
Worklight® - Extend Your Business

White Paper

HTML5, Hybrid or Native

Mobile App Development

 © 2012 Worklight, Inc. an IBM company. All rights reserved 2

Contents

Intro .. 3

Introducing the Approaches .. 3

Native Applications .. 3

Mobile Web Applications... 6

Hybrid Applications .. 7

Comparing the Different Approaches .. 8

Choosing the Right Approach .. 10

Scenarios for the Native Approach .. 10

Scenarios for the Web Approach ... 11

Scenarios for the Hybrid Approach .. 11

Summary .. 12

About Worklight ... 13

 © 2012 Worklight, Inc. an IBM company. All rights reserved 3

Intro

Many organizations taking their first steps to implement a mobile strategy are facing an important

decision that will influence the results of this initiative. The process of choosing a development

approach for a mobile application, namely native, web or hybrid, entails many parameters such as

budget, project timeframe, target audience and application functionality to name a few. Each approach

carries inherent benefits and limitations, and finding the one that best addresses the organization’s

needs could be a challenging task.

The purpose of this whitepaper is not to identify the best development approach, as such does not

exist, but rather to list the pros and cons each carries and describe the different scenarios, or enterprise

requirements, that best fit one or the other.

Introducing the Approaches

Native Applications

Native applications have binary executable files that are downloaded directly to the device and stored

locally. The installation process can be initiated by the user, or in some cases, by the IT department of

the organization. The most popular way to download a native app is by visiting an application store such

as Apple’s App Store, Android’s Marketplace, or BlackBerry’s App World, but other methods exist and

are sometimes provided by the mobile vendor.

Once the app has been installed on the device, the user launches it like any other service the device

offers. Upon initialization, the native app interfaces directly with the mobile operating system, without

any intermediary or container. The native app is free to access all of the APIs that are made available by

the OS vendor and, in many cases, has a unique look and feel that is typical of that specific mobile OS.

To create a native app, developers must write the source code (in human-readable form) and create

additional resources such images, audio segments and various OS-specific declaration files. Using tools

provided by the OS vendor, the source code is compiled (and sometimes also linked) in order to create

 © 2012 Worklight, Inc. an IBM company. All rights reserved 4

an executable in binary form that can be packaged along with the rest of the resources and made ready

for distribution.

These tools, as well as other utilities and files, are normally called the SDK of the mobile OS. Although

the development process is often similar across different operating systems, the SDK is platform-specific

and each mobile OS comes with its own unique tools. The following table presents the different tools,

languages, formats and distribution channels associated with the leading mobile operating systems.

These differences across platforms result in one of the most critical disadvantages of the native

development approach – code written for one mobile platform cannot be used on another, making the

development and maintenance of native apps for multiple OSs a very long and expensive undertaking.

So why is it that in spite of this costly disadvantage, many companies choose to develop natively? To

answer that question we will need to better understand the role of the APIs.

The Application Programming Interface (API)

Once the native application is installed on the mobile device and launched by the user, it interacts with

the mobile operating system through proprietary API calls that the operating system exposes. These can

be divided into two groups; Low-level API’s and High-level API’s.

 © 2012 Worklight, Inc. an IBM company. All rights reserved 5

Low-level APIs

It is through these low-level API calls that the app can interact directly with the touch screen or

keyboard, render graphics, connect to networks, process audio received from the microphone, play

sounds through the speaker or headphones, or receive images and videos from the camera. It can

access the GPS, receive orientation information, and of course, read and write files on the solid state

disk, or access any other hardware element available today or in the future.

High-level APIs

In addition to providing the low-level hardware-access services we just mentioned, mobile operating

systems also provide higher-level services that are important to the personal mobile experience. Such

services include processes like browsing the web, managing the calendar, contacts, photo album, and

of course the ability to make phone calls or send and receive text messages.

Although most mobile OSs include a set of built-in applications that can execute these services, a set

of exposed high-level APIs is made accessible for native apps as well, allowing them to access many of

the important services mentioned above. Other APIs let downloadable apps access various cloud-

based services that are provided by the OS vendor, such as Push Notifications or In-App Purchases.

The GUI Toolkit

Another important set of APIs that the OS provides is the GUI toolkit. Each mobile OS comes with its

own set of user interface components such as buttons, input fields, sliders, menus, tab bars, dialog

boxes, and more. Apps that make use of these components inherit the look and feel of that specific

mobile OS which normally results in a very smooth user experience.

It’s important to note that different mobile platforms carry unique palettes of UI components. As a

result, apps that are designed to work across multiple operating systems require the designer to be

familiar with the different UI components of each OS.

Although APIs are OS-specific and add much complexity and cost to the development of multiple native

apps, these elements are the only means of creating rich mobile applications that make full use of all the

functionality that modern mobile devices have to offer.

 © 2012 Worklight, Inc. an IBM company. All rights reserved 6

Mobile Web Applications

Modern mobile devices consist of powerful browsers that support many new HTML5 capabilities, CSS3

and advanced JavaScript. With recent advancements in this front, HTML5 signals the transition of this

technology from a “page definition language” into a powerful development standard for rich, browser-

based applications.

