
ICU User Guide

International Components For Unicode

Version 3.4

1 ICU v3.4 User Guide

Table of Contents
Introduction to ICU..4
Software Internationalization...10
Unicode Basics...16
ICU Services.. 26
ICU Architectural Design.. 37
C/POSIX Migration... 52
Strings.. 57
Properties... 70
CharacterIterator Class...77
UText... 81
UnicodeSet...90
Regular Expressions...94
Conversion Basics..103
Using Converters... 106
Conversion Data...120
Compression.. 134
Locale Class... 136
Locale Examples.. 148
Resource Management...150
Localizing with ICU...167
Date/Time Services..177
Calendar Class... 180
Calendar Examples.. 185
ICU TimeZone Classes.. 187
Date and Time Zone Examples..190
Universal Time Scale...191
Formatting and Parsing.. 196
Formatting Numbers.. 200
RBNF Rules Examples.. 207
Formatting Dates and Times.. 209
Format Date and Time Examples.. 214
Formatting Messages... 216
Message Format Examples.. 219
Transformations... 224
Case Mappings...225
The Bidi Algorithm..227
Normalization.. 230
Normalization Examples..233

2 ICU v3.4 User Guide

Transforms... 234
Transform Rule Tutorial.. 261
Collation Introduction..275
API Details...278
Collation Concepts...287
ICU Collation Service Architecture...304
Collation Examples..317
Collation Customization.. 322
ICU Search String Service... 338
Collation FAQ..344
Text Element Boundary Analysis.. 346
LayoutEngine... 361
Data Management.. 364
Packaging ICU... 378
Java Native Interface (JNI) ... 383
How To Use ICU4C From COBOL...386
Coding Guidelines... 396
Synchronization Issues...424
Editing the ICU User Guide ..426
ICU FAQs.. 432
Glossary... 439

3 ICU v3.4 User Guide

Introduction to ICU
As companies integrate e-commerce on a global scale into their fundamental business
processes, their prospective customers, established customers, and active partners can
take advantage of increased revenue and decreased expenses through software
internationalization. They also can improve customer communications and increase
savings.

Meeting the Challenge of Globalization

Internationalized software results in an increase in:

In today's business climate of globalization, companies must compete in a new Internet-
enabled business climate of constant change and compressed time frames. Their
customers expect reliable service and support.

Taking Advantage of Internationalized Software

Companies need to establish a better linkage between their global business processes and
the underlying supportive IT processes. If they want to deliver this new flexibility and
agility, they must depend on the software internationalization process.

The software internationalization development process uses libraries (such as the
International Components for Unicode (ICU) libraries), to enable one single program to
work with text in any language for any place in the world. For example, instead of having
separate software versions for ten different countries, the ICU services can create one
version that works seamlessly and transparently in all of them.

The ICU components are an integral part of software development because they hide the
cultural nuances and technical complexities of locale-specific software requirements.
These complexities provide critical functionality for applications, but the application
developer does not need to exert a huge effort or incur high costs to build them.

Justifying the Investment

The business case needed to justify the investment in software internationalization is
compelling when the investment is amortized over a number of projects. In the fast-paced
and rapidly-evolving world of traditional and evolving e-businesses, these international
components provide a firm ground on which companies, partners and suppliers can build
their business transactions. They can share competitive information to help gain a
significant economic advantage.

The ICU services deliver proven value by lowering the cost required to integrate with
disparate applications, systems and data sources on a regional and global scale. It
provides value to a company's IT investment by lowering IT complexity, risk,
maintenance costs and training costs. It also enhances organizational flexibility, leverages

4 ICU v3.4 User Guide

existing assets, and improves planning and decision-making. It enables organizational
learning, process-driven synchronization, event-driven evaluation and decision-making.

Background and History of ICU

ICU was originally developed by the Taligent company. The Taligent team later became
the Unicode group at the IBM® Globalization Center of Competency in Cupertino. The
team has received significant input from the open source community worldwide.

Java™ classes developed at Taligent were incorporated into the Java Development Kit
(JDK) 1.1 developed by Sun® Microsystems. The classes were then ported to C++ and
later some classes were also ported to C. The classes provide internationalization utilities
for writing global applications in C, C++, or Java programming languages.

ICU for Java (ICU4J) includes enhanced versions of some of these classes, plus
additional classes that complement the classes in the JDK. C and C++ versions of the
same international functionality are available in ICU for C (ICU4C). The APIs differ
slightly due to language differences and new functionality. For example, ICU4C includes
a character converter API.

ICU4J and ICU4C keep the same development goals. They both track additions to the
Java internationalization APIs and implement the latest released Unicode standard. They
also maintain a single, portable source code base.

All of us in the ICU and open source group appreciate the time you are taking to
understand our technology. We have put our best collective effort into these open
components, and look forward to your questions, comments and suggestions.

Downloading ICU

Download the most recent version of ICU in one of the following ways:

1. From the compressed snapshot file

2. From CVS directly

When downloading from CVS, be sure that to checkout using the correct release tag.
Without the correct release tag, users might get the current development version of ICU
instead. However, this is not a problem for those individuals who are developing ICU or
who want to view the latest features and fixes. It is important to make certain that the
whole source tree was received by checking the directories. This is described in detail in
the readme.html document.

The ICU README changes as the code changes. However, these changes are not always
in parallel to code changes. README changes are in sync with formal releases.

To obtain the most recent information about the ICU documentation, use one of the
following methods:

5 ICU v3.4 User Guide

Permission to Reprint IBM Copyrighted Publications

INTERNATIONAL BUSINESS MACHINES CORPORATION ARMONK, NEW
YORK 10594

PERMISSION TO REPRINT IBM COPYRIGHTED PUBLICATIONS

IBM grants permission to reproduce the requested copyrighted publication owned by
INTERNATIONAL BUSINESS MACHINES CORPORATION under the conditions
specified.

Such reproduction must be accompanied by the following credit line: "Reprinted by
permission from International Business Machines Corporation copyright (year)" which
should include the years in the original copyright notice for publication named. The credit
line normally should appear on the page where the reproduction appears either under the
title or as a footnote.

When more than one IBM publication is excerpted in the same publication, a
consolidated credit paragraph may be used on the title page, or in a conveniently viewable
manner, listing the titles, corresponding copyright notices, and references to the points
where excerpts appear.

It is the understanding of INTERNATIONAL BUSINESS MACHINES CORPORATION
that the purpose for which its publications are being reproduced is accurate and true as
stated in your attached request.

Permission to quote from or reprint IBM publications is limited to the purpose and
quantities originally requested and must not be construed as a blanket license to use the
material for other purposes or to reprint other IBM copyrighted material.

IBM reserves the right to withdraw permission to reproduce copyrighted material
whenever, in its discretion, it feels that the privilege of reproducing its material is being
used in a way detrimental to its interest or the above instructions are not being followed
properly to protect its copyright.

No permission is granted to use trademarks of International Business Machines
Corporation and its affiliates apart from the incidental appearance of such trademarks in
the titles, text, and illustrations of the named publications. The appearance should not be
of a manner which might cause confusion of origin or appear to endorse non-IBM
products. Any proposed use of trademarks apart from such incidental appearance requires
separate approval in writing and ordinarily cannot be given.

THIS PERMISSION IS PROVIDED WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

6 ICU v3.4 User Guide

Notices

This information was developed for products and services offered in the U.S.A. IBM
might not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program, or
service is not intended to state or imply that only that IBM product, program, or service
may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country
where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS
MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states
do not allow disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply toyou.

This information could include technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these changes will be incorporated in
new editions of the information. IBM may make improvements and/or changes in the
product(s) and/or the program(s) described in this information at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience
only and do not in any manner serve as an endorsement of those Web sites. The materials
at those Web sites are not part of the materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

7 ICU v3.4 User Guide

appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Corporation
Department LZKS
11400 Burnet Road
Austin, TX 78758
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including
in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it
are provided by IBM under terms of the IBM Customer Agreement, IBM International
Program License Agreement, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary significantly.
Some measurements may have been made on development-level systems and there is no
guarantee that these measurements will be the same on generally available systems.
Furthermore, some measurement may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM has not
tested those products and cannot confirm the accuracy of performance, compatibility or
any other claims related to non-IBM products. Questions on the capabilities of non-IBM
products should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to
change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any
similarity to the names and addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM, for

8 ICU v3.4 User Guide

the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for which
the sample programs are written.

These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color illustrations may
not appear.

Trademarks

IBM is a trademark of International Business Machines Corporation in the United States,
other countries, or both.

Microsoft, Windows, Windows NT, and OpenType are registered trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks or logos are trademarks of Sun Microsystems, Inc.

Other company, product or service names may be the trademarks or service marks of
others.

9 ICU v3.4 User Guide

Software Internationalization
Overview of Software Internationalization

Developing globalized software is a continuous balancing act as software developers and
project managers inadvertently underestimate the level of effort and detail required to
create foreign-language software releases.

