

GB18030 Conversion Documentation

This document contains descriptions of conversion tables and associated methods for
converting data between Chinese Standard GB18030, Unicode and EBCDIC
encodings.

Table of Contents

Section 1: Introduction

 What is Unicode?
 What is GB18030?

Section 2: Conversions Between GB18030 and Unicode

 UTF-16 <-> GB18030 (1, 2 and 4-byte)
 Text Format Tables

 Combined GB18030 Tables
 Component GB18030 Tables

 Converting from UTF-16 to GB18030
 Combined GB18030 Tables

 2-byte to 4-byte Conversion
 Component GB18030 Tables

 Introduction
 Conversion Logic
 2-byte to 1-byte Conversion
 2-byte to 2-byte Conversion
 2-byte to 4-byte Conversion

 Converting from GB18030 to UTF-16
 Combined GB18030 Tables

 Introduction
 Detecting Valid (Single, Double, and Four-byte) or
Invalid Code Points
 1-byte to 2-byte Conversion
 2-byte to 2-byte Conversion
 4-byte to 2-byte Conversion

 Component GB18030 Tables
 Introduction
 UTF-16 to GB18030 Conversion Logic
 1-byte to 2-byte Conversion
 2-byte to 2-byte Conversion

 4-byte to 2-byte Conversion
 Transformations

 Transformation between GB18030 and UTF-32
 Transformation between UTF-32 and UTF-16 Encoding
Forms of UCS

Section 3: Conversions Between Unicode and Host Encodings

 Conversion Between UCS-2 (CCSID 17584) <---> HOST (1 and 2-byte,
CCSID 1388)

 Text Format Tables
 Combined GB18030 Host Tables
 Component GB18030 Host Tables

 Conversions From UCS-2 (CCSID 17584) to S-Ch Host Extended
(CCSID 1388)

 Combined S-Ch Host Conversion
 2-byte To 2-byte Conversion

 Component S-Ch Host Conversions
 Introduction
 UCS-2 to S-Ch Host Conversion Logic
 2-byte to 1-byte Conversion
 2-byte to 2-byte Conversion

 Conversions From S-Ch Host Extended (CCSID 1388) to UCS-2
(CCSID 17584)

 Combined S-Ch Host Conversion
 2-byte To 2-byte Conversion

 Component S-Ch Host Conversions
 Introduction
 S-Ch Host to UCS-2 Conversion Logic
 1-byte to 2-byte Conversion
 2-byte to 2-byte Conversion

Section 4: Conversions Between GB18030 and Host Encodings

 Conversion Between S-Ch Host Extended (CCSID 1388) <-> GB18030 (1,2
and 4-byte, CCSID 5488)

 Introduction
 Conversion From S-Ch Host (CCSID 1388) to GB18030 (CCSID
5488)

 Combined GB18030 Tables
 Conversion From GB18030 (CCSID 5488) to S-Ch Host (CCSID
1388)

 Combined GB18030 Tables
 Detect Valid Single, Double-byte, Four-byte or
Invalid code point
 1-byte to 2-byte Conversion
 2-byte to 2-byte Conversion

 4-byte to 2-byte Conversion

Section 5: Annexes

 ANNEX A - CCSIDs For Phase 1 and Phase 2 (as of 2001-06-14)
 GB 18030 - Phase 1
 GB 18030 - Phase 2
 Host Mixed S-Ch Extended (for GB18030 support)

 ANNEX B - Control Character Definitions
 ANNEX C - Encoding Scheme Identifiers

Introduction

What is Unicode?
Unicode is an international standard for the universal character encoding scheme for
written characters and text. It defines a consistent way of encoding multilingual text
that enables the exchange of text data internationally, while also creating the
foundation for global software. The Unicode standard is a superset of all characters
in widespread use today. It contains the characters from major international and
national standards as well as prominent industry character sets. Versions of the
Unicode Standard are fully compatible and synchronized with the corresponding
versions of International Standard ISO/IEC 10646. For example, Unicode 6.1
contains all the same characters and code points as ISO/IEC 10646:2012.The
Unicode Standard provides additional information about the characters and their
uses. Any implementation that is conformant to Unicode is also conformant to
ISO/IEC 10646

A complete description of Unicode including code point assignments, encoding forms
and the principles of the standard can be found on the Unicode web site.

What is GB18030?
GB 2312-80 (the primary collection of Chinese coded graphic characters published in
1981 as a national standard) covers only 6,763 Chinese characters. In 1995, GBK
(Chinese Internal Code Specification) for GB Extension was published. It is the
superset of GB and completely compatible with GB 2312-80. GBK expands its
character set to 20,902 characters.

GB18030 was defined in order to meet the needs of Chinese customers such as
financial institutions, insurance companies and postal services that require name and
address information. The characters included in this super set meet these needs.

http://www.unicode.org/

In GB 18030, one-byte, two-byte and four-byte encoding systems are adopted. The
total capability is over 1.5 million code positions. Currently, GB 18030 contains more
than 27,000 Chinese characters which have been defined in Unicode 3.0. This
standard provides a solution for the urgent need for the Chinese characters used in
names and addresses.

Table 1: Allocation of Code Ranges

Number
of Bytes

Space of Code Positions Number of
Codes

One-byte X'00'-X'80' 129 codes

First byte Second byte Two-byte
X'81'~X'FE' X'40'~X'7E'

X'80'~X'FE'

23,940 codes

Four-byte First byte Second
byte

Third byte Fourth byte 1,587,600 codes

 X' 81'~X'FE' X' 30'~X'39' X' 81'~X'FE' X' 30'~X'39'

Conversion Between GB18030 and
Unicode
The GB 18030 standard contains all characters defined in Unicode, but they have
completely different code assignments. All 1.1 million Unicode code points, U+0000-
U+10FFFF (except for surrogates U+D800-U+DFFF), map to and from GB 18030
code points. Most of these mappings can be done algorithmically, except for parts of
the BMP. This makes it an unusual mix of a Unicode encoding and a traditional code
page.

This document provides descriptions for two sets of tables and their associated
methods. The first set of tables and methods (identified as Combined GB18030 in
this document) are the default CDRA conversion tables and methods for mapping
between GB18030 and Unicode. The Combined GB18030 mapping uses three binary
tables (1:2 byte, 2:2 byte and 4:2 byte) as well as transformation logic to do the
conversion from GB18030 to Unicode. The conversion logic uses the Code Ranges
(see Table 1) to select the appropriate binary table from the three existing tables.
For the Unicode to GB18030 conversion, the Combined GB18030 method uses a
single binary table along with the transformation logic. The binary table is a 2:4 byte
mapping table where the input code is a 2 byte Unicode code and the output is a
normalized 4 byte GB18030 code.

The second set of tables and methods (identified as Components GB18030 in this
document) are custom CDRA conversion tables used by z/OS only. The Components
GB18030 uses three binary tables (1:2 byte, 2:2 byte and 4:2 byte) as well as
transformation logic to perform the conversion from GB18030 to Unicode. Another

three binary tables (2:1 byte, 2:2 byte and 2:4 byte) and the transformation logic
are used to perform the conversion from Unicode to GB18030. In this case, choosing
the appropriate binary table from the three available binary tables is done by trial
and error. The conversion logic is explained in detail later in this document.

UTF-16 <-> GB18030 (1, 2 and 4-byte)

This section contains information required to perform conversions between UTF-16
formatted Unicode data and GB18030. The tables referenced in the following sections
are available from the CDRA Conversion Table Repository.

Text Format Tables

The conversion table repository contains both text and binary conversion tables. The
following are the text, human readable, conversion tables for conversions between
UTF-16 and GB18030.

Combined GB18030 Tables

UCS_GB18030.TXT (2000-11-30) - Source mapping file between GB18030 and
UTF-16 from Chinese Government sources

157004B0.TPMAP100 - GB18030 (CCSID 5488) to UTF-16 (CCSID 1200)

04B01570.RPMAP100 - UTF-16 (CCSID 1200) to GB18030 (CCSID 5488)

157004B0.UPMAP100 - GB18030 (CCSID 5488) to and FROM UTF-16 (CCSID
1200)

Component GB18030 Tables

24E404B0.TPMAP100 - Text table from GB 1-byte part (CCSID 9444) to UTF-16
(CCSID 1200)

04B024E4.RPMAP100 - Text table from UTF-16 (CCSID 1200) to GB 1-byte part
(CCSID 9444)

24E404B0.UPMAP102 - Text table between GB 1-byte part (CCSID 9444) and
UTF-16 (CCSID 1200)

256904B0.TPMAP100 - Text table from GB 2-byte part (CCSID 9577) to UTF-16
(CCSID 1200)

04B02569.RPMAP100 - Text table from UTF-16 (CCSID 1200) to GB 2-byte part
(CCSID 9577)

256904B0.UPMAP102 - Text table between GB 2-byte part (CCSID 9577) and
UTF-16 (CCSID 1200)

156F04B0.TPMAP100 - Text table from GB 4-byte part (CCSID 5487) to UTF-16
(CCSID 1200)

04B0156F.RPMAP100 - Text table from UTF-16 (CCSID 1200) to GB 4-byte part
(CCSID 5487)

156F04B0.UPMAP102 - Text table between GB 4-byte part (CCSID 5487) and UTF-
16 (CCSID 1200)

Table files with the extension RPMAPnnn, TPMAPnnn, and UPMAPnnn contain human
readable formats. They have two columns containing the source code point value (in
Hex), and the target code point value (in Hex). Each file contains a brief header and
column descriptions. The header in each file contains information including the
values of the defined SUB characters as well as any special handling requirements.

Converting from UTF-16 to GB18030

Combined GB18030 Tables

In the combined tables, all GB code points are normalized to 4 bytes by adding
leading zero-bytes to the single and double-byte values. This normalization allows for
the conversion table to be a fixed 2-byte to 4-byte structure. The logic of the
associated conversion method strips out the leading zero-bytes before inserting
target code point into the output data stream. Each single-byte target code point has
3 leading zero bytes while each double-byte target code point has 2 leading zero
bytes. For example output target code point x’5B’ will be represented as x’0000005B’
in the conversion table while x’8147’ will be represented as x’00008147’.

2-byte to 4-byte Conversion

04B01570.UGN-R-D

When converting a UTF-16 data stream to GB18030, it is done on a character by
character basis. The first step when examining an input code point is to determine if
it is a valid high order surrogate value. If it is, then next code point is taken from the
input stream to determine if it is a valid low order surrogate value. If together the
two points comprise a valid surrogate pair then the UTF-16 to GB18030 algorithmic
transformation will be used to convert the pair to the appropriate GB18030 code.
Otherwise, the two bytes will be fed into the 2:4 binary table as described later (see
Method 2X).

In the algorithmic transformation the target code point is calculated as follows:
(Note: * = multiplication; / = division; % = modular operation; - = subtraction; + =
addition in the following equations)

index = (source_codepoint1 - X'D800')*1024+source_codepoint2-X'DC00';

b0=index/12600+X'90';

b1=index/1260%10+X'30';

b2=index/10%126+X'81';

b3=index%10+X'30';

target_code point=b0*X'1000000'+b1*X'10000'+b2*X'100'+b3;

For more details see the section on transformations.

Method 2X

The binary conversion table is similar to the tables used in existing CDRA Method 2,
but extended to handle the normalized GB18030 4-byte code. The input data stream
consists of UTF-16 2-byte code points. The output from the conversion table will be
4-byte normalized GB18030 code points. These 4-byte codes must be de-normalized
before being inserted into the output data stream.

