
Case Study : Unicode in Large Network Systems Management

12th International Unicode/ISO 10646 Conference 1 Tokyo, April 1998

Case Study: Unicode in Large Network Systems Management
David Hetherington
Manager TME 10 Internationalization
Tivoli Systems

Abstract:

Tivoli Systems makes the Tivoli TME 10 product set which allows enterprise customers to manage
extremely large heterogeneous networks. The TME 10 product set consists of a CORBA framework and a
set of associated object oriented applications which run on a wide variety of operating systems platforms
including Windows NT, Solaris, HP-UX, AIX, OS/2, NetWare and many others. Tivoli's slogan is "The
Power to Manage Anything. Anywhere." In a large international or multinational corporate network, the
"Anything. Anywhere" part can involve a daunting array of equipment running incompatible codepages.
This presentation will contain an overview of the Tivoli TME product set, the underlying CORBA
framework architecture, the codepage related problems encountered, and the Unicode implementation used
by Tivoli to overcome the problems.

What is Enterprise Level Heterogeneous System Management?
System Management can loosely be described as any tasks which are handled by a company’s IS staff.
However, to better understand the products concerned in this case study, we can start with a few examples.

New
Software
Version

New
Software
Version

User
User

User
User

User
User

User
User

User
User

User
User

User
User

User

User
User

User
User

User
User

User
User

User
User

User
User

User
User

User

????!!????!!

10,000 Users

Figure 1 - Example: Software Distribution

Consider the problem facing a large company with 10,000 PC users when a major upgrade appears for
everyone’s favorite word processing package. Consider the options facing the IS staff:

1. Do Nothing. In this case the users will solve the problem themselves. One by one they will submit
requests to the purchasing department to purchase the upgrade. The purchasing department will
process 10,000 separate purchase orders. The accounts receivable department will receive 10,000
separate invoices and issue 10,000 separate checks.

Case Study : Unicode in Large Network Systems Management

12th International Unicode/ISO 10646 Conference 2 Tokyo, April 1998

2. Order Centrally. The IS department orders a site license and walks around installing the software.
Several man-years of effort go into software upgrade.

3. Put it on the LAN Server. The IS department orders a site license, puts the installation disk images on
the LAN server and lets the user community try to install the upgrade themselves. Unfortunately, this
is not an engineering company and the user community is not very technically savvy; every fifth user
messes up the installation and calls the help desk. The help desk takes 2,000 calls for assistance in
unscrambling the incorrect installation.

Obviously, none of these options are very attractive. The answer is to use system management software to
automate the distribution and installation of the software. A good software distribution product will not
only move the data to all 10,000 endpoints, but also perform any needed preparatory steps, synchronize the
activation of the new version if needed and do any number of other things to insure a successful company-
wide deployment.

User AdministratorID???

Figure 2 - Example: User Administration

In a modern company, it is not unusual for every single employee to need user accounts on multiple
systems. For example, the users might routinely need accounts and passwords for Windows NT, a
mainframe and a database server.

Administering all of these separate accounts is a time consuming headache for the IS staff. It is also
difficult to keep administrative policies consistent when the accounts are spread across multiple
incompatible systems. A good system management software package will allow the administrator to create
and administer the multiple accounts for each user as though they were a single account.

Case Study : Unicode in Large Network Systems Management

12th International Unicode/ISO 10646 Conference 3 Tokyo, April 1998

Management Views

Toolkits

Internationalization

Deploy-
ment

Availa-
bility

Admin &
Ops

Security

Apps
Mngmt

Work-
group

Framework

Systems Databases Networks Internet

Software
 Distribution
Inventory
 Management
NetView/DM
NetView/FTP

Enterprise
 Console
Distributed
 Monitoring
Performance
 Management
Reporter
NPM, PR, SLR

User
 Management
Security
 Management

Remote Control
Print
 Management
OPC
Tivoli/Plus

 Manager of
 Applications
GEM
Apps Manager
Mgr of SAP/R3
Mgr of Lotus
 Notes
Mgr of People
 Sof
Net.Commander
 AMS

Mgr for
 Workgroups
Eagle
 - OS/2
 - AIX
 - NT
Management
 Service Broker
Legacy OS/2
 Products
 Multi-Plat API

ADE
Application
 Ext. Facility
Event
 Integration
 Facility
Integration
 Toolkit
Applications
 Management
 Dev Kit
Dev Kit for
 PowerBuilder Server Framework

Client Framework
Java UI

NetView
NetView/390

AIX
Solaris
SunOS
HP-UX
OS/2
Windows 3.1
Windows 95
Windows NT
NetWare
MVS
OS/400
DG-UX
Motorola 88K
NCR
DEC UNIX
SGI IRIX
Sequent PTX
Intel Solaris
Pyramid DCOSX
SINIX

Figure 3 - Overview of Tivoli's TME 10 Product Line

Tivoli’s TME 10 product line includes these two system management applications and many others as well.
These applications run on a wide variety of operating system platforms. Tivoli has customers all over the
world.