Software developers must understand the ICU services to design and deploy successful
software releases. The services can save ICU users time in dealing with the kinds of
problems that typically arise during critical stages of the software life cycle.

In general, the standard process for creating globalized software includes
"internationalization," which covers generic coding and design issues, and "localization,"
which involves translating and customizing a product for a specific market.

Software developers must understand the intricacies of internationalization since they
write the actual underlying code. How well they use established services to achieve
mission objectives determines the overall success of the project. At a fundamental level,
code and feature design affect how a product is translated and customized. Therefore,
software developers need to understand key localization concepts.

From a geographic perspective, a locale is a place. From a software perspective, a locale
is an ID used to select information associated with a a language and/or a place. ICU
locale information includes the name and identifier of the spoken language, sorting and
collating requirements, currency usage, numeric display preferences, and text direction
(left-to-right or right-to-left, horizontal or vertical).

General locale-sensitive standards include keyboard layouts, default paper and envelope
sizes, common printers and monitor resolutions, character sets or encoding ranges, and
input methods.

ICU Services Overview

The ICU services support all major locales with language and sub-language pairs. The
sub-language generally corresponds to a country. One way to think of this is in terms of
the phrase "X language as spoken in Y country." The way people speak or write a
particular language might not change dramatically from one country to the next (for
example, German is spoken in Austria, Germany, and Switzerland). However, cultural
conventions and national standards often differ a great deal.

A key advantage to using the ICU services is the net result in reduced time to market. The
translation of the display strings is bundled in separate text files for translation. A
programmer team with translators no longer needs to search the source code in order to
rewrite the software for each country and language.

10 ICU v3.4 User Guide

Internationalization and Unicode

Unicode enables a program to use a standard encoding scheme for all textual data within
the program's environment. Conversion has to be done with incoming and outgoing data
only. Operations on the text (while it is in the environment) are simplified since you do
not have to keep track of the encoding of a particular text.

Unicode supports multilingual data since it encodes characters for all world languages.
You do not have to tag pieces of data with their encoding to enable the right characters,
and you can mix languages within a single piece of text.

Some of the advantages of using ICU to internationalize your program include the
following:

• It can handle text in any language or combination of languages.

• The source code can be written so that the program can work for many locales.

• Configurable, pluggable localization is enabled.

• Multiple locales are supported at the same time.

• Non-technical people can be given access to information and you don't have to open
the source code to them.

• Software can be developed so that the same code can be ported to various platforms.

Project Management Tips for Internationalizing Software

The following two processes are key when managing, developing and designing a
successful internationalization software deliverable:

1. Separate the program's executable code from its UI elements.

2. Avoid making cultural assumptions.

Keep static information (such as pictures, window layouts) separate from the program
code. Also ensure that the text which the program generates on the fly (such as numbers
and dates) comes out in the right language. The text must be formatted correctly for the
targeted user community.

Make sure that the analysis and manipulation of both text and kinds of data (such as
dates), is done in a manner that can be easily adapted for different languages and user
communities. This includes tasks such as alphabetizing lists and looking for line-break
positions.

Characters must display on the screen correctly (the text's storage format must be
translated to the proper visual images). They must also be accepted as input (translated
from keystrokes, voice input or another kind of input into the text's storage format). These
processes are relatively easy for English, but quite challenging for other languages.

11 ICU v3.4 User Guide

Separating Executable Code from UI Elements

Good software design requires that the programming code implementing the user
interface (UI) be kept separate from code implementing the underlying functionality. The
description of the UI must also be kept separate from the code implementing it.

The description of the UI contains items that the user sees, including the various
messages, buttons, and menu commands. It also contains information about how dialog
boxes are to be laid out, and how icons, colors or other visual elements are to be used. For
example, German words tend to be longer since they contains grammatical suffixes that
English has lost in the last 800 years. The following table shows how word lengths can
differ among languages.

English German Cyrillic-Serbian
cut ausschneiden иисеци
copy kopieren копирај
paste einfügen залепи

The description of the UI, especially user-visible pieces of text, must be kept together and
not embedded in the program's executable code. ICU provides the ResourceBundle
services for this purpose.

Avoiding Cultural/Hidden Assumptions

Another difficulty encountered when designing and implementing code is to make it
flexible enough to handle different ways of doing things in other countries and cultures.
Most programmers make unconscious assumptions about their user's language and
customs when they design their programs. For example, in Thailand, the official calendar
is the Buddhist calendar and not the Gregorian calendar.

These assumptions make it difficult to translate the user interface portion of the code for
some user communities without rewriting the underlying program. The ICU libraries
provide flexible APIs that can be used to perform the most common and important tasks.
They contain pre-built supporting data that enables them to work correctly in 75
languages and more than 200 locales. The key is understanding when, where, why, or
how to use the APIs effectively.

The remainder of this section provides an overview of some cultural and hidden
assumptions components:

• Numbers and Dates

• Messages

• Measuring Units

• Alphabetical Order of Characters

12 ICU v3.4 User Guide

• Character Format

• Text Input and Layout

• Text Manipulation

• Date/Time Formatting

• Distributed Locale Support

• LayoutEngine

Numbers and Dates

Numbers and dates are represented in different languages. Do not implement routines for
converting numbers into strings, and do not call low-level system interfaces like sprintf
() that do not produce language-sensitive results. Instead, see how ICU's NumberFormat
and DateFormat services can be used more effectively.

Messages

Be careful when formulating assumptions about how individual pieces of text are used
together to create a complete sentence (for example, when error messages are generated) .
The elements might go together in a different order if the message is translated into a new
language. ICU provides MessageFormat and ChoiceFormat to help with these
occurrences.

There also might be situations where parts of the sentence change when other
parts of the sentence also change (selecting between singular and plural nouns
that go after a number is the most common example).

Measuring Units

Numerical representations can change with regard to measurement units and currency
values. Currency values can vary by country. A good example of this is the representation
of $1,000 dollars. This amount can represent either U.S. or Canadian dollar values. US
dollars can be displayed as USD while Canadian dollars can be displayed as CAD,
depending on the locale. In this case, the displayed numerical quantity might change, and
the number itself might also change. NumberFormat provides some support for this.

Alphabetical Order of Characters

13 ICU v3.4 User Guide

All languages (even those using the same alphabet) do not necessarily have the same
concept of alphabetical order. Do not assume that alphabetical order is the same as the
numerical order of the character's code-point values. In practice, 'a' is distinct from 'A' and
'b' is distinct from 'B'. Each has a different codepoint. This means that you can not use a
bit-wise lexical comparison (such as what strcmp() provides), to sort user-visible lists.

Not all languages interpret the same characters as equivalent. If a character's case is
changed it is not always a one-to-one mapping. Accent differences, the presence or
absence of certain characters, and even spelling differences might be insignificant when
determining whether two strings are equal. The Collator services provide significant help
in this area.

Characters

A character does not necessarily correspond to a single code-point position in the backing
store. All languages might not have the same definition of a word, and might not find that
any group of characters separated by a white space is an acceptable approximation for the
definition of a word. ICU provides the BreakIterator services to help locate boundaries or
when counting units of text.

When checking characters for membership in a particular class, do not list the specific
characters you are interested in, and do not assume they come in any particular order in
the encoding scheme. For example, /A-Za-z/ does not mean all letters in most European
languages, and /0-9/ does not mean all digits in many writing systems. This also holds
true when using C interfaces such as isupper() and islower. ICU provides a large
group of utility functions for testing character properties, such as u_isupper and
u_islower().

Text Input and Layout

Do not assume anything about how a piece of text might be drawn on the screen,
including how much room it takes up, the direction it flows, or where on the screen it
should start. All of these text elements vary according to language. As a result, there
might not be a one-to-one relationship between characters and keystrokes. One-to-many,
many-to-one, and many-to-many relationships between characters and keystrokes all
occur in real text in some languages.

Text Manipulation

Do not assume that all textual data, which the program stores and manipulates, is in any
particular language or writing system. ICU provides many methods that help with text

14 ICU v3.4 User Guide

storage. The UnicodeString class and u_strxxx functions are provided for Unicode-based
character manipulation. For example, when appending an existing Unicode character
buffer, characters can be removed or extracted out of the buffer.

A good example of text manipulation is the Rosetta stone. The same text is written on it
in Hieroglyphic, Greek and Demotic. ICU provides the services to correctly process
multi-lingual text such as this correctly.

Date/Time Formatting

Time can be determined in many units, such as the lengths of months or years, which day
is the first day of the week, or the allowable range of values like month and year (with
DateFormat). It can also determine the time zone you are in (with TimeZone), or when
daylight-savings time starts. ICU provides the Calendar services needed to handle these
issues.

This example shows how a user interface element can be used to
increment or decrement the time field value.

Distributed Locale Support

In most server applications, do not assume that all clients connected to the server interact
with their users in the same language. Also do not assume that a session stops and restarts
whenever a user speaking one language replaces another user speaking a different
language. ICU provides sufficient flexibility for a program to handle multiple locales at
the same time.

For example, a Web server needs to serve pages to different users, languages, and date
formats at the same time.

