setSetIterationIsDone(true);
 return null;

}
else if (iter == UDREnv.UDR_SET_RETONE)
{

GoogleUDRs state = (GoogleUDRs)env.getUDRState();

if (state.counter < state.max_results)
{

New_RetVal = "ROW (\"" +
state.results[state.counter].getTitle() + "\",\"" +
state.results[state.counter].getSnippet() + "\",\"";

New_RetVal = New_RetVal +
state.results[state.counter].getSummary() + "\",\"" ;

New_RetVal = New_RetVal +
state.results[state.counter].getURL() + "\"";

 New_RetVal = New_RetVal + ")";

state.counter++;

env.setSetIterationIsDone(false);
env.setUDRState(state);
return New_RetVal;

}
else
{

env.setSetIterationIsDone(true);
return null;

}
}
return null;

}
};

If you take a closer look at the code above you will notice that this iterator routine supports
three states: an INIT state in which we initialize everything and also call the
doGoogleSearch() method, an RETONE state which is being used to return one Google
search result row at a time and finally an END state which is being called to do the typical
housekeeping of an routine before we return the control to the caller.

In between every call of the routine, the state of the routine, including the row counter, for
example, is being saved until the next call. This is being achieved by utilizing the
com.informix.udr.UDREnv and the com.informix.udr.UDRManager packages which
are part of J/Foundation.

Since we want to return multiple Google.ResultElement components we’re also
constructing the string representation of a ROW data type. Having a ROW data type
available for the return results, makes its easier to later further process the result set, for
example, by storing it into a table or similar.

Now save the code from Example 9-19 as GoogleUDRs.java into the build directory (for
example, C:\RedBook2003\AXIS) and compile it by executing:

javac GoogleUDRs.java
248 Using Informix Dynamic Server with WebSphere

Figure 9-17 Compile the GoogleUDRs.java file and create the Google.jar file

5. As in the previous example, we need to pack all of our classes (generated AXIS classes
plus the UDR wrapper) into a Java jar file. To do this, execute this command:

jar cvf Google.jar GoogleUDRs.class Google*.class

Also see the foregoing Figure 9-17.

6. For registration of the Java UDR with the database server we need (again) an SQL script.
For the GoogleSearch() function, use the register_Google.sql file from Example 9-20.

Example 9-20 The register_Google.sql script

execute procedure
install_jar('file:C:/RedBook2003/AXIS/Google.jar','Google');

execute procedure ifx_allow_newline('t');

begin work;

create function GoogleSearch (lvarchar, integer, lvarchar, lvarchar)
returns lvarchar as search_result
external name 'Google:GoogleUDRs.GoogleSearch(java.lang.String, int,

java.lang.String, java.lang.String)'
language java;

alter function GoogleSearch (lvarchar, integer, lvarchar, lvarchar)
with (add parallelizable);

alter function GoogleSearch (lvarchar, integer, lvarchar, lvarchar)
with (add not variant);

alter function GoogleSearch (lvarchar, integer, lvarchar, lvarchar)
with (add iterator);

grant execute on function GoogleSearch (lvarchar, integer, lvarchar, lvarchar) to public;

commit work;

7. In order to register your CurrencyExchange UDR you should have a database with logging
enabled. Assuming you might want to register your UDR with the IDS stores_demo
database you only have to run the SQL script by executing:

dbaccess stores_demo register_Google

The output from dbaccess should be similar to the one in Figure 9-14.
Chapter 9. IDS, Web services, and WebSphere 249

Figure 9-18 Sample output of the GoogleSearch Java UDR
250 Using Informix Dynamic Server with WebSphere

8. Now we’re ready to test the Java UDR to call the Web service. Before you can test the
UDR make sure that you’re connected to the Internet. Then, for example, start dbaccess
to connect to the stores database and execute the GoogleSearch function. Since we’re
using SQL and SQL doesn’t differentiate between lowercase and uppercase letters we
just simply type:

execute function googlesearch(“<search_string>”, <start_result>”,
“<language_restriction>”, “<topic_restriction>).

See Figure 9-18 for some sample results for the Google search string “Informix Redbook”

Since we now have the Google search power available on the SQL level, we can do some
very cool things. We can first create a data type to match the search results from the
GoogleSearch UDR and then create a table to store the search results.

In Example 9-21 you have all the necessary SQL statements to create a ROW type, create a
table and then insert the results into that table. As soon we have stored the results, we can
then select subsets of our data (Example 9-22).

Example 9-21 SQL script to create a table and insert the results of a Google search (IDS 9 only!)

create row type search_result_t
(title lvarchar, snippet lvarchar, summary lvarchar,

url lvarchar);

create table search_results (search_id serial, search_result
search_result_t);

insert into search_results
select 0, result from

table(function googlesearch("Informix Redbook", 0, "", ""))
vtab (result);

Example 9-22 Based on the search_results table select only the URL component of each result

select search_id, search_result.url from search_results;

Tip: If you encounter any “class not found error” messages while executing the
GoogleSearch Java UDR you should copy the Google.jar file (as a workaround) also into
the $INFORMIXDIR\extend\krakatoa directory and include it in the JVP classpath
(or in your JVP classpath file), just after the
C:\informix\extend\krakatoa\krakatoa.jar;C:\informix\extend\krakatoa\jdbc.jar and before
the other entries. You probably also have to re-start your IDS 9 instance after copying the
jar file and modifying the classpath entry.

This behavior occurs because of class loading issues between J/Foundation and AXIS.
AXIS uses reflection to load the classes for de/serialization (like
Google.DirectoryCategory). Also, the class loader used by AXIS is the system class loader
and not the J/Foundation class loader. This could cause problems in the class resolution
for classes loaded via install_jar function. It is a good idea to include Google.jar in the
JVPCLASSPATH because that way AXIS can find those classes without having to go
through the J/Foundation class loader. You can check the Web site related to this redbook
for further updates on that topic.
Chapter 9. IDS, Web services, and WebSphere 251

Figure 9-19 You can do neat things with IDS 9.40, Web services and SQL...

Summary
IBM Informix Dynamic Server 9 is a very powerful and flexible platform. It can either act as a
Web service provider in combination with the IBM WebSphere product family, or can function
as a consumer of Web services, to make them available to SQL-aware applications.

Due to its extensibility features, it is able to adapt to any kind of future application
requirements and adjusts easily to the demands placed on it by developers and DBAs.
252 Using Informix Dynamic Server with WebSphere

Chapter 10. WebSphere Portal Server

In the previous chapters we learned how to use IDS in combination with WebSphere
Application Server and WebSphere Studio Application Developer to develop enterprise
applications. In order to integrate these applications with existing collaborative applications
(such as IBM Lotus® Sametime®) or legacy applications (such as Informix 4GL) and present
them to a corporate user, you might want to consider a portal server.

A portal server is also going to help if you have the need to support many different end user
devices like PDAs, Notebooks, smart phones, due to the built-in format conversion
technology which is XML based. Starting with version 4.2.1, WebSphere Portal Server
supports IDS as a repository database.

You will find the following topics covered in this chapter:

� Introduction to WebSphere portal server (WPS) and its concepts
� How to configure Informix IDS for WPS

10
© Copyright IBM Corp. 2003. All rights reserved. 253

10.1 An introduction to WebSphere Portal
IBM WebSphere Portal for Multi platforms provides a single point of interaction with dynamic
information, applications, processes, and people to build successful business-to-employee
(B2E), business-to-business (B2B) and business-to-consumer (B2C) portals. WebSphere
Portal also supports a wide variety of pervasive devices enabling users to interact with their
portal anytime, anywhere, using any device, wired or wireless.

WebSphere Portal consists of three packaged offerings: the Portal Enable offering is the base
offering; Portal Extend and Portal Experience both add more functionality. In this chapter, we
discuss the three offerings. See Figure 10-1.

Figure 10-1 An example WepSphere portal enabled home page

WebSphere Portal Enable
The IBM WebSphere Portal Enable offering allows you to quickly build scalable portals to
simplify and speed your access to personalized information and applications. WebSphere
Portal Enable provides common services including:

� Connectivity and integration: Allows access to enterprise data, external newsfeeds, or
even your trading partners’ applications.

� Presentation and administration: Enables computing desktop customization to match
your own work patterns and needs, while providing:

– Improved productivity with access to enterprise resource planning (ERP), customer
relationship management (CRM) and supply chain management (SCM) enterprise
applications.

– Increased security features that include an authentication layer to provide controlled
access to the portal, and user information is stored in a Lightweight Directory Access
Protocol (LDAP) directory.
254 Using Informix Dynamic Server with WebSphere

With WebSphere Portal Enable, you can build a Web site that allows users to select which
applications they view and how they want to view them. Your site becomes easier to use. Any
irrelevant content is filtered out and pertinent content can be quickly located. WebSphere
Portal Enable provides two personalization technologies to tailor Web content, including:

� Rules-based filtering to determine which Web content is displayed for a particular user.

� Advanced statistical models and matching techniques to extract visitor behavior and
trends, so you can tailor displayed content by individual portlets to different users and
groups.

See Figure 10-2. Listed are the WebSphere Portal Enable components:

� WebSphere Portal
� WebSphere Application Server
� WebSphere Personalization
� IBM SecureWay® Directory
� IBM DB2
� IBM Web Content Publisher
� WebSphere Application Developer

Target: Personalized e-business portals that manage content and process transactions.

Figure 10-2 The WebSphere Portal 4.2 offerings
Chapter 10. WebSphere Portal Server 255

WebSphere Portal Extend
Built on the portal framework in the WebSphere Portal Enable offering, the IBM WebSphere
Portal Extend offering adds collaborative components and Web analytics coupled with
additional tools to access, organize, and share information. Its features include:

� Parallel, distributed, heterogeneous searching capability
� Individual and shared team workspaces with built-in collaborative capabilities
� Collaboration software components
� Web site analyses

Using collaboration technology, WebSphere Portal Extend allows portal users to be more
productive because they can collaborate and act on the information they are viewing.
Out-of-the-box Web workspaces provide:

� Customizable work environments for individuals, teams or communities.

� The ability to create discussion areas for collaboration about documents stored in
document libraries.

� The ability to set up group calendars, assign tasks and communicate through instant
messaging.

� Individual collaborative components to make portal and portlet development easy.

WebSphere Portal Extend provides extended search capabilities that allow you to search
across an expanded variety of data stores, including relational databases such as IBM DB2
Universal Database™, Oracle, Lotus Notes® and Lotus Domino™ databases, popular Web
search engines and text or HTML documents.

WebSphere Portal Extend includes robust Web analysis technology to help you obtain and
leverage critical knowledge to optimize your portal. This offering enables you to:

� Make informed decisions about Web initiatives.

� Maximize B2E, B2C and B2B Web site effectiveness for IT, marketing and sales
executives.

� Capture, store, measure, report and chart Web site visitor trends and preferences.

WebSphere Portal Extend adds more functionality to WebSphere Portable Enable. Listed are
WebSphere Portal Extend components:

� IBM Lotus Collaborative Places
� IBM Lotus Collaborative Components
� IBM Lotus Extended Search
� IBM Tivoli Site Analyzer

Target: B2E and E2E portals requiring robust collaboration with plans to grow on the
platform.

10.1.1 WebSphere Portal Experience
In addition to the tools and capabilities contained in IBM WebSphere Portal Extend and IBM
WebSphere Portal Enable, IBM WebSphere Portal Experience adds advanced collaboration,
content management and security policy management, creating the most comprehensive
portal offering in the market. WebSphere Portal Experience allows you to develop, deploy and
maintain enterprise portals that provide a first-class experience for employees, trading
partners and customers. WebSphere Portal Experience features include:

� Advanced collaboration features for e-meetings, application sharing and whiteboarding
enable effective online collaboration as well as the ability to take team rooms offline.
256 Using Informix Dynamic Server with WebSphere

� Data storage for a broad spectrum of digital information including facsimiles, images, PC
files, XML, and multimedia.

� Content infrastructure for applications including call centers, high-volume claims
processing, and accounts payable.

� Folder management and document workflow.

� Sample Java applications as well as advanced application development tools.

� Security policy management tools for e-business and distributed applications.

WebSphere Portal Experience adds advanced collaboration capabilities and enterprise
content management functions, and ensures a more secure portal with security-rich access
to information through IBM security management products.

� Advanced collaboration features improve collaboration for mobile users by allowing them
to share a screen frame, their desktop, presentations or applications through e-meetings,
application sharing and whiteboarding capabilities. Features allow users to create a
secure Web workspace instantly, where other users can share ideas and documents and
even go off-line.

� Enterprise content management features index, store and distribute digital content quickly
and provide the enterprise content management infrastructure to access digital assets
created by other business applications. An enterprise-scalable repository allows you to
index, store, search and distribute virtually any type of digital content, including HTML and
XML Web content, document images, electronic office documents and rich media like
digital audio and video.

� Security policy management tools take security to the next level by providing a robust and
secure policy management tool that supports e-business and distributed applications. In
addition, the secure policy management tool addresses the challenges of escalating
security costs, growing complexity and cross-platform security policies.

WebSphere Portal Experience adds more functionality to WebSphere Portable Enable and
WebSphere Portal Extend. Listed are WebSphere Portal Experience components:

� IBM Content Manager
� IBM Tivoli Access Manager
� IBM Lotus Sametime
� IBM Lotus QuickPlace

Target: Comprehensive e-business portals requiring advanced security, content
management and collaboration capabilities.

10.1.2 Industry impact and acceptance
Industry research has indicated that IBM has significantly improved its product offering of
WebSphere Portal requiring much less services for deployment. The significant achievements
that have been made are listed:

� IBM has constructed an Enterprise Portal solution which is very impressive; its technology
has a wealth of features that are not available, at least together, in competitive products.

� The ease with which WebSphere Portal may be managed and its comprehensive
capabilities to delegate administration of sections of the portal environment are
impressive. This ensures that flexible, secure and manageable portal environments can be
created in a cost effective, responsive manner.

� WebSphere Portal is a solution for business-to-business (B2B) and business-to-consumer
(B2C) environments and it provides application integration for all enterprise Web-based
environments.
Chapter 10. WebSphere Portal Server 257

� IBM provides a range of product offerings, ranging from entry-level portals to those with a
true enterprise-wide scope making WebSphere Portal available to business of all sizes.

� The fact that WebSphere Application Server forms the foundation of this solution means
that issues such as security, scalability and reliability should not be an issue. WebSphere
Portal is built on top of WebSphere Application Server Version 4 technology ensuring
compliance with J2EE standards.

10.2 WebSphere Portal architecture
The WebSphere Portal platform is positioned to enhance the WebSphere family of products,
providing tooling for aggregating and personalizing Web-based content and making that
content available via multiple devices. WebSphere Portal takes advantage of the strong
platform provided by WebSphere Applications Server. See Figure 10-3.

WebSphere Portal finds its roots in Apache Jetspeed. Jetspeed is an Open Source
implementation of an Enterprise Information Portal, using Java and XML. Jetspeed was
created to deliver an Open Source Portal that individuals or companies could use and
contribute to in an Open (Source) manner.

Soon after creation, it became apparent that Jetspeed was going to become an “engine” for
Web applications. That, however, was far beyond the scope of the original project. Around
that time, there were many discussions on the mailing list that spawned the Turbine project
based on technology donated by Jon Stevens/Clear Ink. Turbine is now the Web Application
framework that Jetspeed shares with many other Web applications.

Figure 10-3 WebSphere Portal Architecture

A
ut

he
nt

ic
at

io
n

Page Aggregation

Themes
and

Skins

Tag
Libraries

Tr
an

sc
o

d
in

g

Tr
an

sl
at

io
n

C
re

d
en

ti
al

 V
au

lt

C
o

n
te

n
t

A
cc

es
s

S
ea

rc
h

P
o

rt
le

t
D

at
a

L
o

ca
l P

o
rt

le
t

P
o

rt
le

t
P

ro
xy

W
eb

 C
lip

p
er

O
rg

an
iz

er

C
o

lla
b

o
ra

ti
o

n

A
d

m
in

is
tr

at
io

n

Portlet API

Remote
Portlet

Requedst

Authorization

WebSphere
Member
Services

WebSphere
Portal

Database

UDDI
Directory

J2
E

E
 A

P
Is

JCA

Web Services

JMS

EJB

JDBC

Enterprise
Data and

Applications

Internet or
Intranet
Content

Portlet Container
258 Using Informix Dynamic Server with WebSphere

Building on the Jetspeed implementation, WebSphere Portal provides an architecture for
building and running portal applications. The overall WebSphere Portal Architecture can be
seen in Figure 10-3. WebSphere Portal provides services for Authentication and
Authorization though the WebSphere Member Services. The core of WebSphere Portal
architecture is composed of the Presentation Services, the portal infrastructure, and the
portal services.

Presentation services
WebSphere Portal presentation services provide customized and personalized pages for
users though aggregation. Page content is aggregated from a variety of sources via content
and applications. The portal presentation framework simplifies the development and
maintenance of the portal by defining the page structure independent the portlet definition.
Portlets can be changed without impact to the overall portal page structure.

The Portal engine
WebSphere Portal provides a pure Java engine whose main responsibility is to aggregate
content from different sources and serve the aggregated content to multiple devices. The
Portal engine also provides a framework that allows the presentation layer of the portal to be
decoupled from the portlet implementation details. This allows the portlets to be maintained
as discrete components. Figure 10-4 shows the WebSphere Portal Engine Components.

Figure 10-4 The WebSphere portal engine

The Authentication Server is a third party authentication proxy server that sits in front of the
Portal engine. Access to portlets is controlled by checking access rights during page
aggregation, page customization, and other access points.

The Portal Servlet is the main component of the portal engine. The portal servlet handles the
requests made to the portal. The portal requests are handled in two phases. The first phase
allows portals to send event messages between themselves. In the second phase, the
appropriate Aggregation Module for the requesting device renders the overall portal page by
collecting information from all the portlets on the page and adding standard decorations such
as title bars, edit buttons, etc.

Portlet container
Portal Services are components WebSphere Portal uses to extend the portal functionality.
Key functionality is provided with WebSphere Portal for personalization, search, content
management, site analysis, enterprise application integration collaboration and Web services.
Portlets can access these services via their container.

Portal
Servlet

Aggregation
Modules

User Bean

LDAP
Directory

Relational
Database

Management
System

Portal
Registry

portlets

ser vices

Access ControlTrust
Association
interceptor

Authentication
Server

Portal Engine Full Page
View
Chapter 10. WebSphere Portal Server 259

Portal infrastructure
The WebSphere Portal infrastructure is the framework that provides the internal features of
the portal. Functionality such as user and group management via self registration, as well as
portal administration, are provided by the Portal infrastructure.

User and group management
The WebSphere Portal infrastructure provides facilities to allow user self management along
with enterprise integration with user directories such as LDAP or database structures.

Security services
As WebSphere Portal runs within the WebSphere Application Server platform, it makes use of
the standard Java Security APIs to provide authentication. The WebSphere Portal is
configured so that incoming requests pass through an authentication component such as
WebSphere Application Server, WebSEAL (a component of SecureWay) or other proxy
servers. A user’s authorization for a particular resource such as page or a portlet is handled
by the portal engine.

User Beans are provided to allow programmatic access to the User information for use within
portlets.

Page transformation
WebSphere Transcoding Technology is integrated with WebSphere Portal to transform the
portal markup produced by WebSphere Portal to markup for additional devices such as
mobile phones and PDAs.

Portal services
Portal services are built-in features the WebSphere Portal provides to extend and enhance
the full portal solution. These services are provided via the Portlet container as shown in
Figure 10-3 on page 258. Among the services are:

� Personalization: The IBM WebSphere Personalization functionality enables advanced
personalization capabilities. Base customization, such as choosing which portlets are
desired on a page, is accomplished by the user via administration functionality. Advanced
personalization via rules engines, user preferences and profiles is accomplished by the
provided personalization services.

� Content management: WebSphere Portal provides services to facilitate connections to
content management sources. Built-in support is provided for several common content
types such a as Rich Site Summary (RSS), News Markup Language (NewsML) and Open
Content Syndication (OCS) along with most XML and Web browser markup.

� Search: WebSphere Portal offers a simple search service. The Portal Search capability
enables search across distributed HTML and text data sources. The search can crawl a
Web site and is configured so as to force it to follow several layers in a site or to extend
beyond several links in a site. Furthermore, IBM Extended Search and Enterprise
Information Portal can be fully incorporated into the portal environment. These search
engines are industrial-strength tools that provide federated searches across numerous
data sources.

� Site analysis: You can take advantage of the underlying WebSphere Application Server
technology and Site Analyzer to provide information about Web site visitor trends, usage
and content. This detailed information can then be used to improve the overall
effectiveness of the site.

� Collaboration: Collaboration services are provided by WebSphere Portal through a set of
pre-defined portlets. These portlets allow for team-room function, chat, e-mail, calendering
and many other collaborative technologies.
260 Using Informix Dynamic Server with WebSphere

� Web services: WebSphere Portal provides services for exposing and integrating portlets
as remote portlets hosted on another portal platform via Web Services technology. The
entire process of packaging and responding to a SOAP request is hidden from the
developer and the administrator.

10.2.1 WebSphere Portal tooling
WebSphere Portal and WebSphere Portal Toolkit, along with their prerequisite products,
provide the basic tooling for developing and deploying portals and their associated portlets.

WebSphere Portal
WebSphere Portal contains built-in support for portlet deployment, configuration,
administration and communication between portlets.

WebSphere Portal provides the framework for building and deploying portals and the portal
components, portlets. Portlet content is aggregated by the WebSphere Portal to provide the
desired portal implementation.

WebSphere Portal makes use of the WebSphere Application Server technology to provide a
portal platform.

WebSphere Portal Toolkit
The WebSphere Portal Toolkit is provided with WebSphere Portal and provides an
environment for developing portal using WebSphere Portal. The WebSphere Portal Toolkit is
a plug-in for WebSphere Studio Application Developer (WSAD) or WebSphere Studio Site
Developer (WSSD) which adds the portal development environment.

The WebSphere Portal Toolkit provides the ability to quickly create complete, MVC-compliant
portlet applications. It also provides intuitive editors for working with the deployment
descriptors required by your portlet applications. Furthermore, it allows you to dynamically
debug your portlet applications.

10.3 WebSphere Portal
WebSphere Portal takes advantage of the WebSphere Application Server base, making use
of its J2EE services. WebSphere Portal itself installs as an Enterprise application in
WebSphere Application Server.

10.3.1 Portal concepts
In this section we provide definitions of some basic portal concepts.

Portlet
A portlet is an application that displays page content.

