
Community, modularity and empowerment in software delivery
White paper
February 2007

The future of software delivery.
Danny Sabbah, PhD
General manager, Rational Software

The future of software delivery.
Page 2

2	 Introduction

4	 Legacy	software	development

8	 Trends	that	matter	today

11	 Community-based	soft-	

ware	development

14	 Service-oriented	architecture

17	 Governance	and	empowerment

19	 Future	software	delivery

20	 Supply	chains	of		

intellectual	property

22	 Opening	the	community		

to	participation

23	 Rational	thinking

25	 Conclusion

Contents
Introduction

Today’s software design and deployment professionals cannot ignore important
current trends: service-oriented architecture (SOA), community-based software
(a.k.a. open source software [OSS]) and globally distributed development (GDD).1
One analyst expected 62 percent of Global 2000 firms to have implemented an
SOA by the end of 20062; another puts that number even higher: “9 of every 10
companies are adopting or have adopted service-oriented architectures and will
exit 2006 with SOA planning, design and programming experience.”3 OSS is
expected to be included in mission-critical software portfolios within more than
three quarters of large international enterprises by the end of this decade, and
many surveys indicate that a majority of us are using OSS in production today.4

Although SOA, OSS and GDD appear to be unprecedented phenomena, it must
be remembered that they did not arise from nothing. Before embarking on a new
architecture or a new software model or a new method of making and maintain-
ing software, it is wise to consider carefully what SOA, OSS and GDD are, what
they represent and where they come from. In this way we can better prepare
ourselves for their eventual mass adoption.

“	Every	generation	laughs	at	the	old	fashions,	but	follows	religiously	the	new.”

 —Henry David Thoreau

The future of software delivery.
Page �

Highlights
SOA is not entirely new. The promise of homogeneous services was behind the
development of Enterprise JavaBeans Java™ technology, and before that, CORBA.
Good SOA is open, standards-based, community-driven, governable, modular and
easily available—some of these concepts have been around for a long time. For
OSS, it’s the same. In fact, in the context of software development, the underlying
invention behind OSS is nonexistent.

Open source software has been in use for 25 years—emerging largely from
academia—but it has evolved into a major force only over the past three to
five years, primarily because of a much more important trend: community-
based software. The most visible features of OSS—pervasiveness, innovation,
low cost—are redux. True value is added to software delivery by way of a
three-step process:

1. Good-enough software modules encourage community participation to
create OSS.

2. Innovation and component commoditization occur in an open develop-
ment environment.

3. Standardization leads to industry adoption.

So while the product may be OSS, the process is the key driver—and that’s
community-based software.

So it’s not SOA, OSS, GDD or other fashionable TLAs that really matter; it’s their
underlying precepts and processes: communities of interest, modular systems and
empowerment. By focusing on the “ilities” (qualities, abilities) of the trends rather
than the buzzwords themselves, it’s possible to begin incorporating those benefits
into our software right now (if we’re not already doing so).

The	process	is	the	key	driver.

The future of software delivery.
Page �

Highlights
Incorporating today’s rapidly broadening requirements and methodologies
into our own software delivery—distilling time-tested best practices together
with today’s innovations to meet our precise needs—is the focus of this essay.
The IBM Rational® group has already folded these lessons into the creation
and maintenance of existing products and solutions, and IBM is hard at work
expanding the scope of these principles in upcoming Rational product releases
to incorporate broader communities of practitioners.

The remainder of this essay is divided into four sections: a brief description of past
software delivery issues that have contributed to the current environment; iden-
tification of key trends that drive our industry today; an outline of the Rational
group’s future software delivery strategy; and a compendious summary.

Legacy software development

The reality of software and systems development today is that it can be faster to
construct a new manufacturing plant than to deploy a new enterprise resource
planning (ERP) system. It’s faster, it seems, to integrate a parts supplier into a
physical supply chain than it is to integrate a supplier into an IT supply chain.

For example, in May 1986, Toyota broke ground on its new North American
assembly plant in Georgetown, Kentucky. Less than two years later (23 months,
to be exact), the first automobile rolled off the assembly line. The average instal-
lation of an SAP ERP system takes almost three years (33.6 months).5 Creating
a structure for routing digital artifacts, ideas and processes around an IT system
takes more time than building an assembly plant from a hole in the ground,
routing automobile factory parts from around the world, and driving the first
car out the door.

IBM	is	working	to	incorpo-	

rate	broader	communities		

of	practitioners.

