
© 2012 IBM Corporation

DB2 10 for z/OS – What’s In It For Me?

DB2 for z/OS May 24 2012 Paris

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

Disclaimers and Trademarks

© Copyright IBM Corporation 2012. All rights reserv ed.

U.S. Government Users Restricted Rights - Use, dupli cation or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS P ROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE
EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND AC CURACY OF THE INFORMATION CONTAINED IN THIS
PRESENTATION, IT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION,
THIS INFORMATION IS BASED ON IBM’S CURRENT PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO
CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPO NSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE
OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR A NY OTHER DOCUMENTATION. NOTHING CONTAINED IN
THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE TH E EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICEN SORS), OR ALTERING THE TERMS AND CONDITIONS OF
ANY AGREEMENT OR LICENSE GOVERNING THE USE OF IBM P RODUCTS AND/OR SOFTWARE.

IBM, the IBM logo, ibm.com, and DB2 are trademarks or registered trademarks of International Business Machines Corporation in the
United States, other countries, or both. If these and other IBM trademarked terms are marked on their first occurrence in this information
with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at “Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

Agenda

�Online Schema
� Index Enhancements
�Buffer Pools
�Universal Table Space
�Auto Compress
�Hash Table Access
�Other Enhancements
�Temporal Data – A Quick Overview

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

Without Online Schema

�Unload data
�Drop base tables
�Create base tables
�Create indexes
�Create views
�Define authorizations
� Load data (Copy, Stats, Check)
�Rebind

Data available for read

Data unavailable (minutes,
hours, days)

Data available

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

Online Schema – Before DB2 10

� Table or Column Changes:
– Increase column size within datatype integer, float
– Change to expand datatype: char, numeric
– Change varchar to / from char
– Rename Table/Column

� Index Changes
– Add new column to index
– Change index column type
– Rename Index

� Dynamic Partitions
– Add Partition
– Rotate Partition

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

DB2 10 Online Schema Enhancements

� Table space changes – deferred
– Page Size – UTS only
– DSSIZE – UTS only
– SEGSIZE – UTS only
– MAXPARTITIONS
– Convert single table simple/segmented into PBG
– Convert classic partitioned table into PBR
– Convert PBR to PBG
– Convert Classic Partitioned/PBR/PBG to Member Cluster
– Table Space is put into Advisory REORG pending

� Index changes – deferred
– Page size
– Index is put into Advisory REORG pending

One way only!

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

DB2 10 Online Schema Enhancements (cont.)

� Deferred Alters are materialized at the next table/index space Reorg
– Before REORG, pending changes can be dropped via ALTER TABLESPACE/INDEX

with the new DROP PENDING CHANGES clause
– Quiesce applications using the DBD, plan/package locks during the SWITCH phase
– Plans/packages/dynamic statement cache invalidated when table space type altered

� Alter Buffer Pool with the same page size is effective immediately
– No longer need to STOP the table or index space in data sharing
– Use DRAIN(ALL) to quiesce applications
– The new bufferpool will be used after commit

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

The ALTER Statement and Pending DDL

� The statement is validated

� Assuming all checks out ok:
– The statement is put on the to-do-list
– The table space is placed in Advisory REORG Pending (non-restrictive) - AREOR
– The statement completes with SQL Code +610 to indicate the AREOR state

SYSIBM.SYSPENDINGDDL

DBNAME TSNAME DBID PSID … OPTION_
KEYWORD

OPTION_
VALUE … STATEMENT_

TEXT

DB2 semantically validates the
statement and checks the
authorisation

The to-do list is stored in new
catalog table,
SYSPENDINGDDL

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

REORG and the Materialization of Deferred Alters

� Pending DDL is materialized during the SWITCH phase
� SYSPENDINGDDL entries are removed
� Stats are collected

– The default is TABLE ALL INDEX ALL UPDATE ALL HISTORY ALL unless overridden
– Warning message DSNU1166I is issued to indicate that some partition statistics may

no longer be accurate (COLGROUP, KEYCARD, HISTOGRAM …)
� SYSCOPY records are created to record the materialization of the deferred ALTER
� The Advisory REORG Pending state is reset.