Portlet application
Portlet applications are collections of related portlets and resources that are packaged
together. All portlets packaged together share the same context which contains all resources
such as images, properties files and classes. Important also is the fact that portlets within a
portlet application can exchange messages.
Chapter 10. WebSphere Portal Server 261

Page
A portal page displays content. A page can contain one or more portlets. For example, a
World Market page might contain two portlets that displays stock tickers for popular stock
exchanges and a third portlet that displays the current exchange rates for world currencies. To
view a page in the portal, you select its place from the place selector and then click the page
within the place.

Place or page group
A place is a collection of portal pages. The portal administrator can create places, determine
which portal pages are in the each place, and give the appropriate users authority to access
the place and pages.

Layout
The page layout defines the number of content areas within the page and the portlets
displayed within each content area. In many cases, the portal administrator defines the page
layout. The administrator can permit specified users or user groups to change the page layout
to reflect individual preferences. If you have authority to change a page, use the Layout page
in the Work with Pages place to alter the page layout.

Permissions
Each portal page is subdivided into one or more content areas. Each content area can
contain one or more portlets. The portal administrator or a user who has authority to manage
a page can control whether others who have authority to edit the page can move, edit or
delete the content areas and the portlets on the page. Permissions is the term for controlling
those settings. If you have authority to make changes to a portal page, use the Permissions
page in Work with Pages place to set the permissions for the page.

Themes
Themes represent the overall look and feel of the portal, including colors, images and fonts.
There are several default themes provided with the standard installation of WebSphere Portal.
Each place in the portal may have a different theme associated with it, thereby creating the
appearance of virtual portals.

Skins
The term skin refers to the visual appearance of the area surrounding an individual portlet.
Each portlet can have its own skin. The skins that are available for use with a portlet are
defined by the portal theme that is associated with the place. The portal administrator or the
designer determines the theme for places and the available skins for the theme. The
administrator can permit specified users to change the skins to reflect individual preferences.
If you have authority to make changes to a portal page, use the Skins page in Work with
Pages to set the skins for portlets.

10.3.2 Portlets
The base building blocks of a Portal are the portlets. Portlets are complete applications
following the Model-View-Controller design pattern. Portlets are developed, deployed,
managed and displayed independent of all other portlets.

Portlets may have multiple states and view modes along with event and messaging
capabilities. Based on the J2EE container model, portlets run inside the Portlet Container of
WebSphere Portal analogous to the way servlets run inside the Servlet Container of
WebSphere Application Server. Portlets are a special subclass of HTTPServlet that includes
properties and functionality that allows them to run inside the Portlet Container.
262 Using Informix Dynamic Server with WebSphere

Though portlets actually run as servlets under the WebSphere Application Server, they
cannot send redirects or errors to the browser directly, forward requests or write arbitrary
markup to the output stream. All communication back to the end user from a portlet is done
via the aggregation modules.

To understand the portlet model used by WebSphere Portal, let us take a step back and
examine the Flyweight pattern. This pattern is used by WebSphere Portal as the design
pattern for the portlet model.

The Flyweight pattern
The Flyweight pattern was originally presented by the GofF or Gang of Four (Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides) in E.Gamma, et al., Elements of Reusable
Object-Oriented Software, Addison Wesley, 1995.

Flyweight is a structural pattern used to support a large number of small objects efficiently.
Several instances of an object may share some properties. Flyweight factors these common
properties into a single object, thus saving considerable space and time otherwise consumed
by the creation and maintenance of duplicate instances. Key to the Flyweight Design Pattern
is the fact that the objects share some information. It is then possible to greatly reduce the
overhead problem and make the presence of so many objects possible.

The flyweight object is a shared object that can be used in multiple contexts at the same time;
the object functions independently in each context.

The state shared by the objects falls into two categories, intrinsic and extrinsic.

Intrinsic state State stored in the object and independent of object’s context. Thus the
information is sharable across the objects. The more stateless and intrinsic
information shared between objects in the flyweight, the better. This allows
for greater savings in memory, since less context information needs to be
passed around.

Extrinsic state State that depends on a single request varies with the objects context and
therefore cannot be shared. This information must be stateless and
determined by context, having no stored values, but values that can be
calculated on the spot. Client Objects are responsible for passing the
extrinsic state to the object when the object needs it.

This separation into extrinsic and intrinsic information allows great numbers of similar objects
to exist, differing only in the context in which they exist.

The different components involved in the Flyweight Pattern are the Flyweight, the
ConcreteFlyweight, the UnsharedConcreteFlyweight, the FlyweightFactory and the Client.

Flyweight The shared object with intrinsic state. The flyweight declares
an interface through which flyweights can receive and act on
intrinsic data.

ConcreteFlyweight Implements the Flyweight interface and adds storage for the
intrinsic state.

UnsharedConcreteFlyweight The flyweight interface enables sharing but does not enforce
it. Not all flyweights are shared. It is common for
UnsharedConcreteFlyweight objects to have
ConcreteFlyweight objects as children at some level in the
hierarchy.
Chapter 10. WebSphere Portal Server 263

FlyweightFactory Serves to dispense particular flyweights that are requested.
When a Flyweight with certain properties is requested, it
checks to see if one already exists, and if so, returns that
flyweight. If the requested flyweight does not exist, it creates
the requisite flyweight, stores and returns it.

Client When creating an object, a client must assign a flyweight to
it, so it asks the FlyweightFactory for a particular flyweight,
receives that flyweight, and creates a reference to it in the
object it is creating.

The parameterization of portlets is based on the flyweight pattern, the Portlet Container being
the Flyweight Factory.

Portlets
Portlets are invoked by the portlet container. Every portlet has to inherit from the abstract
org.apache.jetspeed.portlet.Portlet class, either by deriving directly from it, or by using one of
the abstract portlet implementations.

A portlet is a small Java program that runs within a portlet container. Portlets receive and
respond to requests from the portlet container. There is ever only one portlet object instance
per portlet configuration in the Web deployment descriptor. There may be many
PortletSettings objects parameterizing the same portlet object according to the Flyweight
pattern, provided on a per-request basis.

When the portal administrator deploys a new portlet or copies an existing one, PortletSettings
are created. A Portlet parameterized by its PortletSettings is referred to as a concrete portlet.
The settings of concrete portlets may change at runtime since administrators modify the
portlet settings by using the configuration mode of the portlet. The PortletSettings initially
contain the elements defined in the deployment descriptor and are changeable by the portlet
administrator. See Figure 10-5.

Figure 10-5 Portlet Parameterization objects

Portlet Deployed

Portlet Placed on a page

Portlet Accessed by a user

Persistent Data

Transient Data

Portlet DataPortlet Data

Portlet SessionPortlet Session

Portlet SettingsPortlet Settings
264 Using Informix Dynamic Server with WebSphere

Additionally, users can have personal views of concrete portlets. Therefore, the transient
PortletSession and persistent concrete PortletData carries vital information for the portlet to
create a personalized user experience.

When a portlet is added to a page, PortletData is created to parameterize the portlet. The
PortletData can only be accessed by the portlet itself, for example when changing a list of
desired stocks to watch in a stock portlet. A concrete portlet in conjunction with portlet data
creates a Concrete Portlet Instance. PortletData scope depends on the scope of the page. If
the administrator places the portlet on a page, the portlet data contains data stored for the
group of users associated with the page. If a user puts the portlet on the age, the portlet data
contains data for that user.

Finally, when the user initially accesses a portlet, a PortletSession is created. The portlet
session stores transient data associated with an individual use of the portlet. The concrete
portlet instance parameterized by the PortletSession is referred to as the User Portlet
Instance. See Figure 10-6.

Figure 10-6 The Portlet parameterization

Portlet modes
Portlet Modes are a facet of the Portal display model. Modes allow the portlet to display a
different “face” depending on its usage. There are four modes:

View Initial face of the portlet when created. The portlet normally functions with this
face.

Help If the portlet supports the help mode, a help page will be displayed for the
user.

Edit This mode allows the user to configure the portlet for their personal use, for
example, specifying a city for a localized weather forecast.

Configure If provided, this mode displays a face that allows the portal administrator to
configure the portlet for a group of users or a single user.

Portlet

Portlet
Portlet Settings

Portlet
Portlet Settings

Concrete Portlet

Portlet
Portlet Settings

PortletData

Portlet
Portlet Settings

PortletData

Concrete Portlet
Instance

Portlet
Portlet Settings

PortletData

PortletSession

Portlet
Portlet Settings

PortletData

PortletSession

User Portlet
Instance

PortletSession

PortletData

Portlet Settings
Chapter 10. WebSphere Portal Server 265

Portlet states
Portlet states determine how the portlet is displayed in the portal. The state of the portlet is
stored in the PortletWindow.State object and can be queried for optimizing processing based
on state. The three states of a portlet are:

Normal Portlet is displayed in its initial state as defined when it was installed.

Maximized The portlet view is maximized and takes over the entire body of the portal
replacing all the other portal views.

Minimized Only the portlet title bar is visible inside the portlet page.

Portlets and the model-view-controller (MVC) design pattern
Because portlets must be capable of supporting multiple views for multiple devices, the key
design pattern used for portlets is the model-view-controller (MVC) design pattern. This
design pattern contains three entities:

� The model: This is the data source to be retrieved for the portlet. Model data for a portlet
is typically retrieved from an external data source and loaded into Java display beans, or
arrives formatted in an XML document.

� The view or views: This is the output mechanism used to display the data of the portlet.
Display views are typically implemented as either JSPs, more typically used when the
data model is implemented in Java beans, or XSLT style sheets when the incoming data is
formatted in an XML document.

� The controller: This joins the selected view to the data and conducts the operation of the
portlet. The controller selects the view for display based on the target device or browser,
and then passes the data model to the view. The view extracts the specific display data,
formats the data for the browser, and renders its output to the browser as part of the portal
aggregation of portlet outputs.

For portlet development, the MVC pattern has the following characteristics:

� The portlet is only responsible for calling the right controller, depending on the markup
supported by the client.

� Connectors are responsible for accessing content sources. Typically, there is one
connector per content source type, for example, one connector for POP3 access and one
for file-based cache.

� Models represent the content as retrieved through the connector. A model is independent
of the presentation.

� Controllers can be used to provide markup-specific content (HTML, cHTML, or WML).

In the MVC structure, there is a distinct separation of data from presentation along with a
controller component for managing the interaction between the data (model) and the
presentation or view. The controller knows the environment in which the application is
invoked, gathers information from the data object to be displayed, and then applies the
appropriate view to render the data using the markup language appropriate for the current
device.

WebSphere Portal Runtime: the portlet container
WebSphere Portal is a J2EE application based on the servlet technology. In fact, portlets
inherit from HTTP Servlet in the Java hierarchy, providing the servlet functionality. The
WebSphere Portal portlet container is not, however, a standalone container as is the servlet
container. The portlet container is a thin layer implemented on top of the servlet container
designed to reuse the functionality provided by the servlet container.
266 Using Informix Dynamic Server with WebSphere

The Portlet API provides the standard interfaces for accessing the services provided by the
portlet container. As previously mentioned, the Portlet Container is implemented on top of the
servlet container and thus the Portal API is very similar to the servlet API.

10.3.3 Portlet lifecycle
Much like the Servlet Container, the Portlet Container manages the portlet lifecycle along with
providing services to the portlets running in the container.

The portlet container loads and instantiates the portlet class. This can happen during startup
of the portal server or later, but no later then when the first request to the portlet has to be
serviced. Also, if a portlet is taken out of service temporarily, for example while administrating
it, the portlet container may finish the lifecycle before taking the portlet out of service. When
the administration is done, the portlet will be newly initialized.

During the portlet lifecycle, the portlet container invokes the following methods on the Portlet
class (subclass of a the Portlet Adapter class) on behalf of user requests, as shown in
Figure 10-7.

� init()
� initConcrete()
� login()
� service()

– doView()
– doEdit()
– doHelp()
– doConfigure()

� logout()
� destroyConcrete()
� destroy()

Figure 10-7 Portlet Lifecycle

User login Portlet login()

P
o

rt
le

t

P
o

rt
al

Portlet Initailized Portlet init() ;
 initConcrete()

User page request
PortletPageListener beginPage();
Portlet service();endService();
PortletPageListener endPage()

Portlet markup returnedPortal page returned

User logout Portlet logout()

Portal terminated Portlet destroy();
destroyConcrete()

P
o

rt
le

t
C

o
n

ta
in

er
Chapter 10. WebSphere Portal Server 267

The portlet container calls the following methods of the abstract portlet during the portlet's life
cycle:

� init(): The portlet is constructed after portal initialization and initialized with the init()
method. The portal always instantiates only a single instance of the portlet, and this
instance is shared among all users, exactly the same way a servlet is shared among all
users of an application server.

� initConcrete(): After constructing the portlet and before the portlet is accessed for the first
time, the portlet is initialized with the PortletSettings. This is known as the concrete portlet.

� service(): The portal calls the service() method when the portlet is required to render its
content. During the lifecycle of the portlet, the service() method is typically called many
times. For each portlet on the page, the service() method is not called in a guaranteed
order and may even be called in a different order for each request.

� destroyConcrete(): The concrete portlet is taken out of service with the
destroyConcrete() method. This can happen when an administrator deletes a concrete
portlet during runtime on the portal server.

� destroy(): When the portal is terminating, portlets are taken out of service, then destroyed
with the destroy() method. Finally, the portlet is garbage collected and finalized.

10.3.4 Portlet events and messaging
Many portals today display static content in independent windows. The ability for portlets to
interact within a portal is key to giving a portal a “live” feeling. In “live” portals, quite often the
user is presented with one portlet on a page that presents a choice of data, a list of stocks for
example, and choosing from the list causes another portlet to be updated with the details of
the choice. This type of list detail processing via multiple portlets is done with portlet events
and messaging.

This same type of process could be accomplished using a single portlet but consider the
example of a stock list, stock details and news associated with the stock. Giving the user this
function via three portlets allows the user to customize the portal experience by choosing
which information about the chosen stock is displayed by simply adding the associated portlet
to the page.

In portlet messaging, one portlet typically detects a condition and formats a message as a
result of that condition, then sends the message to the receiver. The receiving portlet receives
the message from the event handler and processes the message as you would expect.
Portlets can both send and receive messages.

Portlets communicate using portlet actions and portlet messages. For example, an account
portlet creates a portlet action and encodes it into the URL that is rendered for displaying
transactions. When the link is clicked, the action listener is called, which then sends a portlet
message to send the necessary data to the transaction detail portlet.

There are some basic rules to portlet messaging:

� Portlets in different applications can only communicate through default portlet message
objects. Default portlet message objects can only carry strings.

� In order for portlets to communicate through custom messages, they must be part of the
same portlet application. WebSphere Portal uses a unique class loader for each portlet
application to provide security between applications. The message is typically a custom
Java object unique to the application. Since messaging portlets must share this message
object, they must share the same class loader and therefore they must be part of the same
portlet application.
268 Using Informix Dynamic Server with WebSphere

� For performance reasons, portlets that communicate through messaging must reside on
the same page. Since only one page is displayed at a time, there is little need to send
messages to portlets not currently displayed.

Portlet events contain information about an event to which a portlet might need to respond.
For example, when a user clicks a link or button, this generates an action event. To receive
notification of the event, the portlet must have the appropriate event listener implemented
within the portlet class.

Action events: Generated when an HTTP request is received by the portlet container that is
associated with an action, such as when the user clicks a link.

Message events: Generated when another portlet within the portlet application sends a
message.

Window events: Generated when the user changes the state of the portlet window.

The portlet container delivers all events to the respective event listeners (and therefore the
portlets) before generating any content to be returned to the portal page. Should a listener,
while processing the event, find that another event needs to be generated, that event will be
queued by the portlet container and delivered at a time point determined by the portlet
container. It is only guaranteed that it will be delivered and that this will happen before the
content generation phase. There is no guarantee for event ordering.

Once the content generation phase has started, no further events will be delivered. For
example, messages cannot be sent from within the service, doView or other content
generation methods. Attempts to send a message during the content generation phase will
result in an org.apache.jetspeed. portlet.AccessDeniedException.

The event listener is implemented directly in the portlet class. The listener can access the
PortletRequest.

It is important to understand the underlying event handling and message processing to
ensure delivery of all send messages. The portal event handling and message processing
sees four steps executed in the following order:

1. Processing all action events: The user makes a request of the portal, the portal receives
the request and decodes the action URI sent by the client and propagates an action event
to the appropriate portlet. The receiving portlet’s action listener is called to process an
action event. An appropriate time to send messages to other portlets is during the
processing of the action event.

2. Processing all message events: If a message is sent to a portlet, the portlet’s message
listener is called to process the message. Since portlets can send multiple messages and
send messages as a result of receiving a message, this process continues until there are
no more messaging events pending. Cyclical messaging is prevented by the WebSphere
Portal architecture.

3. Processing all window events: Sizing operations such as maximize, minimize and
restore, along with the portlet’s ability to request a specific size, causes multiple window
events to be sent to all portlets affected by the sizing activity. This processing of window
events continues until there are no more window events pending.

4. Portlet rendering process: Upon completing the event processing in the order specified
above, the portal aggregator begins calling each container on the page being displayed,
causing its contents to be rendered. The rendering process is explored in detail in “Page
aggregation” on page 270. When aggregation is complete, the page is returned to the
user.
Chapter 10. WebSphere Portal Server 269

10.3.5 Page aggregation
Portals allow users to choose sets of portlets they would like to work with and provides a
framework for displaying those portlets in a consistent fashion.

A defined set of applications, which should be presented in a common environment are
referred to as a page.

Page aggregation is the process that collects information about the user’s choices, the device
being used and the selected portlets, then takes that information and combines it to create a
display that is appropriate for the device.

The aggregation process involves three basic steps:

1. Collecting user information
2. Selecting the active applications
3. Aggregating the output

Once the active page is determined, the layout of this page is used to aggregate the content
of the defined applications, arrange the output and integrate everything into a complete page.
Basic Portal Page Layout can be seen in Figure 10-8.

Rendering of page components is done using JSPs, images, style sheets, and other
resources. These resources are located in the file system in a path-naming convention that
the portal server uses to locate the correct resources for the client. WebSphere Portal
provides dynamic aggregation of pages from page descriptors held in the portal database.

Collecting user information
During the collection of user information, the following information is collected:

User The user is authenticated at login and the user identification is
available throughout the session.

Client The user’s device is determined by information contained in the
request header. Once determined, this information is also stored in the
session.

Markup The markup is associated with the device category. There are
currently three markups defined, HTML, cHTML and WML. New
markup scan be added via the Markup Manager Portlet.

Markup version The version for the supported markup. For example, ie5 for the
Internet Explorer family of browsers, ns for the Netscape family of
browsers.

Important: It is important to note that events are not processed in the last step of the
process, page rendering. If a message is sent by a portlet during rendering, the message
will not be delivered or processed. This is a result of the fact that the event queue is help in
the portlet request and at the time of rendering, the portlet request is no longer available.
Therefore, if portlet interaction is desired, portlet messages must be sent during the first
three steps of the event and aggregation process.
270 Using Informix Dynamic Server with WebSphere

Language The portal determines the language to be displayed via this algorithm:

If the user is logged in, the portal user interface is displayed in the
preferred language of the user.

If no preferred language is set, the portal UI is displayed in the
language set by the client browser if available.

If no browser language is available, the portal UI is displayed in the
default language set for the portal.

Portlets not supporting any of the above scenarios display their UI in
the portlet’s default language.

Page/page groups The access control list determines which pages and page groups a
user has access to.

Theme The name of the active theme is taken from the currently active page
group.

Screen Depending on the interactions of the user with the portal, different
screens are presented. The screen holds the output of the portlets on
a page.

Selecting the active applications
During this phase of aggregation, the portal determines the active applications or portlets to
be displayed. When the portal receives a request, it determines the active place and the
active page for the current user. Aggregation then continues with the rendering of the page.

Aggregating the output
Once the active page is determined, the portal uses the layout of the page to aggregate the
content of the defined applications, to place the output and build the complete page. A page
contains components such as row or column containers that contain other components or
portlets. Figure 10-8 shows the layout of a portal page.

Figure 10-8 Portal page layout

My Portal Server @

Home

 Page 1 Page 2

Components

RowContainer

ColumnContainer

Control

ColumnContainer

Control

Banner

Screen
Chapter 10. WebSphere Portal Server 271

A portal page is made up of the following elements:

Portal window The content inside the displayed window. It is made up of the banner
and the portal page.

Banner The top area of the window that holds the company information, the
greeting, a page selection box, tabs to select the current page in the
page group being displayed and some additional controls for
interacting with the portal such as logging in, logging out and help.

Screen Holds the output of the portlets on the currently selected page. The
layout is determined by its row and column containers.

Row A container inside a page that allows portlets to be arranged in a
horizontal format.

Column A container inside a page that allows portlets to be arranged in a
vertical format.

Control The frame around the portlet is constructed by the frame. It builds the
bar above the portlet output including buttons to control the state and
view of the portlet.

Themes and skins
Window and component layouts can be controlled by themes and skins. Themes refer to the
window templates. Themes represent the look and feel of the portal, including fonts and
colors, and is also used to render to portal banner. Skins refer to the component templates.
Skins use the theme name to select the graphics that match the theme colors.

Templates
Aggregation uses the concept of templates to perform window, screen and component layout.
When a corresponding part needs to be rendered, a template loader will load the requested
template. If the requested template can’t be found, the default template will be used. A
template consists of the template class that controls the rendering, the localization and the
launch of the template JSP. The template JSP performs the actual rendering. There are three
types of templates:

� Window templates: The Window template is responsible for the layout of the parts of the
banner area and the placement of the screen. You can change, for example, the
navigation tab location via the window template.

� Screen templates: The Screen template is responsible for the layout and the content of
the screen, the portion of the portal page containing the output of the portlets.

� Component templates: Component templates are responsible for rendering the
component itself and for starting the rendering of its children components. The children of
container components (row and column) may be other containers or controls. The child of
a control will always be a single portlet.

Page aggregation processing
The rendering process is a domino process starting with the root container. The root
container triggers the rendering of all the child components in the page hierarchy as shown in
Figure 10-9.

Rendering the screen triggers the aggregation of a page and its portlets. The pageRender tag
in the screen starts the rendering process. If no portlet is maximized, then the pageRender
tag calls the RootContainer.
272 Using Informix Dynamic Server with WebSphere

The Root Container holds all the containers and controls for this page. The pageRender tag
tells the Root Container to invoke the rendering of all its children. Since the Root Container is
used only as a starting point for the aggregation, it does not render itself and therefore is not
visible on the screen.