The future of software delivery.
Page �

Highlights
The software industry is over 50 years old now, yet the gap between physical
implementation and software implementation remains wide. The problem is that
the software industry and software processes are still not fully formed—they are
not yet mature. The software industry is still in its adolescence—experiencing a
growth spurt—and one prime cause of that volatility is the very foundation upon
which we run our software: the base of our IT infrastructure is evolving ever more
quickly. And faster CPUs have allowed us to become inefficient in how we develop
and deploy our software.

Figure 1 shows the advance of processor speed in accordance with Moore’s Law,6
and it shows the price of computing power plummeting at the same time. Rap-
idly evolving hardware and software enable new applications of technology, and
because of that we can now build and deploy software that wasn’t even possible

20021998 20061994199019861982197819741970

Cost per bit

102

103

104

105

106

107

Tr
an

sis
to

rs
 p

er
 ch

ip

Co
st

pe
r b

it—
Co

st
pe

r f
un

cti
on

108

109

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

DRAM Microprocessor

Figure 1. As memory and processing power increase, cost decreases.

The	software	industry	is	still	in		

its	adolescence.

The future of software delivery.
Page �

Highlights
a few years ago. Having cheap processing and memory available to all develop-
ers has led to myriad new software frameworks that leverage these advances.
Legacy applications that are not able to integrate with these newer frameworks
have a disadvantage beyond limited scope—they themselves act as inhibitors
of change.

As computing and communications technologies accelerate, so too does the aver-
age life span of an S&P 500 company. In 1930 the average life span was 75 years;
today the average is 15 years. The rapidly evolving global marketplace and the
principles of marketplace capitalization contain some valuable lessons for our
consideration. Today’s marketplace looks very different from even 5 or 10 years
ago, and it’s easy to think that all the rules have changed. But this is not so.

2018 20081988197819681958194819381928

5

15

25

35

45

55

65

75

Average lifetime of S&P companies

Year

Source: Creative Destrution, by Richard Foster

Figure 2. Average lifetime of S&P companies has decreased dramatically since 1930.

Today’s	marketplace	looks	very	

different	from	even	5	or	10	years	ago.

The future of software delivery.
Page 7

Highlights
Let’s remember the “new economy” of the late 1990s and P/E ratios in the 2000s,
which heralded a new reality in enterprise valuation. Then let’s reflect on 2001,
the year this was overwhelmingly disproved. Companies are forming and disband-
ing with ever-increasing speed, but, at least for now, it seems that the old rules still
govern marketplace valuation.

The same lesson can be applied to understand how to approach the onrush of
technological advancements occurring now. Because we are currently, quite
plausibly, in the vortex of the computer technology tornado, it’s easy to lose sight
of our grounded experience in the fields of commerce, construction, software
development and systems integration. If we try to step outside that tornado for a
few moments, it’s easy to see what’s left in its wake.

Software architecture has not yet reached the same level of maturity of traditional
building architecture; nor has software supply chain technology reached the same
level of capability and robustness of the physical supply chain of manufacturing.
Software engineering methodologies, project management paradigms, program-
ming and scripting languages, and enterprise frameworks are all in flux. Yet,
as we have learned from the stock market over the past 10 years, the principles
governing the processes that lead to true value tend to remain the same.

Discerning the true value of existing processes and methodologies, understand-
ing where to focus our energies, and knowing when we are on the right track
are invaluable insights that inform us of what we should keep and what we
should discard from the many options available today. The IBM Rational group
has identified a number of trends that have informed strategic vision, and they
warrant examination.

Software	engineering	methodologies,	

project	management	paradigms,	pro-

gramming	and	scripting	languages,	

and	enterprise	frameworks	are	all		

in	flux.

The future of software delivery.
Page �

Highlights
Trends that matter today

Years from now, when we look back at the early 21st century, it’s certain that
one of the most important phenomena impacting not just the software com-
munity but the entire world will be the advent of affordable broadband data
access and the social networking made possible by the Internet and cellular
and wireless technologies. The availability of cell phones in emerging nations,
for example, has already had a profound effect on many emerging countries’
economies. And that advance has come exclusively through the spoken word.
Imagine what will happen when those societies expand their commerce onto
the Internet and begin developing intellectual property, freed from the tradi-
tional physical boundaries of time, space and capital resources.

Bandwidth required to accommodate traditional
telecom services (narrowband voice and data)

Capacity required to accommodate demand for
narrowband wireless services

Bandwidth capacity of digital wireline
(fiber/ATM/SONET) networks

Bandwidth capacity of wireless communications

20052004200320022001200019991998199719961995

0.01

0.10

1.00

10.00

100.00

Figure 3. Bandwidth continues to increase over time.

Affordable	broadband	data	access	

and	social	networking	have	had	a	

profound	effect.