Assumed normalization for GB18030:

GB Byte Normalized Comment

xx (Single byte) 000000xx Four byte, with 3 leading zero bytes

xxxx (Double byte) 0000xxxx Four byte, with 2 leading zero bytes

xxxxxxxx (Four byte) xxxxxxxx Four byte

To describe the conversion method we first define the concept of a "ward". A ward is
a section of a double-byte code page. It is equivalent to a "row" of code points in
ISO/IEC 10646 and in Unicode. All of the code points contained in a specific ward
begin with the same first byte. A ward is populated if there is at least one character
in the double-byte code page (UTF-16 in this case) whose first byte is the ward
value. There are 256 wards numbered X'00' to X'FF'.

This 2 to 4-byte binary conversion table is made up of several 1024-byte vectors.
The first vector acts as an index into the rest of the table. It contains 256 two-byte
vector numbers (corresponding to each of the 256 wards, for a total of 512 bytes)
and the remaining 512 bytes are unused (filled with zeros). There is one 1024-byte
vector for each populated ward in the source code page and one additional vector
used for mapping all unassigned and invalid wards.

The method extracts two bytes at a time from the input data stream. The first byte is
used as a pointer into the index vector (shown in Figure 1.1). Each vector number in
the index vector is two bytes long. Therefore the first byte from the input code point
is multiplied by two before calculating the offset into this index vector. The two-byte
value found at the corresponding position in the index vector gives the vector
number in which to perform the second lookup.

The second byte of the input code point is used as a pointer into the vector specified
by the index vector. When calculating the offset into this vector there are two things
to remember; first, the indexing starts at zero, and second, each entry is four bytes
long (normalized GB18030 code point).

In the example shown in Figure 1.1 the input code point is X'4E02'. Taking the first
byte, x’4E’ and multiplying by 2 you get x’9C’ as the pointer value into the index
vector. The index vector specifies x’0050’ as the vector where the output code point
will be found. Taking the second byte of the input code point, x’02’ and multiplying
by 4 (each output code point is 4-bytes long), indicates that the output code point
will be found in the specified vector (x’50’) at location x’0008’. In the example, the
resultant 4-byte output code point is x’00008140’. This value would subsequently be
de-normalized to the 2-byte value x’8140’ prior to being placed in the output data
stream.

In the example vector (X'0001') is used for handling code points from invalid or
unassigned wards in the input data. All of the 256 four-byte (normalized) code point
values found in this vector are those of the "Substitute" (SUB) character of the

target code page (X'8431A437' for GB18030). All of the entries in the index vector
for unused and invalid wards point to this "substitute" vector.

Figure 1.1 - UCS-2 to GB18030 Binary Table & Conversion Method

Note: For Phase 1, code points in the surrogate area (X'D800' through X'DFFF') for
UCS-2 are invalid. If there is a need to distinguish between invalid and unassigned
code points in the input, the method should detect and map input code points in this
range to output SUB code points. In Phase 2, the surrogate area will be used for
UTF-16 representation of Planes 1 to 16.

For the example shown in figure 1.1, the target four bytes could be found at the
following positions in the binary table.

Byte Value Position (hex) Position (decimal)

first 0 X'0050' * X'400' + X'0008' 80 * 1024 + 8 = 81928

second 0 X'0050' * X'400' + X'0008' + 1 80 * 1024 + 8 + 1 = 81929

third 81 X'0050' * X'400' + X'0008' + 2 80 * 1024 + 8 + 2 = 81930

fourth 40 X'0050' * X'400' + X'0008' + 3 80 * 1024 + 8 + 3 = 81931

De-normalization:

Since the resultant single-bytes and double-bytes in the table have been prefixed
with leading zero-bytes, when composing the output string the leading zero-bytes
are removed from the 4-byte output, (three zero-bytes for single-byte and two zero-
bytes for double-byte).

Components for GB18030

Introduction

z/OS implementation does not use the combined tables. In the z/OS environment a
call is made to CONVERT DATA indicating that the source is Unicode and the target
CCSID is 5488. The converter logic looks up CCSID 05488 and gets the component
conversion tables and sets up 2 to 1, 2 to 2 and 2 to 4 logic and resources. UTF-16
contains 2-byte code points and GB18030 contains 1, 2, and 4-byte code points.
According to the z/OS conversion method, in order to do conversions from UTF-16 to
GB18030 three binary tables are required. They are the following:

04B024E4.UG1-C0-A1 - Binary table that maps Unicode (1200) to GB 1-byte part
(9444)
(CDRA 2-bytes to 1-byte conversion method, with X'FF' as STOP)

04B02569.UG2-C0-A1 - Binary table that maps Unicode (1200) to GB 2-byte part
(9577)
(CDRA 2-byte to 2-byte conversion method, with X'FFFF' as STOP)

04B0156F.UG4-C0-A1 - Binary table that maps Unicode (1200) to GB 4-byte part
(5487)
(CDRA 2-byte to 4-byte conversion method for GB18030, with X'FFFFFFFF' as STOP)

All of the Unicode code points located beyond the basic multilingual plane (BMP) are
mapped to GB18030 4-byte code points. The GB18030 4-byte code points when
converted to Unicode must be represented as either UTF-16 surrogate pairs or as 4-
type, UTF-32 values.

The high level logic of this type of conversion is as follows:

The UTF-16 input stream (sequences of two-bytes) will be fed into the conversion
logic. Within the conversion logic, the UTF-16 input stream will be passed through
the following steps:

2:1 logic use UTF-16 to GB18030 single-byte binary table to get GB18030 single-
byte output (see 2-byte to 1-byte conversion for more details)

2:2 logic use UTF-16 to GB18030 double-byte binary table to get GB18030 double-
byte output (see 2-byte to 2-byte conversion for more details)

2:4 logic detects valid surrogate high and surrogate low pair, then use UTF-16 to
GB18030 transformation to get GB18030 four-byte output. (see 2-byte to 4-byte
conversion for more details)

2:4 logic use UTF-16 to GB18030 four-byte binary table to get GB18030 four-byte
output (see 2-byte to 4-byte conversion for more details)

All invalid and incomplete surrogate pairs are dealt with separately.

The structure of the binary tables used for simulating the z/OS logic is described
below:

The UTF-16 to single-byte GB18030 binary table consists of a collection of 256-byte
vectors. The first vector (00) acts as an index into the rest of the table and the
second vector (01) is the "substitute" vector (see 2-byte to 1-byte conversion for
more details).

The UTF-16 to double-byte GB binary table is made up of a collection 512-byte
vectors. The first vector (00) acts as an index into the rest of the table and the
second vector (01) is the "substitute" vector (see 2-byte to 2-byte conversion for
more details).

The UTF-16 to four-byte GB binary table is made up of a collection 1024-byte
vectors. The first vector (00) acts as an index into the rest of the table and the
second vector (01) is the "substitute" vector (see 2-byte to 4-byte conversion for
more details).

Conversion Logic

Figure 1.2 - UTF-16 to GB18030 Conversion Method

In understanding the UTF-16 to GB18030 z/OS conversion method, we refer to figure
1.2 for a graphical representation of the following description. Note that there exist 3
binary tables; separate tables for dealing with 2:1 byte, 2:2 byte and 2:4 byte
mappings. Any input code point that has no defined mapping within any of the three
tables will be detected and substitute. The precise means by which this is
accomplished is described later in detail.

In this model, the UTF-16 input stream will first be fed into the conversion logic. The
logic initially starts with the 2:1 mapping stage of the conversion operation. In this
stage of the conversion, each two-byte segment from the UTF-16 input stream is
entered into the 2:1 binary table in an attempt to convert. If the bytes are
successfully converted, a valid single-byte output code is found, the conversion
continues with the next two-byte input code point. This process continues until the

output code is the defined ‘stop’ (x’FF’) or the end of the input steam is encountered
or an error in the input stream is detected. If an end or error condition is
encountered, execution will be terminated. When a ‘stop’ character is encountered,
the stop handling logic will be executed and the process will go on to the 2:2
mapping stage of the conversion operation.

In the 2:2 stage of operation, each two-byte segment from the UTF-16 input stream
is entered into the 2:2 binary table in an attempt to convert. If the bytes are
successfully converted, a valid 2-byte output code is found, the conversion continues
with the next two-byte input code point. This process continues until the output code
is the defined ‘stop’ (x’FFFF’) or the end of the input steam is encountered or an
error in the input stream is detected. If an end or error condition is encountered,
execution will be terminated. When a ‘stop’ character is encountered, the stop
handling logic will be executed and the process will go on to the 2:4 mapping stage
of the conversion operation.

In the 2:4 stage of operation, the first two bytes from the input stream will be taken
to check whether it is valid surrogate high. If it is a valid surrogate high then the
next two bytes will be taken from the input stream to check whether it is a valid
surrogate low. If it is proven to be a valid surrogate low, then the UTF-16 to
GB18030 algorithmic transformation converts the pair of valid surrogates. Otherwise,
the two-byte segment from the UTF-16 input stream is entered into the 2:4 binary
table in an attempt to convert. If the bytes are successfully converted, a valid 4-
byte output code is found, the conversion continues with the next two-byte input
code point. This process continues until the output code is the defined ‘stop’
(x’FFFFFFFF’) or the end of the input steam is encountered or an error in the input
stream is detected. If an end or error condition is encountered, execution will be
terminated. When a ‘stop’ character is encountered, the stop handling logic will be
executed and the process will loop back to the 2:1 mapping stage of the conversion
operation.

Figure 1.3 shows the ‘stop handling’ logic in detail

Figure 1.3 - UTF-16 to GB18030 Conversion Method

The stop handling logic is an integral part of the algorithm's ability to determine
whether or not SUBs are to be output and detect the presence of regular mappings.
This task is accomplished with the assistance of a 'stop limit' counter that effectively
keeps track of the number of successive stops in the algorithm and 'last_good_stage'
flag. It also remembers the last successful stage of conversion, and takes
appropriate action.

In the stop handling logic, the logic first checks whether this stop is due to a regular
mapping or not. If it is due to a regular mapping, the stop count will be reset to 1
and the last successful stage of operation is also set to the current mode of
operation. The input pointer will be moved to the next position in the input stream
while the stop (X'FFFF') character goes to the output as a target code point.

An important point to be aware of in this logic is that stop handling logic is stage
dependent. The regular mapping could differ from stage to stage. So the stop
handling logic in each stage should take care of the cases related to that particular
stage.

If the stop is not due to the regular mapping, then the stop handling logic checks
whether any successful conversion has taken place in this stage of operation. This

can be done by checking whether the input pointer has moved or not. If there is any
successful conversion then the stop count will be reset to 1 and the last successful
stage of operation is also set to the current stage of operation before we move on to
the next stage of operation. If there is no mapping in this stage of operation then the
logic checks whether the stop limit has been reached or not. The stop limit has been
reached this indicates that each stage of the conversion operation (2:1, 2:2 and 2:4)
has been executed without finding a successful mapping for the input 2 byte value. If
this is the case then a sub is output as target according to the last successful stage
of conversion. The stop count will be reset to 1 and the input pointer will be
advanced to the next position.

If the stop limit is not reached, then the stop count will be incremented and the
execution goes to the next stage of operation.

2-byte to 1-byte Conversion

File: 04B024E4.UG1-C0-A1

This table with its associated method is used to find the target code point when it is
a single-byte.

Table format:

The binary conversion table is created by using the existing CDRA Method 6. Figure
1.4 illustrates the table format and the associated method.