Each child of the Root Container invokes its template which is responsible for rendering all the
content of its child. If the child contains further child components the componentLoop and
componentRender tags execute the rendering of all these components one at a time.

Each component invokes its own template which in turn invokes more components until the
leaf of each branch is reached. Thus, control moves between component classes and their
respective JSPs. Each component writes its content to the servlet output stream.

When a control is reached, it invokes the rendering of the portlet, which adds its output to the
output stream via its rendering. When the entire tree has been traversed, the output stream is
closed and the output is sent back to the requesting client.

Figure 10-9 Page aggregation

10.4 Portlet solution patterns
Enterprise Resource Planning (ERP) and Customer Relationship Management (CRM)
systems are excellent candidates for portlets because efficient, personalized access to these
functions provide measurable returns on your portal investment. WebSphere Portal includes
portlets that help you access a variety of ERP and CRM systems. At the time this book is
written the portlet catalog on the IBM Portal Web site contains 55 portlets in the ERP section
alone.

<Page Render Tag/>
Root

Row
Container

Column
Container

Column
Container

Control

Page
Descriptor

Control

Control

Control

Portlet

RowContainer.jsp ColumnContainer.jsp Control.jsp

Portlet

Portlet

Portlet

Portlet
Rendering

Customizable Aggregation Objects
Chapter 10. WebSphere Portal Server 273

Enterprise Applications running on a backend or host system are another group of candidates
for portlets, especially when the portal addresses the business-to-employee pattern and you
want to provide a common working environment to your users, whatever application and
system they may need for their work.

There are many ways to perform application integration in a Web environment. Not all of them
are based on portlets and amongst the portlet-based solutions, several different architectural
approaches can be applied. Depending on technical circumstances, the given time frame and
the goals of the integration, typically different approaches may be combined in one portal
solution.

We try to list some of the patterns you might think of. One way we can differentiate is along
the line of shrink-wrapped versus roll-your-own.

Customizable portlets from a vendor

In this pattern, a portlet is provided that can be installed in Portlet Server and, after a
configuration effort, the system or application in question can be accessed through the portal.
Often, such a portlet is delivered by the vendor of the system that should be accessed. Both
the Host On-Demand portlet and the Host Publisher portlet we use in the following examples
are of this type.

Custom developed portlets

This pattern comes into play when either no vendor offers a portlet for the requested
application, or the requested level of functionality, usability, accessibility or security is not met
by the existing portlets. Another reason might be that you want to combine information or
functionality of multiple applications seamlessly into one portlet.

Most probably, this integration will include using the Java Connector Architecture (JCA). JCA
is a standard architecture for integrating J2EE applications with Enterprise Information
Systems that are not relational databases. Each of these systems provides native APIs for
identifying a function to call, specifying its input data, and processing its output data. The goal
of the JCA is to achieve an independent API for coding these functions.

JCA also defines a standard Service Provider Interface (SPI) for integrating the transaction,
security and connection management facilities of an application server with those of a
transactional resource manager. Thus, JCA is a standards-based approach to managing
connections, transactions, and secure access to enterprise application systems. IBM’s JCA
connectors provide access to systems such as SAP, People Soft, CICS, and IMS. Leveraging
its CrossWorlds® acquisition, IBM will also develop and integrate JCA connectors to many
other systems.

Another way to look at portlets for application integration is from a topology point of view.

Client to remote application

In this pattern, used by IBM Host On-Demand, the portlet is just a bootstrap to allow the client
to get in touch with the requested system or application, and Portal Server is the framework
for the user interface. This implies that normally, an applet is involved which makes a direct
network connection to a remote system. See Figure 10-10.
274 Using Informix Dynamic Server with WebSphere

Figure 10-10 Portal Solutions - client to remote application

Portlet to remote application

This is the topology most likely used if you write your own application integration portlet.
Access to the requested application or information is gained through standardized interfaces
such as JCA connectors, JDBC and JMS, or by using a proprietary API provided by the
application that is to be integrated (for example SAP Business Connector). See Figure 10-11.

Figure 10-11 Portal Solutions - portlet to remote application
Chapter 10. WebSphere Portal Server 275

Portlet to Web application

In this pattern, most of the work is done in a Web application. Also, if you write a Web
application using the JCA or EJB and create a portlet interface to it, you follow this pattern.
See Figure 10-12.

Figure 10-12 Portal Solutions - Portlet to Web Application

10.5 IDS and WebSphere portal server
WebSphere Portal uses databases to store various types of information. All database
software must be installed, configured and running prior to the Portal Server installation if
you:

� Have pre-existing databases
� Use third party databases

If you do not have existing databases, WebSphere Portal includes DB2 and Setup Manager
can install it for you. If you perform the Standard DB2 installation with Setup Manager, several
DB2 usernames and groups are automatically created on the system. It is recommended that
you not alter these usernames and groups.

Portal Server maintains information about portal users in two databases: the Portal Server
database (wps) and the Member Services database (wms).

You can use database software that is local or remote to the Portal Server.

The Portal Server and Member Services databases can be created and initialized during the
Portal Server installation, or you can create these databases prior to the Portal Server
installation and then initialize them during the Portal Server installation.

If you have uninstalled Portal Server, you cannot re-use the Portal Server and Member
Services databases when you reinstall Portal Server. You must remove the original
databases from the server and create the databases again before reinstalling Portal Server.
276 Using Informix Dynamic Server with WebSphere

10.5.1 Configuring IDS for WebSphere Portal
Since version 4.2.1 of the WebSphere portal server you can use Informix IDS 9.3 or later as
the database software for WebSphere Portal. You must install and configure IDS 9 prior to
installing WebSphere Portal.

The following prerequisite steps must be completed prior to installing WebSphere Portal:

� Install Informix IDS 9.30 or later.

� Install Informix JDBC driver version 2.21.JC3 or later (2.21.JC4 if you want to use IDS
9.40!).

� Create a default Smart BLOB space.

Creating a default Smart BLOB space
If you install on a non-Windows platform, Informix does not create a default Smart BLOB
space by default during installation. You must create a Smart BLOB space before installing
WebSphere Portal. If you do not create a Smart BLOB space, no data exists in Portal Server
after installation. Use the following steps to create a default Smart BLOB space for IDS 9.

1. Create an empty file (for example, /INFXDATA/sbspace001) using the following steps:

– As user informix, change directories (for example, /INFXDATA) to where you will create
the Smart BLOB space.

– Execute touch sbspace001.

– Execute chmod 660 sbspace001.

– Make sure that the new file is owned by user informix and group informix.

2. Create the new Smart BLOB space by running the onspaces command:

onspaces -c -S <blobspace name> -p <path_to_blobspace> -o 0 -s <size>

In our example above:

onspaces -c -S sbspace001 -p /INFXDATA/sbspace001 -o 0 -s 102400

3. Make sure that the Smart BLOB space has been created correctly by using the onstat -d
command. You should see the just added Smart BLOB space.

4. Now edit the $ONCONFIG file and modify the SBSPACENAME entry by adding the name of the
new Smart BLOB space (for example, sbspace001).

Create an IDS 9 database with logging
Before we can create the portal server database, set an environment variable to enable UTF8
character-set support in the IDS database using the following command:

On Windows:

set DB_LOCALE=EN_US.UTF8

On UNIX:

DB_LOCALE=EN_US.UTF8
export DB_LOCALE

Now let us create the database itself. You can either use dbaccess in interactive mode, or
write a small SQL script file. The script file should contain the following Informix SQL
statement to create a new database with logging enabled:

CREATE DATABASE 'WPS' WITH LOG;
Chapter 10. WebSphere Portal Server 277

Be sure that the environment variable DB_LOCALE is set correctly (see above), and execute
the SQL script by running the following command:

dbaccess - <SQL script file>

where <SQL script file> is the name of the previously saved file.

Granting access rights for portal administrators
Portal administrators must be given DBA rights on the Informix database. Use these steps to
grant access to portal administrators:

Start dbaccess and execute the following SQL statement:

grant dba to wpsadmin

In this statement, wpsadmin is the user name for the portal administrator.

Now you have an IDS 9 database prepared for portal server usage. You can now continue
with the WebSphere portal server installation.

Summary
The WebSphere portal server family allows you to easily integrate your enterprise wide
applications into a powerful frontend environment while supporting different clients at the
same time. Informix IDS 9 is an optimal foundation for setting up such an environment trough
its high performance, reliability and serviceability. You could even use IDS 9 high availability
features like HDR (High Availability Data Replication) to increase the availability of your
overall WebSphere portal / IDS solution without the need to buy additional components.

Tip: You can choose any database name you want. During installation of the WebSphere
portal server you will be asked which database should be used. The suggested default
name by the WPS Setup tool is wps.

Tip: Before you continue with the WPS installation, take a note of some critical IDS 9
database connectivity parameters like, SERVERNAME, hostname, port number and
database name. You will need this information during the portal server setup.
278 Using Informix Dynamic Server with WebSphere

Chapter 11. WebSphere MQ, messaging,
and IDS

WebSphere MQ messaging products enable application integration by helping business
applications to exchange information across different platforms, sending and receiving data
as messages. Informix IDS is already supported on some WebSphere MQ platforms and will
be another tier-1 database for future MQ releases. In addition, there is going to be a
DataBlade API available for MQ access through the IBM alphaworks Web site.

In this chapter, the following topics are discussed:

� WebSphere MQ overview
� WebSphere and messaging
� MQSeries® transactional support for IDS
� IBM Informix MQSeries DataBlade

11
© Copyright IBM Corp. 2003. All rights reserved. 279

11.1 WebSphere MQ overview
IBM WebSphere® MQ (formerly MQSeries) is market-leading business integration software.
It connects all your business software together to form one efficient enterprise by providing an
open, scalable, industrial-strength messaging backbone.

WebSphere MQ minimizes time taken to integrate key resources and applications held in
different systems, so your company can respond to the changing demands of e-business. By
connecting business information with people and other applications, you can extract more
value from existing investment, and quickly integrate new systems to support new market
strategies.

WebSphere MQ features at a glance:

� Connect any commercial systems in business today (over 35 platforms supported)

� Ignore network disruptions – important data is always delivered

� Use less time and resources to become an e-business

� Exploit rich support from over 550 IBM Business Partners

� Allows business to integrate disparate islands of automation

� Time independent communication

� Assured one-time delivery

� WebSphere MQ supports high volume throughput, customer experience in excess of 250
million messages a day

Application programs and messaging
The IBM MQSeries range of products provides application programming services that enable
application programs to communicate with each other using messages and queues. This form
of communication is referred to as commercial messaging. It provides assured, once-only
delivery of messages. Using MQSeries means that you can separate application programs,
so that the program sending a message can continue processing without having to wait for a
reply from the receiver. If the receiver, or the communication channel to it, is temporarily
unavailable, the message can be forwarded at a later time. MQSeries also provides
mechanisms for providing acknowledgements of messages received.

The programs that comprise an MQSeries application can be running on different computers,
on different operating systems, and at different locations. The applications are written using a
common programming interface known as the Message Queue Interface (MQI), so that
applications developed on one platform can be transferred to another.

Figure 11-1 shows that when two applications communicate using messages and queues,
one application puts a message on a queue, and the other application gets that message
from the queue.
280 Using Informix Dynamic Server with WebSphere

Figure 11-1 Two applications using a queue for communications

Queue managers
In MQSeries, queues are managed by a component called a Queue Manager. The queue
manager provides messaging services for the applications and processes the MQI calls they
issue. The queue manager ensures that messages are put on the correct queue or that they
are routed to another queue manager.

Before applications can send any messages, you must create a queue manager and some
queues. MQSeries for Windows provides the utilities to help you do this and to create any
other MQSeries objects that you need for your applications.

How applications identify themselves to queue managers
Any MQSeries application must make a successful connection to a queue manager before it
can make any other MQI calls. When the application successfully makes the connection, the
queue manager returns a connection handle. This is an identifier that the application must
specify each time it issues an MQI call. An application can connect to only one queue
manager at a time (known as its local queue manager), so only one connection handle is valid
(for that particular application) at a time. When the application has connected to a queue
manager, all the MQI calls it issues are processed by that queue manager until it issues
another MQI call to disconnect from that queue manager.

Opening a queue
Before your application can use a queue for messaging, it must open the queue. If you are
putting a message on a queue, your application must open the queue for putting. Similarly, if
you are getting a message from a queue, your application must open the queue for getting.
You can specify that a queue is opened for both getting and putting, if required. The queue
manager returns an object handle if the open request is successful. The application specifies
this handle, together with the connection handle, when it issues a put or a get call. This
ensures that the request is carried out on the correct queue.
Chapter 11. WebSphere MQ, messaging, and IDS 281

Putting and getting messages
When the open request is confirmed, your application can put a message on the queue. To do
this, it uses another MQI call on which you have to specify a number of parameters and data
structures. These define all the information about the message you are putting, including the
message type, its destination, which options are set, and so on. The message data (that is,
the application-specific contents of the message your application is sending) is defined in a
buffer, which you specify in the MQI call. When the queue manager processes the call, it adds
a message descriptor, which contains information that is needed to ensure the message can
be delivered properly. The message descriptor is in a format defined by MQSeries; the
message data is defined by your application (this is what you put into the message data buffer
in your application code).

The program that gets the messages from the queue must first open the queue for getting
messages. It must then issue another MQI call to get the message from the queue. On this
call, you have to specify which message you want to get.

Messaging using more than one queue manager
This arrangement is not typical for a real messaging application because both programs are
running on the same computer, and connected to the same queue manager. In a commercial
application, the putting and getting programs would probably be on different computers, and
so connected to different queue managers.

Figure 11-2 shows how messaging works where the program putting the message and the
program getting the message are on the different computers and are connected to different
queue managers.

In this situation, you also need to create message channels to carry MQSeries messages
between the queue managers.

Figure 11-2 Applications connected to two different queue managers
282 Using Informix Dynamic Server with WebSphere

11.2 WebSphere and messaging
In this section we discuss the role of WebSphere in messaging technologies.

11.2.1 Overview
Enterprises have been using messaging technologies for many years. Most uses of
messaging with in application server environment can be categorized in the following
scenarios.

� Asynchronous communication: Messaging provides a mechanism to for asynchronous
communication between applications or application components. This could be point to
point pattern or a publish/subscriber pattern explained in detail further down in the
chapter.

� Heterogeneous integration: Enterprise systems, run with different hardware and
different Operating Systems. They need a communication technology in common for
integration and must use messaging for communication.

� Temporary data storage: Transaction monitor environments and other applications,
require a temporary storage for the recovery in case of and even failure, but unlike an
RDBMS the schema does not have to define a priori if messaging queues are used for the
temporary data storage.

11.2.2 Java Message Services (JMS)
Provides a messaging API that allows for asynchronous communication between
applications, though synchronous messaging is also possible

Asynchronous Messaging
JMS provides the ability for an application to send messages to another without waiting for a
reply. There are two forms of messaging supported in JMS:

� Point to Point Messaging: Allows a peer-to-peer form of communication where two
parties agree on a role of message producer and message consumer of a queue

� Publish/Subscribe Messaging: Allows for one-many communications pattern, where a
message producer places messages into a topic based on the topic name. Subscribers
who are interested in the topic can then subscribe to the topic. Subscribers are notified
when a message for that topic arrives

11.2.3 WebSphere Messaging Engines
WebSphere provides support for a number of different messaging engines. They are:

� Lightweight JMS
� Embedded JMS
� External JMS/MQ

Lightweight JMS
The WebSphere Lightweight JMS engine provides messaging support for development tools
WebSphere Studio Application Developer (WSAD) in particular. This is for rapid prototyping.
WSAD uses the lightweight JMS Engine to provide messaging support with in the unit test
environment. WSAD can also be used with any of the three engines mentioned before. The
connection factories have to set up while configuring the test environment of WSAD for this.
Chapter 11. WebSphere MQ, messaging, and IDS 283

The lightweight JMS engine is a close approximation of the J2EE required JMS functionality,
but trades off support for security, persistence, and recoverability, for quick start up time. The
lightweight JMS Engine does also support transactional semantics, but the transaction is not
logged or recoverable after server restart.

Embedded JMS
The Embedded JMS Engine provides a subset of the WebSphere MQ 5.3.. It is a full J2EE
compliant messaging engine. JMS provider management is integrated with WebSphere
systems management. The message engine server is started and stopped along with the
WebSphere Application Server. Topics and queues can be created in JMS resource
configuration. The embedded JMS provider can only be installed if WebSphere MQ is not
already installed on the node.

Some of the salient features of the Embedded JMS are listed here

� WebSphere MQ products provide “queue manager” and broker components, Embedded
messaging provides a single server component (Embedded Messaging Server), accessed
via a single integrated client component (Embedded Messaging client)

� Embedded Messaging is administered using the WebSphere Administration Console

� Can be accessed by thin Java clients via JNDI.

� Cannot interoperate with WebSphere MQ, WebSphere Event Broker, and not Java
applications that do not have access to resources in the WebSphere application Server via
JNDI

� When Embedded Messaging server is installed it is installed on a node A. All the
WebSphere application Servers belonging to the cell to which the node is clustered must
use the Embedded Messaging Server of node A, but thee participating messaging nodes
need to have the Embedded Messaging Client installed.

� Embedded Messaging is integrated with the WebSphere application Security. UserIds are
authenticated against the password in user registry, which the Application Server has
been configured to use.

� The Embedded JMS Server starts and stops along with the WebSphere Application
Server and has no visible separation of queue manager and broker components. It
support point to point and Pub/Sub messaging patterns.

External JMS/MQ
The external JMS engine provides complete functionality for JMS messaging, including
message queue clustering support. There can only be one WebSphere MQ JMS provider,
embedded or external installed on a node.

Here are the possible modes of Installing WebSphere MQ:

� If WebSphere MQ is installed and then WebSphere Application Server is installed, then
embedded JMS will not be installed, and the WebSphere MQ already installed will be
used.

� If WebSphere Application Server is installed, then the embedded JMS will be
automatically installed and can be upgraded to use the full WebSphere MQ if WebSphere
MQ is installed subsequently.

The WebSphere MQ product family provides additional messaging support in the form of
WebSphere MQ Integration Broker, which provides rule-based message transformation and
routing that can be visually composed using message flows.
284 Using Informix Dynamic Server with WebSphere

WAS, WebSphere MQ, and WebSphere MQ Event Broker
When WebSphere MQ and/or WebSphere MQ Event Broker with WebSphere application
Server are integrated, the customer gets the benefit of these products with the J2EE
applications. The effort is that messaging system has to be separately configured using the
WebSphere MQ Event Broker tools like MQ Explorer, the connection between the Application
Server and MQ or Event Broker. With in the Application Server tools, MQ and Event Broker
are referred to collectively as the “WebSphere MQ JMS Provider”.

To use the “MQ JMS Provider” you install and configure either WebSphere MQ or WebSphere
MQ Event broker and then configure the Application Server to connect to it instead of the
Embedded Provider. The MQ products can be on the same or different server.

If your J2EE applications are using only point-to-point messaging, then WebSphere MQ is
sufficient; if they are using publish/subscribe, then WebSphere MQ Event Broker is needed.

Here are some scenarios for which can use of the additional capabilities of WebSphere MQ,
WebSphere MQ Event Broker, or WebSphere MQ Integrator Broker would be appropriate:

� A necessity to connect applications running in WebSphere Application Server with
applications that use a wide selection of other language environments, runtime
environments, and/or hardware platforms, or to connect to a large range of packaged
applications that have either native a MQ interface, or for which an adapter is available.

� A necessity to support high message volumes (measured as a function of both message
size and number of messages). With WebSphere MQ, Queue Manager Clustering can be
used to distribute messaging workload across multiple queue managers.

� A requirement to decouple sending and receiving application environments, both from one
another and from the underlying network that provides connectivity between them.
Web-Sphere MQ message channels can allow the sending application to continue
processing when the receiving application or its hardware is unavailable, and vice versa,
and both applications may be able to continue operating when the network link is down.

� A requirement to support a large number of independent subscribers. With WebSphere
MQ Event Broker, multiple brokers can be interconnected so as to form topology This
allows publications to be “fanned out” and distributed across a large number of subscribing
applications.

� A requirement to reuse existing WebSphere MQ or Event Broker infrastructure.

Other messaging providers
In general, WebSphere supports the use of MQ based JMS providers. Other JMS providers
can be used from a client for non-managed connection to a JMS provider. These
non-managed connections are obtained using the same programming model as WebSphere
MQ based JMS connections, but they are not integrated to provide connection-pooling
behavior.

11.3 WebSphere MQ Integration with IDS
There are currently two areas in which Informix IDS is supported in combination with
WebSphere MQ: transactional support and a DataBlade API to the MQ queue manager. The
following sections describe how to enable the different options in combination with IDS.
Chapter 11. WebSphere MQ, messaging, and IDS 285

11.3.1 MQSeries Transactional Support for IDS
Transactional support for IDS and WebSphere MQ is currently available on the following
platforms:

� MQSeries for HP-UX (10.20 or 11) and MQSeries for Sun Solaris - V5.2 plus CSD05 plus
IY31724 or later running in conjunction with Informix IDS 7.3 or 9.21 or compatible
version, or

� MQSeries for Sun Solaris, Intel Platform Edition - V5.1 running in conjunction with Informix
IDS 9.21 or compatible version.

In addition to the MQ product itself, you also need to obtain the MQSeries SupportPac™
MC08. IBM employees can retrieve that SupportPac by using the following internal URL:

http://www-3.ibm.com/software/integration/support/supportpacs/individual/mc08.html

This SupportPac provides the sample programs and guidance necessary to allow MQSeries
to co-ordinate Informix database updates and messaging activity in a single “unit of work”,
providing transactionally assured updates to both resources. The co-ordination by MQSeries
of Informix databases is achieved using the XA protocol with MQSeries acting as the XA
Transaction Manager and Informix acting as an XA compliant Resource Manager.
Applications which include both MQSeries and SQL activity may use the MQBEGIN verb to
start a “unit of work”. Subsequent MQSeries and SQL activity can be “committed” or “backed
out” atomically, using MQCMIT or MQBACK verbs.

This function is an extension to the existing database message resource co-ordination
functionality available in MQSeries V5.0 or later for DB2, Oracle and Sybase. The versions of
Informix supported are V7.3 or V9.2 or compatible version for HP-UX and Sun Solaris and
V9.21 for Sun Solaris, Intel Platform Edition.

Further information can be found in the following MQSeries publications:

� MQSeries System Administration - Chapter 14 (Transactional Support)

� MQSeries Application Programming Guide - Chapter 13 (Committing and backing out
units of work)

This functionality offers a significant step toward tighter integration of MQSeries with the
Informix database which, prior to this function, could only be achieved by using an external
transaction manager or sophisticated application program. This new functionality offers
significant savings in the implementation of a transaction monitor when transactional integrity
is only required for database updates.