LayoutEngine

The ICU LayoutEngine is an Open Source library that provides a uniform, easy to use
interface for preparing complex scripts or text for display. The Latin script, which is the
most commonly used script among software developers, is also the least complex script to
display especially when it is used to write English. Using the Latin script, characters can
be displayed from left to right in the order that they are stored in memory. Some scripts
require rendering behavior that is more complicated than the Latin script. We refer to
these scripts as "complex scripts" and to text written in these scripts as "complex text."

15 ICU v3.4 User Guide

Unicode Basics
Introduction to Unicode

Unicode is a standard that precisely defines a character set as well as a small number of
encodings for it. It enables you to handle text in any language efficiently. It allows a
single application executable to work for a global audience. ICU, like Java™, Microsoft®
Windows NT™, Windows™ 2000 and other modern systems, provides
Internationalization solutions based on Unicode.

This chapter is intended as an introduction to codepages in general and Unicode in
particular. For further information, see:

• The Web site of the Unicode consortium

• What is Unicode?

• IBM® Globalization

Go to the online ICU demos to see how a Unicode-based server application can handle
text in many languages and many encodings.

Traditional Character Sets and Unicode

Representing text-format data in computers is a matter of defining a set of characters and
assigning each of them a number and a bit representation. Underlying this basic idea are
three related concepts:

1. A character set or repertoire is an unordered collection of characters that can be
represented by numeric values.

2. A coded character set maps characters from a character set or repertoire to numeric
values.

3. A character encoding scheme defines the representation of numeric values from one or
more coded character sets in bits and bytes.

For simple encodings such as ASCII, the last two concepts are basically the same: ASCII
assigns 128 characters and control codes to consecutive numbers from 0 to 127. These
characters and control codes are encoded as simple, unsigned, binary integers. Therefore,
ASCII is both a coded character set and a character encoding scheme.

ASCII only encodes 128 characters, 33 of which are control codes rather than graphic,
displayable characters. It was designed to represent English-language text for an
American user base, and is therefore insufficient for representing text in almost any
language other than American English. In fact, most traditional encodings were limited to
one or few languages and scripts.

ASCII offered a natural way to extend it: Designed in the 1960's to work in systems with
7-bit bytes while most computers and Internet protocols since the 1970's use 8-bit bytes,

16 ICU v3.4 User Guide

the extra bit allowed another 128 byte values to represent more characters. Various
encodings were developed that supported different languages. Some of these were based
on ASCII, others were not.

Languages such as Japanese need to encode considerably more than 256 characters.
Various encoding schemes enable large character sets with thousands or tens of thousands
of characters to be represented. Most of those encodings are still byte-based, which means
that many characters require two or more bytes of storage space. A process must be
developed to interpret some byte values.

Various character sets and encoding schemes have been developed independently, cover
only one or few languages each, and are incompatible. This makes it very difficult for a
single system to handle text in more than one language at a time, and especially difficult
to do so in a way that is interoperable across different systems.

Generally, the minimum requirement for the interoperable exchange of text data is that
the encoding (character set & encoding scheme) must be properly specified in the
document and in the protocol. For example, email/SMTP and HTML/HTTP provide the
means to specify the "charset", as it is called in Internet standards. However, very often
the encoding is not specified, specified incorrectly, or the sender and receiver disagree on
its implementation.

The ISO 2022 encoding scheme was created to store text in many different languages. It
allows other encodings to be embedded by first announcing them and then switching
between them. Full support for all features and possible encodings with ISO 2022
requires complicated processing and the need to support many encodings. For East Asian
languages, subsets were developed that cover only one language or a few at a time, but
they are much more manageable. ISO 2022 is not well-suited for use in internal
processing. It is designed for data exchange.

Glyphs versus Characters

Programmers often need to distinguish between characters and glyphs. A character is the
smallest semantic unit in a writing system. It is an abstract concept such as the letter A or
the exclamation point. A glyph is the visual presentation of one or more characters, and is
often dependent on adjacent characters.

There is not always a one-to-one mapping between characters and glyphs. In many
languages (Arabic is a prime example), the way a character looks depends heavily on the
surrounding characters. Standard printed Arabic has as many as four different printed
representations (glyphs) for every letter of the alphabet. In many languages, two or more
letters may combine together into a single glyph (called a ligature), or a single character
might be displayed with more than one glyph.

Despite the different visual variants of a particular letter, it still retains its identity. For
example, the Arabic letter heh has four different visual representations in common use.
Whichever one is used, it still keeps its identity as the letter heh. It is this identity that
Unicode encodes, not the visual representation. This also cuts down on the number of

17 ICU v3.4 User Guide

independent character values required.

Overview of Unicode

Unicode was developed as a single-coded character set that contains support for all
languages in the world. The first version of unicode used 16-bit numbers, which allowed
for encoding 65,536 characters without complicated multibyte schemes. With the
inclusion of more characters, and following implementation needs of many different
platforms, Unicode was extended to allow more than one million characters. Several
other encoding schemes were added. This introduced more complexity into the Unicode
standard, but far less than managing a large number of different encodings.

Starting with Unicode 2.0 (published in 1996), the Unicode standard began assigning
numbers from 0 to 10ffff16, which requires 21 bits but does not use them completely. This
gives more than enough room for all written languages in the world. The original
repertoire covered all major languages commonly used in computing. Unicode continues
to grow, and it includes more scripts.

The design of Unicode differs in several ways from traditional character sets and
encoding schemes:

• Its repertoire enables users to include text efficiently in almost all languages within a
single document.

• It can be encoded in a byte-based way with one or more bytes per character, but the
default encoding scheme uses 16-bit units that allow much simpler processing for all
common characters.

• Many characters, such as letters with accents and umlauts, can be combined from the
base character and accent or umlaut modifiers. This combining reduces the number of
different characters that need to be encoded separately. "Precomposed" variants for
characters that existed in common character sets at the time were included for
compatibility.

• Characters and their usage are well-defined and described. While traditional character
sets typically only provide the name or a picture of a character and its number and byte
encoding, Unicode has a comprehensive database of properties available for download.
It also defines a number of processes and algorithms for dealing with many aspects of
text processing to make it more interoperable.

The early inclusion of all characters of commonly used character sets makes Unicode a
useful "pivot" point for converting between traditional character sets, and makes it
feasible to process non-Unicode text by first converting into Unicode, process the text,
and convert it back to the original encoding without loss of data.

18 ICU v3.4 User Guide

The first 128 Unicode code point values are assigned to the same characters as in
US-ASCII. For example, the same number is assigned to the same character. The
same is true for the first 256 code point values of Unicode compared to ISO 8859-
1 (Latin-1) which itself is a direct superset of US-ASCII. This makes it easy to
adapt many applications to Unicode because the numbers for many syntactically
important characters are the same.

Character Encoding Forms and Schemes for Unicode

Unicode assigns characters a number from 0 to 10FFFF16, giving enough elbow room to
allow for unambiguous encoding of every character in common use. Such a character
number is called a "code point".

Unicode code points are just non-negative integer numbers in a certain range.
They do not have an implicit binary representation or a width of 21 or 32 bits.
Binary representation and unit widths are defined for encoding forms.

For internal processing, the standard defines three encoding forms, and for file storage
and protocols, some of these encoding forms have encoding schemes that differ in their
byte ordering. The difference between an encoding form and an encoding scheme is that
an encoding form maps the character set codes to values that fit into internal data types
(like a short in C), while an encoding scheme maps to bits and bytes. For traditional
encodings, they are the same since the encoding forms already map to bytes

. The different Unicode encoding forms are optimized for a variety of different uses:

• UTF-16, the default encoding form, maps a character code point to either one or two
16-bit integers.

• UTF-8 is a byte-based encoding that offers backwards compatibility with ASCII-
based, byte-oriented APIs and protocols. A character is stored with 1, 2, 3, or 4 bytes.

• UTF-32 is the simplest but most memory-intensive encoding form: It uses one 32-bit
integer per Unicode character.

• SCSU is an encoding scheme that provides a simple compression of Unicode text. It is
designed only for input and output, not for internal use.

ICU uses UTF-16 internally. ICU 2.0 fully supports supplementary characters (with code
points 1000016..10FFFF16. Older versions of ICU provided only partial support for
supplementary characters.

For input/output, character encoding schemes define a byte serialization of text. UTF-8 is
itself both an encoding form and an encoding scheme because it is byte-based. For each
of UTF-16 and UTF-32, there are two variants defined: one that serializes the code units
in big-endian byte order (most significant byte first), and one that serializes the code units
in little-endian byte order (least significant byte first). The corresponding encoding
schemes are called UTF-16BE, UTF-16LE, UTF-32BE, and UTF-32LE.

19 ICU v3.4 User Guide

The names "UTF-16" and "UTF-32" are ambiguous. Depending on context, they
refer either to character encoding forms where 16/32-bit words are processed
and are naturally stored in the platform endianness, or they refer to the IANA-
registered charset names, i.e., to character encoding schemes or byte
serializations. In addition to simple byte serialization, the charsets with these
names also use optional Byte Order Marks (see Serialized Formats below).