The future of software delivery.
Page �

Highlights
Broadband capacity continues to grow year over year, so we are only witnessing
the beginning of this phenomenon. One result of increased bandwidth across
different media is the realization that the data delivered, or the content of the
data, is more important than the delivery mechanism. The telecom industry has
already seen a convergence of data and information streams; it is no longer about
television versus the Internet versus telephony. It’s about the speed, reliability and
availability of the data transfer, letting the end user decide the specific location,
format and device hosting end-delivery content.

Widespread data access is changing our lives. Metcalfe’s Law7 states that the value
of a network is proportional to the square of the number of users of the system:

. In other words, the more people connected, the more value generated
from the connections. We already have evidence of this from social networking.

As social networking communities have specific agendas, so software communi-
ties have equally transparent common goals: Linux® contributors are interested
in their libraries; Eclipse contributors are interested in their projects. Software
developers today have lots of opportunities to participate in existing communities
or to create their own. In the absence of a formal governance structure, these
communities are often spawned and governed by ruthless meritocracies. New
communities or subgroups form around interesting and innovative ideas. Anyone
who’s monitored these discussion groups has witnessed the vitriol directed at
the originator of malformed ideas or poor code.

n(n—1)————
2

New	communities	or	subgroups	

form	around	interesting	and	

innovative	ideas.

The future of software delivery.
Page 10

Highlights
Technology communities are potent: the Rational software community, Microsoft®
users, system administrators and others. In fact, such noncontributive commu-
nities, by their sheer size, are actually the largest force in determining de facto
standards. Think about the community of C developers, Java developers, personal
home page (PHP) users, Web site developers, et al., who have shaped not only
their domains but the way in which we create software. The difference today is
the speed at which these communities can form. Whereas it took C technology 10
years to gain popularity, it took Java technology only 5 years. And the relatively
new Subversion technology is replacing 20-year-old Concurrent Version System
(CVS) technology within its first 2 years of existence.

Speed is but one dimension of today’s communities. The tipping point occurs—
as it always has—when a critical mass of leaders and adopters decide that this
particular technology has what we need.8 What is truly exciting in today’s rap-
idly evolving software landscape is that a very small group of people can prove
to be the tipping point—the community of change can be led by the needs of
the individual.

Let’s now look at a number of trends that have been fueled by easily available
bandwidth and connectivity: service-oriented architecture, community-based
software and the environment that governs their success. Within these trends
we will find a number of time-tested principles at work, including the impor-
tant distillation process that reduces a complex technology to its essence, which is
sort of like applying Occam’s razor to software issues. It’s important to remem-
ber, for example, that Linus Torvalds did not invent an operating system; he
simplified existing UNIX® modules. SOA, covering many complex technologies, is

The	difference	today	is	the	speed	at	

which	these	communities	can	form.

The future of software delivery.
Page 11

Highlights
at its core a very simple concept: atomic homogeneous services. This community-
driven evolutionary trend, from complexity to clarity, drives all of the trends
under discussion here. The Rational group has long recognized that successful
software trends embody the same three fundamental properties: community,
modularity and empowerment, each of which we will discuss at length.

Community-based software development

- Evolution of programming-in-the-large9

If you’ve ever wanted to witness a philosophical debate akin to arguing the
number of angels that can fit on the head of a pin, the blogosphere is rife with
examples. Google a thread that contains the following: “What constitutes *real*
open source software?” What you’ll soon discover (once you get past the invective)
is that there are extremely few frameworks that everyone can agree are “pure”
OSS. Even Linux technology—arguably the most successful open source soft-
ware on earth—is split into (at last count10) more than 350 distributions, with
varying degrees of “open-sourciness.” Ruby is controlled (mostly) by one guy
in Japan, and everyone is looking for funding. Present-day commercially minded
open source contributors have come a long way from the beneficent Free Software
Foundation (FSF). The trick here is not to get bogged down into religious
arguments, but instead to judge each software framework and product by its
attributes. Let’s start with the most basic definition of OSS and work our way out.

Open

The best definition of open source software is implicit in the name itself: OSS
lets you peek at the source code. The benefits derived from having access to
the original code are implicit, but not guaranteed, as we will explore.

Programming-in-the-large		

has	evolved.

The future of software delivery.
Page 12

Highlights
Easy to modify, easy to fix

This modification is not guaranteed by every OSS framework, as there are over
three dozen OSS licensing schemes, each with a slightly different take on what
you’re obligated to do once you start fiddling with the bits. Modifications can
also negatively affect support contracts. And the freedom to “hack” cuts both
ways: While the ability to repurpose software is a boon for developers, it’s a
headache for the IT managers who have to maintain the new software once the
developer is gone.