11.3.2 IBM Informix MQSeries DataBlade
The Informix MQSeries DataBlade allows IBM Informix database applications to
asynchronously communicate with other MQSeries applications. For instance, the new
functions provide a simple way for an IBM Informix database application to publish database
events to remote MQSeries applications, initiate a workflow through the optional MQSeries
Workflow product, or communicate with an existing application package with the optional
MQSeries Integrator product. This work is modeled on IBM WebSphere interfaces provided
with DB2® Universal Database Version 8.x. More information about this can be found at in the
DB2 Information Center.

The DataBlade provides access to MQSeries queues via function calls or tables using
IBM/Informix's Virtual Table Interface (VTI). The VTI binds tables to MQSeries queues
creating transparent access to MQSeries objects via tables. By binding the table to a queue a
SQL developer can access the queue as if it were a table, the most comfortable interface from
a database developers perspective.
286 Using Informix Dynamic Server with WebSphere

http://www-3.ibm.com/software/integration/support/supportpacs/individual/mc08.html

Example 11-1 illustrates how to insert into a queue, followed by the corresponding retrieval
utilizing MQ DataBlade function calls.

Example 11-1 Insert message into the queue

execute function
 MQSend('AMT.SAMPLE.SERVICE',
 'AMT.SAMPLE.POLICY',

 'Hello Queue');
(expression)
 1
1 row(s) retrieved.

Example 11-2 illustrates how to remove a message from the same queue.

Example 11-2 Remove a message from the same queue

execute function MQReceive('AMT.SAMPLE.SERVICE',
 'AMT.SAMPLE.POLICY');

(expression) Hello Queue

1 row(s) retrieved.

In addition to a functional interface, the Virtual Table Interface (VTI) can be established to MQ
queue also. This enables a table definition to be bound to a queue, so when an application
inserts data into the table, it is put to the MQSeries queue. Conversely, a select from the
bound table results in a fetch being executed against the queue.

Inserting onto the queue using VTI looks as shown in Example 11-3.

Example 11-3 Inserting onto a queue

insert into vtiMQ (msg) values ('Hello World!');

1 row(s) inserted.

Retrieval from a queue using the table interface looks as shown in Example 11-4.

Example 11-4 Retrieval from a queue

select msg from vtiMQ;

msg Hello World!

1 row(s) retrieved.

For further information regarding the IBM Informix MQSeries DataBlade and how to obtain a
copy of it, please refer to an upcoming section on the IBM alphaworks Web site:
(http://www.alphaworks.ibm.com).
Chapter 11. WebSphere MQ, messaging, and IDS 287

http://www.alphaworks.ibm.com

Conclusion
WebSphere MQ provides a consistent multiplatform, application-programming interface. A
key factor is time-independent processing. This means that messages are dealt with
promptly, even if one or more recipients are temporarily unavailable.

WebSphere MQ takes care of network interfaces, assures “once and once only” delivery of
messages, deals with communications protocols, dynamically distributes workload across
available resources, handles recovery after system problems, and helps make programs
portable. Thus, programmers can use their skills to handle key business requirements,
instead of wrestling with underlying network complexities.

The already existing support and upcoming enhancements for Informix IDS/WebSphere MQ
opens new, powerful business integration options for Informix developers.
288 Using Informix Dynamic Server with WebSphere

Chapter 12. IBM Informix 4GL and
WebSphere

The Informix 4GL has been one of the first Informix products in the market and has been very
successful for more than a decade with Informix database developers worldwide. Many
enterprise critical applications still rely on 4GL, and millions of lines of 4GL code are currently
being used at thousands of customer sites.

IBM plans to address the needs of those 4GL developers/applications through different
approaches. In addition to opening the Informix 4GL to the DB2 database family, there will be
an evolutionary migration path into the world of J2EE environments through the integration
into the WebSphere development environment (WSAD).

In this chapter we focus on the current plans for a 4GL integration into the world of
WebSphere.

12
© Copyright IBM Corp. 2003. All rights reserved. 289

12.1 IBM Informix 4GL: Protecting your investment
In this section we consider the new capabilities of this product.

12.1.1 Informix 4GL
IBM Informix 4GL (I4GL) is an application development product that has been around for
many years. As a very powerful and productivity improving development tool, it is heavily
used across much of the Informix customer base and has become a key piece of
development infrastructure in the Informix developer community. However, in today’s Internet
economy, the task of the application developer is rapidly changing. There are new functions
and features required, particularly to support Internet-based applications.

For example, many companies want their employees to access even the mission-critical
applications via a Web browser, or to run them on a PC on the client’s desktop without
abandoning the GUI interface available in the majority of programs. But, you have made a
significant investment in I4GL and need to enhance that investment, not redevelop it. So what
is the strategy and direction for I4GL? IBM has been busily putting together plans to protect
the investment that you have in I4GL and to deliver the new capabilities that are required. So,
how are we going to do that? Take a look at Figure 12-1.

Figure 12-1 The 4GL Roadmap for WebSphere integration
290 Using Informix Dynamic Server with WebSphere

12.1.2 EGL and WebSphere
IBM WebSphere has a product called Enterprise Generation Language (EGL), which is a
product that enables customers using the VisualAge Generator (VAGen) to move their
applications into the WebSphere environment. One of the key benefits of this is that
customers get a very powerful GUI oriented application development environment and one
that puts them right into the mainstream of the IBM application development strategy. For
example, it means they are now positioned to use, and will be integrated with, the WebSphere
Studio Application Developer tools. That means they have access to screen painters and the
entire integrated development environment, enabling the applications to be deployed as is
typical with their traditional applications. But, it also provides the mechanisms to enable their
applications to be deployed to the WebSphere Application Server environment. This means
the can also be used in the Internet environment.

This is a very exciting product direction that should be of great interest to the I4GL user
community. The direction then is to modify EGL so it will be easy to migrate from I4GL. Then
the presence of tools, such as screen painters to handle forms, compilers generating Java
code, and the ability to integrate with WebSphere at run-time, is very appealing. How are we
going to do that? Consider Figure 12-2.

Figure 12-2 A possible Web application development scenario with EGL
Chapter 12. IBM Informix 4GL and WebSphere 291

12.1.3 Extending EGL to support I4GL
IBM is in the process of modifying EGL so that it is possible to automatically translate I4GL
code into the extended EGL. The EGL runtime environment will provide a character-based
screen deployment option (TUI – or terminal user interface – as opposed to GUI or graphical
user interface) which will function virtually identically to the I4GL runtime. However, once it is
translated, developers have the added advantage of being able to enhance the translated
I4GL code to take advantage of the GUI interfaces and Web deployment options that are
available with EGL. This is a significant benefit to I4GL customers and a major step in
protecting their application development investment.

This task has required a number of changes to EGL. For example, the database support in
EGL had to be extended to accommodate I4GL. EGL was database agnostic; for example, it
supports, data sources such as IMS and simple files as well as SQL databases, but it hid the
SQL syntax from the developer. One of I4GL’s strengths has always been the close
integration of SQL with the programming language. However, it should be noted that the only
dialect of SQL supported was the Informix version, and the only connectivity method was the
Informix-proprietary ESQL/C. One side effect of better support for SQL in EGL, and for
Informix’s dialect of SQL in particular, was that the type system needed to be made richer.
EGL already supports the 3GL constructs that I4GL supports, such as functions, for loops,
while loops, if statements, and so on.

Type system
To achieve the goal of translating I4GL to EGL automatically, the EGL type system had to be
revised to support essentially all the SQL data types – both those in standard SQL-92 and
those in the Informix dialect of SQL. EGL already had support for character and numeric data
types, but needed to include support for the date, time and interval types, as well as being
refined to handle specialized types such as BLOB, CLOB, BYTE, TEXT, LVARCHAR, INT8,
SERIAL, and SERIAL8.

Procedural statements
The EGL procedural statements are similar to those in I4GL, but there are some differences.
For example, the END keyword is not followed by a keyword such as IF or WHILE, and the
keyword LET is not necessary. However, omission of the LET keyword means that
statements must be terminated by semi-colons. EGL functions have prototypes, which are
unlike I4GL functions. This has implications for those I4GL functions that pass values of one
type and expect the called function to convert the value on entry, or for functions which return
a type that is normally converted into another when the return value is collected off the I4GL
stack. EGL supports pass by reference semantics by default; whereas I4GL supports pass by
value semantics. Reconciling these differences requires new keywords in EGL and care in
converting the I4GL code. But, it is a function that can be automated.

SQL statements
EGL will allow SQL statements to be written more nearly as in I4GL.
292 Using Informix Dynamic Server with WebSphere

Non-procedural statements
I4GL provides a number of non-procedural statements, the key ones being MENU, INPUT,
INPUT ARRAY, DISPLAY ARRAY, CONSTRUCT, and PROMPT. It is convenient to count
DISPLAY in this group even though it doesn’t involve user-interaction as the others do. These
statements will be translated almost directly into EGL; that is, new EGL statements will be
provided to support these I4GL operations. The keyword DISPLAY will become SHOW. All
the others will continue to use their current names, and will retain their characteristic structure
with identified events (such as BEFORE FIELD or AFTER INPUT or ON KEY) and the
associated block of I4GL code being migrated to EGL. The code to be generated from these
will be complex, but that’s a problem for the EGL compilers and runtime, not the I4GL
programmer.

Form files
I4GL form files will be translated into a new format that can be managed by an enhanced
version of the EGL screen form painter. All the existing functionality will be retained, and
valuable new features will be made available to applications, such as control over both the
foreground and background colors on the screen. Further, the screen painter will allow for
both TUI and GUI displays, so it will be a key help in migrating to the browser and GUI future.
See Figure 12-3.

Figure 12-3 4GL/EGL interaction with the WebSphere environment
Chapter 12. IBM Informix 4GL and WebSphere 293

Reports
The I4GL report writing facilities are one of its most valuable features, even if they also show
the age of the product. This is one of the areas where the exact solution to the problem has
not be decided, but there are two primary alternatives. The preferred one is based on
WebSphere as a whole incorporating Crystal Reports (from CrystalDecisions –
http://www.crystaldecisions.com). This will allow EGL to use Crystal Reports as the report
generator, and there would be a mechanism to extract the I4GL report formatting functions
(REPORT…END REPORT) and convert this into a Crystal Report format, while the report
driver code would accumulate the data and send it to the Crystal Report code.

The alternative is to incorporate much of the I4GL report logic directly into EGL. The bulk of
the code would be translated verbatim; structures such as ON EVERY ROW blocks would
continue to exist and so on. There would be analogous changes to the contents of the
formatting blocks. The big advantage of Crystal Reports would be the vast range of output
formats supported, including variable width fonts and HTML. No final decision has been
made, pending commercial discussions.

12.1.4 Moving from I4GL to EGL
The expectation of this development activity is that the task of moving I4GL code to EGL, will
be accomplished nearly automatically. There may be a few applications which use extremely
obscure statements – maybe VALIDATE LIKE and SCROLL – that will not be migrated 100%
automatically, but, that should represent a very small percentage of the total number of
applications (and only a small part of those applications). There will be support for C
functions, but the I4GL internals will be completely revised. The effect will be that anything in
the C code that relies on the internals of the I4GL library will not work. Functions using the
documented C interface functions should be reusable, but will need to be re-evaluated for
continued relevance in the EGL environment.

One of the less easily automated aspects of the migration will be adapting the I4GL build
process to EGL. The EGL build will require explicit knowledge of all functions (and probably
form files) before compilation. The I4GL program design database does not record all the
form files or message files associated with a program, so libraries will need careful
evaluation. More typically, programmers use the MAKE program. Unfortunately, the makefiles
used to compile I4GL are not standardized at all, so it will be hard to automatically convert
them to handle EGL.

12.1.5 The value of WebSphere Application Developer
Once the I4GL applications have been translated into EGL, you will be able to take advantage
of the WebSphere Application Developer. This gives you significantly more capability, with a
state of the art application development environment. It will impact your application
development productivity and thus the cost of application development and maintenance.
And you are positioned to more easily extend your reach into the Internet environment. This is
an essential strategy and direction to remain competitive in today’s online and On-Demand
environment.
294 Using Informix Dynamic Server with WebSphere

http://www.crystaldecisions.com

Chapter 13. Implementation hints and tips

We have taken you through the installation and configuration processes for IDS and
WebSphere, which should make the implementation much easier for you. But, while installing
and configuring the products, there is always the possibility to encounter problems. We
encountered a few during our implementation and wanted to document them in the event you
have the same experience. This will ensure that your implementation experience will be faster
and easier, and that the products will give you their best performance.

13
© Copyright IBM Corp. 2003. All rights reserved. 295

13.1 Our implementation experience
We have included in this chapter descriptions of several problems encountered during our
implementation process. Along with the description, we offer either a solution to the problem
or an alternative approach that we selected. Our objective is to help you avoid these
problems, or at least have a solution available if you do encounter them. We hope these hints
and tips will help speed you along with your implementation experience.

13.1.1 Installing SuSE 8.0 Linux
We installed SuSE 8.0 Linux on an Intel server with 760 MB of memory. The installation of
SuSE is simple and easy, and can be performed via FTP. We chose this type of installation
and we followed the instructions found at the following site:

ftp://ftp.suse.com/pub/suse/i386/current/README.FTP

To install SuSE Linux from this site, follow these steps:

1. Go to ftp://ftp.suse.com/pub/suse/i386/<version>/disks, and download the floppy disk
image called bootdisk as well as the module disk image files you need (at least module1
and the network modules from modules3). Write the images to floppy disks using the 'dd'
command:

 dd if=[path_to_image] of=/dev/fd0 bs=36b

On non-linux systems, use the rawrite utility from the dosutils/rawrite directory
(rawrite.exe).

We copied all three files (bootdisk, modules1 and modules3) for our implementation.

2. Boot from CD/floppy and at the boot prompt enter the installation source:

linux install=ftp://ftp_server/directory

Remember to substitute “ftp_server” and “directory” with the appropriate values (such as
install=ftp://ftp.suse.com/pub/suse/i386/8.0 if you are installing from the SuSE ftp server).

Alternatively, choose “manual installation” and configure the network in the installation
program.

3. When the installation files are downloaded, you can begin the installation and
configuration of SuSE. Follow the screen instructions to complete the installation.

Attention: We first tried to install SuSE 8.1 using the created floppy disks, but after loading
the second disk (modules1) the screen turned black and we could not continue. Then we
tried the 8.0 and it worked fine.

Tip: You might want to use a SuSE mirror site. In our implementation we did, and it was
much faster to download the installation files.

Important: During the disk configuration, do not configure all the space as REISER file
systems. For IDS it is important to use another type of filesystem, such as ext3.
296 Using Informix Dynamic Server with WebSphere

ftp://ftp.suse.com/pub/suse/i386/current/README.FTP

VNC: Remote administration
In our installation we used VNC (Virtual Network Computing) to emulate the X-window
environment of SuSE. This proved to be very effective and easy to use. You can download
both the VNC server and client from:

http://www.uk.research.att.com/vnc/

You must install the VNC server on the Linux server and then install the VNC viewer on your
remote Windows processor.

VNC server
1. Copy the compressed file on a temporary directory, for example /tmp

2. Uncompress the file and extract the installation files. We found the file downloaded were
in a tar format, so we ran:

tar -xvf vnc-3.3.7-x86_linux.tar

3. This command creates a new directory called vnc-3.3.7-x86_linux. Just enter the
directory and run:

./vncinstall <installation directory>

We chose the /opt/vnc directory

4. Go to the installation directory and run the following command to enable the VNC server:

cd /opt/vnc

./vncserver

This will start the server and the VNC viewer can emulate the X-window environment of
SuSE.

The initialization process asks for a password that needs to be filled out when the viewer
is trying to access the server.

It shows the display number that needs to be used by the viewer and also shows the paths
of its message log files.

VNC viewer
The viewer installation is even easier, just uncompress the file using Winzip on your Windows
processor and follow the instructions.

Once the viewer is installed you simply need to execute the program by double-clicking its
icon and provide the necessary information, such as:

Host name and display: The Linux host name and the display number showed when the
VNC server was started.

Password: The password that was provided when the vnc server was configured.

If everything is correct, you should see a window as shown in Figure 13-1.

Attention: Once the VNC server is started, its message log is displayed on the screen.
Open the log and you will notice that the vnc server is listening to a specific TCP/IP port.
This port also needs to be configured in the firewall if you choose to leave it enabled.
Chapter 13. Implementation hints and tips 297

http://www.uk.research.att.com/vnc/

Figure 13-1 X-window emulation through VNC

13.1.2 Installing IDS on SuSE 8.0 Linux
In this section we describe some of the issues we had while installing IDS on SuSE 8.0, and
explain the solutions we used for them.

IDS installation
When using IDS 9.40 with LINUX systems there are two points to consider:

1. When using SUSE Linux 8.1 (and United Linux), we needed a glibc patch before IDS 9.40
would initialize. For SuSe Linux 8.1 this patch can be obtained from

ftp://ftp.suse.com/pub/suse/i386/update/8.1/rpm/i686/glibc-2.2.5-165.i686.rpm

You need to install the patch with the -U option in the rpm command:

rpm -U glibc-2.2.5-165.i686.rpm
298 Using Informix Dynamic Server with WebSphere

ftp://ftp.suse.com/pub/suse/i386/update/8.1/rpm/i686/glibc-2.2.5-165.i686.rpm

This is due to the following information found in the machine notes
($INFORMIXDIR/release/en_us/0333/ids_machine_notes_9.40.txt)

This product was built on RedHat Linux 7.2 for i686 compatible processors and is targeted for
Linux Kernel 2.4.7 or higher and glibc 2.2.4 or higher versions.

So, this means that IDS 9.40 was built on a determined Linux kernel and glibc version. The
product is expected to work on newer Linux versions, but sometimes problems can occur.

Without the patch, the initialization will fail. When doing an oninit -ivy, the last message is:

Bringing up ADM VP...

The initialization hangs, and an onstat - shows that the server is not up.

Firewall on SuSE
During the installation process of SuSE, you have the option to enable a firewall. If you
choose to utilize the SuSE firewall, you may later have problems using both IDS and
WebSphere. In our installation, not even the ftp and telnet ports were open.

You may also encounter problems when trying to connect to IDS from a client processor
using TCP/IP. You will have to manually add the port number (in our case 1533) configured
for IDS on the firewall. As for WebSphere Application Server, you may find problems using
the administration console, because the 9090 port is not configured in the firewall.

To solve these issues, you can either configure these extra TCP/IP ports in the firewall or you
can simply disable the firewall during your tests. For both options, you can use the YaST
control center to configure the firewall (System ->YaST2).

Attention: When trying to install the new glibc, a dependency error is reported indicating
that we need to install a filesystem package before installing the glibc. You can find this
package at:

ftp://ftp.suse.com/pub/suse/i386/8.1/suse/i586/filesystem-2002.9.2-50.i586.rpm

Install this package (rpm -iv filesystem-2002.9.2-50.i586.rpm), then the new glibc will be
installed with no problems.

Notice that both packages were taken from the 8.1 distribution, but they worked fine on
SuSE 8.0 as well.

Important: Take care not to put the chunks onto a REISER file system. This will make the
instance very slow! So the solution is to put the chunks onto a different file system, such as
ext3.
Chapter 13. Implementation hints and tips 299

ftp://ftp.suse.com/pub/suse/i386/8.1/suse/i586/filesystem-2002.9.2-50.i586.rpm

Here we show how to manually add some new ports in the firewall configuration:

1. First open the YaST control center using the programs menu or using the shortcut to the
control center in the toolbar. If you are not logged as root a window asking for the root
password is displayed. See Figure 13-2.

Figure 13-2 YaST Control Center

2. Choose the Security and Users option and then choose Firewall.
300 Using Informix Dynamic Server with WebSphere

3. The control center uses four steps to configure the network. First you need to choose the
device that you want to configure. Usually for network cards the device is eth0.
Click Next. See Figure 13-3.

Figure 13-3 List of network devices
Chapter 13. Implementation hints and tips 301

4. On the next screen the configured ports are showed. Notice that there is a text field for
additional services. To add a new service, click the Expert... button. See Figure 13-4.

Figure 13-4 Extra services added

5. Add the TCP/IP port number that you need to be opened. For example, the IDS and WAS
ports (1533, 9090, and 9080). Click next and the new added services should be displayed
in the list. Click Next.

6. The next step shows some Features. Click Next.

7. The next screen shows some Logging options. Click Next.

8. Confirm your changes and activate the firewall. See Figure 13-5.

Figure 13-5 Configuration confirmation
302 Using Informix Dynamic Server with WebSphere

9. The firewall is now reconfigured. Just click the Quit button to exit the YaST control center.
See Figure 13-6.

Figure 13-6 Firewall is reconfigured

13.1.3 Performance tuning guidelines
For purposes of this redbook, we only used IDS and WebSphere for testing purposes so
there was no requirement for performance tuning. However, there are some general
guidelines in this environment to be considered, and are presented here. This section is not
intended to represent a complete or all-inclusive set of tuning guidelines.

From the IDS standpoint, the performance tuning process is very dependent on the systems
environment and usually requires either a experienced server administrator or an IBM
consultant to configure and test the installation. This is to be expected, particularly for the first
implementation, since new applications and users may be added to the system. The
performance tuning process for IDS should be re-analyzed and re-configured on a regular
basis for best performance.

It is not within the scope of this book to describe how to tune an IDS server, but we present
some general guidelines that could be used as a starting point. Normally these guidelines
should work fine for new systems, but after some time more advanced techniques may be
required. The guidelines are presented for two system types: OLTP and DSS.
Chapter 13. Implementation hints and tips 303

OLTP tuning
When tuning the OnLine system for an OLTP environment it is important to focus on specific
areas that will have the greatest impact on performance. What you want to achieve is:

� High read and write buffer cache rates
� Fast checkpoints
� Maximum I/O throughput by:

– Eliminating I/O bottlenecks
– Optimizing fragmentation strategy (including fragmenting the indexes as well as data)
– Optimizing index utilization

Typically, OLTP environments are characterized by a large number of users performing a
high volume of short transactions (INSERT, UPDATE and DELETE). When tuning IDS in an
OLTP environment it is important to spend your time in areas that will have the greatest
impact on performance. It is also important to realize that it is iterative in nature and doing too
much change at one time can present a challenge. And finally, benchmarking is key to
knowing where you stand and when you have success. With this in mind, here are some
initial ONCONFIG ($INFORMIXDIR/etc/$ONCONFIG) settings for OLTP.