The UCS-2 to single-byte table consists of a several 256-byte vectors (256 entries).
The first vector (00) acts as an index into the rest of the table and the second vector
(01) is the "substitute" vector. The method takes each double-byte source code point
and separates it into a first and second byte. The first byte is used as an offset into
the index vector. The value found at this location "points" to the appropriate vector
in the pool of vectors. The second byte is then used as an offset into the selected
vector. The value found at this location is the single-byte target code point. Each
target code point in the vector is one byte long. The binary conversion table is
equivalent to existing CDRA US-R-D binary tables.

Figure 1.4 - UTF-16 to GB18030 Single-byte Binary Table & Conversion
Method

2-byte to 2-byte Conversion

File: 04B02569.UG2-C0-A1

This table is used to find the target code point when the target code point is a
double-byte.

Table format:

The binary conversion table is created by using the existing CDRA Method 2, a two-
step vector lookup method. The conversion table and the associated method are
illustrated in Figure 1.5 below.

This 2-byte to 2-byte table is made up a collection of 512-byte vectors. The first
vector contains 256 single-byte pointers (vector numbers) into the rest of the table,
followed by 256 unused bytes. The second vector, (the "substitute" vector) contains
the mapping for code points in unassigned wards, and is filled with 256 2-byte SUB
code points (X'FFFF' stop code point in this case). These are followed by additional
512-byte vectors, one for each populated ward in the source encoding.

The table is used as follows. The first byte of the input code point is used as a
pointer into the index vector. The single-byte value found at the corresponding
position in the index is the vector number in which to perform the second lookup.
The second byte of the input code point is used as a pointer into the vector specified
by the index vector.

Figure 1.5 - UTF-16 to GB18030 Double-byte Binary Table & Conversion

Method

In Figure 1.5 the input code point is X'u1u2'. The first byte, x’u1’, is used as a
pointer into the index to determine which vector in the table to use to obtain the
output code point. In this case the output vector is x’pp’. The second byte, x’u2’ is
then used as a pointer into the specified vector to obtain the resultant double-byte
output code point. Note that this value must be multiplied by 2 before the lookup is
performed since each output entry is 2 bytes long.

The second vector mentioned for handling unassigned wards works as follows. All of
the 256 double-byte code point values found in this vector (vector X'01') are those of
the "Substitute (SUB)" character of the target encoding (in this case Stop character
X'FFFF'). All the entries in the index vector for unassigned wards point to this
"substitute" vector.

The binary conversion table is equivalent to existing CDRA UM-R-D binary tables.

2-byte to 4-byte conversion

File: 04B0156F.UG4-C0-A1

This binary table contains the mapping from UCS-2 to four-byte GB18030.

In this section before looking into the binary table, each UTF-16 input value is
checked to see whether it is a valid high surrogate. If it is then the next two bytes
segment will be taken from the input stream to check whether it is a valid low
surrogate. If the pair is determined to be a valid surrogate pair, then the UTF-16 to
GB18030 transformation will take place.

In the transformation the target code point will be calculated as follows:

(Note: * = multiplication; / = division; % = modular operation; - = subtraction; + =
addition in the following equations)

index = (source_codepoint1 - X'd800')*1024+source_codepoint2-X'dc00';

b0=index/12600+X'90';

b1=index/1260%10+X'30';

b2=index/10%126+X'81';

b3=index%10+X'30';

target_code point=b0*X'1000000'+b1*X'10000'+b2*X'100'+b3;

For more details on transformation please see the transformations section of this
document.

If the pair is not a valid surrogate pair, then the two bytes will be fed into the 2:4
binary table as described below.

Method 2X

The binary conversion table is similar to the tables used in existing CDRA Method 2,
but extended to handle the GB18030 4-byte code. The input data stream consists of
UTF-16 2-byte code points. The output from the conversion table will be 4-byte GB
code points.

To describe the conversion method we first define the concept of a "ward". A ward is
a section of a double-byte code page. It is equivalent to a "row" of code points in
ISO/IEC 10646 and in Unicode. All of the code points contained in a specific ward
begin with the same first byte. A ward is populated if there is at least one character
in the double-byte code page (UTF-16 in this case) whose first byte is the ward
value. There are 256 wards numbered X'00' to X'FF'.

This binary conversion table is made up of several 1024-byte vectors. The first
vector acts as in index into the rest of the table. It contains 256 two-byte vector
numbers (corresponding to each of the 256 wards for a total of 512 bytes) and the
remaining 512 bytes are unused (filled with zeros). There is one 1024-byte vector for
each populated ward in the source code page and one additional vector used for
mapping all unassigned and invalid wards.

The method extracts two bytes at a time from the input data stream. The first byte is
used as a pointer into the index vector (shown in Figure 1.6). Each vector number in
the index vector is two bytes long. Therefore the first byte from the input code point
is multiplied by two before calculating the offset into this index vector. The two-byte
value found at the corresponding position in the index vector gives the vector
number in which to perform the second lookup.

The second byte of the input code point is used as a pointer into the vector specified
by the index vector. When calculating the offset into this vector there are two things
to remember; first, the indexing starts at zero, and second, each entry is four bytes
long (GB18030 code point).

In the example shown in Figure 1.6 the input code point is X'4D02'. Taking the first
byte, x’4D’ and multiplying by 2 you get x’9A’ as the pointer value into the index
vector. The index vector specifies x’004F’ as the vector where the output code point
will be found. Taking the second byte of the input code point, x’02’ and multiplying
by 4 (each output code point is 4-bytes long), indicates that the output code point
will be found in the specified vector (x’4F’) at location x’0008’. In the example, the
resultant 4-byte output code point is x’8234F437’. This value would placed in the
output data stream.

The one additional vector (X'0001') mentioned for handling code points from invalid
or unassigned wards in the input data is used as follows. All of the 256 four-byte
code point values found in this vector are those of the "Substitute" (SUB) character
of the target code page (here in this case X'FFFFFFFF' stop character). All of the
entries in the index vector for unused and invalid wards point to this "substitute"
vector.

Figure 1.6 - UTF-16 to GB18030 Four-byte Binary Table & Conversion

Method

In the binary table, target four-bytes could be found at the following positions.

Byte Value Position (hex) Position (decimal)

first 82 X'004F' * X'400' + X'0008' 79 * 1024 + 8 = 80896

second 34 X'004F' * X'400' + X'0008' + 1 79 * 1024 + 8 + 1 = 80897

third F4 X'004F' * X'400' + X'0008' + 2 79 * 1024 + 8 + 2 = 80898

fourth 37 X'004F' * X'400' + X'0008' + 3 79 * 1024 + 8 + 3 = 80899

Converting from GB18030 to UTF-16

Combined GB18030 Tables

Introduction

Following is a description of a GB to UCS conversion, as an alternative to following
the CDRA's EUC normalization method and the resulting table structure. The
normalization steps of detecting when it is a single, double, or four-byte is followed.
However, instead of normalizing the data as in the EUC case, this method takes
three branches in the logic and comes up with associated data structures. The data
structures are linear arrays – one for each of the input types – single, double and
four-bytes. The indexing operations get into these arrays only for valid ranges of
code points. All other code points and broken multi-byte sequences are trapped and
are dealt with separately in the logic.

The high level logic is:

- Detect valid single, double or four-byte code points (see Detecting Valid (Single,
Double, and Four-byte) or Invalid Code Points for more details)

- Use single-byte to UCS-2 array for single-byte input (see 1-byte to 2-byte
conversion for more details)

- Use double-byte to UCS-2 array for double-byte input (see 2-byte to 2-byte
conversion for more details)

- Use four-byte to UCS-2 compact array for four-byte input (see 4-byte to 2-byte
conversion for more details)

- All invalid and incomplete sequences dealt with separately (see 2-byte to 4-byte
conversion for more details)

The main advantage of this method is to be able to keep the conversion tables as
compact as possible (especially for the 4-byte to 2-byte part) and to be able to get
at the converted UCS-2 code points in a relatively fast manner.

The single-byte to UCS-2 array consists of a single 512-byte vector (256 2-byte
entries).

The double-byte GB to UCS-2 array is made up of several 512-byte vectors. The first
vector (00) acts as an index into the rest of the table and the second vector (01) is
the "substitute" vector (see 2-byte to 2-byte conversion for more details)

The four-byte to UCS-2 compact array is made up of:

 256 bytes of flag values (followed by 3*256 bytes of unused bytes)
 Four 1024-byte long vectors, each containing 256 4-byte index values, and
 A long compact array containing target two-byte UCS-2 code points.

Detecting Valid (single, Double, and Four-byte) or Invalid Code Points

Refer to Figure 1.7 below. The method fetches one byte at a time from the input
stream. The first byte, b0, is checked to see whether it is in the valid range of single-
byte or start of a double-byte or four-byte code point. If it is not, then a SUB code
point (X'001A' in this case) is inserted in the output data stream, and the pointer to
the input stream is incremented by one.

If b0 is in the valid range of single-byte (X'00' - X'80'), then it is passed to the 1-
byte to 2-byte conversion as a valid single-byte code point. The resultant 2-byte
output is placed in the output buffer, and the pointer into the input stream is
incremented by one.

(Note: X'80' is a valid but unassigned code point, per confirmation received through
IBM China from Chinese sources. In one of the early conversion tables, it was
mapped to the EURO SIGN (U+20AC) in UCS-2. In subsequent tables this has been
removed.)

If b0 is in the range X'81' - X'FE' for a valid first byte of a double-byte or four-byte
code point, then the next byte, b1, is fetched and checked to see whether it is in the
valid range for a second byte of a double-byte (X'40' - X'7E' or X'80' - X'FE') or a
second byte of a four-byte (X'30' - X'39') code point. If it is not, then the SUB code
point X'001A' is inserted into the output stream and the pointer into the input stream
is incremented by one. The pointer should point to byte b1 now. The first byte b0 is
considered to be the start of a broken sequence of bytes in the input.

If b1 is within the valid range for a second byte of a double-byte code point (X'40' -
X'7E' or X'80' - X'FE'), the sequence b0 b1 (or the input pointer) is passed to the 2-
byte to 2-byte conversion (see 2-byte to 2-byte conversion). The resultant two-byte
output is placed in the output stream, and the pointer into the input stream is
incremented by two.

Figure 1.7 - Input Filter for GB18030-1 stream<

If b1 is within the valid range for a second byte of a four-byte code point (X'30' -
X'39'), then the next byte in the input stream, b2, is checked whether its in the valid
range for a third byte of a four-byte code point (X'81' - X'FE'). If it is not, then the
SUB code point X'001A' is inserted into the output stream and the pointer into the
input stream is incremented by one. The pointer should point to byte b1 now. The
first byte b0 is considered to be the start of a broken sequence of bytes in the input.

If b2 is within the valid range for a third byte of four-byte code point, the next input
byte, b3, is checked whether it is in the valid range for the fourth byte (X'30' -
X'39'). If it is not, then the SUB code point X'001A' is inserted into the output stream
and the pointer into the input stream is incremented by one. The pointer should
point to byte b1 now. The first byte b0 is considered to be the start of a broken
sequence of bytes in the input.

If b3 is within the valid range for the fourth byte then the sequence of bytes, b0 b1
b2 b3, (or the input pointer) is passed to the 4-byte to 2-byte conversion (see 4-byte
to 2-byte conversion) as valid four-byte code point. The resultant two-byte output is

placed in the output stream, and the conversion pointer into the input stream is
incremented by four.