Easily available

For decades, commercial software vendors have held their source code under
lock and key because it was believed (and still is, to a large extent) that their
competitive advantage would be lost once everyone had access to its inner work-
ings. This secrecy also had a negative effect on software adoption, requiring a
salesforce and lots of marketing literature to draw back the veil. The source,
once public, can be rapidly available to all, driving the point-of-sale price down
to zero, and allowing anyone to evaluate what the software can really do. Open
source software is never shelfware.

Free

Practical experience tells us that open source software is free like the family dog’s
puppies are free. The true cost of OSS begins after	installation, with development,
deployment and maintenance costs. This is nothing new—the same is true for all
software. Modified OSS will also have greater costs associated with these activi-
ties, due to the uniqueness of a one-off solution. We have already seen that the
dominant business model of successful OSS companies is to make money offering
support, services and education, and this makes sense. In other words, the cost
of the puppy lies in the care and feeding. As with a puppy, making a poor choice
with OSS results in a high cost of continual poop scooping.

The	true	cost	of	OSS	begins		

after	installation.

The future of software delivery.
Page 1�

Highlights
Modular

Modularity is not implicit in OSS, but it is a hallmark of good software design
in general. This includes clean lines of demarcation, reasonable and thought-
ful application programming interfaces (APIs), and an extensible framework
that may include pluggable components. The best OSS frameworks are modu-
lar, as are the best commercial software packages.

Community-based

This is the heart and soul of successful OSS, and it’s also at the heart and soul
of all successful software design and execution. Communities and open stan-
dards exist side by side, as the dominant community will also dictate the de
facto standard. The problem here is ensuring the best standard, and the key
to that is governance at multiple levels. Maintaining a healthy bug-tracking
system, ensuring lively debate, developing utile standards—all these things are
the result of reasonable governance applied at every level.

To summarize, OSS may have, but is not required to have, many known
attributes of quality software: modularity, availability, reasonable cost (price
plus maintenance), open standards, robustness, performance and a thriving,
well-governed community of users. The point here is that these qualities are
not exclusive to open source software, but they’re the ideal for all software.
In this regard, we can agree with the spirit of the OSS developers’ debate
above. We’re all looking for software that has these positive qualities, but the
industry has yet to agree on exactly how these qualities will be realized.

All	these	things	are	the	result	of	

reasonable	governance	applied	at	

every	level.

The future of software delivery.
Page 1�

Highlights
Service-oriented architecture

With SOA, we see many of the same issues from the OSS discussion above;
however, the scope of SOA includes the entire enterprise, not just an individ-
ual framework. SOA is, at its core, a style of information systems architecture
that enables the creation of applications that are built by combining loosely
coupled and interoperable services. These services interoperate based on a
formal definition (or contract) that is independent of the underlying platform
and programming language.

SOA services should be well defined (encapsulated), discoverable and loosely
coupled so that they are sufficiently autonomous, abstract (reusable) and capable
of being composed into more complex services, which themselves have the
above attributes.

Because SOA standards are still being defined, it’s easy to fall into the trap of
thinking that an SOA equals a particular technology or a particular solution.
A few years ago many thought SOA	=	Web	services, because Web services
happen to satisfy the primary requirements of SOA services. That SOA	≠	Web	
services is self-evident today, but the same mistake is being replayed by those
who think SOA	=	ESB	(enterprise service bus). Different technology, equally
wrong equation. In fact, Web services and ESBs are useful tools within a
well-formed service-oriented architecture. Malformed Web services and ill-
conceived patterns instantiated through an ESB in the absence of an elegant
and thoughtful SOA is simply a faster path to chaos.

It’s	easy	to	fall	into	the	trap	of	

thinking	that	an	SOA	equals	a	

particular	technology.

The future of software delivery.
Page 1�

Highlights
The mistake of course is to assume that a single technology or a combination of
standards will infuse your enterprise with SOA. The truth couldn’t be further
away. The reality is closer to the famous Thomas Edison maxim “Genius is 1
percent inspiration and 99 percent perspiration.” Thus, SOA is 1 percent services
and 99 percent governance.

A successful SOA is hard	work, and it requires many disparate departments and
organizations agreeing to subordinate their own concerns for the good of the
whole. This unity of purpose is difficult enough to achieve within a small team
of individuals, but it’s even more daunting when one considers the geometric
accumulation of inflection points between all the teams and all the organiza-
tions within an enterprise that must work together to achieve an SOA.