� BUFFERS - Maximize. Set to 50% - 75% of available free memory. Set to an even greater
percent if not using the memory in the in virtual portion (after testing to see if the memory
is needed as shown below). When tuning this parameter and SHMVIRTSIZE, understand
that both may need to be changed if the combined total is 75% of the OS physical
memory.

� LOCKS - Set to 1000 * number of users.

� PHYSBUFF - Pages per I/O should be about 75% of the buffer size (to monitor use onstat
-l).

� LOGBUFF - Pages per I/O should be about 75% of the buffer size (to monitor use onstat
-l).

� LRUS - Configure four LRU pairs per CPU VP.

� CLEANERS - Configure one page cleaner thread per LRU pair.

� SHMVIRTSIZE - Set to 32000 + expected number of users * 800

� CKPTINTVL - Set to 9999. Let the physical log initiate checkpoints. This may be contrary
to popular belief but the reasoning is that you make the LRU cleaning keep dirty buffers to
a minimum and even with a long interval, you can minimize the checkpoint waits.

� LRU_MAX_DIRTY - Set to 10. With many systems, the final settings may be as low as 1.
Also with 9.4 release, you can use fractional percentages so the number of dirty buffers at
checkpoint time should only be the maximum duration that system should perform a
checkpoint in.

� LRU_MIN_DIRTY - Set to 5. With many systems, the final setting may be as low as 0.
Also with 9.4 release, you can use fractional percentages so you should not need a 0.

� RA_PAGES - Set to 32.

� RA_THRESHOLD - Set to 30.

DSS tuning
When tuning the OnLine system for a Decision Support Systems (DSS) environment it is
important to focus on specific areas that will have the greatest impact on performance. What
you want to achieve are:

� Optimum memory utilization
� Parallel data queries (PDQ)
� Light scans
� Maximum I/O throughput
304 Using Informix Dynamic Server with WebSphere

Optimum memory utilization: The area that will have the greatest impact is shared
memory. Due to the nature of DSS queries large amounts of shared memory located in the
virtual segment is required to perform a variety of operations, such as light scans, hash joins,
and sorts. It is critical to properly configure and tune the shared memory and PDQ
parameters in the OnLine onconfig file. To increase performance for DSS queries, increase
the amount of available virtual shared memory. With this in mind here are initial ONCONFIG
settings for tuning DSS queries:

� BUFFERS - Minimize. Set to 2000

� SHMVIRTSIZE - Maximize. Set to 75% of available memory (or an even higher % if
memory not needed elsewhere).

� SHMADD - Set to 32000

� SHMTOTAL - Set to available memory for the OnLine system not the entire memory of the
unix box.

� RA_PAGES - Set to 128.

� RA_THRESHOLD - Set to 120.

� DS_TOTAL_MEMORY - Set to 90% of SHMVIRTSIZE

13.1.4 Determining the port number of IDS on Linux
For a Java developer using WebSphere studio, one of the most important things to know is
how to connect to the database server that interacts with the application. Typically you should
contact the database administrator and get all the necessary information, such as:

� Host name
� IDS server (instance) name
� Database name
� TCP/IP port number
� User name and password with the necessary privileges

Most of this information has to be given by the database administrator, but you may be able to
find some yourself. In this section we show how to find the port number configured for an IDS
server instance.

Find the port number
Here are the steps to find the port number:

1. Log into the Linux server with the user id that was given by the database administrator (in
our case, itso).

2. Open the sqlhosts file. You have to know the location of this file, since it can be in any
directory, using the INFORMIXSQLHOSTS environment variable. You must ask your
database administrator if this variable is set. If so, get the value stored and open the file:

vi $INFORMIXSQLHOSTS

If INFORMIXSQLHOSTS is not configured the server uses the default file, so open it up
using vi:

vi $INFORMIXDIR/etc/sqlhosts

3. Locate the correspondent entry of the instance name. The instance name is stored in the
first column of the entry and the service name (port number) is stored on the forth column.
In this case we have demo_on as the server name and demo_on_tcp as the service
name. See Figure 13-7.
Chapter 13. Implementation hints and tips 305

Figure 13-7 Sqlhosts file

4. Now that we know the service name we need to find out the TCP/IP port assigned to it. To
do that, open the /etc/services file:

vi /etc/services

5. Search for service demo_on_tcp in the /etc/services file and find the port number. In our
case the port 1533 is assigned to demo_on_tcp. Here are the port number and service
name that have to be used in your application. See Figure 13-8.

Figure 13-8 Services file
306 Using Informix Dynamic Server with WebSphere

13.1.5 Using sequence objects rather than serial data type
In this redbook we have presented a sample application that uses JSPs, html pages, servlets,
and both entity-driven and message-driven beans. The application is used to query, insert,
and update data on IDS. Data insertion is performed through a entity bean, and, in our case,
a container managed persistence bean. The way that data is inserted is through a primary
key and the data insertion is performed on the customers table that has customer_num as a
primary key. This column is defined as a serial data type, that caused us a problem when
using the entity bean. For serial data types there are two ways to insert data:

� Insert value 0, so the system generates the next unique value for the column
� Specify an unique number in the column

The first option is the simplest one since many applications may be accessing the server and
inserting data into the table. The problem with this is that the conversion of value 0 to the next
unique integer number is performed on the database server. So after inserting the new value
the entity bean has to query this row and update the other columns. This did not work for our
application because WebSphere was looking for a primary key of value 0 instead of the
unique number generated by IDS.

The solution for this problem is to use sequence objects. This database object was introduced
with IDS 9.40 and is described in Chapter 2. A sequence object generates unique numbers
on the server, so we used the second approach to insert serial values. First we create a
sequence object using dbaccess:

dbaccess stores_demo

create sequence custnum start 150 increment 1

The command above creates a sequence object that starts with value 150 and increments it
by 1.

Now that we have our sequence object we can determine the next unique value. In our
application we run the following SQL statement before an insert:

select custnum.nextval from systables where tabid=1

This statement returns the unique value that we can specify during the insertion of a new
customer record. By doing this we avoid the problem with the serial data type.

13.1.6 WebSphere and IDS
In our environment we only installed WebSphere Application Server on Linux, however we
found a problem that prevented us from launching the installation script. Whenever we tried to
use LaunchPad.sh we received an error about a library called libc.so.6:

error while loading shared libraries: libc.so.6: cannot open shared object file:
No such file or directory

This is a known problem and is documented at:

http://sdb.suse.de/en/sdb/html/pthomas_install_anywhere.html

The solution is to edit the LaunchPad.sh script with the command:

vi LaunchPad.sh

Note: In our case we only used the stores_demo database for the sample applications so
the first record inserted has a customer_num of 150.
Chapter 13. Implementation hints and tips 307

http://sdb.suse.de/en/sdb/html/pthomas_install_anywhere.html

The modified lines are highlighted in Figure 13-9:.

Figure 13-9 Editing LaunchPad.sh

After editing the script, the installation should work with no further problems.

13.1.7 Install error with Redhat 8.0 Linux
Prior to our installation and use of SuSE 8.0 Linux, we tried installing and configuring an Intel
server with Redhat 8.0 Linux. We then installed IDS 9.40 and WAS Enterprise Edition 5.0.
The installation of both products was easy and smooth, and no problems were encountered.

However when we began our testing process using WSAD, there was a problem with using
IDS on this version of Linux. Here are some of the symptoms of the problem. When
connections were established with the database server (usually remote connections, such as
with WSAD on Windows) and database activities were performed, IDS went into a state
called checkpoint request. Because of this we were unable to continue using RedHat Linux
and moved to SuSE Linux Version 8. Everything worked without problems on this version of
Linux.

13.1.8 An alternative Java UDR deployment method
In Section 9.3, “Using IDS 9 as a Web service consumer” on page 233, are two examples of
Java UDRs that have to be registered with the IDS 9.40 database server by using an SQL
script and a two step approach:

1. execute the install_jar() routine
2. execute a create function() statement.

In addition to this approach, there is an even easier way to achieve the same result and that
is by utilizing a deployment descriptor in combination with a manifest file.

Let’s take a look at the necessary steps by using the example given in 9.3.5, “A simple IDS
Web service example — Currency Exchange project” on page 239:

1. Create a deployment descriptor file with the name deploy.txt and the content shown in
Example 13-1.
308 Using Informix Dynamic Server with WebSphere

Example 13-1 deploy.txt file

SQLActions[] = {
"BEGIN INSTALL

create function CurrencyExchange(lvarchar, lvarchar)
returns float as exchange_rate

external name 'thisjar:CurrencyExchangeUDRs.currencyExchange.(java.lang.String,
java.lang.String)'

language java;

alter function CurrencyExchange(lvarchar, lvarchar) with
(add parallelizable);

grant execute on function CurrencyExchange(lvarchar, lvarchar)
to public;

END INSTALL",

"BEGIN REMOVE
drop function CurrencyExchange(lvarchar, lvarchar);
END REMOVE"

}

2. Create a manifest file with the name manifest.txt and the content shown in Example 13-2.

Example 13-2 manifest.txt file

Name: deploy.txt
SQLJDeploymentDescriptor: True

3. Finally, create the CurrencyExchange.jar file by executing the following command:

jar cvmf manifest.txt CurrencyExchange.jar deploy.txt CurrencyExchange*.class

Now we have a self contained jar file which can be used in combination with an alternative
install_jar() routine call.

To deploy the CurrencyExchange.jar file you should call install_jar() with the following
options:

execute procedure install_jar('file:C:/RedBook2003/AXIS/CurrencyExchange.jar',
'CurrencyExchange', 1);

This command will install the jar file in the database and execute the SQL statements in the
BEGIN INSTALL section of deployment descriptor file.

To drop the CurrencyExchange UDR and remove the CurrencyExchange.jar file, please call
remove_jar() with the following options:

execute procedure remove_jar(’CurrencyExchange’, 1);

This command will remove the jar file in the database and execute the SQL statements in the
BEGIN REMOVE section of deployment descriptor file.

Summary
By applying the deployment method above, the user does not have to re-create/drop the
UDRs every time the jar file is installed/removed.

For more detailed information on this topic, please refer to the section, “Using a Deployment
Descriptor”, in the IBM Informix J/Foundation Developer’s Guide1.
Chapter 13. Implementation hints and tips 309

1 http://publibfi.boulder.ibm.com/epubs/pdf/ct1szna.pdf
310 Using Informix Dynamic Server with WebSphere

http://publibfi.boulder.ibm.com/epubs/pdf/ct1szna.pdf

Appendix A. SQLtoXML and XMLtoSQL Java
class description

This appendix contains additional information about the SQLtoXML and the XMLtoSQL Java
classes. We describe the SQLtoXML and XMLtoSQL classes in more detail, while the
QueryProperties, SQLProperties and BaseProperties are done in an overview/table style.

The class libaries, their documentation and some examples are located at:

<WSAD5_Installdir>\wstools\eclipse\plugins\com.ibm.etools.sqltoxml_5.0.1.

Class com.ibm.etools.sqltoxml.SQLToXML
java.lang.Object com.ibm.etools.sqltoxml.SQLToXML

public class SQLToXML
extends java.lang.Object

This class provides methods used by applications (such as the SQL to XML wizard) to
perform database queries. The query result is obtained in an XML format. Optionally,
corresponding DTD, XML schema, and XSL files of the result can be generated.

Constructors

SQLToXML
public SQLToXML(QueryProperties qProperties)

This is the only constructor.

Methods

execute
public void execute() throws java.lang.Exception

A

© Copyright IBM Corp. 2003. All rights reserved. 311

Executes a query based on information from QueryProperties given as the constructor
argument. The artifacts that can be generated include XML, XML schema, DTD, and XSL
files. To generate artifacts other than XML, the file names or PrintWriters need to be
provided by using relevant set accessors before using this method. Additionally the XML
output can be obtained as a DOM document through the getCurrentDocument() or
getCurrentDocuments() method call.

Throws: java.lang.Exception - Thrown when the execution fails.

execute
public void execute(PrintWriter xml, String dtdfile, String xsdfile, PrintWriter
xsl) throws Exception

Deprecated. Executes a query based on information from QueryProperties and the
results are written to the PrintWriters and/or files. When any argument other than 'xml' is
null, no result is generated for that particular argument. Also, if both dtdfile and xsdfile are
specified, only xsdfile is generated.

Parameters

xml - A PrintWriter for an XML result.
dtdfile - A DTD file name for the xml.
xsdfile - An XML schema file name for the xml.
xsl - A PrintWriter for a default XSL.

Throws: Exception Thrown when the execution fails.

See Also: QueryProperties

execute
public void execute(String params, PrintWriter xml, String dtdfile, String xsdfile,
PrintWriter xsl) throws Exception

Deprecated. Executes a query based on information from QueryProperties and the
results are written to the PrintWriters and/or files. When any argument other than 'xml' is
null, no result is generated for that particular argument. Also, if both dtdfile and xsdfile are
specified, only xsdfile is generated. This method is used when the query contains a
where-clause and its constraints are given in 'params' String argument. These constraint
parameters are delimited using comma (,) in the argument.

Parameters

params - where-clause constraint parameters delimited by comma(',').
xml - A PrintWriter for an XML result.
dtdfile - A DTD file name for the xml.
xsdfile - An XML schema file name for the xml.
xsl - A PrintWriter for a default XSL.

Throws: Exception Thrown when the execution fails.

See Also: QueryProperties

execute
public void execute(String xmlfile, String dtdfile, String xsdfile, String xslfile)
throws Exception

Deprecated. Executes a query based on information from QueryProperties and the results
are written to the files. When any argument other than 'xml' is null, no result is generated
for that particular argument. Also, if both dtdfile and xsdfile are specified, only xsdfile is
generated.
312 Using Informix Dynamic Server with WebSphere

Parameters

xmlfile - An XML file name for the query result.
dtdfile - A DTD file name for the xmlfile.
xsdfile - An XML schema file name for the xmlfile.
xslfile - An XSL file name for a default XSL.

Throws: Exception Thrown when the execution fails.

See Also: QueryProperties

finalize
public void finalize()

Closes the connection if this was created by SQLToXML. If the connection was supplied
externally (by using setConnection()), the connection is not closed. This method is called
by the JVM when SQLToXML is garbage-collected.

getConnection
public Connection getConnection() throws Exception

Returns a database connection. If no connection exists, this method creates a new
connection using the values from QueryProperties.

Returns: A JDBC connection used for the query

Throws: Exception Thrown when a connection is not available.

getCurrentDocument
public Document getCurrentDocument()

Returns the XML document that is a result of the most recent call to execute() method. If
the GENERATE_ID_AND_IDREF with RECURSIVE option is used, the main XML
document is returned.

Returns: An XML document

See Also: getCurrentDocuments

getCurrentDocuments
public Document[] getCurrentDocuments()

Returns an XML documents array that is a result of the most recent call to execute()
method. Unless the GENERATE_ID_AND_IDREF with RECURSIVE option is used, the
result contains only one document.

Returns: An array of XML documents.

See Also: getCurrentDocument

getDTDFile
public java.lang.String getDTDFile()

Returns current DTD file name to be generated.

Returns: A DTD file name.

See Also: setDTDFile

getNextAllQuery
public String getNextAllQuery()
Appendix A. SQLtoXML and XMLtoSQL Java class description 313

Returns a valid query string. This method returns a valid query string only when

1) Format option is ID_AND_IDREF, and
2) Recurse option is 'TRUE'

For example, when a column from the current query is a foreign key to a primary key
column of table A, this will return a string 'select * from A'. Refer to the sample servlet
XMLIntegratorServlet.java for a typical use of this method.

Returns: A select statement for a table referenced by a foreign key

getNextQueries
public Vector getNextQueries()

Returns a sequence of valid query strings. This method returns a Vector of valid query
strings only when

1) Format option is ID_AND_IDREF, and
2) Recurse option is 'TRUE'

For example, when a column from the current query is a foreign key to a primary key
column ID (with value 123) of table A, this will return a string 'select * from A where ID =
123'. Refer to the sample servlet XMLIntegratorServlet.java for a typical use of this
method.

Returns: A select statement (with where-clause) for a table row referenced by a foreign
key

getParameters
public java.lang.String getParameters()

Returns the parameter values for the where-clause.

Returns: The where-clause parameter values when they exist.

See Also: setParameters

getXMLFile
public java.lang.String getXMLFile()

Returns current XML file name to be generated.

Returns: An XML file name.

See Also: setXMLFile

getXMLWriter
public java.io.PrintWriter getXMLWriter()

Returns current PrintWriter for the XML output.

Returns: A PrintWriter for the XML output.

See Also: setXMLWriter

getXSDFile
public java.lang.String getXSDFile()

Returns current XML schema file name to be generated.

Returns: An XML schema file name.

See Also: setXSDfile
314 Using Informix Dynamic Server with WebSphere

getXSLFile
public java.lang.String getXSLFile()

Returns current XSL file name to be generated.

Returns: An XSL file name.

See Also: setXSLFile

getXSLWriter
public java.io.PrintWriter getXSLWriter()

Returns current PrintWriter for the XSL output.

Returns: A PrintWriter for the XSL output.

See Also: setXSLWriter

setConnection
public void setConnection(Connection jdbcConnection)

Provides a JDBC connection to be used for generating the XML files. This method
becomes useful when an application program wants to use its own connection
management mechanism such as connection pooling. If this method is not called before
any of the execute() methods, SQLToXML creates its own connection using the values
from QueryProperties.

Parameters

jdbcConnection - A JDBC connection

setDTDFile
public void setDTDFile(java.lang.String filename) throws java.lang.Exception

Sets the DTD file name to be generated. This method cannot be used in combination with
setXSDFile(String).

Parameters:

filename - A DTD file name to be generated

Throws: java.lang.Exception - Thrown if setXSDFile(String) has been called already.

setGenDocType
public void setGenDocType(Boolean value)

Deprecated. Controls whether or not to generate a DTD or an XML schema file for
validation purpose. By default, the value is set to true for development time, and to false
for runtime. Setting the value to true for the runtime applications such as servlets will
cause some performance decrease.

Parameters

value - false for not generating a validation file, and true otherwise.

setIndenting
public void setIndenting(Boolean flag)

Sets the indentation on and off. Indentation is on by default.

Parameters

flag - false if indentation should be off.
Appendix A. SQLtoXML and XMLtoSQL Java class description 315

setMaxRows
public void setMaxRows(int max)

Sets the limit for the maximum number of rows to be retrieved in the generated XML to
max. By default, there is no limit.

Parameters

max - The limit for the number of rows. Zero means there is no limit.

setParameters
public void setParameters(java.lang.String parameters)

Sets the parameter values for the where-clause. This method is intended to be used when
the query contains the where-clause. For example,

 select * from customer where customer_num = :custnum

From the above example, the value to be replaced for :custnum is given in the parameters
argument. If there are multiple constraint values, they are delimited using comma (,) in the
parameters like in the following example.

 String params = "85737,'Ismaning'";

 sqltoxml.setParameters(params);

Parameters:

parameters - The where-clause parameter values when they exist

setQueryProperties
public void setQueryProperties(QueryProperties qProperties)

Overrides current queryProperties.

setXMLFile
public void setXMLFile(java.lang.String filename) throws java.lang.Exception

Sets the XML file name to be generated. This method cannot be used in combination with
setXMLWriter(PrintWriter).

Parameters:

filename - An XML file name to be generated

Throws: java.lang.Exception - Thrown if setXMLWriter(PrintWriter) or
setXSLWriter(PrintWriter) has been called already.

See Also: setXMLWriter

setXMLWriter
public void setXMLWriter(java.io.PrintWriter writer) throws java.lang.Exception

Sets the PrintWriter to which the generated XML is directed. This method cannot be used
in combination with setXMLFile(String).

Parameters:

filename - A PrintWriter where the XML is going to be directed.

Throws: java.lang.Exception - Thrown if setXMLFile(PrintWriter) or
setXSLFile(PrintWriter) has been called already.

See Also: setXMLFile
316 Using Informix Dynamic Server with WebSphere

setXSDFile
public void setXSDFile(java.lang.String filename) throws java.lang.Exception

Sets the XML schema file name to be generated. This method cannot be used in
combination with setDTDFile(String).

Parameters:

filename - An XML schema file name to be generated

Throws: java.lang.Exception - Thrown if setDTDFile(String) has been called already.

setXSLFile
public void setXSLFile(java.lang.String filename)throws java.lang.Exception

Sets the XSL file name to be generated. This method cannot be used in combination with
setXSLWriter(PrintWriter).

Parameters:

filename - An XSL file name to be generated

Throws: java.lang.Exception - Thrown if setXSLWriter(PrintWriter) or
setXMLWriter(PrintWriter) has been called already.

See Also: setXSLWriter

setXSLWriter
public void setXSLWriter(java.io.PrintWriter writer) throws java.lang.Exception

Sets the PrintWriter to which the generated XSL is directed. This method cannot be used
in combination with setXSLFile(String).

Parameters:

filename - A PrintWriter where the XSL is going to be directed.

Throws: java.lang.Exception - Thrown if setXSLFile(PrintWriter) or
setXMLFile(PrintWriter) has been called already.

See Also: setXSLWriter

Class com.ibm.etools.xmltosql.XMLToSQL
java.lang.Object com.ibm.etools.xmltosql.XMLToSQL

public class XMLToSQL
extends Object

XMLToSQL is used to insert, update, or delete rows in a database table using an XML
document. The mapping between the XML structure to the table structure is based on a set of
simple mapping rules. The XML fragment shown in Example A-1 illustrates the mapping
rules:

Example: A-1 Mapping rules

<rootElement>
 <customer>
<fname>Omkar</fname>
 <lname>Nimbalkar</lname>
 </customer>
 <customer>
 <fname>Chuck</fname>
Appendix A. SQLtoXML and XMLtoSQL Java class description 317

 <lname>Ballard</lname>
 </customer>
 ...
 </rootElement>

The root element can contain 0-n elements. The tag of the root element is irrelevant. All
elements contained by the root will be processed based on the specified action type.

Each element maps to a row in the corresponding table. In this example, the customer
element maps to the customer table. The children of the customer element maps to the 2
columns in the customer table by name. That is, the fname element corresponds to the fname
column in the customer table, the lname element corresponds to the lname column in the
customer table.

The XMLToSQL library will create the appropriate SQL statement (e.g. insert, update, or
delete) based on the column value and the data type for the corresponding column in the
table.

A good way to create a valid XML document is to first use the SQLToXML library to generate
one, then modify it to supply new values for update. You can also use the XML to SQL wizard
to unit test the XML document for validity before writing your code that will use the
XMLToSQL library.