The above steps are repeated until there is no more data in the input stream. If the
input stream is exhausted during fetching of any of the second, third or fourth bytes
in the above filtering logic, then the conversion logic cannot proceed and there will
be some unconverted data in the input stream. The pointer into to the input stream
indicates the first of the remaining bytes that have not been converted. An
implementation may choose to deal with such a situation in any suitable manner.

The insertion of X'001A' for the first byte of a broken sequence permits locating
where such a sequence might have been in the input by examining the output
stream.

1-byte to 2-byte Conversion

File: 157004B0.G1U-R-D

This table with its associated method is used to find the target code point when the
source code point is a valid single-byte GB18030 code.

Table format:

The binary conversion table is created by using the existing CDRA Method 5. Figure
1.8 illustrates the table format and the associated method.

The single-byte to UCS-2 table consists of one 512-byte vector (256 2-byte entries).
The source code point is used as a pointer to determine which 2 bytes in the vector
represent the target code point. Each target code point in the vector is two bytes
long. Therefore the input code point is multiplied by two before calculating the offset
into this vector. The binary conversion table is the same format as existing CDRA
SU-R-D binary tables.

Figure 1.8 - GB 1-byte to UCS-2 2-byte Table and Method

2-byte to 2-byte Conversion

File: 157004B0.G2U-R-D

This table is used to find the target code point when the source code point is a valid
double-byte GB18030 code.

Table format:

The binary conversion table is created by the existing CDRA Method 2, a two-step
vector lookup method. This is similar to the one described in 2-byte to 4-byte
conversion except here each vector is 512 bytes long (256 double-bytes) instead of
1024 bytes (256 four-bytes).

The conversion table and the associated method are illustrated in Figure 1.9 below.

This 2-byte to 2-byte table is made up of several 512-byte vectors. The first vector
contains 256 single-byte indices (vector numbers) into the rest of the table, followed
by 256 unused bytes. The second vector, the "substitute" vector contains the
mapping for code points in unassigned wards, and is filled with 256 2-byte SUB code
points (X'FFFD' in this case). These are followed by 512-byte vectors, one for each
populated ward in the source encoding.

The table is used as follows. The first byte of the input code point is used as a
pointer into the index vector. The single-byte value found at the corresponding
position in the index is the vector number in which to perform the second lookup.
The second byte of the input code point is used as a pointer into the vector specified
by the index vector.

Figure 1.9 - GB 2-byte to UCS-2 2-byte Table and Method

For example (see Figure 1.9) if the input code point is X'C1C2', you would find a
vector number at the X'C1' position in the index vector. The resultant double-byte
output code point is found in the specified vector number (x'42') beginning at
position X'0184' (which is two times X'C2'), counting into the vector starting at zero.

The second vector mentioned for handling unassigned wards works as follows. All of
the 256 double-byte code point values found in this vector (vector X'01') are those of

the "Substitute (SUB)" character of the target encoding (X'FFFD' for UCS-2). All the
entries in the index vector for unassigned wards point to this "substitute" vector.

The binary conversion table is the same format as existing CDRA MU-R-D binary
tables.

4-byte to 2-byte Conversion

File: 157004B0.G4U-R-D

Table format:

The binary conversion table format and the associated method are detailed below.

This binary table consists of five 1024-byte vectors followed by a large linear array
corresponding to the table structure as shown in Figure 1.10. There will be one
three-dimensional sub array for each first byte (b0) value used in the table
definition. Each sub array will contain the minimum number of cells - 12600 cells -
needed to map the valid ranges of the second (b1, 10 values), the third (b2, 126
values) and the fourth (b3, 10 values) bytes of four-byte code points in GB. Each cell
contains the corresponding 2-byte UCS-2 code point.

The first 256 bytes of this binary table, called the b0_used_array, is used to check if
a particular value of b0 byte is used in the conversion table definition. The next 768
bytes (=3*256) are unused. These are followed by four 1024-byte vectors, K40,
K41, K42, and K43. These vectors contain values used in computing an index into
the rest of the table to determine the location of the output code point.

Figure 1.10 - GB 4-byte to UCS-2 2-byte table structure

For a given 4-byte code point (b0 b1 b2 b3), if the b0 is not used then there will not
be a sub array populated for it. Therefore, before trying to find the target code point,
the b0 value is checked to confirm that it has been used. This is checked by using
the b0_used_array. As shown in Figure 1.11, b0 is used as an offset into
b0_used_array. If the b0 value has been used, then the corresponding entry in the
b0_used_array will be 01. If it has not been used the entry will be 00. If it is a 00,
then the code point (b0 b1 b2 b3) is unassigned and its mapping is not defined in the
conversion table. In this case a double-byte SUB code point (X'FEFE') is inserted by
the conversion logic into the output data stream and the pointer into the input
stream is incremented by 4.

Figure 1.11 - b0_used_array

If b0 is equal to 01, then proceed with the steps to find target code point, as
illustrated in Figure 1.12, and described below.

Get the computed index values from the four index vectors, K40, K41, K42, and K43
using b0, b1, b2, and b3 byte values of the input code point. Each byte of the valid
four-byte source code point is used as an offset into the corresponding K4x table to
get a part of the index value. When calculating the offset into these vectors there are
two things to remember; first, you must begin counting at zero, and second, each
entry is four bytes long. This means you have multiply the b0, b1, b2, or b3 by four
before looking into the vectors. The resulting 4 values are added to get the location
of the first byte of the target code point in the binary table.

The values in the index vectors are computed based on the following formulae:

K40(b0) = 25200 * (block number assigned to the b0 group)

K41(b1) = 2* (b1 - X'30') * (126 * 10)

K42(b2) = 2* (b2 - X'81') * 10

K43(b3) = 2* (b3 - X'30')

This eliminates the multiplication steps during conversion execution, improving the
performance. Once these indices are added it will be the index or pointer value to the
first byte of the cell containing the output code point in Figure 1.10. Figure 1.12
shows the mapping table of Figure 1.10 in as a linear structure.

Also, note that entries in these index arrays for illegal values of b0, b1, b2, or b3,
are filled with zero-bytes. They will never be accessed if the filter logic has been
followed correctly. Figure 1.12 also shows a possible entry for b0 = X'FD', Private
Use Area, as a possible fifth block. The binary table currently defined contains
mapping tables only for b0 values of X'81' to X'84', as defined in the conversion
requirements received from Chinese Government sources.

The two bytes of the output code point are inserted into the output data stream. The
pointer into the input data stream is incremented by four in the main filter logic
described earlier in the section on detecting valid (single, double, and four-byte) or
invalid code points.

Figure 1.12 - Use of Index Arrays in GB 4-byte to UCS-2 2-byte conversion
method

If b0 is not equal to 01 but the four-byte source code point is greater than
X'90308130' and less than X'E3329A35', then proceed with the steps to find target
code point using the GB18030 to UTF-16 transformation logic described below.

In this example i is a four-byte GB18030 code point.

(Note: * = multiplication; / = division; % = modular operation; - = subtraction; + =
addition in the above equations)

b0= (((i >> 24)- 0x90) * 12600);

b1= ((((i >> 16) & 0xFF) - 0x30)*1260);

b2= ((((i >> 8) & 0xFF) - 0x81)*10) ;

b3= ((i & 0xFF)- 0x30);

temp=b0+b1+b2+b3;

utf_32 = temp + 0x10000;

surrogate high=(temp >> 10)+0xD800;

surrogate low=(temp & 0x3FF)+0xDC00;

For more detail see the section on Transformations.

Component GB18030 Tables

Introduction

Gb18030 contains 1, 2, and 4-byte code points and UTF-16 contains 2-byte code
points. According to the z/OS logic, in order to do conversion from GB18030 to UTF-
16, three binary tables are required. They are the following:

24E404B0.G1U-C0-A1 - Binary table from GB 1-byte part (9444) to UCS (1200)

(CDRA 1-byte to 2-byte conversion method, with X'FFFF' as STOP character)

256904B0.G2U-C0-A1 - Binary table from GB 2-byte part (9577) to UCS (1200)

(CDRA 2-byte to 2-byte conversion method, with X'FFFF' as STOP character)

156F04B0.G4U-C0-A1 - Binary table from GB 4-byte part (5487) to UCS (1200)

(CDRA 4-byte to 2-byte conversion method for GB18030, with X'FFFF' as STOP
character)

GB18030 1-byte or 2-byte code points are mapped to the Unicode BMP (plane 0).
The GB18030 4-byte code points that map beyond the BMP can be transformed into
UTF-16 (surrogate high and low pair) or be represented as a 4-byte UTF-32 code
using pure calculations which will be described in detail later.

The high level logic is:

First, the GB18030 input stream (sequence of 1, 2 and 4-bytes) will be fed into the
conversion logic. Within the conversion logic, the GB18030 input stream will be
passed through the following logic:

- 1:2 logic use GB18030 single-byte to UTF-16 binary table to get UTF-16 double-
byte output (see 1-byte to 2-byte Conversion for more details)

- 2:2 logic use GB18030 double-byte to UTF-16 binary table to get UTF-16 double-
byte output (see 2-byte to 2-byte Conversion for more details)

- 4:2 logic detects valid four-byte GB18030 code which can be transformed to a valid
surrogate pair, using the transformation technique (see 4-byte to 2-byte Conversion
for more details).

- 4:2 logic use GB18030 four-byte to UTF-16 binary table to get UTF-16 double-byte
output (see 4-byte to 2-byte Conversion for more details)

- All invalid and incomplete sequences are dealt with separately.

The single-byte to UCS-2 array consists of a single 512-byte vector (256 2-byte
entries).

The double-byte GB to UCS-2 array is made up of several 512-byte vectors. The first
vector (00) acts as an index into the rest of the table and the second vector (01) is
the "substitute" vector (see 2-byte to 2-byte Conversion for more details).

The four-byte to UCS-2 compact array is made up of:

 256 bytes of flag values (followed by 3*256 bytes of unused bytes)
 Four 1024-byte long vectors, each containing 256 4-byte index values, and
 A long compact array containing target two-byte UCS-2 code points.

GB18030 to UTF-16 Conversion Logic

The following model is similar to the one described in the conversion logic for
conversions from UTF-16 to GB18030 except the reverse direction binary tables are
used in places where forward direction binary tables were used in the section
mentioned above.

Figure 1.13 - GB18030 to UTF-16 Conversion Method

In understanding the GB18030 to UTF-16 z/OS conversion method, we refer to figure
1.13 above in order to obtain a graphical representation of the following description.
Upon first glance at figure 1.13, note that there exists 3 binary tables for dealing
with 1:2 byte, 2:2 byte and 4:2 byte mappings respectively. The presence of input
that has no existing mapping within any of the three tables can be detected and

substituted upon passing input through the three stages. The precise means by
which this is accomplished is described later in detail.

In this model, first the GB18030 input stream will be fed into the conversion logic.
The conversion logic initially starts with the 1:2 stage of operation. In the step, the
GB18030 input stream will be run through the 1:2 binary table by fetching one byte
at a time from the input stream until it hits a stop character in the binary table or
End/Error condition. In the case of an End/Error condition, execution will be
terminated.

In the case that a stop character is encountered (X'FFFF' in this case) the stop
handling logic will be executed. Then the execution goes to the next step in the
process, which is 2:2 stage of operation.

In the 2:2 stage of operation, the remaining GB18030 input stream will be passed
through the 2:2 binary table by fetching two bytes at a time from the input stream
until it hits a stop character or End/Error condition. In the case of an End/Error
condition, execution will be terminated.