Overview of UTF-16

The default encoding form of the Unicode Standard uses 16-bit code units. Code point
values for the most common characters are in the range of 0 to FFFF16 and are encoded
with just one 16-bit unit of the same value. Code points from 1000016 to 10FFFF16 are
encoded with two code units that are often called "surrogates", and they are called a
"surrogate pair" when, together, they correctly encode one Unicode character. The first
surrogate in a pair must be in the range D80016 to DBFF16, and the second one must be in
the range DC0016 to DFFF16. Every Unicode code point has only one possible UTF-16
encoding with either one code unit that is not a surrogate or with a correct pair of
surrogates. The code point values D80016 to DFFF16 are set aside just for this mechanism
and will never, by themselves, be assigned any characters.

Most commonly used characters have code points below FFFF16, but Unicode 3.1 assigns
more than 40,000 supplementary characters that make use of surrogate pairs in UTF-16.

Note that comparing UTF-16 strings lexically based on their 16-bit code units does not
result in the same order as comparing the code points. This is not usually an issue since
only rarely-used characters are affected. Most processes do not rely on the same results in
such comparisons. Where necessary, a simple modification to a string comparison can be
performed that still allows efficient code unit-based comparisons and makes them
compatible with code point comparisons. ICU has C and C++ API functions for this.

Overview of UTF-8

To meet the requirements of byte-oriented, ASCII-based systems, the Unicode Standard
defines UTF-8. UTF-8 is a variable-length, byte-based encoding that preserves ASCII
transparency.

UTF-8 maintains transparency for all of the ASCII code values (0..127). These values do
not appear in any byte of a transformed result except as the direct representation of the
ASCII values. Thus, ASCII text is also UTF-8 text.

Characteristics of UTF-8 include:

• Unicode code points 0 to 7F16 are each encoded with a single byte of the same value.
Therefore, ASCII characters take up 50% less space with UTF-8 encoding than with
UTF-16.

• All other code points are encoded with multibyte sequences, with the first byte (lead
byte) indicating the number of bytes that follow (trail bytes). This results in very

20 ICU v3.4 User Guide

efficient parsing. The lead bytes are in the range c016 to fd16, the trail bytes are in the
range 8016 to bf16. The byte values fe16 and FF16 are never used.

• UTF-8 is relatively compact and resource conservative in its use of the bytes required
for encoding text in European scripts, but uses 50% more space than UTF-16 for East
Asian text. Code points up to 7FF16 take up two bytes, code points up to FFFF16 take
up three (50% more memory than UTF-16), and all others four.

• Binary comparisons of UTF-8 strings based on their bytes result in the same order as
comparing code point values.

Overview of UTF-32

The UTF-32 encoding form always uses one single 32-bit integer per Unicode code point.
This results in a very simple encoding.

The drawback is its memory consumption: Since code point values use only 21 bits, one-
third of the memory is always unused, and since most commonly used characters have
code point values of up to FFFF16, they take up only one 16-bit unit in UTF-16 (50% less)
and up to three bytes in UTF-8 (25% less).

UTF-32 is mainly used in APIs that are defined with the same data type for both code
points and code units. Modern versions of the C standard library that support Unicode use
a 32-bit wchar_t with UTF-32 semantics.

Overview of SCSU

SCSU (Standard Compression Scheme for Unicode) is designed to reduce the size of
Unicode text for both input and output. It is a simple compression that transforms the text
into a byte stream. It typically uses one byte per character in small scripts, and two bytes
per character in large, East Asian scripts.

It is usually shorter than any of the UTFs. However, SCSU is stateful, which makes it
unsuitable for internal processing. It also uses all possible byte values, which might
require additional processing for protocols such as SMTP (email).

See also http://www.unicode.org/unicode/reports/tr6/.

Other Unicode Encodings

Other Unicode encodings have been developed over time for various purposes. Most of
them are implemented in ICU, see source/data/mappings/convrtrs.txt

• BOCU-1: Binary-Ordered Compression of Unicode
 An encoding of Unicode that is about as compact as SCSU but has a much smaller
amount of state. Unlike SCSU, it preserves code point order and can be used in 8bit
emails without a transfer encoding. BOCU-1 does not preserve ASCII characters in
ASCII-readable form. See Unicode Technical Note #6.

21 ICU v3.4 User Guide

• UTF-7: Designed for 7bit emails; simple and not very compact. Since email systems
have been 8-bit safe for several years, UTF-7 is not necessary any more and not
recommended. Most ASCII characters are readable, others are base64-encoded. See
RFC 2152.

• IMAP-mailbox-name: A variant of UTF-7 that is suitable for expressing Unicode
strings as ASCII characters for Unix filenames.
 The name "IMAP-mailbox-name" is specific to ICU!
 See RFC 2060 INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4rev1
section 5.1.3. Mailbox International Naming Convention.

• UTF-EBCDIC: An EBCDIC-friendly encoding that is similar to UTF-8. See Unicode
Technical Report #16. As of ICU 2.6, UTF-EBCDIC is not implemented in ICU.

• CESU-8: Compatibility Encoding Scheme for UTF-16: 8-Bit
 An incompatible variant of UTF-8 that preserves 16-bit-Unicode (UTF-16) string
order instead of code point order. Not for open interchange. See Unicode Technical
Report #26.

Programming using UTFs

Programming using any of the UTFs is much more straightforward than with traditional
multi-byte character encodings, even though UTF-8 and UTF-16 are also variable-width
encodings.

Within each Unicode encoding form, the code unit values for singletons (code units that
alone encode characters), lead units, and for trailing units are all disjointed. This has
crucial implications for implementations. The following lists these implications:

• Determines the number of units for one code point using the lead unit. This is
especially important for UTF-8, where there can be up to 4 bytes per character.

• Determines boundaries. If ICU users randomly access text, you can always determine
the nearest code-point boundaries with a small number of machine instructions.

• Does not have any overlap. If ICU users search for string A in string B, you never get a
false match on code points. Users do not need to convert to code points for string
searching. False matches never occurs since the end of one sequence is never the same
as the start of another sequence. Overlap is one of the biggest problems with common
multi-byte encodings like Shift-JIS. All of the UTFs avoid this problem.

• Uses simple iteration. Getting the next or previous code point is straightforward, and
only takes a small number of machine instructions.

• Can use UTF-16 encoding, which is actually fully symmetric. ICU users can determine
from any single code unit whether it is the first, last, or only one for a code point.
Moving (iterating) in either direction through UTF-16 text is equally fast and efficient.

• Uses slow indexing by code points. This indexing procedure is a disadvantage of all
variable-width encodings. Except in UTF-32, it is inefficient to find code unit

22 ICU v3.4 User Guide

boundaries corresponding to the nth code point or to find the code point offset
containing the nth code unit. Both involve scanning from the start of the text or from a
last known boundary. ICU, like most common APIs, always indexes by code units. It
counts code units and not code points.

Conversion between different UTFs is very fast. Unlike converting to and from legacy
encodings like Latin-2, conversion between UTFs does not require table look-ups.

ICU provides two basic data type definitions for Unicode. UChar32 is a 32-bit type for
code points, and used for single Unicode characters. It may be signed or unsigned. It is
the same as wchar_t if it is 32 bits wide. UChar is an unsigned 16-bit integer for UTF-16
code units. It is the base type for strings (UChar *), and it is the same as wchar_t if it is 16
bits wide.

Some higher-level APIs, used especially for formatting, use characters closer to a
representation for a glyph. Such "user characters" are also called "graphemes" or
"grapheme clusters" and require strings so that combining sequences can be included.

Serialized Formats

In files, input, output, and network protocols, text must be accompanied by the
specification of its character encoding scheme for a client to be able to interpret it
correctly. (This is called a "charset" in Internet protocols.) However, an encoding scheme
specification is not necessary if the text is only used within a single platform, protocol, or
application where it is otherwise clear what the encoding is. (The language and text
directionality should usually be specified to enable spell checking, text-to-speech
transformation, etc.)

The discussion of encoding specifications in this section applies to standard
Internet protocols where charset name strings are used. Other protocols may use
numeric encoding identifiers and assign different semantics to those identifiers
than Internet protocols.

Typically, the encoding specification is done in a protocol- and document format-
dependent way. However, the Unicode standard offers a mechanism for tagging text files
with a "signature" for cases where protocols do not identify character encoding schemes.

The character ZERO WIDTH NO-BREAK SPACE (FEFF16) can be used as a signature
by prepending it to a file or stream. The alternative function of U+FEFF as a format
control character has been copied to U+2060 WORD JOINER, and U+FEFF should only
be used for Unicode signatures.