Difficult, but not impossible. An SOA has a much greater chance of success
when leveraging open standards, modularity and a well-governed community.
As with OSS, the one attribute required for the success of all the others is
governance. Governance controls standards compliance, modular component
contracts and, ultimately, the ability of your SOA community to work together
in a meaningful way.

SOA	is	1	percent	services	and	99	

percent	governance.

The future of software delivery.
Page 1�

Highlights

Unlocking the services, data and processes buried under decades of software
layers requires a concerted effort of excavating and repurposing those artifacts
that are of value to your enterprise. Think of what the banking and financial
industries are already doing with SOA-surfaced data. Accounts, investing,
credit cards, mortgages and loans can now be managed through a common
user interface, and these services are now interconnected with variable pay-
ment plans, automatic withdrawals and deposits, dividend rollover, financial
analyses, tax calculators—the list goes on and on. Those services represent a
lot of unburied artifacts transmitted securely around the world, with close to
zero percent failure. And that’s just what’s happening today in banking; there
is much, much more to come.

Ajax/PHP

Palm/BlackBerry

Linux

Java

Micosoft Visual Basic/
C++

SAP/Oracle

UNIX

IBM CICS®/
IBM IMS™

Figure 4. Layers of data, services and processes

Think	of	what	the	banking	and	

financial	industries	are	already	

doing	with	SOA-surfaced	data.

The future of software delivery.
Page 17

Highlights
As we’ll see, the Rational group is making strides toward easing your SOA
development process. IBM understands the importance of community develop-
ment, of information sharing and of appropriate governance during the entire
application lifecycle.

Governance and empowerment

To many, the mention of governance immediately leads to thoughts of compli-
ance: compliance with Sarbanes-Oxley and the Health Insurance Portability
and Accountability Act (HIPAA). It also leads to thoughts of noncompliance and
stiff penalties for regulatory infractions. The umbrella of governance as it applies
to software delivery covers much more than the implementation of extant legal
dicta. Governance is more of an oversight framework, a set of standards that, when
enforced, can empower a software team rather than hinder it. The framework of
project governance evident in the workings of the Eclipse project, for example, has
empowered one of the most creative, rapidly growing open source communities.11

Successful compliance, then, becomes a result of successful governance, rather
than the focus of software delivery efforts. C, Java, the Internet, XML, Linux,
open source software, SOA—none can exist without governance. Every one
of these technologies, architectures and frameworks has flourished precisely
because there are standards in place, norms that set boundaries of behavior,
of discussion, of implementation. These allow ever greater numbers of users to
rely on the stability of the technologies, and to utilize them effectively. C could
not have become the lingua franca of the PC world without its adherence to
American National Standards Institute (ANSI) and International Organization
for Standardization (ISO) governance; nor the Internet without the World Wide
Web Consortium (W3C) and Internet Corporation for Assigned Names and

Governance	is	more	of	an	oversight	

framework,	a	set	of	standards	that,	

when	enforced,	can	empower	a	soft-	

ware	team	rather	than	hinder	it.

The future of software delivery.
Page 1�

Highlights
Numbers (ICANN); nor Linux solutions without C and the Internet. OSS and
SOA stand on these broad shoulders, and they are no less bound by the require-
ments of proper governance than are their ancestors. Without governance,
you’re leaving a lot to chance.

Driving with cruise control allows an automobile to maintain the speed limit—
this is different from a “governor,” a device that only sets an upper limit. Cruise
control is a lot like effective governance in that both ensure operation at the
highest possible legal speed, maximizing efficiency while minimizing travel time
and trivial activities. Let’s further the analogy by imagining this same car taking
advantage of timed traffic lights, which require computerized governance. This
illustrates how we can use governance to our advantage, achieving our goals with
the utmost speed and efficiency. Contrast this scenario with one in which we fear
compliance—when we see a traffic cop waiting behind every tree. The difference
could not be greater.

Using governance to one’s advantage means agreeing to a standard, a framework
or a product that minimizes unnecessary effort, leveraging the implicit control
to turn a project in the right direction. Governance is a crucial part of every suc-
cessful software delivery, OSS integration and SOA implementation—in fact, it’s a
crucial part of every facet of software creation, implementation and maintenance.
It’s up to each individual or organization to use those sets of controls wisely.

Governance is the hidden glue that binds every community together—there must
be a defining reason for the community to exist at all: common goals, common
beliefs, common property—there always exists an implicit contract that binds.
Many communities are created, but very few succeed for more than a short time.

Governance	is	the	hidden	glue	that	

binds	every	community	together.