Constructors

XMLToSQL
public XMLToSQL(SQLProperties sqlProperties)

This is the only constructor. Any information necessary for updating a database table is
provided through SQLProperties.

Parameters

sqlProperties - Contains information for the update.

See Also: SQLProperties

Methods

addToKeyColumns
public void addToKeyColumns(String columnName) throws Exception

Adds to the list of the key column names that will be used in building the where-clause for
UPDATE or DELETE. If the table has primary keys, those primary key columns are used
instead. This method is useful if a table does not have any primary key columns defined,
but requires caution in this case since multiple rows can be updated unintentionally. A
column cannot be both a key column and an update column. This method does not have
any effect for INSERT.

Parameters

columnName - A column name to be used in the where-clause for UPDATE or DELETE.

Throws: Exception The column in the update column list cannot be used as a key column.

See Also: addToUpdateColumns
318 Using Informix Dynamic Server with WebSphere

addToUpdateColumns
public void addToUpdateColumns(String columnName) throws Exception

Adds to the list of the column names that will be updated or inserted. If this method is not
called before any of the execute() methods, all of the columns excluding any key columns
are added to the list by XMLToSQL for UPDATE or INSERT. A column cannot be both a
key column and an update column. This method does not have any effect for DELETE..

Parameters

columnName - A column name to be updated or inserted in the table.

Throws: Exception The column in the key column list cannot be used as an update
column.

See Also: addToKeyColumns

execute
public void execute(Document doc,Boolean continueOnSQLError) throws SQLException,
ClassNotFoundException, IOException, SAXException, ParserConfigurationException

Updates a table from a DOM Document. Different transaction mode is applied depending
on the Boolean value of continueOnSQLError. When this is true, updating continues for
the rest of the rows even if an error occurs. To see which rows have been failed in this
case, you need to call getFailedStatements(). If continueOnSQLErrors is false, rollback is
done on all of the rows processed should an error occurs.

Parameters

doc - DOM Document.
continueOnSQLError - Used to choose a transaction mode.

Throws

SQLException DDL execution failed.
ClassNotFoundException JDBC driver could not be found.
IOException Corrupted XML stream
SAXException The XML content of the input stream may not be well-formed.
ParserConfigurationException Could not find an XML parser.

See Also: getFailedStatements

execute
public void execute(InputStream inputStream) throws SQLException,
ClassNotFoundException, IOException, SAXException, ParserConfigurationException

Updates a table from an XML input stream. If an error occurs while updating a row,
rollback is performed for all of the rows processed so far.

Parameters

inputStream - XML input stream.

Throws

SQLException DDL execution failed.
ClassNotFoundException JDBC driver could not be found.
IOException Corrupted XML stream
SAXException The XML content of the input stream may not be well-formed.
ParserConfigurationException Could not find an XML parser.
Appendix A. SQLtoXML and XMLtoSQL Java class description 319

execute
public void execute(InputStream inputStream,Boolean continueOnSQLError) throws
SQLException, ClassNotFoundException, IOException, SAXException,
ParserConfigurationException

Updates a table from an XML input stream. Different transaction mode is applied
depending on the Boolean value of continueOnSQLError. When this is true, updating
continues for the rest of the rows even if an error occurs. To see which rows have been
failed in this case, you need to call getFailedStatements(). If continueOnSQLErros is false,
rollback is done on all of the rows processed should an error occurs.

Parameters

inputStream - XML input stream.
continueOnSQLError - Used to choose a transaction mode.

Throws

SQLException DDL execution failed.
ClassNotFoundException JDBC driver could not be found.
IOException Corrupted XML stream
SAXException The XML content of the input stream may not be well-formed.
ParserConfigurationException Could not find an XML parser.

See Also: getFailedStatements

execute
public void execute(String filename) throws SQLException, FileNotFoundException,
ClassNotFoundException, IOException, SAXException, ParserConfigurationException

Updates a table from an XML file. If an error occurs while updating a row, rollback is
performed for all the rows processed so far.

Parameters

filename - XML filename.

Throws

SQLException DDL execution failed.
FileNotFoundException Input XML file was not found.
ClassNotFoundException JDBC driver could not be found.
IOException Corrupted XML file.
SAXException The XML content of the input file may not be well-formed.
ParserConfigurationException Could not find an XML parser.

execute
public void execute(String filename,Boolean continueOnSQLError) throws
SQLException, FileNotFoundException, ClassNotFoundException, IOException,
SAXException, ParserConfigurationException

Updates a table from an XML file. Different transaction mode is applied depending on the
Boolean value of continueOnSQLError. When this is true, updating continues for the rest
of the rows even if an error occurs. To see which rows have been failed in this case, you
need to call getFailedStatements(). If continueOnSQLErros is false, rollback is done on all
of the rows processed should an error occurs.

Parameters

filename - XML filename.
continueOnSQLError - Used to choose a transaction mode.
320 Using Informix Dynamic Server with WebSphere

Throws

SQLException DDL execution failed.
FileNotFoundException Input XML file was not found.
ClassNotFoundException JDBC driver could not be found.
IOException Corrupted XML file
SAXException The XML content of the input file may not be well-formed.
ParserConfigurationException Could not find an XML parser.

See Also: getFailedStatements

finalize
public void finalize()

Closes the connection if this was created internally. If the connection was supplied
externally (by using setConnection()), nothing is done. This method is called by the JVM
when XMLToSQL is garbage-collected.

Overrides: finalize in class Object

See Also: setConnection

getFailedStatements
public Vector getFailedStatements()

Returns a collection of SQL statements that have been failed during execution. This
method is only meaningful when the continueOnError flag is true.

Returns: A (String) Vector of SQL statements that have failed to execute.

getTableName
public String getTableName(InputStream inputStream) throws IOException,
SAXException, ParserConfigurationException

Returns the database table name to be updated. This method is provided to determine the
table name from the XML input stream before executing a SQL statement. This is for the
convenience of any user interface components.

Parameters

inputStream - XML input stream

Returns: A table name retrieved from the XML stream.

Throws

IOException Corrupted XML stream
SAXException The XML content of the input stream may not be well-formed.
ParserConfigurationException Could not find an XML parser.

getTableName
public String getTableName(String filename) throws IOException, SAXException,
ParserConfigurationException

Returns the database table name to be updated. This method is provided to determine the
table name from the XML input stream before executing a SQL statement. This is for the
convenience of any user interface components.

Parameters

filename - XML file name
Appendix A. SQLtoXML and XMLtoSQL Java class description 321

Returns: A table name retrieved from the XML file.

Throws

IOException Corrupted XML stream
SAXException The XML content of the input stream may not be well-formed.
ParserConfigurationException Could not find an XML parser.

setConnection
public void setConnection(Connection jdbcConnection)

Provides a JDBC connection to be used for updating the tables. This method becomes
useful when an application program wants to use its own connection management
mechanism such as connection pooling. If this method is not called before any of the
execute() methods, XMLToSQL creates its own connection using the values from
SQLProperties.

Parameters

jdbcConnection - A JDBC connection

setTrace
public void setTrace(Boolean flag)

Sets the trace flag. The SQL statements being executed is printed out to the console when
flag is true. By default, trace is turned off.

Parameters

flag - true to show the trace, false otherwise.

setTrace
public void setTrace(Boolean flag, PrintWriter writer)

Sets the trace flag. The SQL statements being executed is printed out to the writer when
flag is true. By default, trace is turned off.

Parameters

flag - true to show the trace, false otherwise.

writer - A PrintWriter where the trace output is directed to.

updateMultipleRows
public Boolean updateMultipleRows(String uri, Vector keys) throws Exception

Determines if multiple rows would be updated/deleted once any of the execute() method
was called. There is a chance of multiple rows being changed in UPDATE/DELETE mode
when the operation is performed against a table that does not have any primary keys. This
method returns false if a single row is going to be affected from its corresponding source
XML element, and true otherwise.

Parameters

uri - A source XML filename

keys - The key column names to be used in the where-clause for UPDATE/DELETE

Returns: false for single row update, true otherwise.

Throws: Exception Failed while processing the source XML file.
322 Using Informix Dynamic Server with WebSphere

Class com.ibm.etools.sqltoxml.QueryProperties
java.lang.Object com.ibm.etools.sqltoxml.BaseProperties |
com.ibm.etools.sqltoxml.QueryProperties

public final class QueryProperties
extends BaseProperties

This class provides information necessary for SQLToXML to perform its SQL query and
generate an XML file as well as several other artifacts. The information can be either set
manually or loaded from a query file (which usually has an extension .xst). Also, the
information can be stored to a query file.

Constructor overview

Method overview

Constructor Description

QueryProperties() The default constructor.

Method Description

String getEncoding() Returns the Java style encoding value for the
properties file.

String getEncodingTag() Returns the encoding value for the properties file
to be written if store() is called.

String getFormat() Returns a format option.

String getJdbcDriver() Returns a JDBC driver name.

String getJdbcServer() Returns a JDBC server path.

String getLoginId() Returns a database user ID that has the
appropriate privilege to perform the query.

String getPassword() Returns a password for the user ID that has the
appropriate privilege to perform the query.

Boolean getRecurse() Returns a Boolean value indicating whether or
not the queries should also be performed on the
target tables when foreign key columns from the
current query are found.

String getStatement() Returns current SQL statement to be executed.

Vector getVarTypes()
Deprecated.

Returns a sequence of substitution parameter
types when used.

void load(InputStream) Loads necessary query values from an
InputStream.

void load(String) Loads necessary query values from a query file.

void setEncoding(String) Sets the Java style encoding value for the
properties file to be written if store() is called.
Appendix A. SQLtoXML and XMLtoSQL Java class description 323

Class com.ibm.etools.xmltosql.SQLProperties
java.lang.Object com.ibm.etools.sqltoxml.BaseProperties
com.ibm.etools.xmltosql.SQLProperties

public final class SQLProperties
extends BaseProperties

This class is used to provide data necessary for XMLToSQL to update database tables. An
instance of this class is used as an argument to the XMLToSQL constructor.

Field overview

void setEncodingTag(String) Sets the encoding value for the properties file to
be written if store() is called.

void setFormat(String) Sets a format option.

void setJdbcDriver(String) Sets a JDBC driver name.

void setJdbcServer(String) Sets a JDBC server path.

void setLoginId(String) Sets a database user ID that has a privilege to
perform the query.

void setPassword(String) Sets a password for the user ID that has a
privilege to perform the query.

void setRecurse(Boolean) Sets a Boolean value indicating whether or not
the queries should also be performed on the
target tables when foreign key columns are found
from the current query.

void setStatement(String) Sets current SQL statement.

void setVarTypes(Vector) Deprecated. VarTypes are used when a SQL statement
contains substitution parameters, such as '?', and
the user wants to indicate the data types for those
parameters explicitly.

void store(String) Stores necessary query values to a query file.

Method Description

Field Description

DELETE SQL DELETE action type.

INSERT SQL INSERT action type.

UPDATE SQL UPDATE action type.
324 Using Informix Dynamic Server with WebSphere

Constructor overview

Method overview

Class com.ibm.etools.sqltoxml.BaseProperties
java.lang.Object com.ibm.etools.sqltoxml.BaseProperties

Direct Known Subclasses:

QueryProperties, SQLProperties

public abstract class BaseProperties
extends java.lang.Object

This class provides database connection information for SQL and XML. The database
connection information can be either set manually or loaded from an external file (which
usually has the extension .xst). The database connection information can also be stored in an
external file with the extension .xst.

Constructor overview

Constructor Description

SQLProperties() The default constructor.

Method Description

String getAction() Returns the action to be performed by
XMLToSQL.

String getSchema() Returns the schema name.

void load(InputStream) Loads necessary database manipulation values
from an InputStream.

void load(String Loads necessary database manipulation values
from an external file.

void setAction(String) Sets the action to be performed by XMLToSQL.

void setSchema(String) Sets the schema name if required.

void store(String) Stores database manipulation values to an
external file.

Constructor Description

BaseProperties() The default constructor.
Appendix A. SQLtoXML and XMLtoSQL Java class description 325

Method overview

Method Description

String getEncoding() Returns the Java style encoding value for the
properties file.

String getEncodingTag() Returns the encoding value for the properties file
to be written if store() is called.

String getJdbcDriver() Returns a JDBC driver name.

String getJdbcServer() Returns a JDBC server path.

String getLoginId() Returns a database user ID that has the
appropriate privilege to perform the query.

String getPassword() Returns a password for the user ID that has the
appropriate privilege to perform the query.

void load(InputStream) Loads database operation values from an
InputStream.

void load(String) Loads database operation values from an
external file.

void setEncoding(String) Sets the Java style encoding value for the
properties file to be written if store() is called.

void setEncodingTag(String) Sets the encoding value for the properties file to
be written if store() is called.

void setJdbcDriver(String) Sets a JDBC driver name.

void setJdbcServer(String) Sets a JDBC server path.

void setLoginId(String) Sets a database user ID that has a privilege to
perform the query.

void setPassword(String) Sets a password for the user ID that has a
privilege to perform the query.

void store(String) Stores database operation information to an
external file.
326 Using Informix Dynamic Server with WebSphere

Appendix B. DADX file format

This appendix includes the complete DADX syntax used in the Web Services scenario.

The DADX file is an XML document. The elements of the DADX are described here.

1. Root element: <DADX>

Attributes:

xmlns:dadx

The namespace of the DADX.

xmlns:xsd

The namespace of the W3C XML Schema specification

xmlns:wsdl

The namespace of the W3C Web services Definition Language specification

Children:

1.1 <wsdl:documentation>

Specifies a comment or statment about the purpose and content of the Web service.
You can use XHTML tags.

1.2 <implements>

Specifies the namespace and location of the Web service description files. It allows the
service implementor to declare that the DADX Web service implements a standard
Web service described by a reusable WSDL document defined elsewhere; for
example, in a UDDI registry.

1.3 <result_set_metadata>

Stored procedures can return one or more result sets which can be included in the
output message. Metadata for a stored procedure result set must be defined explicitly
in the DADX using the <result_set_metadata> element. At run-time, the metadata of
the result set is obtained and it must match the definition contained in the DADX file.

Note: Therefore, only stored procedures that have result sets with fixed metadata can
be invoked.

B

© Copyright IBM Corp. 2003. All rights reserved. 327

This restriction is necessary in order to have a well-defined WSDL file for the Web
service. A single result set metadata definition can be referenced by several <call>
operations, using the <result_set> element. The result set metadata definitions are
global to the DADX and must precede all of the operation definition elements.

Attributes:

name Identifies the root element for the result set.

rowname Used as the element name for each row of the ressult set.

Children:

1.3.1 <column>

Defines the column. The order of the columns must match that of the result set
returned by the stored procedure. Each column has a name, type and nullability,
which must match the result set.

Attributes:

name Required. Specifies the name of the column.

type Required if element is not specified. Specifies the type column.

element Required if type is not specified. Specifies the element of
column

as Optional. Provides a name for a columns.

nullable Optional. Nullable is either true or false. It indicates whether
column values can be null.

1.4 <operation>

Specifies a Web service operation. The operation element and its children specify the
name fo the operation, and the type of operation the Web service will perform, such as
compose an XML document, query the database, or call a stored procedure. A single
DADX file can contain multiple operations on a single database or location. The
following list describes these elements.

Attribute:

name A unique string that identifies the operation; the string must be
unique within the DADX file. For example: “findByCustomerID”

Children:

Document the operation with the following element:

1.4.1 <wsdl:documentation>

Specifies a comment or statement about the purpose and content of the operation.
You can use XHTML tags.

Specify the type of operation using one of the following child elements:

1.4.2 <retrieveXML>

DB2 only! Specifies to generate zero or one XML documents from a set of
relational tables using the XML collection access method. Depending on whether a
DAD file or an XML collection name is specified, the opertation wil call the
appropriate XML Extender composition stored procedure

Children:

Specify which of these stored procedures is used by passing either the name of a
DAD file, or the name of the collection using one of the following elements:

1.4.2.1 <DAD_ref>
328 Using Informix Dynamic Server with WebSphere

The content of this element is the name and path of a DAD file. If a relative
path is specified for the DAD file, the current working directory is assumed to
be the group directory.

1.4.2.2 <collection_name>

The content of this element is the name of the XML collection. Collections are
defined using the XML Extender administration interfaces, as described in
DB2 XML Extender Administration and Programming.

Specify override values with one of the following elements:

1.4.2.3 <no_override/>

Specifiies that the values in the DAD file are not overriden. Required if neither
<SQL_override> nor <XML_override> element. Specifies a parameter for an
operation. Use a separate parameter element for each parameter referenced
in the operation. Each parameter name must be unique within the operation.

Attributes:

name The unique name of the parameter. A parameter must have its
contents defined by either an XML Schema element (a complex
type) or a simple type.

element Use the “element” attribute to specify an XML Schema element.

type Use the “type” attribute to specify a simple type.

kind Specifies whether a parameter passes input data, returns
output data, or does both. The valid values for this attribute are:

• in

1.4.3 <storeXML>

DB2 only! Specifies to store (decompose) an XML dcoument in a set of relational
tables using the XML collection access method. Depending on whether a DAD file
or an XML collection name is specified, the operation will call the appropriate XML
Extender decomposition stored procedure.

Children:

Specify which of these stored procedures is used by passing either the name of a
DAD file, or the name of the collection using one fo the following elements:

1.4.3.1 <DAD_ref>

The content of this element is the name and path of a DAD file. If a relative
path is specified for the DAD file, the current working directory is assumed to
be the group directory.

1.4.3.2 <collection name>

The content of this element is the name of an XML collection. Collections are
defined using the XML Extender administration interfaces, as described in
DB2 XML Extender Administration and programming.

1.4.4 <query>

Specifies a query operation. The operation is defined by an SQL SELECT
statement in the SQL_select> element. The statement can have zero or more
named input parameters. If the statement has input parameters then each
parameter is descibed by a <parameter> element.
Appendix B. DADX file format 329

This operation maps each database column from result set to a corresponding XML
element. You can specify XML Extender user-defined types (UDTs) in the <query>
operation, however this requires an <XML_result> element and a supporting DTD
that defines the type of the XML column queried.

Children:

1.4.4.1 <SQL_query>

Sepcifies an SQL SELECT statement.

1.4.4.2 <XML_result>

Optional. Defines a named column that contains XML documents. The
document type must be defined by the XML Schema element of its root.

Attributes:

name Specifies the root element of the XML document stored in the
column.

element Specifies the particular element within the column.

1.4.4.3 <parameter>

Required when referencing a parameter in the <SQL_query> element.
Specifies a parameter for an operation. Use a separate parameter element
for each parameter referenced in the operation. Each parameter name must
be unique within the operation.

Attributes:

name The unique name of the parameter. A parameter must have it
contents defined by one of the following: an XML Schema
element (a complex type) or a simple type.

element Use the “element” attribute to specify an XML Schema element.

type Use the “type” attribute to specify a simple type.

kind Specifies whether a parameter passes input data, returns
output data, or does both. The valid values for this attribute are:

• in

1.4.5 <update>

The operation is defined by an SQL INSERT, DELETE, or UPDATE statement in the
<SQL_update> element. The statement can have zero or more named input
parameters. If the statement has input parameters then each parameter is
described by a <parameter> element.

Children:

1.4.5.1 <SQL_update>

Specifies an SQL INSERT, UPDATE, or DELETE statement.

1.4.5.2 <parameter>

Required when referencing a parameter in the <SQL_update> element.
Specifies a parameter for an operation. Use a separate parameter element
for each parameter referenced in the operation. Each parameter name must
be unique with the operation.

Attributes:

name The unique name of the parameter. A parameter must have its
contents defined by one of the following: an XML Schema
element (a complex type) or a simple type.
330 Using Informix Dynamic Server with WebSphere

element Use the “element” attribute to specify an XML Schema element.

type Use the “type” attribute to specify a simple type.

kind Specifies whether a parameter passes input data, returns
output data, or does both. The valid values for this attributes
are:

• in

1.4.6 <call>

Specifies a call to a stored procedure. The processing is similar to the update
operation, but the parameters for the call operation can be defined as ‘in’, ‘out’, or
‘in/out’. The defualt parameter kind is ‘in’. The ‘out’ and ‘in/out’ parameters appear
in the output message.

1.4.6.1 <SQL_call>

Specifies a stored procedure call.

1.4.6.2 <parameter>

Required when referencing a parameter in the <SQL_call> element.
Specifies a parameter for an operation. Use a separate parameter element
for each parameter referenced in the operation. Each parameter name must
be unique with the operation.

Attributes:

name The unique name of the parameter. A parameter must have its
contents defined by one of the following: an XML Schema
element (a complex type) or a simple type.

element Use the “element” attribute to specify an XML Schema element.

type Use the “type” attribute to specify a simple type.

kind Specifies whether a parameter passes input data, returns
output data, or does both. The valid values for this attributes
are:

• in

• out

• in/out

1.4.6.3 <result_set>

Defines a result set and must follow any <parameter> elements. The result
set element has a name which must be unique among all teh parameters and
result sets of the operation, and must refer to a <result_set_metadata>
element. One <result_set> element must be defined for each result set
returned from the stored procedure.

Attributes:

name A unique identifier for the result sets in the SOAP response.

metadata A result set meta data definition in the DADX file. The identifier
must refer to the name of an element.
Appendix B. DADX file format 331

332 Using Informix Dynamic Server with WebSphere

Appendix C. IDS and WSAD on Windows

Throughout this book, our installation has consisted of a Linux server and some Windows
processors. We developed our sample applications using WebSphere Studio on the Windows
processors, and deployed them on the Linux server that had both IDS and WebSphere
Application Server installed.

In some cases, such as tests, demos, and workshops, it is interesting to have WebSphere
products installed with IDS on a single server. To avoid the need to have lots of hardware
resources, you can just install WSAD and IDS on a single server. WSAD has an embedded
application server, and HTTP server that can be used in these situations.

This appendix provides an overview of the installation and environment configuration of IDS
on a Windows processor (WSAD installation on Windows is already described in Chapter 4).
Even though the installation processes are very similar to those for Linux (described in
Chapter 2), there are some differences that are highlighted here. We also discuss some of the
differences between IDS for Windows and IDS for Linux/UNIX.

C

© Copyright IBM Corp. 2003. All rights reserved. 333

Configuring IDS and WSAD for Windows
The installation of IDS on Windows is very similar to the process presented in Chapter 2.
Again we need to consider whether you received IDS on a CD-ROM, or a compressed file.

1. If the product is on a CD-ROM: Just place the media in the CD-ROM drive and look for the
setup application file (usually in the root of the CD hierarchy). Double click on this file and
the installation process begins.