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

Deferred ALTER restrictions

� Mixing immediate and deferred options in an ALTER statement is not allowed (SQL Code
-20385 is issued)

� Many immediate DDL statements are not allowed while there is pending DDL awaiting
materialization (SQL Code -20385 is also issued in this case)

– These include CREATE/DROP/ALTER TABLE for a table with pending DDL

� Image Copies before the materializing REORG are no longer valid for recovery
– REPORT RECOVERY enhanced to use ‘#’ to indicate status of image copy

DSNT408I SQLCODE = -20385, ERROR: THE STATEMENT CANNOT BE PROCESSED BECAUSE
THERE ARE PENDING DEFINITION CHANGES FOR OBJECT DB1.TS1 OF TYPE
TABLESPACE (REASON 2)

TIMESTAMP = 2010-08-03-20.07.20.813333, IC TYPE = #F#, SHR LVL = R, DSNUM = 0000, START LRSN =0000090539AE
DEV TYPE = , IC BACK = FC, STYPE = T, FILE SEQ = 0000, PIT LRSN = 0000090539E2
LOW DSNUM = 0001, HIGH DSNUM = 0001, OLDEST VERSION = 0000, LOGICAL PART = 0000, LOGGED = Y, TTYPE = C
JOBNAME = DB2R8L , AUTHID = DB2R8 , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DB0BI.DB1.TS1.N00001.CXZO6WVC , MEMBER NAME = , INSTANCE = 01, RELCREATED = M

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

Online Schema – ‘Immediate’ DDL

� Alter Index to add included columns
– Can add non-key columns (INCLUDE columns)
– The index is marked as Rebuild Pending unless the new columns are added to the

new table within the same COMMIT scope, in which case the index is placed in
Advisory REORG Pending

– Packages are not invalidated, but BIND or REBIND is strongly recommended
� Alter PBR/PBG to Hash Access

– The table is not accessible via hash access as the overflow index is marked as
Rebuild Pending

– New rows cannot be inserted unless the overflow index is rebuilt or until REORG
� ALTER LOB to use in-line LOBs

– REORG required to convert existing LOBs to in-line

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

DB2 10 Index Improvements

� Parallel index update at insert
– For tables with more than two indexes

• Applies for Member Cluster or APPEND tables with two or more indexes
– Uses I/O parallelism

� INLCUDE columns for indexes:

– Add non-key columns
– Unique index only
– The index is marked as Rebuild Pending unless the new columns are added to the

new table within the same COMMIT scope, in which case the index is placed in
Advisory REORG Pending

– Packages are not invalidated, but BIND or REBIND is strongly recommended
– Potential to reduce the number of indexes
– Packages dependent on indexes dropped still invalidated

ALTER INDEX ix1 ADD INCLUDE (c4);
ALTER INDEX ix1 ADD INCLUDE (c5);

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

DB2 10 Index Improvements (cont.)

� Improve index look-aside performance
– Cache the last accessed leaf page

� Improve index split performance
– Asymmetric index split, depending on insert pattern

� Cache the index root page in the buffer pool during OPEN
– Eliminate one GETP/RELP on each index access

� List prefetch for disorganized indexes – forward scan only
– Reduces the need for REORG

� Improve performance for Referential Integrity and Nested Loop Join
– Enable index look-aside and sequential detection

� CPU reduction for index access especially with NOT PADDED indexes (VARCHAR)
� New IFCID 359 to monitor index split activity

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

Buffer Pool Enhancements

� Use 1MB real storage frame, instead of 4K, for PGFIX=YES buffer pools
– Reduces cpu overhead when accessing pages in BP (fewer TLB misses)
– Requires z10, z196 or zEnterprise

� Prefetch and deferred writes are offloaded to zIIP
� Avoid BP scans in data sharing