The different character encoding schemes generate different, distinct byte sequences for
U+FEFF:

• UTF-8: EF BB BF

• UTF-16BE: FE FF

23 ICU v3.4 User Guide

• UTF-16LE: FF FE

• UTF-32BE: 00 00 FE FF

• UTF-32LE: FF FE 00 00

• SCSU: 0E FE FF

• BOCU-1: FB EE 28

• UTF-7: 2B 2F 76 (38 | 39 | 2B | 2F)

• UTF-EBCDIC: DD 73 66 73

ICU provides the function ucnv_detectUnicodeSignature() for Unicode signature
detection.

There is no signature for CESU-8 separate from the one for UTF-8. UTF-8 and
CESU-8 encode U+FEFF and in fact all BMP code points with the same bytes.
The opportunity for misidentification of one as the other is one of the reasons why
CESU-8 should only be used in limited, closed, specific environments.

In UTF-16 and UTF-32, where the signature also distinguishes between big-endian and
little-endian byte orders, it is also called a byte order mark (BOM). The signature works
for UTF-16 since the code point that has the byte-swapped encoding, FFFE16, will never
be a valid Unicode character. (It is a "non-character" code point.) In Internet protocols, if
an encoding specification of "UTF-16" or "UTF-32" is used, it is expected that there is a
signature byte sequence (BOM) that identifies the byte ordering, which is not the case for
the encoding scheme/charset names with "BE" or "LE".

If text is specified to be encoded in the UTF-16 or UTF-32 charset and does not
begin with a BOM, then it must be interpreted as UTF-16BE or UTF-32BE,
respectively.

A signature is not part of the content, and must be stripped when processing. For
example, blindly concatenating two files will give an incorrect result.

If a signature was detected, then the signature "character" U+FEFF should be removed
from the Unicode stream after conversion. Removing the signature bytes before
conversion could cause the conversion to fail for stateful encodings like BOCU-1 and
UTF-7.

Whether a signature is to be recognized or not depends on the protocol or application.

• If a protocol specifies a charset name, then the byte stream must be interpreted
according to how that name is defined. Only the "UTF-16" and "UTF-32" names
include recognition of the byte order marks that are specific to them (and the ICU
converters for these names do this automatically). None of the other Unicode charsets
are defined to include any signature/BOM handling.

• If no charset name is provided, for example for text files in most filesystems, then
applications must usually rely on heuristics to determine the file encoding. Many
document formats contain an embedded or implicit encoding declaration, but for plain

24 ICU v3.4 User Guide

text files it is reasonable to use Unicode signatures as simple and reliable heuristics.
This is especially common on Windows systems. However, some tools for plain text
file handling (e.g., many Unix command line tools) are not prepared for Unicode
signatures.

The Unicode Standard Is An Industry Standard

The Unicode standard is an industry standard and parallels ISO 10646-1. Around 1993,
these two standards were effectively merged into the same character set standard. Both
standards have the same character repertoire and the same encoding forms and schemes.

One difference used to be that the ISO standard defined code point values to be from 0 to
7FFFFFFF16, not just up to 10FFFF16. The ISO work group decided to add an amendment
to the standard. The amendment removes this difference by declaring that no characters
will ever be assigned code points above 10FFFF16. The main reason for the ISO work
group's decision is interoperability between the UTFs. UTF-16 can not encode any code
points above this limit.

This means that the code point space for both Unicode and ISO 10646 is now the same!
These changes to ISO 10646 have been made recently and should be complete in the
edition ISO 10646:2003 which also combines all parts of the standard into one.
The former, larger code space is the reason why the ISO definition of UTF-8 specifies
sequences of five and six bytes to cover that whole range.

Another difference is that the ISO standard defines encoding forms "UCS-4" and "UCS-
2". UCS-4 is essentially UTF-32 with a theoretical upper limit of 7FFFFFFF16, using 31
out of the 32 bits. However, in practice, the ISO committee has accepted that the
characters above 10FFFF will not be encoded, so there is essentially no difference
between the forms. The "4" stands for "four-byte form".

UCS-2 is a subset of UTF-16 that is limited to code points from 0 to FFFF, excluding the
surrogate code points. Thus, it cannot represent the characters with code points above
FFFF (called supplementary characters).

There is no conversion necessary between UCS-2 and UTF-16. The difference is
only in the interpretation of surrogates.

The standards differ in what kind of information they provide: The Unicode standard
provides more character properties and describes algorithms etc., while the ISO standard
defines collections, subsets and similar.

The standards are synchronized and the respective committees work together to add new
characters and assign code point values.

25 ICU v3.4 User Guide

ICU Services
Overview of the ICU Services

ICU enables you to write language-independent C and C++ code that is used on separate,
localized resources to get language-specific results. ICU supports many features,
including language-sensitive text, dates, time, numbers, currency, message sorting, and
searching. ICU provides language-specific results for a broad range of languages. The set
of services provided by ICU includes:

• Strings, Properties and CharacterIterator

• Conversion Basics

• Locale and Resource Management Support

• Date and Time Support

• Format and Parse

• Formatting Numbers

• Transformations

• Searching and Sorting

• Text Analysis

• Text Layout

• Search String

Strings, Properties and CharacterIterator

ICU provides basic Unicode support for the following:

• Unicode string
ICU includes type definitions for UTF-16 strings and code points. It also contains
many C u_string functions and the C++ UnicodeString class with many additional
string functions.

• Unicode properties
ICU includes the C definitions and functions found in uchar.h as well as some macros
found in utf.h. It also includes the C++ Unicode class.

• Unicode string iteration
In C, ICU uses the macros in utf.h for the iteration of strings. In C++, ICU uses the
characterIterator and its subclasses.

26 ICU v3.4 User Guide

Conversion Basics

A converter is used to transform text from one encoding type to another. In the case of
Unicode, ICU transforms text from one encoding codepage to Unicode and back. An
encoding is a mapping from a given character set definition to the actual bits used to
represent the data.

Locale and Resources

The ICU package contains the locale and resource bundles as well as the classes that
implement them. Also, the ICU package contains the locale data (plain text resource
bundles) and provides APIs to access and make use of that data in various services. Users
need to understand these terms and the relationship between them.

A locale identifies a group of users who have similar cultural and linguistic expectations
for how their computers interact with them and process data. This is an abstract concept
that is typically expressed by one of the following:

A locale ID specifies a language and region enabling the software to support culturally
and linguistically appropriate information for each user. A locale object represents a
specific geographical, political, or cultural region. As a programmatic expression of
locale IDs, ICU provides the C++ locale class. In C, Application Programming Interfaces
(APIs) use simple C strings for locale IDs.

ICU stores locale-specific data in resource bundles, which provide a general mechanism
to access strings and other objects for ICU services to perform according to locale
conventions. ICU contains data for its services to support many locales. Resource bundles
contain the locale data of applications that use ICU. In C++, the ResourceBundle
implements the locale data. In C, this feature is provided by the ures_ interface.

In addition to storing system-level data in ICU's resource bundles, applications typically
also need to use resource bundles of their own to store locale-dependent application data.
ICU provides the generic resource bundle APIs to access these bundles and also provides
the tools to build them.

Display strings, which are displayed to a user of a program, are bundled in a
separate file instead of being imbedded in the lines of the program.

Locales and Services

The interaction between locales and services is fundamental to ICU. Please refer to the
Locales and Services section of the Locale chapter.

27 ICU v3.4 User Guide

Transliteration

Transliteration was originally designed to convert characters from one script to another
(for example, from Greek to Latin, or Japanese Katakana to Latin). Now, transliteration is
a more flexible mechanism that has pre-built transformations for case conversions,
normalization conversions, the removal of given characters, and also for a variety of
language and script transliterations. Transliterations can be chained together to perform a
series of operations and each step of the process can use a UnicodeSet to restrict the
characters that are affected. There are two basic types of transliterators:

Most natural language transliterators (such as Greek-Latin) are written a rule-based
transliterators. Transliterators can be written as text files using a simple language that is
similar to regular expression syntax.

Date and Time Classes

Date and time routines manage independent date and time functions in milliseconds since
January 1, 1970 (0:00:00.000 UTC). Points in time before then are represented as
negative numbers.

ICU provides the following classes to support calendars and time zones:

• Calendar
The abstract superclass for extracting calendar-related attributes from a Date value.

• Gregorian Calendar
A concrete class for representing a Gregorian calendar.

• TimeZone
An abstract superclass for representing a time zone.

• SimpleTimeZone
A concrete class for representing a time zone for use with a Gregorian calendar.

C classes provide the same functionality as the C++ classes with the exception of
subclassing.

Format and Parse

Formatters translate between non-text data values and textual representations of those
values. The result is a string of text that represents the internal value. A formatter can
parse a string and convert a textual representation of some value (if it finds one it
understands) back into its internal representation. For example, when the formatter reads
the characters 1, 0, and 3 followed by something other than a digit, it produces the value
103 in its internal binary representation.

28 ICU v3.4 User Guide

A formatter takes a value and produces a user-readable string that represents that value or
takes a string and parses it to produce a value.

ICU provides the following areas and classes for general formatting, formatting numbers,
formatting dates and times, and formatting messages:

General Formatting

• Format
Format is the abstract superclass of all format classes. It provides the basic methods
for formatting and parsing numbers, dates, strings, and other objects.