Tivoli’s CORBA Framework Implementation of System Management
Most of the applications shown in Figure 3 above are based on a Tivoli implementation of a CORBA-
compliant object framework.

Most programmers are aware of object oriented programming in objected oriented languages like C++.
Within a C++ program, a programmer can define objects which inherit properties from other objects.
Actually, however, once the program is compiled and linked, there is generally nothing objected oriented
about it. That is, a program coded, compiled and linked in C++ does not allow another program to “inherit”
anything any more than a program coded in assembly language. Also, while C++ does a great job of
defining objects in memory, keeping those objects around between executions of the program tends to be a
major headache.

CORBA approaches the problem of object orientation from an entirely different angle. The object request
broker or “ORB” runs as a service on each machine. Users can interact with the ORB (literally by typing
commands on the command line) to define classes, assign scripts and programs to act as the methods for
those classes, and allocate persistent storage on disk for the objects. New classes can be defined at runtime
without stopping the execution of the existing application.

CORBA achieves object orientation independent of the features of the language which the object methods
are written in. Object methods can be C programs, PERL scripts and so on.

Case Study : Unicode in Large Network Systems Management

12th International Unicode/ISO 10646 Conference 4 Tokyo, April 1998

CORBA Framework

ObjectXYZ::MethodABC

MethodABC

Figure 4 - The CORBA Framework

The CORBA framework in a network application is actually the sum of the ORBs on each machine. One of
the nice features of CORBA is location and platform independence. When a object invokes a method of
another object, the calling method need not know where the called object actually resides. The ORBs
working together resolve the actual location of the called method, takes care of moving any parameter data
to the method and takes care of moving results back to the caller.

CORBA
Object Repository

CORBA
Object Repository

CORBA
Object Repository

CORBA
Object Repository

CORBA
Object Repository

CORBA
Object Repository

CORBA
Object Repository

CORBA
Object Repository

Management
Application

Figure 5 - Tivoli System Management Application Using CORBA Framework

The network distributed nature of the CORBA framework make it ideal for implementing enterprise system
management applications. Most of Tivoli’s system management applications are implemented as
collections of CORBA objects using Tivoli’s framework.

Case Study : Unicode in Large Network Systems Management

12th International Unicode/ISO 10646 Conference 5 Tokyo, April 1998

Regular
CORBA

- Large Disk
 Footprint
- Not Scaleable

Light Client
Framework

- Very Light
 1 MB Program,
 5 MB Data
- Very Scaleable
 10k’s of Clients
- Very Portable

PC Agent

Frame-
work

Frame-
work

App

App
End
Point

Win 3.1/95

Managing Server

Managed Node

Frame-
work

Frame-
work

App

Managing Server

Gateway

Frame-
work

Repeater

PC Agent

Win NT

PC Agent

OS/2

300 MB

300 MB

300 MB

LCF

Win 3.1/95

Win NT
OS/2

LCF
LCF

LCF

NetWare

LCF

AS/400

LCF

MVS

LCF

Any UNIX

Figure 6 - The Light Client Framework

There are, however, some points at which the reality diverges from the theory. Use of the CORBA
framework model has allowed Tivoli to implement industry leading systems management applications
rapidly. However, there have been some limitations to the approach. The key limitations are:

1. The ensuing object set is too large to reasonably install on personal computers.
2. The pure CORBA approach encounters performance problems when trying to manage networks of

thousands of nodes.
3. The pure CORBA approach has some difficulty accommodating computers whose attachment to the

network is intermittent.

To overcome these limitations, Tivoli has developed a modified CORBA approach called the Light Client
Framework. In this approach, the application is still written logically as an objected-oriented CORBA
application. However, the endpoints are not actually full CORBA systems. The endpoints run a very small,
tight kernel which communicates with a gateway. The gateway downloads object methods to the endpoints
on demand. The endpoints cache frequently used methods on local disk. The tradeoff of download
performance versus cache disk consumption can be finely tuned to match customer requirements. The
resulting system is much leaner at the endpoint and much more scaleable than a pure CORBA
implementation.

Case Study : Unicode in Large Network Systems Management

12th International Unicode/ISO 10646 Conference 6 Tokyo, April 1998

What sort of Problems are Caused by Character Sets and Codepages?
In taking the TME 10 product set international, Tivoli was facing a number of specific technical problems
related to character sets and code pages.