– Switch from no shared interest to shared and vice versa
– Data set close and –STOP DB2
– Significantly improves performance for large BPs

� In-memory tables/Indexes
– New option PGSTEAL=NONE on ALTER BUFFERPOOL
– Prefetch loads data into the buffer pool at data set open
– Ensure BP size is large enough to cache all data/index pages
– BP is managed in FIFO (First In First Out) order, not LRU

• Disables all prefetch requests
– Query optimizer uses zero I/O cost for tables and indexes in this buffer pool
– Recommendation: use AUTOSIZE=NO
– Recommendation: use CLOSE=NO for tables and indexes

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

Auto-compress (Compress on Insert)

� Insert can now build compression dictionary on the fly
– Applies to COMPRESS YES tables without a dictionary
– Compresses rows without needing a REORG or LOAD
– Also applies to online LOAD inserts and to the MERGE SQL statement

� The dictionary is built by an asynchronous DB2 task
– The driver for this is based on DATASIZE in RTS catalog table
– Uses UR to perform a relational scan of the existing data rows

� Ensure you use the default SYSTEMPAGES YES option for image copies
� The dictionary needs to have been built before the UNLOAD utility can read any data rows

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

Hashed Tables

-Possibly eliminate an index

-Tradeoff: extra space used

SELECT * …WHERE

ITEMNO = ‘W0133-1662996 ’

Locate the data row
by hashing the key value.

-The hash Key must be unique
-Reduced page visits
-Reduced CPU & elapsed time

Data
Pages

Execution time
hash calculation

1 page access

1 I/O

‘W0133-1662996 ’

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

Hashed Table Access Considerations

� Tables
– Hash access is only useful for tables:

• With a unique key
• Queried by applications (such as OLTP) needing single row access via the unique

key or IN list
• With known approximate size

� Applications
– Hash access path will be chosen when:

• The SELECT statement or IN list uses equal predicates on all hash key columns
• No range predicates
• DB2 Optimzer determines whether hash access is suitable

� Syntax
– CREATE TABLE … ORGANIZE BY HASH UNIQUE (itemno) HASH SPACE 2G
– ALTER PBR/PBG into Hash

• REORT required for Hash Access

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

Universal Table Space Enhancements

� MEMBER CLUSTER now supported for UTS
– ALTER support: deferred materialized with REORG

� ALTER can add new partitions to PBG
– Allows multiple partitions to be built when the PBG is created
– Can now use DSN1COPY to copy data to a PBG target

� PBR is the default for new ranged partitioned tables
– Need to specify SEGSIZE 0 to create classic ranged partitioned table space
– Can make classic range partitioned table space the default with new ZPARM

DPSEGZ=0
• Needs NUMPARTS clause on DDL

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

COPY/RECOVER Enhancements

� Ability to create a consistent COPY with SHRLEVEL CHANGE
– Does not quiesce applications via drain
– Implemented by data set level FlashCopy

� COPY, LOAD, and REORG extended to provide ability to take backups using data set
level FlashCopy

� Data set level FlashCopy backups can be used as input to:
– RECOVER, COPY, DSN1COPY, DSN1PRNT

� RECOVER extended to support point-in-time recovery via rollback using the DB2 log

© 2012 IBM Corporation

Temporal Data – A Quick Overview

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

Problem of managing different versions of application data

� Application programmers and database administrators have always struggled with
managing different time-varying versions of application data

� New regulatory laws require maintaining historical versions of data for years
� Every update and delete of data requires old data be copied into history tables
� Existing approaches to application level versioning complicates table design and adds

complexity and error prone code to applications

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

Introduction to Temporal Data

� Temporal data allows you to see data in its current state, as it was in the past, and even at
some future point in time.

� Temporal data:
– Provides the ability to see data values at a given point in time.
– Provides the ability to see data values over a past, current or future period of time.
– Supports history and/or auditing queries.
– Supports the concepts of Business Time and System Time.