• FieldPosition
FieldPosition is a concrete class for holding the field constant and the beginning and
ending indices for the number and date fields.

• ParsePosition
ParsePosition is a concrete class for holding the parse position in a string during
parsing.

• Formattable
Objects that must be formatted can be passed to the Format class or its subclasses for
formatting. The class encapsulates a polymorphic piece of data to be formatted and
uses the MessageFormat class. Some formatting operations use the Formattable class
to produce a single "type" that encompasses all formattable values such as a number,
date, string, and so on.

Formatting Numbers

• NumberFormat
NumberFormat provides the basic fields and methods to format number objects and
number primitives into localized strings and parse localized strings to number objects.

• DecimalFormat
DecimalFormat provides the methods used to format number objects and number
primitives into localized strings and parse localized strings into number objects in base
10.

• DecimalFormatSymbols
DecimalFormatSymbols is a concrete class used by DecimalFormat to access localized
number strings such as the grouping separators, the decimal separator, and the percent
sign.

Formatting Dates and Times

• DateFormat

29 ICU v3.4 User Guide

DateFormat provides the basic fields and methods for formatting date objects to
localized strings and parsing date and time strings to date objects.

• SimpleDateFormat
SimpleDateFormat is a concrete class used to format date objects to localized strings
and to parse date and time strings to date objects using a GregorianCalendar.

• DateFormatSymbols
DateFormatSymbols is a concrete class used to access localized date and time
formatting strings, such as names of the months, days of the week, and the time zone.

Formatting Messages

• MessageFormat
MessageFormat is a concrete class used to produce a language-specific user message
that contains numbers, currency, percentages, date, time, and string variables.

• ChoiceFormat
ChoiceFormat is a concrete class used to map strings to ranges of numbers and to
handle plural words and name series in user messages.

C classes provide the same functionality as the C++ classes with the exception of
subclassing.

Searching and Sorting

Sorting and searching non-English text presents a number of challenges that many
English speakers are unaware of. The primary source of difficulty is accents, which have
very different meanings in different languages, and sometimes even within the same
language:

• Many accented letters, such as the é in café, are treated as minor variants on the letter
that is accented.

• Sometimes the accented form of a letter is treated as a distinct letter for the purposes of
comparison. For example, Å in Danish is treated as a separate letter that sorts just after
Z.

• In some cases, an accented letter is treated as if it were two letters. In traditional
German, for example, ä is compared as if it were ae.

Searching and sorting is done through collation using the Collator class and its sub-
classes RuleBasedCollator and CollationElementIterator as well as the CollationKey
object. Collation determines the proper sort sequence for two or more natural language
strings. It also can determine if two strings are equivalent for the purpose of searching.

30 ICU v3.4 User Guide

The Collator class and its sub-class RuleBasedCollator perform locale-sensitive string
comparisons to create sorting and searching routines for natural language text. Collator
and RuleBasedCollator can distinguish between characters associated with base
characters (such as 'a' and 'b'), accent marks (such as 'ò', 'ó'), and uppercase or lowercase
properties (such as 'a' and 'A').

ICU provides the following collation classes for sorting and searching natural language
text according to locale-specific rules:

• Collator
Collator is the abstract base class of all classes that compare strings.

• CollationElementIterator
CollationElementIterator is a concrete iterator class that provides an iterator for
stepping through each character of a locale-specific string according to the rules of a
specific collator object.

• RuleBasedCollator
RuleBasedCollator is the only built-in implementation of the collator. It provides a
sophisticated mechanism for comparing strings in a language-specific manner, and an
interface that allows the user to specifically customize the sorting order.

• CollationKey
CollationKey is an object that enables the fast sorting of strings by representing a
string as a sort key under the rules of a specific collator object.

C classes provide the same functionality as the C++ classes with the exception of
subclassing.

Text Analysis

The BreakIterator services can be used for formatting and handling text; locating the
beginning and ending points of a word; counting words, sentences, and paragraphs; and
listing unique words. Specifically, text operations can be done to locate the following
linguistic boundaries:

• Display text on the screen and locate places in the text where the BreakIterator can
perform word-wrapping to fit the text within the margins

• Locate the beginning and end of a word that the user has selected

• Count graphemes (or characters), words, sentences, or paragraphs

• Determine how far to move in the text store when the user hits an arrow key to move
forward or backward one grapheme

• Make a list of all the unique words in a document

• Figure out whether or not a range of text contains only whole words

31 ICU v3.4 User Guide

• Capitalize the first letter of each word

• Extract a particular unit from the text such as "find me the third grapheme in this
document"

The BreakIterator services were designed and developed around an "iterator" or
"cursor" style of interface. The object points to a particular place in the text. You can
move the pointer forward or backward to search the text for boundaries.

The BreakIterator class makes it possible to iterate over user characters. A
BreakIterator can find the location of a character, word, sentence or potential line-
break boundary. This makes it possible for a software program to properly select
characters for text operations such as highlighting a character, cutting a word, moving to
the next sentence, or wrapping words at a line ending. BreakIterator performs these
operations in a locale-sensitive manner, meaning that it recognizes text boundaries
according to the particular locale ID.

ICU provides the following classes for iterating over locale-specific text:

• BreakIterator
The abstract base class that defines the operations for finding and getting the positions
of logical breaks in a string of text: characters, words, sentences, and potential line
breaks.

• CharacterIterator
The abstract base class for forward and backward iteration over a string of Unicode
characters.

• StringCharacterIterator
A concrete class for forward and backward iteration over a string of Unicode
characters. StringCharacterIterator inherits from CharacterIterator.

Text Layout

Some scripts require rendering behavior that is more complicated than the Latin script.
These scripts are called as "complex scripts" and while their text is called "complex text."
Examples of complex scripts are the Indic scripts (Devanagari, Tamil, Telugu, and
Gujarati), Thai scripts, and Arabic scripts.

Complex text has the following main characteristics:

In most cases, the contextual and ligature forms of characters have not been assigned
Unicode codepoints and thus cannot be displayed directly using codepoints.

The ICU LayoutEngine provides a uniform interface for preparing complex text for
display. The LayoutEngine code is independent of the font and rendering architecture of
the underlying platform. All access to the LayoutEngine code is through an abstract base
class. A concrete instance of this base class must be implemented for each platform.

32 ICU v3.4 User Guide

The ICU LayoutEngine prepares complex text using the following procedures:

Locale-Dependent Operations

Many of the ICU classes are locale-sensitive, meaning that you have to create a different
one for each locale.

C API C++ Class Description
ubrk_ BreakIterator The BreakIterator class implements methods to

find the location of boundaries in the text.
ucal_ Calendar The Calendar class is an abstract base class that

converts between a UDate object and a set of
integer fields such as YEAR, MONTH, DAY,
HOUR, and so on.

umsg.h ChoiceFormat A ChoiceFormat class enables you to attach a
format to a range of numbers.

ucol_ CollationElementIterator The CollationElementIterator class is used as an
iterator to walk through each character of an
international string.

ucol_ CollationKey The Collator class generates the Collation keys.
ucol_ Collator The Collator class performs locale-sensitive

string comparison.
udat_ DateFormat DateFormat is an abstract class for a family of

classes. DateFormat converts dates and times
from their internal representations to a textual
form that is language-independent, and then
back to their internal representations.

udat_ DateFormatSymbols DateFormatSymbols is a public class that
encapsulates localized date and time formatting
data. This information includes time zone
information.

unum_ DecimalFormatSymbols This class represents the set of symbols needed
by DecimalFormat to format numbers.

umsg.h Format The Format class is the base class for all
formats.

ucal_ GregorianCalendar GregorianCalendar is a concrete class that
provides the standard calendar used in many
locations.

33 ICU v3.4 User Guide

C API C++ Class Description
uloc_ Locale A Locale object represents a specific

geographical, political, or cultural region.
umsg.h MessageFormat MessageFormat provides a means to produce

concatenated messages in language-neutral way.
unum_ NumberFormat NumberFormat is an abstract base class for all

number formats.
ures_ ResourceBundle ResourceBundle provides a means to access a

collection of locale-specific information.
ucol_ RuleBasedCollator The RuleBasedCollator provides the

implementation of the Collator class using data-
driven tables.

udat_ SimpleDateFormat SimpleDateFormat is a concrete class used to
format and parse dates in a language-
independent way.

ucal_ SimpleTimeZone SimpleTimeZone is a concrete subclass of
TimeZone that represents a time zone for use
with a Gregorian calendar.

usearch_ StringSearch StringSearch provides a way to search text in a
locale sensitive manner.

ucal_ TimeZone TimeZone represents a time zone offset, and
also determines daylight savings time settings.

Locale-Independent Operations

The following ICU services can be used in all locales as they provide locale-independent
services and users do not need to specify a locale ID:

C API C++ Class Description
ubidi_ UBiDi is used for implementing the Unicode

BiDi algorithm.
utf.h CharacterIterator CharacterIterator is an abstract class that defines

an API for iteration on text objects. It is an
interface for forward and backward iteration and
for the random access of a text object. Also, it
provides backward compatibility to the Java and
older ICU CharacterIterator classes.