In the case that a stop character is encountered (X'FFFF' in this case) the stop
handling logic will be executed. Then the execution goes to the next step in the
process, which is 4:2 stage of operation in this case.

In the 4:2 stage of operation, the remaining GB18030 input stream will be passed
through the 4:2 conversion logic by fetching four bytes at a time from the input
stream. Before attempting to find a target code point for an input 4 byte code point
(b0 b1 b2 b3), the b0 value is checked to confirm that it has been used. This is
checked by using the b0_used_array (see 4-byte to 2-byte conversion). If the entry
corresponding to the b0 in b0_used_array is a 00, then the code point(b0 b1 b2 b3)
is unassigned and its mapping is not defined in the conversion logic. This will be
treated as hitting a stop character in the logic. If the entry corresponding to the b0
in b0_used_array is a 01, then the 4:2 binary table look up will take place by
fetching 4 bytes at a time from the input stream. If the entry corresponding to the
b0 in b0_used_array is a 02, then the GB18030 to UTF-16 transformation logic will
be executed to output valid surrogate high and low pair. These three types of
operations will take place until one of the three operations produce a stop character
or End/Error condition. In the case of an End/Error condition, the execution will
terminate.

In the case that a stop character is encountered (X'FFFF' in this case) the stop
handling logic will be executed. Then the execution loops back to the starting step of
the process, which is 1:2 stage of operation in this case. This loop of operations will
go on until the end of input stream is reached.

Figure 1.3 - UTF-16 to GB18030 Conversion Methods

The stop handling logic is illustrated in Figure 1.3 above (duplicate of Figure 1.3
presented here again for the reader's convenience). It is an integral part to the
algorithm's ability to determine whether or not SUBs are to be output and to detect
the presence of regular mappings. This task is accomplished with the assistance of a
'stop limit' counter that effectively keeps track of the number of successive stops in
the algorithm and 'last_good_stage' flag. It also remembers the last successful stage
of conversion, and takes appropriate action.

In the stop handling logic, the logic first checks whether this stop is due to a regular
mapping or not. If it is due to a regular mapping, the stop count will be reset to 1
and the last successful stage of operation is also set to the present stage of
operation. The input pointer will be moved to the next position in the input stream
while the stop (X'FFFF') character goes to the output as a target code point.

An important point to be aware of in this logic is that stop handling logic is stage
dependent. For example, GB18030 code point X'8437A439' maps to UTF-16 code
point X'FFFF' which is same as the stop code point in this case. So the stop handling
logic after 4:2 logic must check whether this stop is due to a regular mapping (for
input X'8431A439') or not. This regular mapping could differ from stage to stage.
This case has to be taken care of in the stop handling logic for each stage. (In the

OS390GB2U.C sample program this case has been taken care of in the 4:2 logic
which is slightly different than what is described in here).

If the stop is not due to the regular mapping, then the stop handling logic checks
whether any successful conversion has taken place in this stage of operation. This
can be done by checking whether the input pointer has moved or not. If there is any
successful conversion then the stop count will be reset to 1 and the last successful
stage of operation is also set to the current stage of operation before we move on to
the next stage of operation. If there is no mapping in this stage of operation then the
logic checks whether the stop limit has been reached or not. If the stop limit is
reached this indicates that each stage of the conversion operation (1:2, 2:2 and 4:2)
has been executed without finding a successful mapping for the input code point. In
this case a sub is output as target according to the last successful stage of
conversion. The stop count will be reset to 1 now and input pointer also advanced to
the next position.

If the stop limit is not reached, then the stop count will be incremented and the
execution goes to the next stage of operation.

1-byte to 2-byte Conversion

The conversion method used for converting GB 1-byte to UTF-16 2-byte is identical
to the previously mentioned method for converting GB 1-byte to UCS-2 2-byte.
Please refer to 1-byte to 2-byte Conversion for GB to UCS-2 for details.

2-byte to 2-byte Conversion

The conversion method used for converting GB 2-byte to UTF-16 2-byte is identical
to the previously mentioned method for converting GB 2-byte to UCS-2 2-byte.
Please refer to 2-byte to 2-byte Conversion for GB to UCS-2 for details.

4-byte to 2-byte Conversion

The conversion method used for converting GB 4-byte to UCS-2 2-byte has
previously been discussed in a prior section. Please refer to 4-byte to 2-byte
Conversion for GB to UCS-2 for details.

Transformations

Transformation between GB18030 and UTF-32

In UTF-32 the first byte is always 00, and the second byte represents the plane
number. Planes 0 through 16 are defined in UCS. GB18030 1-byte (all), 2-byte (all)
and some of the 4-byte (X'81308130' to X'8431A439') code points fill all of the
possible mapping points in UCS Plane 0. All of the UCS code points other than those
found in BMP/Plane 0 (that is all the code points from Plane 1-16) are mapped to
GB18030 4-byte code points only. No GB18030 1-byte or 2-byte code points are
mapped to the Plane 1-16 code points.

Figure 1.14: GB 4-byte to UTF-32 4-byte Mapping Structures

The mapping between GB18030 code points (4-byte subset) and the UCS code points
from Plane 1-16 are done algorithmically. Starting from X'90308130' up to
X'E3329A35', all the valid GB18030 4-byte code points are linearly mapped into the
UCS code points in Planes 1-16 starting from X'00010000' up to X'0010FFFF' (Please
refer to Figure 1.14).

GB18030 UTF-32

90308130 00010000

90308131 00010001

 : :

E3329A34 0010FFFE

E3329A35 0010FFFF

So given the valid GB18030 4-byte code point X'90308130', the corresponding UTF-
32 value is calculated as follows:

Let 4 bytes of the GB18030 code point be b0 b1 b2 b3.

u0 = (b0 - X'90') * number of possible b1 * number of possible b2 * number of
possible b3

u1 = (b1 - X'30') * number of possible b2 * number of possible b3

u2 = (b2 - X'81') * number of possible b3

u3 = (b3 - X'30')

UTF-32 code point = u0 + u1 + u2 + u3 + X'00010000'

Using the same principles for a UTF-32 code point in Plane 1 to Plane 16, the
corresponding GB18030 value can be calculated as follows:

Let b0 b1 b2 b3 be the 4 bytes of GB18030 code point.

Let UTF-32 code point - X'00010000' = u0 u1 u2 u3

b0 = u0/(number of possible b1 * number of possible b2 * number of possible b3) +
X'90'

b1 = u1/ (number of possible b2 * number of possible b3) % number of possible
b1+ X'30'

b2 = u2/ (number of possible b3) % number of possible b2+ X'81'

b3 = u3 % number of possible b3 + X'30'

4-byte GB18030 = b0b1b2b3

(Note: * = multiplication; / = division; % = modular operation; - = subtraction; + =
addition in the above equations)

Transformations between UTF-32 and UTF-16 Encoding Forms of Unicode

Each UTF-32 code point will be transformed into a UTF-16 surrogate pair as follows:

UTF-32 UTF-16

X'0000 0000' X'0000'

 : :

X'0000 FFFF' X'FFFF'

X'0001 0000' X'D800 DC00' (see Figure 1.15 below)

 : :

X'0010 FFFF' x'DBFF DFFF'

X'0011 0000' or greater unmapped

Figure 1.15 - UTF-32 (Supp. Planes) and UTF-16 (Surrogates)

Section 3: Conversions Between Unicode
and Host Encodings

Conversion Between UCS-2 (CCSID 17584) <--> Host(1
and 2-byte, CCSID 1388)

This Section contains a description of the conversion tables and associated methods
for converting data between S-Ch Host CCSID 1388 encodings and UCS-2 encodings.

Text Format Tables

Combined GB18030 Host Tables

056C44B0.TPMAP100 - S-Ch Host (CCSID 1388) To UCS-2 (CCSID 17584)

44B0056C.RPMAP100 - UCS-2 (CCSID 17584) To S-Ch Host (CCSID 1388)

056C44B0.UPMAP100 - S-Ch Host (CCSID 1388) To and FROM UCS-2
(CCSID 17584)

Component GB18030 Host Tables

334444B0.TPMAP100 - Text table from Host 1-byte part (4933) to UCS-2
(17584)

44B03344.RPMAP100 - Text table from UCS-2 (17584) to Host 1-byte part
(13124)

334444B0.UPMAP102 - Text table between Host 1-byte part (13124) and
UCS-2 (17584)

134544B0.TPMAP100 - Text table from Host 2-byte part (13124) to UCS-2
(17584)

44B01345.RPMAP100 - Text table from UCS-2 (17584) to Host 2-byte part
(13124)

134544B0.UPMAP102 - Text table between Host 2-byte part (13124) and
UCS-2 (17584)

Table files with the extension RPMAPnnn, TPMAPnnn, and UPMAPnnn contain
human readable formats. They have two columns containing the source code
point value (in Hex), and the target code point value (in Hex). Each file
contains a brief header and column descriptions. Please ensure you read the
header files for values of SUB used and any special handling required.

Conversion From UCS-2 (CCSID 17584) to S-Ch Host Extended
(CCSID 1388)

Combined S-Ch Host Conversion

To be able to indicate whether a double-byte UTF-16 code point is mapped to
a single-byte or double-byte code point in Host, in a binary conversion table,
some indication will be needed as to the width of the target code point. This is
accomplished by using a normalized Host code point in the conversion tables.
Each output code point entry will have two bytes, single-byte Host code point
values will be normalized by inserting a leading 00 byte. This permits a fixed
width 2-byte to fixed width 2-byte conversion method and associated table
structure to be used. The conversion logic strips out the leading zero-byte and
adds any necessary code extension controls (Shift-IN/Shift-Out) before
placing the value in the output stream. The following sections give more
details.

2-byte To 2-byte Conversion

File: 44B0056C.UM-E-D

This binary table maps UCS-2 to normalized S-Ch Host Extended.

Method 8:

The binary conversion table is same to the tables used in existing CDRA
Method 8. The input data stream consists of UCS-2 2-byte code points. The
output from the conversion table will be 2-byte normalized Host code points.
The resultant code points are de-normalized before being inserted into the
output data stream.

Assumed normalization:

Host Byte Normalized Comment

xx (Single byte) 00xx Two bytes, with 1 leading zero byte; SO/SI
removed.

xxxx (Double
byte)

xxxx Two bytes

To describe the conversion method we first define the concept of a "ward". A
ward is a section of a double-byte code page. It is equivalent to a "row" of
code points in ISO/IEC 10646 and in Unicode. All of the code points contained
in a specific ward begin with the same first byte. A ward is populated if there
is at least one character in the double-byte code page (UCS-2 in this case)
whose first byte is the ward value. There are 256 wards numbered X'00' to
X'FF'.

Figure 2.1 - UCS-2 to S-Ch Host Extended - Binary Table and

Conversion Method

The double-byte binary conversion table is made up of several 512-byte
vectors. The first vector contains 256 single-byte indices (vector numbers)
into the rest of the table, followed by 256 unused bytes. The second vector,
the "substitute" vector is used for mapping code points in unassigned wards,
and is filled with 256 2-byte SUB code points (X'FEFE' in this case). These are
followed by a collection of 512-byte vectors, one for each populated ward in
the source code page.

The table is used as follows. The first byte of the input code point is used as a
pointer into the index vector. The single-byte value found at the
corresponding position in the index is the vector number in which to perform
the second lookup. The second byte of the input code point is used as a
pointer into the specified vector.