A few examples of the potential of HTML5 include advanced UI components, access to rich media types,

geo-location services and offline availability. Using these features and many more that are under

development, developers are able to create advanced applications using nothing but web technologies.

Let us distinguish between two extreme web-app approaches. We are all familiar with mobile browsing

and mobile-optimized web sites. These sites recognize when they are accessed by a smartphone and

serve up HTML pages that have been designed to provide a comfortable “touch experience” on a small

screen size. But some companies go even further and enhance the user experience by creating a mobile

website that looks like a native app and can be launched from a shortcut that is indistinguishable from

that used to launch native apps.

There is a wide range of possibilities between these two extremes, with most websites implementing

their own mix of features.

Mobile web apps are a very promising trend. To capitalize on this trend and help developers build the

client-side user interface, a growing number of JavaScript toolkits have been created, such as Sencha

Touch and jQuery Mobile, which generate user interfaces that are comparable in look and feel to native

apps. Both execute entirely within the browser of the mobile device and make use of the newest

JavaScript, CSS and HTML5 features that are available in modern mobile browsers.

 © 2012 Worklight, Inc. an IBM company. All rights reserved 7

One of the most prominent advantages of a web app is its multiplatform support and low cost of

development. Most mobile vendors utilize the same rendering engine in their browsers, WebKit – an

open source project led mostly by Google and Apple that provides the most comprehensive HTML5

implementation available today. Since the application code is written in standard web languages that

are compatible with WebKit, a single app delivers a uniform experience across different devices and

operating systems, making it multiplatform by default. But these advantages are not without a price.

Despite the potential and promise of web technologies in the mobile space, they still carry significant

limitations. To understand these limitations we need to explain how web applications operate.

Unlike native apps, which are independent executables that interface directly with the OS, web apps run

within the browser. The browser is in itself a native app that has direct access to the OS APIs, but only a

limited number of these APIs are exposed to the web apps that run inside it. While native apps have full

access to the device, many features are only partially available to web apps or not available at all.

Although this is expected to change in the future with advancements in HTML, these capabilities are not

available for today’s mobile users.

Hybrid Applications

The hybrid approach combines native development with web technology. Using this approach,

developers write significant portions of their application in cross-platform web technologies, while

maintaining direct access to native APIs when required.

The native portion of the application uses the operating system API’s to create an embedded HTML

rendering engine that serves as a bridge between the browser and the device API’s. This bridge allows

the hybrid app to leverage all the features that modern devices have to offer.

App developers can choose between coding their own bridge or taking advantage of ready-made

solutions such as PhoneGap – an open source library that provides a uniform JavaScript interface to

selected device capabilities that is consistent across operating systems.

The native portion of the app can be developed independently, but some solutions in the market

provide this type of a native container as part of their product, thus empowering the developer with the

means to create an advanced application that utilizes all the device features using nothing but web

 © 2012 Worklight, Inc. an IBM company. All rights reserved 8

languages. In some cases, a solution will allow the developer to leverage any native knowledge he or she

might have to customize the native container per the unique needs of the organization.

The web portion of the app can be either a webpage that resides on a server or a set of HTML,

JavaScript, CSS and media files, packaged into the application code and stored locally on the device.

Both approaches carry both advantages and limitations. HTML code that is hosted on a server allows

developers to introduce minor updates to the app without going through the process of submission and

approval that some app stores require. Unfortunately, this approach eliminates any offline availability as

the content is not accessible when the device is not connected to the network. On the other hand,

packaging the web code into the application itself allows for better performance and accessibility, but

does not allow for remote updates. The best of both worlds can be achieved by combining the two

approaches. Such a system is architected to host the HTML resources on a web server for flexibility, yet

cache them locally on the mobile device for performance.

Comparing the Different Approaches

So to summarize, let’s take a look at all three development approaches compared to each other.

Native excels in performance and device access, but suffers in cost and updates. Web is much simpler,

less expensive and easier to update, but is currently limited in functionality and cannot achieve the

exceptional level of user experience that can be obtained using native API calls. The hybrid approach

provides a middle ground which, in many situations, is the best of both worlds, especially if the

developer is targeting multiple operating systems.

 © 2012 Worklight, Inc. an IBM company. All rights reserved 9

As can be inferred from the table above, no single approach

delivers all of the benefits all of the time. Choosing the right

approach depends on the specific needs of the organization

and can be driven by many parameters such as budget,

timeframe, internal resources, target market, required

application functionality, IT infrastructure and many others.

But one thing is clear; most companies today face an obvious

tradeoff between user experience and application

functionality on one hand, and development costs and time

to market on the other. The challenge becomes choosing the right development approach that will

balance the organization’s requirements with its budget and time-to-market constraints.

 © 2012 Worklight, Inc. an IBM company. All rights reserved 10

Choosing the Right Approach

The following is a list of scenarios to help guide organizations in the process of choosing an approach:

Scenarios for the Native Approach

Existing Native Skills - One of the main arguments against the native approach is its lack of multiplatform

support. Organizations asking to develop an application for multiple mobile platforms need to hire new

employees, or train its in-house developers in a variety of native languages. Organizations that have

such native skills in-house are able to leverage them without significant new investments.