34 ICU v3.4 User Guide

C API C++ Class Description
n/a Formattable Formattable is a thin wrapper class that converts

between the primitive numeric types (double,
long, and so on) and the UDate and
UnicodeString classes. Formattable objects can
be passed to the Format class or its subclasses
for formatting.

unorm_ Normalizer Normalizer transforms Unicode text into an
equivalent composed or decomposed form to
allow for easier sorting and searching of text.

n/a ParsePosition ParsePosition is a simple class used by the
Format class and its subclasses to keep track of
the current position during parsing.

uidna_ An implementation of the IDNA protocol as
defined in RFC 3490.

utf.h StringCharacterIterator A concrete subclass of CharacterIterator that
iterates over the characters (code units or code
points) in a UnicodeString.

utf.h UCharCharacterIterator A concrete subclass of CharacterIterator that
iterates over the characters (code units or code
points) in a UChar array.

uchar.h The Unicode character properties API allows
you to query the properties associated with
individual Unicode character values.

uregex_ RegexMatcher RegexMatcher is a regular expressions
implementation. This allows you to perform
string matching based upon a pattern.

utrans_ Transliterator Transliterator is an abstract class that
transliterates text from one format to another.
The most common type of transliterator is a
script, or an alphabet.

uset_ UnicodeSet Objects of the UnicodeSet class represent
character classes used in regular expressions.
These classes specify a subset of the set of all
Unicode characters. This is a mutable set of
Unicode characters.

ustring.h UnicodeString UnicodeString is a string class that stores
Unicode characters directly. This class is a
concrete implementation of the abstract class
Replaceable.

35 ICU v3.4 User Guide

C API C++ Class Description
ushape.h Provides operations to transform (shape)

between Arabic characters and their
presentation forms.

ucnv_ The Unicode conversion API allows you to
convert data written in one codepage/encoding
to and from UTF-16.

36 ICU v3.4 User Guide

ICU Architectural Design
This chapter discusses the ICU design structure, the ICU versioning support, and the
introduction of namespace in C++.

• Java and ICU Basic Design Structure

• Locales

• Data-driven Services

• ICU Threading Model and Open and Close Model

• ICU Initialization and Termination

• Error Handling

• Extensibility

• Resource Bundle Inheritance Model

• Version Numbers in ICU

• API Dependencies

• ICU API categories

• ICU API compatibility

• ICU Binary Compatibility

Java and ICU Basic Design Structure

The JDK internationalization components and ICU components both share the same
common basic architectures with regard to the following:

• locales

• data-driven services

• ICU threading models and the open and close model

• cloning customization

• error handling

• extensibility

• resource bundle inheritance model

There are design features in ICU4C that are not in the Java Development Kit (JDK) due
to programming language restrictions. These features include the following:

37 ICU v3.4 User Guide

Locales

Locale IDs are composed of language, country, and variant information. The following
links provide additional useful information regarding ISO standards: ISO-639 , and an
ISO Country Code, ISO-3166 . For example, Italian, Italy, and Euro are designated as:
it_IT_EURO.

Data-driven Services

Data-driven services often use resource bundles for locale data. These services map a key
to data. The resources are designed not only to manage system locale information but also
to manage application-specific or general services data. ICU supports string, numeric, and
binary data types and can be structured into nested arrays and tables.

This results in the following:

• Data used by the services can be built at compile time or run time.

• For efficient loading, system data is pre-compiled to .dll files or files that can be
mapped into memory.

• Data for services can be added and modified without source code changes.

ICU Threading Model and Open and Close Model

The "open and close" model supports multi-threading. It enables ICU users to use the
same kind of service for different locales, either in the same thread or in different threads.

For example, a thread can open many collators for different languages, and different
threads can use different collators for the same locale simultaneously. Constant data can
be shared so that only the current state is allocated for each editor.

The ICU threading model is designed to avoid contention for resources, and enable you to
use the services for multiple locales simultaneously within the same thread. The ICU
threading model, like the rest of the ICU architecture, is the same model used for the
international services in Java™.

38 ICU v3.4 User Guide

When you use a service such as collation, the client opens the service using an ID,
typically a locale. This service allocates a small chunk of memory used for the state of the
service, with pointers to shared, read-only data in support of that service. (In Java or C++,
you call getInstance() to create an object. ICU uses the open and close metaphor in C
because it is more familiar to C programmers.)

If no locale is supplied when a service is opened, ICU uses the default locale. Once a
service is open, changing the default locale has no effect. Thus, there can not be any
thread synchronization between the default locales and open services.

When you open a second service for the same locale, another small chunk of memory is
used for the state of the service, with pointers to the same shared, read-only data. Thus,
the majority of the memory usage is shared. When any service is closed, then the chunk
of memory is deallocated. Other connections that point to the same shared data stay valid.

Any number of services, for the same locale or different locales, can be open within the
same thread or in different threads. However, you cannot use a reference to an open
service in two threads at the same time. An individual open service is not thread-safe.
Rather, you must use the clone function to create a copy of the service you want and then
pass this copy to the second thread. This procedure allows you to use the same service in
different threads, but avoids any thread synchronization or deadlock problems.

Clone operations are designed to be much faster than reopening the service with initial
parameters and copying the source's state. (With objects in C++ and Java, the clone
function is also much safer than trying to recreate a service, since you get the proper
subclass.) Once a service is cloned, changes will not affect the original source service, or
vice-versa.

Thus, the normal mode of operation is to:

• Open a service with a given locale.

• Use the service as long as needed. However, do not keep opening and closing a service
within a tight loop.

• Clone a service if it needs to be used in parallel in another thread.

• Close any clones that you open as well as any instances of the services that are owned.

These service instances may be closed in any sequence. The preceding steps are
given as an example.

Cloning Customization

Typically, the services supplied with ICU cover the vast majority of usages. However,
there are circumstances where the service needs to be customized for a new locale. ICU
(and Java) enable you to create customized services. For example, you can create a
RuleBasedCollator by merging the rules for French and Arabic to get a custom French-
Arabic collation sequence. By merging these rules, the pointer does not point to a read-

39 ICU v3.4 User Guide

only table that is shared between threads. Instead, the pointer refers to a table that is
specific to your particular open service. If you clone the open service, the table is copied.
When you close the service, the table is destroyed.

For some services, ICU supplies registration. You can register a customized open service
under an ID; keeping a copy of that service even after you close the original. A client in
that thread or in other threads can recreate a copy of the service by opening with that ID.
These registrations are not persistent; once your program finishes, ICU flushes all the
registrations. While you still might have multiple copies of data tables, it is faster to
create a service from a registered ID than it is to create a service from rules.

To work around the lack of persistent registration, query the service for the
parameters used to create it and then store those parameters in a file on a disk.

For services whose IDs are locales, such as collation, the registered IDs must also be
locales. For those services (like Transliteration or Timezones) that are cross-locale, the
IDs can be any string.

Prospective future enhancements for this model are:

• Having custom services share data tables, by making those tables reference counted.
This will reduce memory consumption and speed clone operations (a performance
enhancement chiefly useful for multiple threads using the same customized service).

• Expanding registration for all the international services.

• Allowing persistent registration of services.

ICU Memory Usage

ICU4C APIs are designed to allow separate heaps for its libraries vs. the application. This
is achieved by providing functions to allocate and release objects owned by ICU4C using
only ICU4C library functions. For more details see the Memory Usage section in the
Coding Guidelines .

ICU Initialization and Termination

The ICU library does not normally require any explicit initialization prior to use. An
application begins use simply by calling any ICU API in the usual way. (There is one
exception to this, described below.)

In C++ programs, ICU objects and APIs may safely be used during static initialization of
other application-defined classes or objects. There are no order-of-initialization problems
between ICU and static objects from other libraries because ICU does not rely on C++
static object initialization for its normal operation.

When an application is terminating, it may optionally call the function u_cleanup(void)
, which will free any heap storage that has been allocated and held by the ICU library. The
main benefit of u_cleanup() occurs when using memory leak checking tools while

40 ICU v3.4 User Guide

debugging or testing an application. Without u_cleanup(), memory being held by the ICU
library will be reported as leaks.

Initializing ICU in Multithreaded Environments

There is one specialized case where extra care is needed to safely initialize ICU. This
situation will arise only when ALL of the following conditions occur:

• The application main program is written in plain C, not C++.

• The application is multithreaded, with the first use of ICU within the process possibly
occurring simultaneously in more than one thread.

• The application will be run on a platform that does not handle C++ static constructors
from libraries when the main program is not in C++. Platforms known to exhibit this
behavior are Mac OS X and HP/UX. Platforms that handle C++ libraries correctly
include Windows, Linux and Solaris.

To safely initialize the ICU library when all of the above conditions apply, the application
must explicitly arrange for a first-use of ICU from a single thread before the multi-
threaded use of ICU begins. A convenient ICU operation for this purpose is
uloc_getDefault() , declared in the header file "unicode/uloc.h".