The future of software delivery.
Page 1�

Highlights
For a community to exist long enough to exert influence over the broader mar-
ketplace, it must be healthy so that it can harness the intellectual vitality of its
members. The key ingredients of a healthy community, we have found, include
both governance and empowerment, and empowerment of the individual through
modularity of choice is a key to the future success of software delivery.

Future software delivery

Introduced in the early 20th century, the Ford Model T had the right price point,
was available in mass quantities and performed pretty much as advertised. It was
the right product at the right time, but completely unconfigurable—available in
one size, in one color, with no options whatsoever.

Fast forward to 2007 and witness how the automobile industry has changed,
allowing you to communicate your specifications directly to the factory, custom-
izing your new car online. Options include GPS satellite positioning, satellite
radio, terrestrial CD or MP3, climate control, rain sensors, fuel consumption
regulation, hybrid and alternative-fuel controls, guidance systems, robotic park-
ing, space visualization and many other options that justify having computing
power under the hood. Oh, and you can choose the color, too. The automo-
bile industry has embraced software integration both within the chassis and
throughout the manufacturing supply chain, delivering products on demand.

“	People	can	have	the	Model	T	in	any	color—so	long	as	it’s	black.”

 —Henry Ford

The	key	ingredients	of	a	healthy	

community	include	both	govern-

ance	and	empowerment.

The future of software delivery.
Page 20

Highlights
Witness also the success of just-in-time retailers such as Amazon.com, Netflix
and others, which now stock thousands of products—many more than a bricks-
and-mortar site could handle—catering to very specific tastes. We live in an age
of customization; we expect to be able to configure our technology to our needs,
and there is no reason to expect any differently when we do systems integration
or software delivery. We know that customization comes with a price, and we’re
willing to pay it.

Supply chains of intellectual property

Welcome to the age of the Long Tail. Popularized by Chris Anderson’s book of
the same name (and sold on Web sites that daily prove Anderson’s theory),
the Long Tail theory holds that the future of business is to sell fewer items
geared for majority acceptance and more items customized for very small
groups, or even individuals.12 For software vendors, this will mean developing
fewer big-ticket items and more customizable components. In short, generic
frameworks with lots of customized plug-ins.

The Long Tail argument focuses more on the supply side. Technology enables
a shift in the supply-side cost model—from retail storefronts to the distribution
center, which in turn allows for greater inventory of disparate items. This then
enables the supplier to capture the long tail of the demand curve by providing a
wider range of choices.

We	expect	to	be	able	to	configure	

our	technology	to	our	needs.

The future of software delivery.
Page 21

Highlights
In applying this phenomenon to software delivery, demand-side ramifications
translate backward onto the supply-side vendors of software. In one manner of
speaking, SOA is both an expression of the desire for choice and a mechanism
for accommodating the lack of flexibility buried in the sedimentary layers of soft-
ware architectures. We’re talking about nothing less than surfacing information,
data and artifacts as we construct supply chains of intellectual property.

Compounding the issue for software development is that most of us do not
efficiently and effectively address the long tail of usage patterns for various
development roles. Too often the tail wags the dog, forcing roles on develop-
ment and testing organizations through conformity to the various features and
functions of the tools we use. Software tools providers bemoan the fact that
testers are overly focused on testing for performance rather than application
business intent. However, software providers are also culpable because they pro-
vide tool suites that define the features that encourage functional pigeonholing.

The best way forward requires providers to work backward from the demand
side of the equation, and then understand how to shape the supply side to pro-
vide the choice and flexibility required to address the issue. The best way to
craft these products comes from listening to the community.

The	best	way	to	craft	these	pro-	

ducts	comes	from	listening	to		

the	community.

The future of software delivery.
Page 22

Highlights
Opening the community to participation

IBM’s goal in releasing Eclipse to the open source community in 2001 was to
bring developers closer to the more open Java technology-based middleware,
envisioning a world in which a customer’s development environment comprised a
heterogeneous combination of tools. This was accomplished by creating a robust
thick client framework and by making all services accessible to plug-ins—plug-ins
that could have been developed as existing Eclipse projects, third-party vendors’
products or independent developers’ products, but all of which had been built
against a common platform, thus comprising a software tools ecosystem.

Eclipse has rapidly become the most popular enterprise Java development plat-
form in the world, being used today by 65 to 75 percent of Java developers.13 This
testifies to the popularity of Eclipse with vendors as well as users. Eclipse tech-
nology is embedded in more than 200 IBM products, and standardization on
a single development and deployment platform has contributed to greater pro-
duct interoperability.

The Eclipse project’s stated goals of transparency, predictability and constant
feedback have led to an amazing level of project health—one of the most impor-
tant ingredients in creating quality software. A healthy community, strong team
spirit, robust builds, solid milestones, promising betas and continuous testing all
contribute to the Eclipse project’s health.