Software
Package

EUC

SJIS

Figure 7 - Problem: Pathnames in Software Distribution

One of the first problems to be encountered was in the area of software distribution. The administrator
would prepare a package of files to be distributed to a large number of personal computers. The
administrator might be working on a UNIX platform. The users would typically be using personal
computers. The administrator would enter specific file and path names into the software package. When the
package arrived at the PC endpoints, the pathnames would be incorrect due to codepage incompatibilities
between the UNIX workstation and the PCs . The distribution would fail as a result.

HP-UX
IBM AIX

Figure 8 - Problem: French Usernames

Tivoli’s TME 10 User Administration product greatly simplifies the life of the administrator by allowing a
user’s entire profile of data to be entered once and distributed to a variety of heterogeneous systems. The

Case Study : Unicode in Large Network Systems Management

12th International Unicode/ISO 10646 Conference 7 Tokyo, April 1998

French codepages used by Hewlett Packard and IBM for their UNIX workstations are not compatible. User
information would become garbled when such a distribution was attempted.

SJIS

EUC

Figure 9 - Problem: Remote Graphical User Interface

One of the nice things about having a product based on a CORBA object implementation is that the user
interface is simply another collection of objects. As such, the user interface can run anywhere in the
network. It does not need to run specifically on the system management application management server.
This convenience naturally leads to the situation in which the system management application is running on
a heavy duty UNIX server for performance and reliability while the administrator is running the user
interface on a personal computer in his office. Data being delivered from the UNIX server to the personal
computer for display are garbled because of codepage incompatibility.

SJIS

EUC

Task

stdout

Figure 10 - Problem Console Output from Remote Tasks

Case Study : Unicode in Large Network Systems Management

12th International Unicode/ISO 10646 Conference 8 Tokyo, April 1998

As described above, CORBA can freely associate PERL and bash scripts with classes to serve as the
methods for the object instances of those classes. These scripts generally return output simply by piping
text to stdout. This text output is returned by the CORBA framework to the management application and in
some cases to the administrator’s display. Codepage incompatibilities cause this information to be garbled
in transmission.

Tivoli’s UTF-8 Unicode Implementation
To attack these problems, it was obvious that some sort of codepage conversion would be needed.

Solaris
(Japan)

MVS
(Japan)

OS/2
(Israel)

Win NT
(Russian)

HP-UX
(German)

AS/400
(Brazil)

Any-to-Any Codepage Conversion - What a Mess!!

- Any-to-Any Codepage Conversion
 is a mess with 30 different platform
 types.
 Solution => Use UNICODE

Figure 11 - The Brute Force Approach

The first approach considered was to have systems understand where data was coming from and going to
and do a direct conversion of between the codepages as needed. IBM’s work on CDRA, a codepage
registry architecture was reviewed. It was found that there were over 100 codepage variations just for
Japanese on mainframe computers alone. IBM provided the codepage conversion tables needed for to cover
the IBM platforms on two CD-ROMS. These two CD-ROMS did not cover the non-IBM platforms. This
was not a promising approach.

Case Study : Unicode in Large Network Systems Management

12th International Unicode/ISO 10646 Conference 9 Tokyo, April 1998

Tivoli’s CORBA FrameworkTivoli’s CORBA Framework

To UTF-8

From UTF-8

To UTF-8

From UTF-8

To UTF-8

From UTF-8

TME 10TME 10 TME 10TME 10

TME 10TME 10

Figure 12 - The Canonical Format Approach

To reduce the complexity entailed in supporting any-to-any codepage conversion in a product covering so
many different operating system platforms, Tivoli decided to use Unicode as an intermediate or “canonical”
format. All data would be converted to Unicode before transmission to the next system. Upon arrival it
would be converted back to the local codepage for processing.

Client Server Object

Client Stub

Server
Skeleton

Basic Object Adapter

Object
Request
Broker M

ar
sh

al
lin

g

UTF-8
Conversion

Object
Request

BrokerM
ar

sh
al

lin
g

UTF-8
Conversion

Figure 13 - Conversion in the Marshalling Layer

The next problem was to choose the best point in the software to perform the conversion. This investigation
did not take long at all. CORBA already has to contend with problems like integers being represented
differently on different machines, the famous “big-endian” versus “little-endian” problem. To overcome
these problems, the CORBA framework contains a “marshalling” layer. In this layer, all data is transformed

Case Study : Unicode in Large Network Systems Management

12th International Unicode/ISO 10646 Conference 10 Tokyo, April 1998

into a vendor neutral format before being transmitted to the next system. Tivoli installed the Unicode
conversion mechanism in the marshalling layer.