For example in Figure 2.1 the input code point is X'0613'. Using x’06’ as a
pointer into the index vector, we find x’07’ as the specified vector in the table
structure. Then the second byte, x’13’ is used to calculate the pointer value
into the specified vector. The resultant double-byte output code point is
found in vector number x'07' beginning at position X'0026' (which is two

times X'13'), counting into the vector starting at zero. In this example the
output double-byte value is x’4770’.

The second vector mentioned for handling unassigned wards works as follows.
All of the 256 double-byte code point values found in this vector (vector
X'01') are those of the "Substitute (SUB)" character of the target code page
(X'FEFE' for S-Ch Host Extended). All the entries in the index vector for
unassigned wards point to this "substitute" vector.

The binary conversion table is the same format as the CDRA UM-E-D binary
tables.

Denormalization:

Since resultant single-byte values in the table have been normalized with a
leading zero-byte, when composing the output string the leading zero-bytes
must be removed. In a properly formed Host Mixed data stream the single-
byte strings and the double-byte strings must be bracketed with appropriate
controls (SO/SI). The denormalization process must perform both tasks.

Example: SO 41 41 40 40 SI 41 SO 72 01 SI

Component S-Ch Host Conversions

Introduction

The z/OS converter does not use the combined tables. In the z/OS
environment a call is made to CONVERT DATA tagged with CCSID 01388 to
Unicode CCSID. The converter logic looks up 01388 information and gets the
component conversion tables and sets up 2 to 1, 2 to 2 logic and resources
and starts executing the conversion. The z/OS implementation needs the
component tables not the combined ones. In this case two binary tables are
required to perform the conversion. They are the following:

44B03344.US-C0-A1 - Binary table from UCS (17584) to Host 1-byte part
(13124)
 (CDRA 2-bytes to 1-byte conversion method, with X'3F' as SUB/STOP)

44B01345.UM-C0-A1 - Binary table from UCS (17584) to Host 2-byte part
(4933)
 (CDRA 2-byte to 2-byte conversion method, with X'FEFE' as SUB/STOP)

The high level logic is:

The UCS-2 input stream (sequences of double-bytes) will be fed into the
conversion logic. Within the conversion logic, the UCS-2 input stream will be
passed through the following logic:

 - 2:1 logic use UCS-2 to S-Ch Host single-byte binary table to get S-Ch
Host single-byte output (see the section on 2-byte to 1-byte Conversion for
more details)

 - 2:2 logic use UCS-2 to S-Ch Host double-byte binary table to get S-Ch
Host double-byte output (see the section on 2-byte to 2-byte Conversion for
more details)

The UCS-2 to single-byte S-Ch Host binary table consists of several 256-byte
vectors. The first vector (00) acts as an index into the rest of the table and

the second vector (01) is the "substitute" vector (see the section on 2-byte to
1-byte Conversion for more details).

The UCS-2 to double-byte S-Ch Host binary table is made up of several 512-
byte vectors. The first vector (00) acts as an index into the rest of the table
and the second vector (01) is the "substitute" vector (see the section on 2-
byte to 2-byte Conversion for more details).

UCS-2 to S-Ch Host conversion Logic

To understand the UCS-2 to S-CH Host z/OS conversion method, refer to
figure 2.2 for a graphical representation of the following description. In figure
2.2, note that there exists 2 binary tables for dealing with 2:1 byte and 2:2
byte mappings respectively. The presence of input that has no existing
mapping within either of the two tables can be detected and substituted upon
passing input through the two stages. The precise means by which this is
accomplished is described later in detail.

Figure 2.2 - UCS-2 to S-Ch Host Conversion Method

In this model, the UCS-2 input stream will first be fed into the conversion
logic. The conversion logic initially starts with the 2:1 stage of operation. In
the 2:1 stage of operation, the UCS-2 input stream will be run through the
2:1 binary table by fetching two bytes at a time from the input stream until it
hits a stop character in the binary table or End/Error condition. In case of
End/Error condition, execution will be terminated.

In the case that a STOP/SUB character is encountered (X'3F' in this case) the
stop handling logic will be executed. Then the execution goes to the next
stage of operation, which is 2:2 stage of operation in this case.

In the 2:2 stage of operation, the UTF-16 input stream will be run through
the 2:2 binary table by fetching two bytes at a time from the input stream
until it hits a stop character or End/Error condition. In case of End/Error
condition, execution will be terminated.

In the case that a STOP/SUB character is encountered (X'FEFE' in this case)
the stop handling logic will be executed. Then the execution goes to the next
stage of operation, which is 2:1 stage of operation in this case.

Figure 2.3 - UCS-2 to S-Ch Host Conversion Methods

The stop handling logic is illustrated in Figure 2.3 above. It is an integral part
of the algorithm's ability to determine whether or not a SUB or an appropriate
control character (SI/SO) is to be output when a STOP/SUB character is
detected. This task is accomplished with the assistance of a 'stop limit'
counter that effectively keeps track of the number of successive stops in the

algorithm and 'last_good_stage' flag which remembers the last successful
stage of conversion.

In the stop handling logic, the logic first checks whether any successful
conversion has taken place in this stage of operation. This can be done by
checking whether the input pointer has moved or not. If there is any
successful conversion, then the stop count will be reset to 1. The last
successful stage of operation is also set to the current stage of operation and
the appropriate control character (SI/SO) is placed in the output stream
before we move on to the next stage of operation. If there is no mapping in
this stage of operation then the stop count will be incremented and the logic
checks whether the stop limit has been reached. If the stop limit has been
reached then a sub is output as target according to the last successful stage
of conversion. The stop count will be reset to 0 now and input pointer also
advanced to the next position. If the stop limit is not reached, then and the
execution goes to the next stage of operation after removing any
inappropriate control characters (SI/SO).

2-byte to 1-byte Conversion

The conversion method used for converting UCS-2 to S-Ch single-byte is
identical to the previously mentioned method for converting UTF-16 to
GB18030 single-byte. Please refer back to the earlier section on 2-byte to 1-
byte Conversion for details.

2-byte to 2-byte Conversion

The conversion method used for converting UCS-2 to S-Ch double-byte is
identical to the previously mentioned method for converting UTF-16 to
GB18030 double-byte. Please refer back to the earlier section on 2-byte to 2-
byte Conversion for details.

Conversion From S-Ch Host Extended (CCSID 1388) to UCS-2
(CCSID 17584)

Combined S-Ch Host

This table is used to find the target code point when the source code point is
single/double-byte. The method used to create this table requires that the
input data is normalized such that each input code point is two bytes long.
This is done by prefixing each single-byte code point with a zero-byte (X'00).
Any code extension controls (Shift-IN/Shift-Out) are removed from the input
data stream.

2-byte to 2-byte Conversion

File: 056C44B0.MU-R-D

Table format: The binary conversion table created by using the existing
CDRA Method 7 - a two-step vector lookup method.

Method 7:

The conversion table and the associated method are illustrated in Figure 2.6
below.

The double-byte binary conversion table is made up of several 512-byte
vectors. The first vector contains 256 single-byte indices (vector numbers)
into the rest of the table, followed by 256 unused bytes. The second vector,
the "substitute" vector is used for mapping code points in unassigned wards,
and is filled with 256 2-byte SUB code points (X'FFFD' in this case). These are
followed by 512-byte vectors, one for each populated ward in the source code
page.

The table is used as follows. The first byte of the input code point is used as a
pointer into the index vector. The single-byte value found at the
corresponding position in the index is the vector number in which to perform
the second lookup. The second byte of the input code point is used as a
pointer into the vector specified by the index vector.

For example in Figure 2.6 the input code point is X'4760'. The first byte of the
code point (x’47’) is used as a pointer into the index vector, resulting in x’0A’
being identified as the vector containing the output code point. The resultant
double-byte output code point is found in the specified vector number (x'0A')
by calculating the location from the second byte of the input code point. The
second byte x’60’ is multiplied by 2 (since each resultant code point is two
bytes long). Thus the output code point will be found beginning at position
X'00C0' (which is two time X'60'), in the specified vector. Following this
process results in an output code point of x’0603’.

Figure 2.6: Normalized S-Ch Host Extended 2-byte to UCS-2 2-byte Table

and Method

The second vector mentioned for handling unassigned wards works as follows.
All of the 256 double-byte code point values found in this vector (vector
X'01') are those of the "Substitute (SUB)") character of the target code page
(X'FFFD' for UCS-2). All the entries in the index vector for unassigned wards
point to this "substitute" vector.

The binary conversion table is the same format as CDRA MU-R-D binary
tables.

Components S-Ch Host (z/OS Usage)

Introduction

S-Ch contains 1, and 2-byte code points and UCS-2 contains 2-byte code
points. According to the z/OS logic, in order to do conversion from S-Ch to
UCS-2, there are two binary tables needed. They are the following:

334444B0.MU-C0-A1 - Binary table from S-Ch Host 1-byte part (13124) to
UCS-2 (17584)
 (CDRA 1-byte to 2-byte conversion method, with X'FFFD' as
STOP/SUB character)

134544B0.MU-C0-A1 - Binary table from S-Ch Host 2-byte part (4933) to
UCS-2 (17584)
 (CDRA 2-byte to 2-byte conversion method, with X'FFFD' as
STOP/SUB character)

The high level logic is:

The S-Ch Host input stream (sequence of 1 and 2-bytes) will be fed into the
conversion logic. Within the conversion logic, the S-Ch Host input stream will
be passed through the following logic:

 - 1:2 logic use S-Ch Host single-byte to UCS-2 binary table to get UCS-2
double-byte output

 - 2:2 logic use S-Ch Host double-byte to UCS-2 binary table to get UCS-2
double-byte output

The single-byte to UCS-2 array consists of a single 512-byte vector (256 2-
byte entries).

The double-byte GB to UCS-2 array is made up of several 512-byte vectors.
The first vector (00) acts as an index into the rest of the table and the second
vector (01) is the "substitute" vector (see section 1.3d for more details).

S-Ch to UCS-2 Conversion Logic

To understand the S-CH to UCS-2 Host z/OS conversion method, refer to
figure 2.7 for a graphical representation of the conversion. Looking at figure
2.7, note that there exist 2 binary tables for dealing with 1:2 byte and 2:2
byte mappings respectively. The presence of input that has no existing
mapping within any of the two tables can be detected and substituted upon
passing input through the two stages. The precise means by which this is
accomplished is described later in detail.

Figure 2.7 - S-Ch to UCS-2 Host Conversion Method

In this model, the S-Ch input stream will first be fed into the conversion logic.
The conversion logic initially starts with the 1:2 stage of operation. In the 1:2
stage of operation, the S-Ch input stream will be run through the 1:2 binary
table by fetching 1 byte at a time from the input stream until it hits a stop
character in the binary table or End/Error condition. In case of End/Error
condition, execution will be terminated.

In the case that a stop character is encountered (X'000E' in this case) the
stop handling logic will be executed. Then the execution goes to the next
stage of operation, which is 2:2 stage of operation in this case.

In the 2:2 stage of operation, the UTF-16 input stream will be run through
the 2:2 binary table by fetching two bytes at a time from the input stream
until it hits a stop character or End/Error condition. In case of End/Error
condition, execution will be terminated.

In the case that a stop character is encountered (X'FFFD' in this case) the
stop handling logic will be executed. Then the execution goes to the next
stage of operation, which is 2:1 stage of operation in this case.