� Benefits of temporal data:
– Can move temporal data maintenance from the application layer to the database layer.

• Consistent handling of temporal data.

– Reduction in application development time.
– Can run current applications with no code change.

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

Temporal Table Overview

� Business Time (Effective Dates, Valid Time, In/Out-dates)
– Every row has two timestamp or date columns set by the application.

● Begin time: when the business deems the row valid.
● End Time: when the business deems row validity ends.

– Query at current, any prior, or future point/period in business time.
� System Time (Assertion Dates, Knowledge Dates, Transaction Time, Audit Time).

– Every row has another pair of timestamps set by DB2.
● Begin time: when the row was inserted in the DB2.
● End Time: when the row was modified/deleted.
● Modified rows begin time is the modification time.

– Query at current or any prior point/period in system time.
� Bi-temporal (Two dimensional history, Two dimensional tombstoning/milestoning).

– Inclusion of both System Time and Business Time in row.

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

Benefits of DB2 10 Temporal Data Implementation

� Can manage application data based upon time at the table level.
� Can specify search criteria based upon the time the data existed or was valid.

– Simplifies DB2 application development where data versioning is required.
� Customers can satisfy new compliance laws faster and cheaper because DB2 will

automatically manage the different versions of data.
� Performance expectations:

– SELECT of current data should perform similar to tables without data versioning
– INSERT and UPDATE of current data would perform slower than table not performing

data versioning
– SELECT of old data may be slower

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

System Time with Versioning

� Application on current data preserved
– Insert, Update, Delete, Select unchanged
– Triggers unchanged
– Constraints unchanged

� DB2 preserves current application by moving history rows to separate table
� SELECT w/o AS OF behaves as if AS OF SYSTEM_TIME DATE CURRENT DATE

transparently added
� DB2 translates AS OF times into predicates on system time column pair
� INSERT/UPDATE/DELETE behave as if FOR PORTION OF SYSTEM_TIME FROM

TRANSACTION TIME TO END OF TIME transparently added
� DB2 optimizer presents current and history tables as one, pulls answers from both as

needed and presents as one answer set

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

SYSTEM_TIME Period Example (DDL)

CREATE TABLE policy_info

(policy_id CHAR(4) NOT NULL,

coverage INT NOT NULL,

sys_start TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN,
sys_end TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END,

create_id TIMESTAMP(12) GENERATED ALWAYS AS TRANSACTION START ID,

PERIOD SYSTEM_TIME(sys_start, sys_end));

CREATE TABLE hist_policy_info

(policy_id CHAR(4) NOT NULL,

coverage INT NOT NULL,

sys_start TIMESTAMP NOT NULL,

sys_end TIMESTAMP NOT NULL,

create_id TIMESTAMP(12));

ALTER TABLE policy_info

ADD VERSIONING HISTORY TABLE hist_policy_info;

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

BUSINESS_TIME Period DDL

� To create a temporal table with BUSINESS_TIME period, the table needs to be defined with:
– A start column defined as TIMESTAMP(6) NOT NULL or DATE NOT NULL
– An end column defined as TIMESTAMP(6) NOT NULL or DATE NOT NULL
– a period BUSINESS_TIME specified on the two above columns.

• example of period specification: PERIOD BUSINESS_TIME(col1, col2)

� The temporal table with BUSINESS_TIME period can also be defined to have a unique attribute that
is unique for a period of time. For example:

– UNIQUE (col1, BUSINESS_TIME WITHOUT OVERLAPS)
– PRIMARY KEY (col1,col2, BUSINESS_TIME WITHOUT OVERLAPS)

� The BUSINESS_TIME WITHOUT OVERLAPS can be on the CREATE TABLE, ALTER TABLE, or
CREATE UNIQUE INDEX statements.

– BUSINESS_TIME WITHOUT OVERLAPS must be the last expression specified
– It will add, in ascending order, the end column and start column of the period BUSINESS_TIME

to the index key and have special support to enforce that there are no overlaps in time given the
rest of the index key expressions.