A Single Mobile OS - In some cases, an organization will aim to release a mobile application to a limited

target audience – one that is known to use a single mobile OS. For example, consider a scenario where

an internal application is distributed within an organization that issues a BlackBerry device to its

employees. In this case, achieving multiplatform coverage might not be a priority, and as developing a

single native application requires a limited set of skills and tools, this approach can make much sense.

Native Functionality - Some applications are built around a single functionality. Take Skype for example,

VOIP and access to the user’s contacts are key elements of the app and, given available technologies

today, can only be developed natively. For such applications, web languages are simply not yet

sufficiently evolved and are far from capable of achieving the desired functionality.

Rich UI Requirements - For game-like applications that require a rich user interface that provides real-

time responsiveness, web technologies do not yet provide adequate solution. For applications with such

requirements, developers are still better off taking the native approach.

 © 2012 Worklight, Inc. an IBM company. All rights reserved 11

Scenarios for the Web Approach

Direct Distribution - Some organizations prefer distributing their apps in a manner that is controlled

internally and is not subjected to what can sometimes turn into a long and uncertain approval

processes. In such cases, using purely web languages can completely circumvent the app store process

and allow the organization to fully control the distribution of the app as well as it periodical updates.

Pilot App - When comparing the costs and time to market involved in the development of a native vs. a

web app, using the web approach to create a pilot version of the app can be a compelling and cost-

effective tactic. Once the concept has been proved, the organization can choose to create a new

application from scratch or leverage portions of the existing code in a hybrid application.

Visibility - Further to the distribution we already mentioned, another benefit of creating a web

application is its visibility in search engine results which, in many cases, expose the application to a

larger audience than that available through the app store alone.

Scenarios for the Hybrid Approach

Balancing the Tradeoff - Using the hybrid approach, companies can enjoy the best of both worlds. On

one hand, the native bridge, allows developers to take full advantage of all the different features and

capabilities that modern mobile devices have to offer. On the other, all the portions of the code that are

written using web languages can be shared among different mobile platforms, making the development

and ongoing maintenance process centralized, shorter and cost-effective.

In-house Skills - Web development skills are very common and can easily be found in many

organizations. By choosing the hybrid approach, supported by the right solution, web developers are

able to build applications with nothing but web skills such as HTML, CSS and JavaScript, while delivering

a native user experience.

Future Considerations - HTML5 is rapidly growing in both availability and capabilities. Many analysts

predict that it is likely to become the default technology for front-end application development. By

writing most of the app in HTML, and using native code only where needed, companies can make sure

that the investments they make today do not become obsolete tomorrow, as HTML functionality

becomes richer and addresses a wider range of the mobile requirements of modern organizations.

 © 2012 Worklight, Inc. an IBM company. All rights reserved 12

Summary

As mobile applications continue to take a center role in the business landscape, organizations around

the world are mobilizing a growing number of mission-critical services. Many companies are striving to

find the optimal development approach to achieve their goals, but what many are quickly realizing is

that each carries inherent limitations and no single approach can address all the growing needs and

complexity of the modern mobile enterprise.

As this paper attempts to show, the answer lies not in one development approach, but rather in a

flexible solution; one that can harness the benefits that each provides and support not only the

development of a first mobile app, but of all future apps, regardless of their development approach.

But the choice between hybrid, native and web, although certainly a major one, is not the only one.

Companies forming their mobile strategy must also consider the future of this market;

 Further fragmentation of mobile devices and technologies, which in turn, will continue to increase

the overall costs and complexities that are associated with mobile application development,

integration and ongoing management;

 Accelerated mobile adoption by consumers and within the enterprise increasing the requirements

around security, scalability and ongoing control;

 New device features and complementing technologies such as near-field communication, geo-

location, augmented reality, social networks, and others which will undoubtedly give rise to new

types and new use cases of mobile apps;

 And new distribution channels for the apps, both public and private, allowing organizations to easily

place the apps in the hands of the user, quickly deploy updates and manage its entire portfolio of

apps without going through a long submission and approval process.

Taking all these parameters into consideration, companies must choose a solution that is not only

flexible enough to support all types of apps but would also support the secure and scalable integration

of the apps into the IT infrastructure as well as allow them to monitor and control their entire portfolio

of applications from one centralized interface.

 © 2012 Worklight, Inc. an IBM company. All rights reserved 13

About Worklight

Worklight, an IBM company, is a leading mobile application platform that enables organizations to

create, run and manage rich applications for smartphones, tablets and other environments with the

highest levels of developer productivity, enterprise delivery and dynamic control. Many of the world’s

largest companies rely on Worklight to provide optimal user experiences across more devices while

radically reducing time to market, development cost and ongoing maintenance effort.

For further information please visit our website – www.worklight.com

Join the Worklight Developer Zone for an evaluation version of our platform – http://dev.worklight.com

http://www.worklight.com/
http://dev.worklight.com/