Figure 2.8 - S-Ch to UCS-2 Host Conversion Method

The stop handling logic is illustrated in Figure 2.8 above. Unlike the previous
stop logic implementation, in performing UCS-2 to S-Ch conversions, the C-
Sh to UCS-2 stop logic is much simpler. Its sole objective is to determine
whether or not the stop was due to a control character (SI/SO). If it was due
to a control character (SI/SO), then execution continues to the appropriate
stage.

1-byte to 2-byte Conversion

The conversion method used for converting S-Ch Host 1-byte to UCS-2 2-byte
is identical to the previously mentioned method for converting GB 1-byte to
UCS-2 2-byte.

2-byte to 2-byte Conversion

The conversion method used for converting S-Ch Host 2-byte to UCS-2 2-byte
is identical to the previously mentioned method for converting GB 2-byte to
UCS-2 2-byte.

Section 4: Conversions Between
GB18030 and Host Encodings

S-Ch Host Extended (CCSID 1388) <-> GB18030
(1,2 and 4-byte, CCSID 5488)

Introduction

This document contains description of conversion tables and associated
methods for converting data between S-Ch Host extended CCSID 1388
encodings and GB 18030 (CCSID 5488) encodings. These (GB 18030 to and
from Host) conversion tables use a normalized form of data. The Host code
points are normalized by placing a leading zero-byte (X'00) in front of each
single-byte to yield a two-byte form. Host data must have the SO-SI control
characters deleted during normalization and reinserted afterwards during de-
normalization. The GB code points are normalized to four-bytes by inserting
leading zero-bytes for the single- and double-byte GB code point values.
Figure 3.1 shows the use of the Host to and from GB18030 conversion tables.

Figure 3.1 - Host and GB 18030 Conversion

The input byte or bytes, up to maximum of four bytes per code point, are first
normalized and used as input to the conversion table. The output (again, four
bytes per code point maximum) from the conversion table is also normalized
data, which must be de-normalized prior to subsequent processing. Host data
must have the SO-SI control characters deleted during normalization and
reinserted afterwards during de-normalization.

Source mapping file between GB18030 and Host

File: HOST2GB.ALL (2000-12-07)

File: GB2HOST.ALL (2000-12-07)

Conversion From S-Ch Host (CCSID 1388) to GB18030 (CCSID
5488)

Combined GB18030 Tables

The GB code points are normalized to four-bytes by inserting leading zero-
bytes for the single and double-byte GB code point values. The Host code
points are normalized to two-bytes by inserting a leading zero-byte for the
single-byte Host code point values.

2-byte to 4-byte Conversion

File 056C1570.MGN-R-D

This binary table contains the mapping from normalized Host to normalized
GB18030.

Method 2x:

The binary conversion table is similar to the tables used in existing CDRA
Method 2, but extended to handle the normalized GB18030-1 4-byte code.
The input data stream consists of normalized Host 2-byte code points. The
output from the conversion table will be 4-byte normalized GB code points
which are de-normalized before being inserted into the output data stream.

Assumed normalization for GB18030-1:

GB Byte Normalized Comment
xx (Single byte) 000000xx Four byte, with 3 zero byte leading zeros

xxxx (Double byte) 0000xxxx Four byte, with 2 zero byte leading zeros

xxxxxxxx (Four
byte)

xxxxxxxx Four byte

To describe the conversion method we first define the concept of a "ward". A
ward is a section of a double-byte code page. It is equivalent to a "row" of
code points in ISO/IEC 10646 and in Unicode. All of the code points contained
in a specific ward begin with the same first byte. A ward is populated if there
is at least one character in the double-byte code page (normalized Host in
this case) whose first byte is the ward value. There are 256 wards numbered
X'00' to X'FF'.

This binary conversion table is made up of several 1024-byte vectors. The
first vector acts as in index into the rest of the table. It contains 256 two-byte
vector numbers (corresponding to each of the 256 wards) and the remaining
512 bytes are unused (filled with zeros). There is one 1024-byte vector for
each populated ward in the source code page and one additional vector used
for mapping all unassigned and invalid wards.

The method fetches two bytes at a time from the input data stream. The first
byte is used as a pointer into the index vector -- as shown in Figure 3.2. Each
vector number in the index vector is two bytes long. Therefore the first byte
from the input code point is multiplied by two before calculating the offset
into this index vector. The two-byte value found at the corresponding position
in the index vector gives the vector number in which to perform the second
lookup.

The second byte of the input code point is used as a pointer into the vector
specified by the index vector. When calculating the offset into this vector

there are two things to remember -- first, the indexing starts at zero, and
second, each entry is four bytes long (normalized GB18030 code point).

Figure 3.2 -S-Ch Host to GB18030-1 - Binary Table & Conversion

Method

For example in Figure 3.2 the input code point is X'6041' you would find the
two-byte vector number (X'0023') starting at byte position X'00C0' (which is
two times X'60') in the index vector. The resultant four-byte output code
point would be found in the specified vector number (X'0023') beginning at
byte position X'0104' (which is four times X'41').

The one additional vector (X'0001') mentioned for handling code points from
invalid or unassigned wards in the input data is used as follows. All of the 256
four-byte (normalized) code point values found in this vector are those of the
"Substitute" (SUB) character of the target code page (X'0000A1A1' for
GB18030-1). All of the entries in the index vector for unused and invalid
wards point to this "substitute" vector.

In the binary table, target four-bytes could be found at the following
positions.

Byte Value Position (hex) Position (decimal)

first 0 X'0023' * X'400' + X'0104' 35 * 1024 + 260 = 36100

second 0 X'0023' * X'400' + X'0104' +
1

35 * 1024 + 260 + 1 =
36101

third DF X'0023' * X'400' + X'0104' +
2

35 * 1024 + 260 + 2 =
36102

fourth A1 X'0023' * X'400' + X'0104' +
3

35 * 1024 + 260 + 3 =
36103

Denormalization:

Since the resultant single-bytes and double-bytes in the table have been
prefixed with leading zero-bytes, when composing the output string the
leading zero-bytes must be removed from the 4-byte output (three zero-
bytes for single-byte and two zero bytes for double-byte).

Conversion From GB18030 (CCSID 5488) to S-Ch Host (CCSID
1388)

Combined GB18030 Tables

Following is a proposal for GB to HOST conversion, as an alternative to
following the CDRA's EUC normalization method and the resulting table
structure. The normalization steps for detecting when input is a single,
double, or four-byte are followed. However, instead of normalizing the data as
in the EUC case, the assumption here is to take three branches in the logic
and come up with associated data structures. The data structures are linear
arrays, one for each of the input types; single, double and four-byte. The
indexing operations get into these arrays only for valid ranges of code points.
All other code points and broken multi-byte sequences are trapped and are
dealt with separately in the logic.

The high level logic is:

- Detect valid single, double or four-byte code points

- Use single-byte to HOST array for single-byte input

- Use double-byte to HOST array for double-byte input

- Use four-byte to HOST compact array for four-byte input

- All invalid and incomplete sequences dealt with separately

The main advantage of this method is to be able to keep the conversion
tables as compact as possible (especially for the 4-byte to 2-byte part) and be
able to get at the converted HOST code points in a relatively fast manner.

The single-byte to HOST array consists of a single 512-byte vector (256
Single-byte entries with a leading zero byte).

The double-byte GB to HOST array is made up of several 512-byte vectors.
The first vector (00) acts as an index into the rest of the table and the second
vector (01) is the "substitute" vector (see section 1.3d for more details).

The four-byte to HOST compact array is made up of:

 One vector, 1024 bytes long, first 256 bytes contain flag values,
remaining 768 bytes are unused.

 Four vectors, 1024 bytes long, each containing 256 4-byte index
values, and

 A long compact array containing all of the target two-byte HOST code
points.

Detect a Valid Single-, Double-, Four-byte or Invalid
code point

Refer to Figure 3.3 below. The method fetches one byte at a time from
the input stream. The first byte, b0, is checked to see whether it is in
the valid range of single-byte or start of a double-byte or four-byte
code point. If it is not, then a SUB code point (X'003F' in this case) is
inserted in the output data stream, and the pointer to the input stream
is incremented by one.

If b0 is in the valid range of single-byte (X'00’ to X’80'), then it is
passed to the 1-byte to 2-byte conversion as a valid single-byte code
point. The resultant two-byte output is placed in the output buffer, and
the pointer into the input stream is incremented by one.

If b0 is in the range X'81’ to X’FE' for a valid first byte of a double-byte
or four-byte code point, then the next byte, b1, is checked to see
whether it is in the valid range for a second byte of a double-byte
(X'40’ to X’7E' or X'80’ to X’FE') or a second byte of a four-byte (X'30’
to X’39') code point. If it is not, then the SUB code point X'003F' is
inserted into the output stream and the pointer into the input stream
is incremented by one. The pointer should point to byte b1 now. The
first byte b0 is considered to be the start of a broken sequence of
bytes in the input.

If b1 is within the valid range for a second byte of a double-byte code
point (X'40’ to X’7E' or X'80’ to X’FE'), the sequence b0 b1 (or the
input pointer) is passed to the 2-byte to 2-byte conversion. The
resultant two-byte output is placed in the output buffer, and the
pointer into the input stream is incremented by two.

If b1 is within the valid range for a second byte of a four-byte code
point (X'30’ to X’39'), then the next byte in the input stream, b2, is
checked to determine whether it is in the valid range for a third byte of
a four-byte code point (X'81’ to X’FE'). If it is not, then the SUB code
point X'003F' is inserted into the output stream and the pointer into
the input stream is incremented by one. The pointer should point to
byte b1 now. The first byte b0 is considered to be the start of a broken
sequence of bytes in the input.

If b2 is within the valid range for a third byte of four-byte code point,
the next input byte, b3, is checked to determine whether it is in the
valid range for the fourth byte (X'30’ to X’39'). If it is not, then the
SUB code point X'003F' is inserted into the output stream and the
pointer into the input stream is incremented by one. The pointer
should point to byte b1 now. The first byte b0 is considered to be the
start of a broken sequence of bytes in the input.

If b3 is within the valid range for the fourth byte then the sequence of
bytes, b0 b1 b2 b3, (or the input pointer) is passed to the 4-byte to 2-
byte conversion as valid four-byte code point.

The resultant two-byte output is placed in the output buffer, and the
conversion pointer into the input stream is incremented by four.

Figure 3.3: Input Filter for GB18030-1 stream

The above steps are repeated until there is no more data in the input
stream. If the input stream is exhausted during fetching of any of
second, third or fourth bytes in the above filtering logic, the conversion
logic cannot proceed, and there will be some unconverted data in the
input stream. The pointer into the input stream indicates the first of
the remaining bytes that have not been converted. An implementation
may choose to deal with such a situation in any suitable manner.

The insertion of X'003F' for the first byte of a broken sequence permits
locating where such a sequence might have been in the input by
examining the output stream.

Denormalization:

Since the resultant single-bytes in the table have been prefixed with a
leading zero-byte, when composing the output string the leading zero-

byte must be removed. Also, all the single-byte sub-strings and the
double-byte sub-strings must be bracketed with appropriate controls
(SO/SI).

Example: SO 41 41 40 40 SI 41 SO 72 01 SI

1-byte to 2-byte Conversion

File: 1570056C.G1M-R-D

This table with its associated method is used to find the target code
point when the source code point is a valid single-byte.

Table format:

The binary conversion table is created by using the existing CDRA
Method 5. Figure 3.4 illustrates the table format and the associated
method.