2. If the product is in a compressed file: Create a temporary directory to extract (WinZip) the
product from the compressed file. Double-click on the setup application file and the
installation process begins.

The following is the installation procedure for IDS. Screenshots, from our installation, are
used for clarification on the important steps. We also discuss the installation of other products
that support this environment, such as the JDK and Informix JDBC driver.

IDS installation steps
1. The first window that is displayed is a welcome to the installation wizard and a disclaimer

is showed. Read the terms and click the Accept button.

Figure C-1 Welcome window

2. Now we need to choose the installation directory for IDS. The recommendation is to install
IDS on <DRIVE>:\Informix. Click Next.
334 Using Informix Dynamic Server with WebSphere

Figure C-2 Installation directory

3. The next screen displays the products that come bundled with Informix Internet
Foundation 9.40. In this section we only describe the installation of IDS, but you can install
all the products available at this time if desired. They are installed automatically after IDS
and no interaction is needed. In our case we selected all products. Select the ones that
you want installed and click Next.

Figure C-3 Products available

4. The next window shows an overview of the installation process (Installation options, copy
files, configure IDS). Click Next.
Appendix C. IDS and WSAD on Windows 335

Figure C-4 Installation overview

5. Next the screen shows the option to perform a Windows domain installation. However, you
need domain privileges to do that. We do not need this type of installation, so just click
Next.

6. Now you have to choose the type of installation. Choose Typical and click Next.

7. The next window shows the option for Role Separation. Roles are used to split the
administrative tasks of IDS among different groups and users. In our case we use user
informix to do all that. Click Next.

Figure C-5 Role separation

8. Now it is time to choose the password for our informix user. Here we also used informix
as the password, but on a production system the password should be carefully chosen,
since the informix user has privileges to do everything on the database server, just as the
user administrator for the Windows System. Click Next.

9. The installation process is ready to copy the files into the directory chosen in Step 2. Just
click Next and the copy begins.

10.After copying the files, it is time to configure a new server instance. On Linux some
configuration is already pre-set, such as the name of the server and the server number.
On Windows we have the choice to specify that.
336 Using Informix Dynamic Server with WebSphere

11.Here we have to specify a number for our server instance (the first number is 0). Every
new instance must have a unique server number. Since this is our first server
configuration, we leave the number as 0. Click Next.

Figure C-6 Choosing server number

12.In the next window we have to choose a name for our server. To make the installation
similar to the one for Linux, we also chose demo_on. Click Next.

Figure C-7 Choosing server name
Appendix C. IDS and WSAD on Windows 337

13.On UNIX and Linux we have the option to specify a shared memory connection (onipcshm
nettype on sqlhosts). On Windows the only way that clients applications connect to the
server is through TCP/IP. In this window we have to choose a TCP/IP service name and
number that will be configured for our client connections. We chose demo_on_tcp and 1533
to be consistent with the Linux installation (same port). You can choose a different port
number as long it is unique in the services file. Click Next.

Figure C-8 Specifying service name and TCP/IP port number

14.Now we have to choose the server to have our shared server definition (sqlhosts). Use the
local server for that (the default). Click Next.

Figure C-9 Shared server definition

15.The installation process updates the configuration files and the Windows registry, and
prompts whether the configured server should be initialized. Click Yes. The server
initialization takes a few minutes to complete.

Tip: The services file on Windows is located in <WINNT>\system32\drivers\etc.
338 Using Informix Dynamic Server with WebSphere

Figure C-10 Server ready to be initialized

16.You might get a message saying that the OnSNMP subagent was not installed because
the SNMP service was not present on the Windows system. OnSNMP is used to perform
remote monitoring tasks. We do no use it so this message can be ignored. Just click OK.

Figure C-11 Message about OnSNMP

17.The installation of IDS is now complete. If you chose to install other products available in
the bundle file they will be installed after IDS. We do not show the procedure here because
the installation is automatic and you only need to hit the Next button. When everything is
installed you will need to reboot the server to complete the installation procedure. Click
Yes to reboot the server.

Figure C-12 End of installation.

JDK and JDBC installation
The JDK and JDBC are both available for download:

JDK:

http://www.java.sun.com/j2se/downloads.html

Informix JDBC:

http://www-3.ibm.com/software/data/informix/
Appendix C. IDS and WSAD on Windows 339

http://www.java.sun.com/j2se/downloads.html
http://www-3.ibm.com/software/data/informix/
http://www-3.ibm.com/software/data/informix/

1. The installation of these two products is straightforward. First install the JDK and then
configure its bin directory in the PATH environment variable. On a Windows/2000 you can
do this by selecting Start -> Settings -> Control Panel -> System -> Advanced ->
Environment Variables. Select the PATH variable and add the new setting. For example,
after configuring the PATH environment variable path you should be able to see the JDK
settings from a command window:

C:\Eduardo\iif>echo %path%

C:\WINNT\system32;C:\WINNT;C:\WINNT\system32\WBEM;c:\lotus\notes;C:\Program
Files\Pcom;C:\Program Files\ObjREXX;C:\Program
Files\ObjREXX\OODIALOG;c:\jdk1.3.1_07\bin

2. Now for the JDBC installation. Unzip the downloaded file with WinZip and double-click on
the setup.jar file. Then follow the installation instructions. If you want to run Java
applications on this server you must set the CLASSPATH environment variable. You have
to include the <JDBC_DIR>\lib\ifxjdbc.jar and <JDBC_DIR>\lib\ifxjdbcx.jar files. You can
do this following the same procedure that was used for the PATH variable in Step1. Again
to verify that the settings are effective, run:

C:\Eduardo\iif>echo %classpath%

c:\Eduardo;c:\jdbc\lib\ifxjdbc.jar;c:\jdbc\lib\ifxjdbcx.jar;.

WSAD installation:
The installation of WSAD for Windows was described in detail in Chapter 4.

Windows/Linux Differences
The IDS functionality on Windows is basically the same as on Linux or UNIX, but there are
some differences due to the nature of the Operating System. Some of these differences are
highlighted here.

Accessing the server
The installation process gives you the option to create a first server instance (in our case,
called demo_on). After the installation completes and the server is initialized you can access
the server and run IDS commands through the command window. Notice that a new
workgroup folder is created called Informix Dynamic Server 9.40. In this folder you see an
icon in a form of a terminal with the name of your instance. Use this command-line window to
run IDS commands since it pre-sets the correct environment variables for you (Start ->
Programs -> Informix Dynamic Server 9.40 -> demo_on). You can do the same using a
normal DOS command-line window but then you have to manually set these variables.
340 Using Informix Dynamic Server with WebSphere

Figure C-13 IDS command-line window

Commands
IDS runs as a Windows service so there are different ways to start and stop the server.

Start the server:
1. Use the starts command:

C:\Informix>starts demo_on

2. Use net command to start the IDS service:

C:\Informix>net start demo_on

3. Use oninit. You can use this option too but the window will be frozen since the oninit
command does not run in the background. You can still access IDS on a new window, but
closing the one where the oninit command was issued will cause the server to stop.

4. Use Control panel -> Administrative tools -> Services to start the IDS service.

Stop the server:
1. Use the onmode command:

C:\Informix>onmode -ky

2. Use the net command:

C:\Informix>net stop demo_on

3. Use the Control Panel to stop the IDS service

SQLHOSTS on Windows
There is no sqlhosts file on Windows, the connection configuration is stored in the Windows
registry. To add a new connection entry in sqlhosts you can either edit the register manually or
install Informix Connect and use the Setnet configuration program for that. The installation
script has already added an entry for demo_on in the registry so we don’t need to configure
that. Our objective in this Appendix is just to show the simplest way to install and use IDS with
WSAD, so we do not cover this configuration through Connect.

To see the sqlhosts settings, run regedt32 in a command window to open the registry and
then select HKEY_LOCAL_MACHINE -> SOFTWARE -> Informix -> SQLHOSTS:
Appendix C. IDS and WSAD on Windows 341

Figure C-14 Windows Registry

Hosts and Services files
Different than Linux and UNIX, the hosts and services files are not located in the \etc
directory, they are both located in <WINNT>\system32\drivers\etc. Make sure that both files
do not have any extension (such as .txt for example). IDS will only recognize these files if they
do not have any extension.

TAPEDEV and LTAPEDEV configuration parameters
These are tape parameters for instance and logical logs backup. If you are not interested in
taking these backups you can change these parameters to NUL, by editing your configuration
file, %onconfig%. So now when the server needs a backup it will not wait for a tape device.
On UNIX and Linux this value is /dev/null.
342 Using Informix Dynamic Server with WebSphere

Appendix D. Additional material

This redbook refers to additional material that can be downloaded from the Internet as
described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the Internet from
the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246948

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with the redbook
form number, SG246948.

Using the Web material
The additional Web material that accompanies this redbook includes the following files:

File name: Description
SampleApps.zip: Zipped file containing four executable Sample Applications, a Sample

Application Implementation Guide, and an implementation file.

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 50MB minimum
Operating System: Windows/2000
Memory: 756MB

D

© Copyright IBM Corp. 2003. All rights reserved. 343

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the Web
material zip file into this folder. There will be six folders. Four of the folders each contain a
sample application, one contains a Sample Applications Implementation Guide, and the other
contains the Master.css file required for the applications. These are the folders:

1. SelectApplication: Contains the sample application called “ITSOStoresDBPages” that
only performs a select operation against IDS. It was developed with Database Web
Pages. To install the sample demo application, follow the instructions in “Verifying the
configuration” on page 87. In particular, to only install this sample demo (rather than
actually developing the demo yourself) refer to the specific instructions in the Shaded Note
Box, on page 88.

2. FullApplication: Be careful! This application has the same name as the one above in the
SelectApplication folder. It is the same application base, but has been enhanced to
perform additional operations. The sample application is also called
“ITSOStoresDBPages” but performs a select, insert, update, and delete operation
against IDS. It was also built with Database Web Pages.

3. ITSOStores: Contains the sample application called “ITSOStores”. It is similar to the
sample application in the FullApplication folder, but is developed with different technology
and has expanded capabilities. For example, it includes the use of such things as Java
beans and container managed persistence. But it was developed to run in a single server
environment.

4. ITSOStoresJMS: Contains two sample applications called “ITSOStoresJMS” and
“TestJMS”. They are similar to the sample application in the ITSOStores folder, but have
been enhanced to run in a distributed environment by the addition of Java Messaging
Services. However, they will also run in a single server environment because distribution
can be physical or logical.

5. ImplementationGuide: Contains a Sample Applications Implementation Guide document
(.pdf) file. This document has step-by-step instructions for implementing the four sample
applications listed above. Much of the same information is included throughout the
redbook, but this document condenses it all into one place to make implementation faster
and easier. It also includes instructions to help you actually develop the sample
applications yourself, as a learning experience.

6. MasterImp: Contains the Master.css file that is used with the sample applications. You
will be prompted for the file in the step-by-step implementation process.
344 Using Informix Dynamic Server with WebSphere

Glossary

Attribute. In XML, a name=”value” pair that can be
placed in the start tag of an element. The value must be
quoted with single or double quotes.

Bandwidth. Measure of the information capacity of a
transmission channel.

Bean. A definition or instance of a JavaBeans
component. See JavaBeans

CGI. The Common Gateway Interface (CGI) is a means
of allowing a Web server to execute a program that you
provide rather than to retrieve a file. A number of popular
Web servers support the CGI. For some applications, for
example, displaying information from a database, you
must do more than simply retrieve an HTML document
from a disk and send it to the Web browser. For such
applications, the Web server has to call a program to
generate the HTML to be displayed. The CGI is not the
only such interface, however.

Class Method. Methods that apply to the class as a
whole rather than its instances (also called a static
method)

Class. An encapsulated collection of data and methods
to operate on the data. A class may be instantiated to
produce an object that is an instance of the class.

Client. A software program used to contact and obtain
data from a server software program on another computer
-- often across a great distance. Each client program is
designed to work specifically with one or more kinds of
server programs and each server requires a specific kind
of client program.

Client/Server. The relationship between servers in a
communications network. The client is the requesting
processor, the server the supplying processor. Also used
to describe the information management relationship
between software components in a processing system.

Cluster. A type of parallel or distributed system that
consists of a collection of interconnected whole
computers and is used as a single, unified computing
resource.

Enterprise Java Bean. The Enterprise JavaBeans
specification defines a way of building transactionally
aware business objects in Java

Enterprise Network. A geographically dispersed
network under the auspices of one organization.
© Copyright IBM Corp. 2003. All rights reserved.
Entity. In XML, an entity declaration provides the ability
to have constants or replacement strings, which are
expanded by a pre-processor. An entity declaration maps
some token to a replacement string. Later the token can
be prefixed with the & character and the replacement
string is put in its place.

Factory. A bean that dynamically creates instances of
beans.

Garbage Collection. Java’s ability to clean up
inaccessible unused memory areas (garbage)
dynamically. Garbage collection slows performance, but
keeps the machine from running out of memory.

Gb/s. Gigabits per second. Also sometimes referred to
as Gbps.

GB/s. Gigabytes per second. Also sometimes referred
to as GBps.

Gigabit. One billion bits, or one thousand megabits.

IP. Internet Protocol.

Java Applet. A small Java program designed to run
within a Web browser. It is downloadable and executable
by a browser or network computer.

Java Naming and Directory Interface (JNDI). A set of
APIs that assist with the interfacing to multiple naming and
directory services. (Definition copyright 1996-1999 Sun
Microsystems, Inc. All Rights Reserved. Used by
permission.)

Java Native Interface (JNI). A native programming
interface that allows Java code running inside a Java
Virtual Machine to interoperate with applications and
libraries written in other programming languages.

Java Server Page (JSP). Java Server Pages are Web
pages that include dynamic tags which are executed on
the server. JSPs are the presentation layer for Web-based
applications built in Java.

Java Virtual Machine. A software implementation of a
central processing unit (CPU) that runs compiled Java
code (applets and applications).
 345

Java. An object-oriented programming language for
portable, interpretive code that supports interaction
among remote objects. Java was developed and specified
by Sun Microsystems, Incorporated. The Java
environment consists of the JavaOS, the Virtual Machines
for various platforms, the object-oriented Java
programming language, and several class libraries.

JavaBeans. Java’s component architecture, developed
by Sun, IBM, and others. The components, called Java
Beans, can be parts of Java programs, or they can exist
as self-contained applications. Java Beans can be
assembled to create complex applications, and they can
run within other component architectures (such as
ActiveX and OpenDoc).

JDBC (Java Database Connectivity). In the JDK, the
specification that defines an API that enables programs to
access databases that comply with this standard.

Local Area Network or LAN. A network covering a
relatively small geographic area (usually not larger than a
floor or small building).

Mb/s. Megabits per second. Also sometimes referred to
as Mbps.

MB/s. Megabytes per second. Also sometimes referred
to as MBps.

Method. A fragment of Java code within a class that can
be invoked and passed a set of parameters to perform a
specific task

Network. An aggregation of interconnected notes,
workstations, file servers, and/or peripherals, with its own
protocol that supports interaction.

Object. The principle building block of object-oriented
programs. Objects are software programming modules.
Each object is a programming unit consisting of related
data and methods.

Package. A program element that contains classes and
interfaces.

Persistence. In object models, a condition that allows
instances of classes to be stored externally, for example in
a relational database.

Protocol. A data transmission convention
encompassing timing, control, formatting and data
representation.

Uniform Resource Locator (URL). The unique
address that tells a browser how to find a specific Web
page or file.
346 Using Informix Dynamic Server with WebSphere

ronyms
AAT Application Assembly Tool

AAT Application Assembly Tool

AE Advanced Edition

API Application Programming Interface

AS Application Server

AXIS Apache eXtensible Interaction
System

BLOB Binary Large OBject

BMP Bean-Managed Persistence

BMT Bean-Managed Transactions

CMP Container-Managed Persistence

CMR Container-Managed Relationships

CMT Container-Managed Transactions

DB2 UDB IBM DB2 Universal Database

DBMS Database Management System

EAR Enterprise ARchive

EJB Enterprise Java Beans

EJS Enterprise Java Server

FTP File Transfer Protocol

Gb Giga Bits

GB Giga Bytes

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IBM International Business Machines
Corporation

IDE Integrated Development
Environment

IDL Interface Definition Language

IDS Informix Dynamic Server

IIOP Internet Inter-ORB Protocol

IP Internet Protocol

ITSO International Technical Support
Organization

J2C J2EE Connector

J2EE Java 2 Platform Enterprise Edition

JAR Java ARchive

JDBC Java Database Connectivity

JDK Java Developers Kit

JMS Java Messaging Service

JNDI Java Naming and Directory
Interface

JRE Java Runtime Environment

Abbreviations and ac
© Copyright IBM Corp. 2003. All rights reserved.
JSP Java Server Pages

JTA Java Transaction API

JVM Java Virtual Machine

LDAP Lightweight Directory Access
Protocol

Mb Mega Bits

MB Mega Bytes

RDBMS Relational Database Management
System

SDK Software Developers Kit

SMTP Simple Mail Transfer Protocol

SOAP Simple Object Access Protocol

SQL Structured Query Language

TCP Transmission Control Program

URL Uniform Resource Locator

WAR Web Application aRrchive

WAS WebSphere Application Server

WSAD WebSphere Studio Application
Developer

WSDL WebSphere Description Language

WSGW Web Services GateWay

WSIF Web Services Invocation
Framework

WSP WebSphere Portal

WWW World Wide Web

XML eXtensible Markup Language
 347

348 Using Informix Dynamic Server with WebSphere

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks” on page 350.
Note that some of the documents referenced here may be available in softcopy only.

� Web Services Wizardry with WebSphere Studio Application Developer, SG24-6292

� IBM WebSphere Application Server V5.0 System Management and Configuration:
WebSphere Handbook Series, SG24-6195

� IBM WebSphere V5.0 for Linux, Implementation and Deployment Guide - WebSphere
Handbook Series, REDP-3601

� WebSphere Application Server V4 for Linux, Implementation and Deployment Guide,
REDP-0405

� WebSphere Studio Application Developer Version 5 Programming Guide, SG24-6957

� WebSphere Studio Application Developer Programming Guide, SG24-6585

� Web Services Version 5 Web Services Handbook, SG24-6891

� Linux Application Development Using WebSphere Studio 5, SG24-6431

� IBM WebSphere V5.0 Security WebSphere Handbook Series, SG24-6573

� Self-Study Guide: WebSphere Studio Application Developer and Web Services,
SG24-6407

� WebSphere Version 4 Application Development Handbook, SG24-6134

� EJB 2.0 Development with Web Sphere Studio Application Developer, SG24-6819

� IBM WebSphere Portal V4.1 Handbook Volume 1, SG24-6883

� IBM WebSphere Portal V4 Developer’s Handbook, SG24-6897

Other publications
These publications are also relevant as further information sources:

� Brown, Paul G. “An Object-Relational Approach to Building a High-Performance XML
Repository”, in XML Data Management: Native XML and XML-Enabled Database
Systems by Akmal B. Chaudhri, Awais Rashid, Roberto Zicari
© Copyright IBM Corp. 2003. All rights reserved. 349

Online resources
These Web sites and URLs are also relevant as further information sources:

� IBM WebSphere Application Server

http://www.ibm.com/software/webservers/appserv

� IBM WebSphere InfoCenter

http://www.ibm.com/software/webservers/appserv/infocenter.html/

� IBM Informix Product Family

http://www.ibm.com/software/data/informix/

� IBM Informix Dynamic Server

http://www.ibm.com/software/data/informix/ids/

� SUN Java 2 Platform

http://www.ibm.com/software/webservers/appserv/

� SUN’s Java 2 Platform - Enterprise Edition

http://www.java.sun.com/j2ee

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips, draft
publications and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at
this Web site:

ibm.com/redbooks
350 Using Informix Dynamic Server with WebSphere

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

 Index

A
Action events 269
Administration Repository 118
Administrative Console 112, 115
Administrator-controlled redirection 10
Aggregation Module 259
Apache AXIS framework 234

Data Encoding support 235
Flexible Messaging Framework 234
Flexible Transport Framework 234

Apache Jetspeed 258
Apache web server 35
Application client container 73
Architecture - ITSO Stores sample application 87
Asynchronous Input/Output 5
Asynchronous replication 11
Authentication Server 259
Automatic Redirection with the DBPATH 10
AXIS installation and preparation 236

B
bean-managed transactions 168
Binary Large OBjects (BLOB) 6, 184

Blobspaces 6
Binding 211
BLOB 6, 184
B-tree 23

cleaner queue 24
cleaner thread 24
scanner 24

buffer pool 5
Built-in data types 16
business-to-business (B2B) 254, 257
business-to-consumer (B2C) 254, 257
business-to-employee (B2E) 254

C
cells directory 119
Central Processing Unit 5
Changing Business Environment xix
Character Large OBjects (CLOB) 6
checkpoint duration 19
Chunks 5
class libraries 194
Class location 92
Client-Server Connectivity 6
CLOB 6
Collaboration services 260
collaborative components 256
Collection Data Types 16
Communications Gateway Interface (CGI) 65
Complex Data Types 15
configuration data 126
© Copyright IBM Corp. 2003. All rights reserved.
configuration directory 119
Connecting IDS and WebSphere 130

Data Source object 131
Connection factory JNDI name 161
Connection name 92
Connection Page 91
Connectionless Computing 65
Container Managed Persistent Beans 88
Container-managed transactions 168
Content Management 260
cookies 65
customer entity bean 152
customer relationship management (CRM) 254

D
DADX - document access definition extension 221

build a DADX Web service 222
Create a DADX group 224
DADX functions 221
File Format 327
generated DADX file 226
runtime component 221
support for stored procedures 229
support for user defined routines 229
Web service deployment 233

data manipulation language (DML) 18
data replication 11, 127
Database connections 66
Database Server 4

Client-Server Connectivity 6
configuration file 7
Process Component 5
Shared Memory Component 5

Database Web Pages 88
Steps to develop a sample application 88

DataBlade 13, 182, 184, 234
DataBlade API 279

DBSERVERALIASES 6
DBSERVERNAME 6
Dbspaces 6
demo html/page 200
Deploying IDS and WebSphere 122
Destination JNDI name 161–162
Dirty count 25
disk mirroring 127
Document Type Definition 176
DOM (Document Object Model) 183
driver manager connection 95
DTD editor 186
Dynamic Scalable Architecture (DSA) 3

E
Eclipse 77

Eclipse platform 77
 351

Eclipse Workbench technology 78
Eclipse/WebSphere Studio workbench 77
integrated development environment (IDE) 78
perspectives 78
primary perspectives 79
Role-based development model 78