Eclipse	technology	is	embedded	in	

more	than	200	IBM	products.

The future of software delivery.
Page 2�

Highlights
The Rational group’s involvement in the Eclipse project over the past six years
has proved that project health is ultimately more important and complementary
to software quality. Because the state of a project is constantly changing, staying
healthy becomes a team responsibility—it takes a village. And a healthy developer
community—one that values openness, responsibility and inclusiveness—can
better react to the normal stress of working on continuously evolving software: the
unanticipated changes, the new requirements and the constantly moving target.

Rational thinking

The IBM Rational group sees the future of software development involving open,
dynamically defined communities working with maximum freedom of configura-
tion and customization to build modular solutions that support agile, responsive
organizations. Governance—the ability to harness the energy of disparate groups
and heterogeneous technologies—will be the key to creating the synergy neces-
sary to pull these threads together. No single standard or technology will dictate
the speed at which development organizations will move forward on business
initiatives. It’s not SOA or OSS that will be the driver—it’s the effective governance
of multiple drivers that will lead to healthy communities and drive responsiveness.

This effective governance will take the form of a common data structure that
enables real-time sharing of information from one application to another, regard-
less of platform. It’s a way to integrate communication so project team members
can be messaging one another in the context of the project that they’re working
on and the applications they’re using—from the business analysts all the way all
the way out to the production specialists. It’s the ability to construct software
from globally distributed teams, and have those products interlock seamlessly.

Governance	will	be	the	key	to	cre-

ating	the	synergy	necessary	to	pull	

these	threads	together.

The future of software delivery.
Page 2�

Highlights
It’s the ability to pass a governmental audit with zero additional effort because
compliance has been embedded into the framework. It’s a fundamental shift from
role-first to team-first thinking. The key is reassigning the team to be more inclu-
sive in all of the different phases of the project.

The future of software delivery looks a lot like the IBM Rational Jazz project,
a technology that integrates team tasks across the entire software and systems
delivery lifecycle. Organizations using the Jazz framework will be able to assess
the impact of changing a requirement to see how it affects builds, thus enabling
organizations to more accurately determine what needs to change and who needs
to change it. This lifecycle integration will incorporate tool-supported process
guidance, where the tools understand the development process the team has
decided to use. And, through automation, the lifecycle integration helps ensure
that team members can follow the process without it getting in the way.

To realize full value from a team-first lifecycle governance platform, organizations
must also supply flexible modular components based on open standards that ride
on top of the platform. One cannot exist without the other. The decomposition
and componentization of existing features and functions are parallel and equally
important work efforts.

It’s a community effort; no one can get there alone—much like Eclipse. That’s why
the IBM Rational group has taken community-driven software to the next level,
both as committers to Linux, Eclipse, Geronimo and other OSS projects, as well as

The	future	of	software	delivery	

looks	a	lot	like	the	IBM	Rational	

Jazz	project.

The future of software delivery.
Page 2�

Highlights
committers to community building within the company’s own software organiza-
tion. The IBM Rational group’s process guidance capability is being designed to
scale in complexity from agile practices to structured approaches. And it will scale
to support development environments from very small teams to large, distributed
organizations. Organizations will have the ability to mix and match software
delivery tools and technologies for the optimal solution at every stage in the trans-
formation of their development environments.

Conclusion

We live in exciting times—rapidly changing times—and our software is continu-
ously evolving to meet ever-expanding needs. The harsh reality, as true as it ever
was, is that we must adapt to our times or be swept aside, with the threat of our
obsolescence coming in months, not years. This does not mean that everything
has changed; it’s quite the contrary. Software creators still face the same reali-
ties: Software modeling and business requirements gathering are still essential,
and high-quality utile software is always better than the alternative. What has
changed, of course, is the speed, the scope and the reach.

The solution is not completely new, but it incorporates new ideas. While it
will become essential to customize your software delivery to meet ever more
segmented customer demands, you’ll go broke if you focus on providing the
nth feature or function. The answer instead lies in your agility: the ability to
surface meaningful data and relevant assets and artifacts through your current
layers of intellectual property, as doubtless your solution will incorporate a mix
of many different types, brands and layers of software.

The	answer	lies	in	agility.

The future of software delivery.
Page 2�

Highlights
Getting your data working for you will mean atomizing existing artifacts and
repurposing them across your enterprise. That means you have to remain
nimble and adaptable so that your customers can individualize their interaction
with your business. Success here depends on how faithfully you keep your eye
on the three key principles of future software delivery: community, modularity
and empowerment.