0 7-bit ASCII

1 dataF 1 dataF

1 dataF 1 dataF 1 dataF

16 bits of full UCS-2 spread
across 3 bytes

10 bits (1st 1024 of UCS-2) spread
across 2 bytes

• Flows very well through
legacy code

• Allows complex system
to be upgraded in
stages (English still
works)

• Only applies size
penalty where needed.

Figure 14 - The UTF-8 Format

The next question was how to represent the data. The normal UCS-2 format was considered but was
bypassed in favor of the UTF-8 encoding format. There were two factors which weighed heavily in the
choice of UTF-8 over UCS-2:

1. The entire application set consists of many million lines of source code of all types. Even when
confining the conversion to the marshaled data, finding all of the locations in the code which would
have to be reworked to accommodate 16-bit characters was daunting. Tivoli was on a tight schedule.
UTF-8 yields tremendous advantages in that all the characters that code loops normally scan for such
as: / \ [] { } , ; : ‘ “ ` ~ ! @ # $ % ^ & * () = - | + as well as end-of-line and NULL
(for string termination) are the same single byte values as traditional 7-bit U.S. ASCII. Since all other
values have the high order bit set, most existing code loops will naturally skip over the multibyte
character data, but still find delimiters and string terminations correctly.

2. In large complex installations of many thousands of systems of a dozen or more different types, it is
not acceptable to force the customer to “flash upgrade” the entire system all at once. Previously, Tivoli
had only ever offered formal support for U.S. English. Since the UTF-8 representation of U.S. English
and traditional 7-bit ASCII are the same thing, existing customers would be able to do a phased
upgrade of their systems. Converting text to UCS-2 would have made new systems incompatible with
older systems, even for U.S. English.

Case Study : Unicode in Large Network Systems Management

12th International Unicode/ISO 10646 Conference 11 Tokyo, April 1998

Frame-
work

Frame-
work

App

Managing Server

Gateway

LCF

Win 3.1/95

Win NT
OS/2

LCF
LCF

LCF

NetWare

LCF

AS/400

LCF

MVS

LCF

Any UNIX

• Full set of conversion
tables too bulky for
light endpoints.

• Full set is stored on
gateway.

• Gateway downloads
correct conversion
table at the time the
light endpoint
connects.

Figure 15 - Downloading Conversion Tables from Gateway to Endpoints

There was one other consideration which was the size of the conversion tables. The sum of the size of all
the necessary conversion tables was several megabytes. This size was much better than two CD-ROMS for
the any-to-any solution. Nevertheless, several megabytes was still unacceptable in terms of Tivoli’s design
goals for lightweight support on PC endpoints. Fortunately, Tivoli’s lightweight design explicitly supports
downloading files from the gateway to the endpoint on demand. The design was enhanced to make the
gateway query the endpoint and download the correct conversion files at the time the endpoint first
connects to the gateway.

Conclusions

• Must Use Unicode as Canonical Format (Point to Point
Conversion is Hopeless)

• UTF-8 Much More Useful than UCS-2

• Unicode Maximum Benefit is on the Wire

• UTF-8 on-the-wire Implementation Achieved Very Quickly with
Reasonable Effort

• Have to Pay Attention to Table Sizes
Figure 16 - The Key Conclusions

The key conclusions from the project were as follows:

1. Canonical Format. The any-to-any approach was hopeless. Using Unicode as a canonical format
greatly simplified the design.

Case Study : Unicode in Large Network Systems Management

12th International Unicode/ISO 10646 Conference 12 Tokyo, April 1998

2. UTF-8. Using UTF-8 rather than UCS-2 greatly simplified the design task while also allowing Tivoli
to maintain backward compatibility with previous English-only systems.

3. Unicode on the Wire. Tivoli will eventually convert its products to run entirely in Unicode. A large
part of this conversion will happen naturally as a byproduct of moving Tivoli’s applications to Java in
the next few years. For the present, however, substantially all of the benefit of Unicode is obtained by
only implementing Unicode on the wire as described above. The gains to be achieved in modifying the
rest of the several million lines of code to process Unicode natively are modest in comparison.

4. Effort and Speed. By focusing only on implementing UTF-8 on the wire, the changes were completed
by a small team of a few engineers in a few months. It should be noted, that Tivoli had an advantage in
picking up the conversion tables ready-to-go from the IBM National Language Technical Center in
Toronto. Tivoli also was able to obtain source code examples for optimal implementations of the
conversion routines from IBM’s AIX and OS/2 teams. Nevertheless, Tivoli is aware of other industry
teams which have spent years attempting to fully migrate their products to UCS-2, many of which still
are not done yet.

5. Table Size. In implementations which are striving to be compact and lightweight, attention must be
paid to the size of conversion tables.