Figure 3.4: GB 1-byte to normalized S-Ch HOST 2-byte Table
and Method

The single-byte to normalized HOST table consists of a single 512-byte
vector (256 2-byte entries). The source code point is used as a pointer
to determine which 2 bytes in the vector represent the target code
point. Each target code point in the vector is two bytes long. Therefore
the input code point is multiplied by two before calculating the offset
into this vector. The binary conversion table is equivalent to existing
CDRA SU-R-D binary tables.

2-byte to 2-byte Conversion

File: 1570056C.G2M-R-D

This table is used to find the target code point when the source code
point is a valid double-byte.

Table format:

The binary conversion table is created by using CDRA Method 2, a two-
step vector lookup method.

The conversion table and the associated method are illustrated in
Figure 3.5 below.

This 2-byte to 2-byte table is made up of several 512-byte vectors.
The first vector contains 256 single-byte indices (vector numbers) into
the rest of the table, followed by 256 unused bytes. The second
vector, the "substitute" vector contains the mapping for code points in
unassigned wards, and is filled with 256 2-byte SUB code points
(X'FEFE' in this case). These are followed by one 512-byte vector for
each populated ward in the source encoding.

Figure 3.5: GB 2-bytes to normalized S-Ch HOST 2-bytes Table
and Method

The table is used as follows. The first byte of the input code point is
used as a pointer into the index vector. The single-byte value found at
the corresponding position in the index is the vector number in which
to perform the second lookup. The second byte of the input code point
is used as a pointer into the vector specified by the index vector.

For example in Figure 3.5 the input code point is X'E0C0', you would
find a vector number at the X'E0' position in the index vector. The
resultant double-byte output code point is found in the specified vector
number (x'61') beginning at position X'0180' (which is two times
X'C0'), counting into the vector starting at zero.

The vector for handling unassigned wards works as follows. All of the
256 double-byte code point values found in this vector (vector X'01')
are those of the "Substitute (SUB)" character of the target encoding
(X'FEFE' for S-Ch Host). All the entries in the index vector for
unassigned wards point to this "substitute" vector.

The binary conversion table is equivalent to existing CDRA MU-R-D
binary tables.

4-byte to 2-byte Conversion

File: 1570056C.G4M-R-D

Table format:

The binary conversion table format and the associated method are
detailed below.

This binary table consists of five 1024-byte vectors followed by a large
linear array corresponding to the table structure as shown in Figure
3.6. There will be one three-dimensional sub array for each first byte
(b0) value used in the table definition. Each sub array will contain the
minimum number of cells -- 12600 cells -- needed to map the valid
ranges of the second (b1, 10 values), the third (b2, 126 values) and
the fourth (b3, 10 values) bytes of four-byte code points in GB. Each
cell contains the corresponding 2-byte normalized HOST code point.

Figure 3.6: GB 4-byte to S-Ch HOST 2-byte table structure

The first 256 bytes of this binary table, called the b0_used_array, is
used to check if a particular value of b0 byte is used in the conversion
table definition. The next 768 bytes (=3*256) are unused (for now,
may change later). These are followed by four 1024-byte vectors --
K40, K41, K42, and K43. These vectors contain values used in
computing an index into the rest of the table to get at the output code
point.

Figure 3.7: b0_used_array

For a given 4-byte code point (b0 b1 b2 b3), if the b0 is not used then
there will not be a sub array populated for it. Therefore, before trying
to find the target code point, the b0 value is checked to confirm that it
has been used. This is done using the b0_used_array shown in Figure
3.7. If the entry at the appropriate location in the b0_used_array is 01
it is valid, if it is 00 it is not used. If it is a 00, then the code point (b0
b1 b2 b3) is unassigned and its mapping is not defined in the
conversion table, a double-byte SUB code point (X'FEFE') is inserted
into the output data stream. The pointer into the input stream is
incremented by 4 in the main filter logic described earlier

If b0 has been used, then proceed with the steps to find target code
point, as illustrated in Figure 3.8, and described below.

Get the computed index values from the four index vectors, K40, K41,
K42, and K43 using b0, b1, b2, and b3 byte values of the input code
point respectively. Each byte of the valid four-byte source code point is
used as an offset into the corresponding K4x table to get a part of the
index value. When calculating the offset into these vectors there are
two things to remember; first, you must begin counting at zero, and
second, each entry is four bytes long. This means you have multiply
the b0, b1, b2, or b3 by four before looking into the vectors. The
resulting 4 values are added to get the location of the first byte of the
target code point in the binary table.

The values in the index vectors are computed based on the following
formulae:

 K40(b0) = 25200 * (block number assigned to the b0 group)

 K41(b1) = 2* (b1 - X'30') * (126 * 10)

 K42(b2) = 2* (b2 - X'81') * 10

 K43(b3) = 2* (b3 - X'30')

Figure 3.8: Use of Index Arrays in GB 4-byte to normalized S-Ch
HOST 2-byte conversion method

This eliminates the multiplication steps during conversion execution,
improving the performance. These values are added together to
calculate the index (or pointer) to the first byte of the cell containing
the output code point (see Figure 3.6). Figure 3.8 shows the mapping
table of Figure 6 in a linearized structure.

Also, note that entries in these index arrays for illegal values of b0, b1,
b2, or b3, are filled with zero-bytes. They will never be accessed if the
filter logic has been followed correctly. Figure 3.8 also shows a
possible entry for b0 = X'FD' -- Private Use Area - as a possible fifth
block. The binary table currently defined contains mapping tables only
for b0 values of X'81' to X'84', as defined in the conversion
requirements received from Chinese Government sources.

The two bytes of the output code point are inserted into the output
data stream. The pointer into the input data stream is incremented by
four in the main filter logic described earlier.

Section 5: Annexes

ANNEX A - CCSIDs for Phase 1 and
Phase 2 (as of 2001-06-14)
Note that complete definitions for all CCSIDs can be found in the CCSID
repository.

GB 18030 - Phase 1

CCSID

Decimal Hex

ESID

Comments

05488 1570 2A00 S-ch PC Data mixed for GB 18030

05487 156F 2900
S-ch 4 byte part PC Data for GB 18030(Fixed

UCS2 Subset)

09577 2569 2200
S-ch double-byte PC Data double-byte part of
GB 18030 (Fixed UCS2 Subset) (*Four-byte

SUB to be used)

09444 24E4 4105 S-ch single-byte part of GB 18030

GB 18030 - Phase 2

CCSID

Decimal Hex

ESID

Comments

01392 0570 2A00 S-ch PC Data mixed for GB 18030

01391 056F 2900
S-ch PC Data 4-byte part of GB

18030(Includes UCS Plane 1-16, and Plane 0
subset)

Host Mixed S-Ch Extended (for GB18030
support)

S-Ch DBCS-Host Data GBK mixed, all GBK character set and other
growing chars(GB18030 / Unicode 3.0)

CCSID

Decimal Hex

ESID

Comments

01388 056C 1301 S-Ch Host mixed for GB 18030-1

13124 3344 1100 S-Ch Host single-byte part of GB 18030-1

04933 1345 1200 S-Ch Host double-byte part of GB 18030-1

http://www-01.ibm.com/software/globalization/cdra/appendix_c.html
http://www-01.ibm.com/software/globalization/cdra/appendix_c.html

09580 256C 1301 S-Ch Host mixed for GBK

00836 0344 1100 S-CH Host single-byte part of GBK

13125 3345 1200 S-Ch Host double-byte part of GBK

	Table of Contents
	Introduction
	What is Unicode?
	What is GB18030?
	Conversion Between GB18030 and Unicode
	UTF-16 <-> GB18030 (1, 2 and 4-byte)
	Text Format Tables
	Combined GB18030 Tables
	Component GB18030 Tables

	Converting from UTF-16 to GB18030
	Combined GB18030 Tables
	2-byte to 4-byte Conversion
	Method 2X

	Components for GB18030
	Introduction
	Conversion Logic
	2-byte to 1-byte Conversion
	2-byte to 2-byte Conversion
	2-byte to 4-byte conversion
	Method 2X

	Converting from GB18030 to UTF-16
	Combined GB18030 Tables
	Introduction
	Detecting Valid (single, Double, and Four-byte) or Invalid Code Points
	1-byte to 2-byte Conversion
	2-byte to 2-byte Conversion
	4-byte to 2-byte Conversion

	Component GB18030 Tables
	Introduction
	GB18030 to UTF-16 Conversion Logic
	1-byte to 2-byte Conversion
	2-byte to 2-byte Conversion
	4-byte to 2-byte Conversion

	Transformations
	Transformation between GB18030 and UTF-32
	Transformations between UTF-32 and UTF-16 Encoding Forms of Unicode

	Section 3: Conversions Between Unicode and Host Encodings
	Conversion Between UCS-2 (CCSID 17584) <--> Host(1 and 2-byte, CCSID 1388)
	Text Format Tables
	Combined GB18030 Host Tables
	Component GB18030 Host Tables

	Conversion From UCS-2 (CCSID 17584) to S-Ch Host Extended (CCSID 1388)
	Combined S-Ch Host Conversion
	2-byte To 2-byte Conversion

	Component S-Ch Host Conversions
	Introduction
	UCS-2 to S-Ch Host conversion Logic
	2-byte to 1-byte Conversion
	2-byte to 2-byte Conversion

	Conversion From S-Ch Host Extended (CCSID 1388) to UCS-2 (CCSID 17584)
	Combined S-Ch Host
	2-byte to 2-byte Conversion

	Components S-Ch Host (z/OS Usage)
	Introduction
	S-Ch to UCS-2 Conversion Logic
	1-byte to 2-byte Conversion
	2-byte to 2-byte Conversion

	Section 4: Conversions Between GB18030 and Host Encodings
	S-Ch Host Extended (CCSID 1388) <-> GB18030 (1,2 and 4-byte, CCSID 5488)
	Introduction
	Conversion From S-Ch Host (CCSID 1388) to GB18030 (CCSID 5488)
	Combined GB18030 Tables
	2-byte to 4-byte Conversion

	Conversion From GB18030 (CCSID 5488) to S-Ch Host (CCSID 1388)
	Combined GB18030 Tables
	Detect a Valid Single-, Double-, Four-byte or Invalid code point
	1-byte to 2-byte Conversion
	2-byte to 2-byte Conversion
	4-byte to 2-byte Conversion

	Section 5: Annexes
	ANNEX A - CCSIDs for Phase 1 and Phase 2 (as of 2001-06-14)
	Note that complete definitions for all CCSIDs can be found in the CCSID repository.
	GB 18030 - Phase 1
	ESID
	Comments
	2A00
	S-ch PC Data mixed for GB 18030
	2900
	S-ch 4 byte part PC Data for GB 18030(Fixed UCS2 Subset)
	2200
	S-ch double-byte PC Data double-byte part of GB 18030 (Fixed UCS2 Subset) (*Four-byte SUB to be used)
	4105
	S-ch single-byte part of GB 18030
	GB 18030 - Phase 2
	ESID
	Comments
	2A00
	S-ch PC Data mixed for GB 18030
	2900
	S-ch PC Data 4-byte part of GB 18030(Includes UCS Plane 1-16, and Plane 0 subset)
	Host Mixed S-Ch Extended (for GB18030 support)
	ESID
	Comments
	1301
	S-Ch Host mixed for GB 18030-1
	1100
	S-Ch Host single-byte part of GB 18030-1
	1200
	S-Ch Host double-byte part of GB 18030-1
	1301
	S-Ch Host mixed for GBK
	1100
	S-CH Host single-byte part of GBK
	1200
	S-Ch Host double-byte part of GBK