Future software delivery will more closely resemble a supply chain: horizontal
organization that is loosely coupled yet effectively governed to accommodate
your SOA and GDD requirements, surfacing the data, processes and services

Figure 5. Surfacing layers of data, services and processes, and putting them to use

There	are	three	key	principles	of	

future	software	delivery:	community,	

modularity	and	empowerment.

The future of software delivery.
Page 27

Highlights
you need in a streamlined way to provide a positive return on investment (ROI).
The future is less concerned about individual applications, operating systems or
software choices; rather, it’s more concerned with the delivery of the service, the
modularity of the system and the involvement of your defined and flexible com-
munity in making choices that matter.

The IBM Rational group is taking bold steps to make this future vision a reality.
Community, modularity and empowerment guide and infuse current Rational
products, the Jazz framework and all future Rational product offerings.

The future of software delivery looks exciting. And you can rest assured that
the IBM Rational group will continue to play a leading role.

The	IBM	Rational	group	is	taking	

bold	steps.

©	 Copyright	IBM	Corporation	2007

IBM	Corporation	
Software	Group	
Route	100		
Somers,	NY	10589		
U.S.A.	

Produced	in	the	United	States	of	America	
02-07	
All	Rights	Reserved

CICS,	IBM,	the	IBM	logo,	IMS		and	Rational	are	
trademarks	or	registered	trademarks	of	International	
Business	Machines	Corporation	in	the	United	States,	
other	countries	or	both.

Java	and	all	Java-based	trademarks	are	trademarks	
of	Sun	Microsystems,	Inc.	in	the	United	States,	other	
countries,	or	both.

Linux	is	a	registered	trademark	of	Linus	Torvalds	in	
the	United	States,	other	countries,	or	both.

Microsoft	and	Windows	are	trademarks	of	Microsoft	
Corporation	in	the	United	States,	other	countries,	
or	both.

UNIX	is	a	registered	trademark	of	The	Open	Group	
in	the	United	States	and	other	countries.

Other	company,	product	and	service	names	may	
be	trademarks	or	service	marks	of	others.	The	
information	contained	in	this	documentation	is	
provided	for	informational	purposes	only.	While	
efforts	were	made	to	verify	the	completeness	and	
accuracy	of	the	information	contained	in	this	doc-
umentation,	it	is	provided	ìas	isî	without	warranty	of	
any	kind,	express	or	implied.	In	addition,	this	infor-
mation	is	based	on	IBMís	current	product	plans	
and	strategy,	which	are	subject	to	change	by	IBM	
without	notice.	IBM	shall	not	be	responsible	for	
any	damages	arising	out	of	the	use	of,	or	other-
wise	related	to,	this	documentation	or	any	other	
documentation.	Nothing	contained	in	this	docu-
mentation	is	intended	to,	nor	shall	have	the	effect	
of,	creating	any	warranties	or	representations	from	
IBM	(or	its	suppliers	or	licensors),	or	altering	the	
terms	and	conditions	of	the	applicable	license	
agreement	governing	the	use	of	IBM	software.

This	publication	contains	other-company	Internet	
addresses.	IBM	is	not	responsible	for	information	
found	on	these	Web	sites.

Endnotes

1	 The World is Flat: A Brief History of the Twenty-first Century;		Thomas	L.	Friedman;	2005;	Farrar,	
Straus	and	Giroux.

2	 Service Oriented Architecture: The Foundation for Digital Business;	Diego	Lo	Giudice;	Forrester	
Research;	2006.

3	 Enterprise Service Bus and SOA Middleware;	Aberdeen	Group;	July	2006.

4	 Open Source in Global Software: Market Impact, Disruption, and Business Models;	IDC;	July	2006.

5	 Nucleus	Research	various	ROI	reports;	2003	(http://nucleusResearch.com).

6	 http://en.wikipedia.org/wiki/Moore’s_Law.

7	 http://en.wikipedia.org/wiki/Metcalfe’s_law.

8	 The Tipping Point;	Malcolm	Gladwell;	2002;	Little,	Brown	&	Co.

9	 http://en.wikipedia.org/wiki/Programming_in_the_large.

10	 http://distrowatch.com.

11	 The Eclipse Way;	Erich	Gamma	and	John	Wiegand;	2006.

12	 For	more	examples	of	the	Long	Tail	postulate,	visit	http://www.longtail.com/the_long_tail.

13	 This	figure	includes	use	of	other	products	that	embed	Eclipse	components	into	their	commercial	
IDEs,	such	as	IBM	Rational	Application	Developer	software.

RAW10983-USEN-00