EGL 292
automatically translate I4GL code 292
moving I4GL code to EGL 294
Non-procedural Statements 293
procedural statements 292
Reports 294
translating I4GL form files 293
Type System 292

EJB transaction demarcation 168
Enable administration client 160
Enterprise application project name 89
Enterprise Generation Language (EGL) 84, 291
Enterprise Replication (ER) 11
enterprise resource planning (ERP) 254
Entity ARchive file (EAR)

EAR Export 102
Excalibur Text Data Blade 184
Executive Summary xiii
Expression Builder 93
extended data types 16
Extents 5

F
Firewall on SuSE 299

adding new ports 300
Flyweight pattern 263
Four J’s 84
Fragmentation 8
Fuzzy Checkpoints 19

G
Global transaction 167
Guidelines for Using Transactions 172

H
HDR 127
High-Availability Data Replication (HDR) 9

Archive and Restore 9
Balanced I/O 9
connection pooling 129
Considerations 125
failures, and actions taken 127
HDR now supports replication 26
Higher Availability 9
IDS high availability and WebSphere 127
JDBC support 128
Parallel scans 9

High-Performance Loader (HPL) 13
host name 109
Host variable name 94
Hot list 25
HTML page 197

HTTP port number 97
HTTP server 73

I
I4GL 291
IBM Content Manager 257
IBM DB2 UDB 255
IBM Lotus 256

Collaborative Components 256
Collaborative Places 256
Extended Search 256
QuickPlace 257
Sametime 257

IBM SecureWay Directory 255
IBM Tivoli 12

Site Analyzer 256
Storage Manager (TSM) 12
Tivoli Access Manager 257

IBM Web Content Publisher 255
IBM WebSphere Application Server 255, 258
IBM WebSphere Personalization 255
IBM WebSphere Portal 254

and IDS 276
architecture 258
concepts 261
Enable 254
Enable components 255
engine 259
Experience 254
Experience components 257
Extend 254
Extend components 256
for Multi platforms 254
Industry research 257
infrastructure 260
Jetspeed implementation 259
LDAP 260
Model-View-Controller (MVC) design pattern 266
Page aggregation 270
Portlet events and messaging 268
portlet lifecycle 267
Portlet solution patterns 273
portlets 262
services 260
Toolkit 261

Implementation Hints and Tips 295
Implementation Scenarios 123

Single Server Model 123
Three-Server Model 125
Two-Server Model 124

Informix 4GL 84, 289, 291
Protecting your Investment 290

Informix and WebSphere - Why? xx
Informix C-ISAM 2
Informix Dynamic Server xiv, 1, 121

9.40 features 22
ANSI join syntax 28
Architecture 3

The Big Picture 8
as a Web service consumer 233
352 Using Informix Dynamic Server with WebSphere

Chunks redirection 30
Command line chunk mapping 30
Configuring IDS 21
Creating the users and groups 32
Data availability enhancements 26
Enhanced SELECT statement syntax 28
environment variables 32
Extended Features of IDS 9.x 13
features 2, 8
Full use of storage media 30
functionality on Windows 340
I-Connect and JDBC 40
Increased file size limit 30
Increased maximum size of chunks 22
Increased number of dbserver aliases 23
Informix Server Administrator (ISA) 43
install and configure on Linux 31
Installation directory 32
installation verification 41
Installing and Configuring 21
installing on Linux 33
Linux hardware and software recommendations 31
Linux Kernel parameters 31
Linux port number 92
LRU settings 26
Memory management and tuning 25
Optimized index cleaning 23
Performance enhancements 23
priority management for the buffer manager 25
product directory 34
scalability and usability enhancements 22
Security enhancements 22
Sequence Objects 29
Stored procedures return parameters 28
stores_demo database 42
TCP/IP connection protocol 42
Triggers on views 27
Windows/Linux Differences 340
with J/Foundation 2, 235

Informix Extended Parallel Server (XPS) 3
Informix JDBC driver 87
Informix JDBC Provider 114
Informix MQSeries DataBlade 286
Informix Object Translator 185
Informix Online Extended Edition 2
Informix Rapid Application Development (IRAD) 84
Informix SE 2
Informix Spatial DataBlade 185
Informix Storage Manager (ISM) 12
Informix's Virtual Table Interface 286
INFORMIXSERVER 6
Input Form 101
Insert on a view 27
Installing WebSphere Application Developer 85
Installing WSAD on Windows/2000 86
Integrated Development Environment (IDE) 84
Internal JMS Server 162
IP ports 104
ipload utility 13
IPX/SPX 6

Isolation levels in JDBC 170
iterator function 246
itso - the generic user 37
ITSO stores sample application architecture 87
ITSOStoresDBPages 91, 116–117
ITSOStoresDBPagesWeb 91, 97

J
J2EE 68, 258

application and programming model 69
Components 71
Connectors 71
Containers 71
First Tier (View) 70
Middle Tier (Control) 70
Third Tier (Model) 71

Benefits 69
Hierarchy 89
Overview 68
Perspective 89, 224

Java 66
Enterprise Edition 68
Enterprise Java Beans (EJB) 67
Informix JDBC driver 87
Informix JDBC Provider 114
Java Bean XML/XSL client wizard 204
Java beans from a DTD 205
Java beans from an XML schema 206
Java classpath 238
Java Database Connectivity (JDBC) 66
Java Message Services (JMS) 88, 283

Asynchrounous Messaging 283
Embedded JMS 284
embedded JMS server user 104
External JMS/MQ 284
Lightweight JMS 283

Java package 91
Java Server Pages (JSP) 67, 88
Java servlet creation 194
Java servlets 72
Java Transaction API 168
Java UDR deployment 308
Java Virtual Machine (JVM) 66, 235
Java Virtual Processors 235
Java wrapper UDR 247
Java-enabled ISA features 38
JNDI name 154
servlet engine install 38

Java Virtual Machine (JVM) 235
JAXP 183
JDBC Provider 114
JMS server user 104
JMS Servers 162

L
LDAP 254
Legacy data 126
lightweight directory access protocol (LDAP) 254
Lightweight JMS 283
 Index 353

Linux 305
Determining the port number of IDS 305
launching the installation script 307
WebSphere Application Server 307

Listener Ports 161
local transaction 167
log data capture 11
Logical Input/Output 5
Logical Log 6

M
memory usage 18
Message events 269
Message Listener Service 161
Message Queue Interface 280
Message-driven beans 171
Model 91
MQ Event Broker 285
MQBACK 286
MQCMIT 286
multiple devices 258
Multithreading 3

Implementation 3
multi threaded process 3

MVC Architecture 67

N
NAMED Row Type 16

create a hierarchy 17
Creating and Manipulating 17

node name 109

O
Object-Relational DBMS (ORDBMS) 13
ON-Bar 11

components 12
onconfig 7
onpload database 13
onpload utility 13

P
Page aggregation 270
page group 262
Pages 5
Parallel Backup and Restore 11
Performance tuning guidelines 303

DSS tuning 304
OLTP tuning 304

Permissions 262
Persistent storage 126
Personalization 260
Physical Input/Output 5
Physical Log 6
Place 262
Portal 253

page structure 259
portal administrator 262
Portal engine 259

portal page 262
Portal Server 67
Portal Servlet 259
Portlet 261
Portlet application 261

Primary-Target 11
Process Component 5

Q
Query Builder 190
Queue Manager 281

Clustering 285

R
read-only users 37
Redbooks Web site 350

Contact us xviii
Redhat 8.0 Linux 308

Install Error 308
Row Data Types 16

S
sample application xiv, 88, 144

Architecture 87
FullApplication 144–145

Creating a JSP 149
Database Web Pages 145
Deploying in Application Server 152
Deploying in WSAD 151
search, insert, update, and delete 145
steps to extend 145
Steps to integrate 149

ITSOStores 88, 152
deploy in WAS 155
Deploying in WSAD 154
Generating Deploy and RMIC Code 153
Java Server Pages (JSP) 152
Servlets 152
Steps for creating a CMP bean 152
using container managed persistent bean 152

ITSOStoresJMS 158
Container Managed Persistent Bean 160
Data source 162
Deploying in WAS 162
Deployment in WSAD 160
design 158
distributed environment 158
Java Message Services 158
Java Server Page 160
JNDI names 161
Listener Port 161
Message Driven Bean 160
Message Oriented Middleware 159
preparation work 160
queue 161
Queue Connection factory 161
two sample applications 159
WebSphere MQ 158
354 Using Informix Dynamic Server with WebSphere

names 144
FullApplication 144
ITSOStores 144
ITSOStoresJMS 144
SelectApplication 144

SelectApplication 88
Database Web Pages 88
Deploying in test server 99
Deploying the application 102
Running on application server 100
Steps to develop 88

Save to Master Configuration 116
SAX (Simple API for XML) 183
Sbspaces 6
Scalability 122
Search 260
sequence objects 307
serial data type 307
Server 97

Components 162
Configuration 97
connection 6
Instance 97
perspective 160

Service roles and interactions 211
Service brokers 211
Service clients 211
Service providers 211

setting the installation directories 109
Shared Memory 6

Component 5
Simple Object Access Protocol (SOAP) 83, 211
Site Analysis 260
Skins 262
Skins page 262
Smart large objects 6
Socket and Transport Layer Interface (TLI) 6
SQL 18

Statement Cache 18
Statement Type 91
syntax for SEQUENCE objects 29

sqlhosts file 7
SQLResult 193
SQLtoXML 187

sample project 188
template file (.xst) 191

Starting the test server 100
Steps to install WSAD from CD-ROM 86
Steps to install WSAD from electronic image 86
Storage Manager 12
Stream Pipes 6
supply chain management (SCM) 254
Systems Architecture

illustration 130
used in our installation 129

T
Table and Index Partitioning 8
table hierarchy - creating one 17
Tablespaces 6

tar file 33, 105
TCP/IP 6

Monitor 220
Themes 262
Threads - dynamic configuration 24
Toolkit 261
transaction attribute 171
Transactions in EJB 166
Transcoding Technology 260

U
UDDI 83, 211
UDR 14
UDR - Creating it 15
UDT 6, 15
Update-Anywhere 11
User-controlled redirection 10
User-Defined Data Types (UDT) 6, 15–16
User-Defined Routines (UDR) 14

V
Verity Text Search Data Blade 184
Virtual Network Computing 297

VNC server 297
VNC viewer 297

Virtual Processors 5
VisualAge Generator 291

W
Web DataBlade 183
Web server plug-in 113
Web Services 209, 261

a complex example - Google Search 245
based on EJBs 214
based on Java beans 215
best practices 213
Categories 210
consumer requirements for IDS 234
Create a new Java bean 215
Currency Exchange example 239
Generate the WSDL files 217
IDS as a consumer 233
IDS as a provider 214
introduction 210
monitoring 219
Service roles and interactions 211
standards 211
tools for development 213
use of IBM Informix Dynamic Server 209
Web Services Description Language (WSDL) 83, 211
Web Services Inspection Language (WSIL) 83, 211
Web Services Object Runtime Framework (WORF)
221

WebSphere xiv, 63–64, 66
administration repository 118
Collaboration services 260
configuration data 126
configuration directory 119
 Index 355

JMS Provider 161
Product Family 67

Business Integration 67
Foundation and tools 67
Reach and User Experience 67

Queue Destinations 161
WebSphere Application Server xiv, 67–68, 103, 255

Architecture 71
benefits 74
Configuring for use with IDS 114
Deploying the application 102
EJB container 72
Enterprise Application Server 64
Hardware requirements 76
Installation from CD-ROM 106
Installation from tar file 105
Installing 105
Installing on SuSE Linux V8.0 104
Operating System and Processor requirements 76
Packages 73

Enterprise Edition 74
Express 73
Network Deployment 74

Pre-installation tasks 104
Product Package Comparisons 74
Verify Installation 111
Web container 72

WebSphere JMS Provider 161
WebSphere MQ 67, 279

Event Broker 285
features at a glance 280
Integration with IDS 285
JMS Provider 285
Message Queue Interface (MQI) 280
Putting and getting messages 282
queue manager 281
Transactional support for IDS 286

WebSphere Portal 254–255, 259–260
architecture 258
Client to remote application 274
collaborative components 256
configure IDS 277
infrastructure 260
Java portal engine 259
Packages 254
page 262
page aggregation processing 272
page layout 262
Portal concepts 261
portlet 261
Portlet application 261
Portlet container 259
presentation services 259
Server 253

IDS as a repository database 253
services 260
Skins 272
templates 272
Themes 272
tooling 261

WebSphere Portal Enable 254–256
WebSphere Portal Experience

advanced collaboration 257
content management functions 257
features 256

WebSphere Portal Extend 256
WebSphere Portal Packages

Portal Enable 254
Portal Experience 256
Portal Extend 256

extended search capabilities 256
Web analysis technology 256

WebSphere Studio Application Developer xiv, 67, 77
Configuring for IDS 85, 87
Eclipse 77
highlights 82
Installing and Configuring 85
Installing from the CD-ROM 86
Installing from the electronic image 86
integrate existing tools 77
integration with Informix 4GL 84
Packages 80

Application Developer 80
Enterprise Developer 80
Integration Edition 80
Site Developer 80

Pre-installation tasks 86
Test with IDS 87
Verifying the Configuration 87

WebSphere test environment 97
Configuring 98
Deploying the web application 99
Running the sample application 100

Window events 269
Windows 333

configuration of IDS 333
Hosts and Services files 342
JDK and JDBC installation 339
SQLHOSTS 341

Workflow 11
World Wide Web 65

X
XML 175

Binary Large OBjects 184
DataBlade 182
document field 203
Document Management 177
Document Types 178
dynamic XML 181
editor 186
editor tools 186
format conversion 199
generate DDL 208
generate schema from table 207
Generation and Transformation with Stored Proce-
dures 182
Getting XML In 180
Getting XML Out 181
Java API 183
356 Using Informix Dynamic Server with WebSphere

Java Bean XML/XSL client wizard 204
key features 176
mapping options in WSAD 204
Queries 180
Schema 176
schema editor 186
SQL query wizard 187
standards 178
Storing XML 181
Support in Database Systems 180
typical applications 177
Usage Scenarios 177
Web DataBlade 183
What’s available with IDS 181
XSL Debug 187
XSL documents 182
XSL stylesheet 195
XSL transformation 187

XMLtoSQL 187
XPath expression wizard 186
 Index 357

358 Using Informix Dynamic Server with WebSphere

(0.5” spine)
0.475”<->0.873”

250 <-> 459 pages

Using Inform
ix Dynam

ic Server w
ith W

ebSphere

®

SG24-6948-00 ISBN 0738453498

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

Using Informix
Dynamic Server
with WebSphere
Informix Dynamic
Server for data
management

WebSphere for
application
development
productivity

Solution integration
and easy
implementation

This IBM Redbook is intended primarily for Informix customers
and business partners. It presents information that will help with
the installation, configuration, use, and management of an
Informix Dynamic Server and WebSphere environment.

We provide a brief overview of Informix Dynamic Server,
WebSphere Application Server, and WebSphere Studio
Application Developer, all in one place, for a better understanding
of the products. We then show how these products can be
integrated together, thus enabling you to begin receiving the
benefits of a powerful e-business application development
environment as quickly as possible.

Informix Dynamic Server is supported by WebSphere, an open
application development platform that can reduce e-business
application development timeframes by providing a common
toolset that can enhance developer productivity.

Back cover

	Contents
	Notices
	Trademarks

	Preface
	Executive summary
	The sample applications
	Highlights and benefits
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Introduction
	Chapter 1. Informix Dynamic Server: An�overview
	1.1 Informix database family
	1.2 Understanding Informix Dynamic Server (IDS)
	1.3 Feature highlights

	Chapter 2. Installing and configuring IDS V9.40
	2.1 Taking advantage of new IDS 9.40 features
	2.2 Installing IDS 9.40 on SuSE Linux V8
	2.3 Configuring IDS for use with WebSphere

	Chapter 3. WebSphere V5: An overview
	3.1 What is WebSphere?
	3.2 WebSphere product family
	3.3 WebSphere Application Server (WAS)
	3.3.1 J2EE: Overview
	3.3.2 WebSphere Application Server: Architecture
	3.3.3 WebSphere Application Server: Packages

	3.4 WebSphere Studio Application Developer (WSAD)
	3.4.1 Role-based development model
	3.4.2 WebSphere Studio Application Developer - Packages

	3.5 WebSphere Studio integration with Informix 4GL

	Chapter 4. Installing and configuring WebSphere Studio V5
	4.1 Installing WSAD on Windows/2000
	4.2 Configuring WSAD for IDS
	4.3 A sample application using Database Web Pages
	4.3.1 Deploying the application in WebSphere Application Server
	4.3.2 Summary

	Chapter 5. Installing and configuring WebSphere Application Server
	5.1 Installing WAS on SuSE Linux V8.0
	5.1.1 Verifying the installation

	5.2 Configuring WAS for use with IDS
	5.2.1 Configuring the Informix JDBC Provider
	5.2.2 Verifying the configuration

	5.3 WebSphere Administration Repository

	Chapter 6. Integrating IDS and WebSphere
	6.1 Scenarios for deploying IDS and WebSphere
	6.1.1 Implementation scenarios

	6.2 High availability considerations
	6.2.1 IDS high availability and WebSphere
	6.2.2 High availability with HDR
	6.2.3 JDBC support for IDS and HDR

	6.3 Systems architecture
	6.4 Connecting IDS and WebSphere
	6.4.1 Using a Data Source object
	6.4.2 Configure Informix Data Source on WebSphere Studio
	6.4.3 Configure Informix Data Source on WebSphere Application Server

	Chapter 7. Working with IDS and WebSphere
	7.1 Introduction to the sample applications
	7.2 Extending the Database Web Pages sample application
	7.2.1 Steps to extend the sample application
	7.2.2 Creating a JSP to integrate the application modules
	7.2.3 Deploying the application

	7.3 Sample application: Container Managed Persistent Bean
	7.3.1 The ITSOStores sample application
	7.3.2 Steps for creating a CMP bean
	7.3.3 Deploying the application

	7.4 A sample application using JMS and IDS
	7.4.1 The ITSOStoresJMS sample application
	7.4.2 Preparing the sample application for deployment
	7.4.3 Store and forward mechanism

	7.5 Managing transactions
	7.5.1 Java Transaction Service (JTS)
	7.5.2 Local and global transactions in WebSphere
	7.5.3 Bean-managed transactions (BMT)
	7.5.4 Container-managed transactions (CMT)
	7.5.5 Transactional programming considerations
	7.5.6 General guidelines for using transactions

	Chapter 8. IDS, WebSphere, and XML
	8.1 An introduction to XML
	8.1.1 XML usage scenarios

	8.2 IBM Informix Dynamic Server (IDS) and XML
	8.2.1 XML support in database systems
	8.2.2 What’s available with IDS

	8.3 Dynamic XML mapping with WSAD V5 and IDS
	8.3.1 XML tools in WSAD V5
	8.3.2 The SQLtoXML and XMLtoSQL framework in WSAD
	8.3.3 Create a wizard based SQLtoXML sample project
	8.3.4 Enhance the sample project with the XMLtoSQL class library
	8.3.5 Additional dynamic XML mapping options in WSAD V5

	Chapter 9. IDS, Web services, and WebSphere
	9.1 Introduction to Web services
	9.1.1 Web service standards
	9.1.2 WSAD V5 tools for Web services development

	9.2 Using IDS as a Web service provider
	9.2.1 IDS 7/9 Web services based on EJBs
	9.2.2 IDS 7/9 Web services based on Java beans
	9.2.3 DADX Web services and IDS 7/9

	9.3 Using IDS 9 as a Web service consumer
	9.3.1 IDS 9 and J/Foundation
	9.3.2 Installation and configuration of IDS 9 and AXIS for the examples
	9.3.3 The basic IDS Web service consumer development steps
	9.3.4 The AXIS WSDL2Java tool
	9.3.5 A simple IDS Web service example — Currency Exchange project
	9.3.6 A complex IDS Web service example — Google search

	Chapter 10. WebSphere Portal Server
	10.1 An introduction to WebSphere Portal
	10.1.1 WebSphere Portal Experience
	10.1.2 Industry impact and acceptance

	10.2 WebSphere Portal architecture
	10.2.1 WebSphere Portal tooling

	10.3 WebSphere Portal
	10.3.1 Portal concepts
	10.3.2 Portlets
	10.3.3 Portlet lifecycle
	10.3.4 Portlet events and messaging
	10.3.5 Page aggregation

	10.4 Portlet solution patterns
	10.5 IDS and WebSphere portal server
	10.5.1 Configuring IDS for WebSphere Portal

	Chapter 11. WebSphere MQ, messaging, and�IDS
	11.1 WebSphere MQ overview
	11.2 WebSphere and messaging
	11.2.1 Overview
	11.2.2 Java Message Services (JMS)
	11.2.3 WebSphere Messaging Engines

	11.3 WebSphere MQ Integration with IDS
	11.3.1 MQSeries Transactional Support for IDS
	11.3.2 IBM Informix MQSeries DataBlade

	Chapter 12. IBM Informix 4GL and WebSphere
	12.1 IBM Informix 4GL: Protecting your investment
	12.1.1 Informix 4GL
	12.1.2 EGL and WebSphere
	12.1.3 Extending EGL to support I4GL
	12.1.4 Moving from I4GL to EGL
	12.1.5 The value of WebSphere Application Developer

	Chapter 13. Implementation hints and tips
	13.1 Our implementation experience
	13.1.1 Installing SuSE 8.0 Linux
	13.1.2 Installing IDS on SuSE 8.0 Linux
	13.1.3 Performance tuning guidelines
	13.1.4 Determining the port number of IDS on Linux
	13.1.5 Using sequence objects rather than serial data type
	13.1.6 WebSphere and IDS
	13.1.7 Install error with Redhat 8.0 Linux
	13.1.8 An alternative Java UDR deployment method

	Appendix A. SQLtoXML and XMLtoSQL Java class description
	Class com.ibm.etools.sqltoxml.SQLToXML
	Constructors
	Methods

	Class com.ibm.etools.xmltosql.XMLToSQL
	Constructors
	Methods

	Class com.ibm.etools.sqltoxml.QueryProperties
	Constructor overview
	Method overview

	Class com.ibm.etools.xmltosql.SQLProperties
	Field overview
	Constructor overview
	Method overview

	Class com.ibm.etools.sqltoxml.BaseProperties
	Constructor overview
	Method overview

	Appendix B. DADX file format
	Appendix C. IDS and WSAD on Windows
	Configuring IDS and WSAD for Windows
	Windows/Linux Differences

	Appendix D. Additional material
	Locating the Web material
	Using the Web material

	Glossary
	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks

	Index
	Back cover