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

BUSINESS_TIME Period DML

� To query from a temporal table with BUSINESS_TIME period, the table-reference of the
FROM clause is extended to specify that BUSINESS_TIME period data is requested.

� The FROM clause extension includes:
– table-name FOR BUSINESS_TIME AS OF date-expression or table-name FOR

BUSINESS_TIME AS OF timestamp-expression
– table-name FOR BUSINESS_TIME FROM date-expression1 TO date-expression2 or

table-name FOR BUSINESS_TIME FROM timestamp-expression1 TO timestamp-
expression2

● note that the second expression is not inclusive
– table-name FOR BUSINESS_TIME BETWEEN date-expression1 AND date-

expression2 or tablename FOR BUSINESS_TIME BETWEEN timestamp-expression1
AND timestamp-expression2

● note that the second expression is inclusive

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

BUSINESS_TIME Period DML (cont.)

� Temporal tables with BUSINESS_TIME period, the UPDATE and DELETE statement have
been enhanced to allow updating and deleting based upon a period of time. New clause is
specified as follows:

– FOR PORTION OF BUSINESS_TIME FROM date-expression1 TO date-expression2
– FOR PORTION OF BUSINESS_TIME FROM timestamp-expression1 TO timestamp-

expression2
� The new update or delete clause will update/delete rows as usual if the row's period is

totally contained in the period specified in the FROM and TO clauses.
� Whenever a row is not totally contained by these values, only the part of the row that is

contained between the FROM and TO clauses are updated or deleted. This may cause
additional inserts of rows into the table as the original row needs to be split into multiple
rows to contain the old values for the period that is not specified

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

BUSINESS_TIME Period Example (DDL)

CREATE TABLE policy_info

(policy_id CHAR(4) NOT NULL,

coverage INT NOT NULL,

bus_start DATE NOT NULL,

bus_end DATE NOT NULL,

PERIOD BUSINESS_TIME(bus_start, bus_end);

CREATE UNIQUE INDEX ix_policy

ON policy_info (policy_id, BUSINESS_TIME WITHOUT OVERLAPS);

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

DB2 10 Temporal Table Benefits

�SYSTEM_TIME period
�Provides database managed START and END date maintenance providing non-overlapping time
periods with no holes
�Provides automatic management of data movement from temporal to historical table
�Provides automatic rewrite of queries on temporal table to include a UNION to history table

�Minimizes performance impact of temporal support when no rows qualify from the history table
for a query

�BUSINESS_TIME period
�Provides a new unique index clause to prevent overlapping time periods for a business key
�Provides database management of the temporal data when an UPDATE or a DELETE statement is
executed with a FOR PORTION OF BUSINESS_TIME clause that does not exactly align with an
existing row

�BI_TEMPORAL table
�Provides support for application defined business periods with non-destructive data modification.
�This combines all of the features provided for SYSTEM_TIME period and BUSINESS_TIME period

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

Temporal Table Considerations

� The business decision to support temporal characteristics in a database table should be
made with a clear understanding of the considerable costs implicit in this choice

– Increased storage size for the table. The increase is proportional to the UPDATE and
DELETE rate for this table.

– Degraded database performance for UPDATE, DELETE, and query
� Queries will nearly always include two range predicates for start and end columns for each

type of period defined on the table (four range predicates for bi_temporal). At most, one of
those predicates will be index matching.

� UPDATES and DELETES that are not precisely aligned with the start and end columns of
a single row will generate multiple operations. Often this will be four operations.

– YSTEM_TIME period will require inserting one or multiple rows in the history table
� Application complexity access and modifying a temporal table will be increased
� If your business requirements make it essential to support temporal characteristics, the

DB2 database support provided in DB2 10 will provide considerable relief from the
complexities of supporting these requirements at an application level.

© 2012 IBM Corporation

DB2 for z/OS May 24 2012 Paris