Error Handling

In order for ICU to maximize portability, this version includes only the subset of the C++
language that compile correctly on older C++ compilers and provide a usable C interface.
Thus, there is no use of the C++ exception mechanism in the code or Application
Programming Interface (API).

To communicate errors reliably and support multi-threading, this version uses an error
code parameter mechanism. Every function that can fail takes an error-code parameter by
reference. This parameter is always the last parameter listed for the function.

The UErrorCode parameter is defined as an enumerated type. Zero represents no error,
positive values represent errors, and negative values represent non-error status codes.
Macros (U_SUCCESS and U_FAILURE) are provided to check the error code.

The UErrorCode parameter is an input-output function. Every function tests the error
code before performing any other task and immediately exits if it produces a FAILURE
error code. If the function fails later on, it sets the error code appropriately and exits
without performing any other work, except for any cleanup it needs to do. If the function
encounters a non-error condition that it wants to signal, such as "encountered an
unmapped character" in conversion, the function sets the error code appropriately and
continues. Otherwise, the function leaves the error code unchanged.

Generally, only the functions that do not take a UErrorCode parameter, but call functions
that do, must declare a variable. Almost all functions that take a UErrorCode parameter,
and also call other functions that do, merely have to propagate the error code that they

41 ICU v3.4 User Guide

were passed to the functions they call. Functions that declare a new UErrorCode
parameter must initialize it to U_ZERO_ERROR before calling any other functions.

ICU enables you to call several functions (that take error codes) successively without
having to check the error code after each function. Each function usually must check the
error code before doing any other processing, since it is supposed to stop immediately
after receiving an error code. Propagating the error-code parameter down the call chain
saves the programmer from having to declare the parameter in every instance and also
mimics the C++ exception protocol more closely.

Extensibility

There are 3 major extensibility elements in ICU:

1. Data Extensibility
 The user installs new locales or conversion data to enhance the existing ICU support.
For more details, refer to the package tool chapter for more information.

2. Code Extensibility
 The classes, data, and design are fully extensible. Examples of this extensibility
include the BreakIterator , RuleBasedBreakIterator and
DictionaryBasedBreakIterator classes.

3. Error Handling Extensibility
 There are mechanisms available to enhance the built-in error handling when it is
necessary. For example, you can design and create your own conversion callback
functions when an error occurs. Refer to the Conversion chapter callback section for
more information.

Resource Bundle Inheritance Model

A resource bundle is a set of <key,value> pairs that provide a mapping from key to value.
A given program can have different sets of resource bundles; one set for error messages,
one for menus, and so on. However, the program may be organized to combine all of its
resource bundles into a single related set.

The set is organized into a tree with "root" at the top, the language at the first level, the
country at the second level, and additional variants below these levels. The set must
contain a root that has all keys that can be used by the program accessing the resource
bundles.

Except for the root, each resource bundle has an immediate parent. For example, if there
is a resource bundle "X_Y_Z", then there must be the resource bundles: "X_Y", and "X".
Each child resource bundle can omit any <key,value> pair that is identical to its parent's
pair. (Such omission is strongly encouraged as it reduces data size and maintenance
effort). It must override any <key,value> pair that is different from its parent's pair. If you
have a resource bundle for the locale ID "language_country_variant", you must also have

42 ICU v3.4 User Guide

a bundle for the ID "language_country" and one for the ID "language."

If a program doesn't find a key in a child resource bundle, it can be assumed that it has the
same key as the parent. The default locale has no effect on this. The particular language
used for the root is commonly English, but it depends on the developer's preference.
Ideally, the language should contain values that minimize the need for its children to
override it.

The default locale is used only when there is not a resource bundle for a given language.
For example, there may not be an Italian resource bundle. (This is very different than the
case where there is an Italian resource bundle that is missing a particular key.) When a
resource bundle is missing, ICU uses the parent unless that parent is the root. The root is
an exception because the root language may be completely different than its children. In
this case, ICU uses a modified lookup and the default locale. The following are different
lookup methods available:

Lookup chain : Searching for a resource bundle.
 en_US_some-variant
 en_US
 en
 defaultLang_defaultCountry
 defaultLang
 root

Lookup chain : Searching for a <key, value> pair after en_US_some-variant has ben
loaded. ICU does not use the default locale in this case.
 en_US_some-variant
 en_US
 en
 root

Other ICU Design Principles

ICU supports extensive version code and data changes and introduces namespace usage.

Version Numbers in ICU

Version changes show clients when parts of ICU change. ICU; its components (such as
Collator); each resource bundle, including all the locale data resource bundles; and
individual tagged items within a resource bundle, have their own version numbers.
Version numbers numerically and lexically increase as changes are made. All version
numbers are used in Application Programming Interfaces (APIs) with a UVersionInfo
structure. The UVersionInfo structure is an array of four unsigned bytes. These bytes are:

43 ICU v3.4 User Guide

• 0: Major version number

• 1: Minor version number

• 2: Milli version number

• 3: Micro version number

Two UVersionInfo structures may be compared using binary comparison (memcmp) to
see which is larger or newer. Version numbers may be different for different services. For
instance, do not compare the ICU library version number to the ICU collator version
number.

UVersionNumber structures can be converted to and from string representations as dotted
integers (such as "1.4.5.0") using the u_versionToString() and u_versionFromString()
functions. String representations may omit trailing zeroes.

The interpretation of version numbers depends on what is being described.

ICU Release Version Number

For ICU releases and the library (code) versions, a change in the minor version number
indicates releases that may have feature additions or may break binary compatibility, such
as between version 2.0 and 2.2. A change only in milli (or micro) version numbers
indicates a maintenance release that is binary compatible. For example, ICU 2.6.2 was a
maintenance release which was binary compatible with ICU 2.6 and ICU 2.6.1. (See
below for more information on ICU Binary Compatibility.)

ICU reference releases are denoted by even minor version numbers (like ICU 1.6 or 3.4).
Previously, odd minor version numbers (like ICU 1.7) were used for “enhancement”
releases. Currently, odd numbers are used only for unreleased unstable snapshot versions.

Resource Bundles and Elements

The data stored in resource bundles is tagged with version numbers. A resource bundle
can contain a tagged string named "Version" that declares the version number in dotted-
integer format. For example,

en {
 Version { "1.0.3.5" }
 ...
}

A resource bundle may omit the "version" element and thus, will inherit a version along
the usual chain. For example, if the resource bundle en_US contained no "version"
element, it would inherit "1.0.3.5" from the parent en element. If inheritance passes all the
way to the root resource bundle and it contains no "version" resource, then the resource
bundle receives the default version number 0.

Elements within a resource bundle may also contain version numbers. For example:
be {
 CollationElements {

44 ICU v3.4 User Guide

 Version { "1.0.0.0" }
 ...
 }
}

In this example, the CollationElements data is version 1.0.0.0. This element version is not
related to the version of the bundle.

Internal version numbers

Internally, data files carry format and other version numbers. These version numbers
ensure that ICU can use the data file. The interpretation depends entirely on the data file
type. Often, the major number in the format version stays the same for backwards-
compatible changes to a data file format. The minor format version number is
incremented for additions that do not violate the backwards compatibility of the data file.

Component Version Numbers

ICU component version numbers may be found using:

• u_getVersion() returns the version number of ICU as a whole in C++. In C,
ucol_getVersion() returns the version number of ICU as a whole.

• ures_getVersion() and ResourceBundle::getVersion() return the version
number of a ResourceBundle. This is a data version number for the bundle as a whole
and subject to inheritance.

• u_getUnicodeVersion() and Unicode::getUnicodeVersion() return the version
number of the Unicode character data that underlies ICU. This version reflects the
numbering of the Unicode releases. See http://www.unicode.org/ for more
information.

• Collator::getVersion() in C++ and ucol_getVersion() in C return the version
number of the Collator. This is a code version number for the collation code and
algorithm. It is a combination of version numbers for the collation implementation, the
Unicode Collation Algorithm data (which is the data that is used for characters that are
not mentioned in a locale's specific collation elements), and the collation elements.

Configuration and Management

A major new feature in ICU 2.0 is the ability to link to different versions of ICU with the
same program. Using this new feature, a program can keep using ICU 1.8 collation, for
example, while using ICU 2.0 for other services. ICU now can also be unloaded if
needed, to free up resources, and then reloaded when it is needed.

Namespace in C++

45 ICU v3.4 User Guide

ICU 2.0 introduces the use of namespace to avoid naming collision between ICU
exported symbols and other libraries. All the public ICU C++ classes will be appended to
the "icu_MajorVersionNumber_MinorVersionNumber::" namespace variable. ICU 2.0
includes the "using namespace icu_MajorVersionNumber_MinorVersionNumber" in the
public header clause so there is no need to change the user programs with this update.

API Dependencies

It is sometimes useful to see a dependency chart between the public ICU APIs and ICU
libraries. This chart can be useful to people that are new to ICU or to people that want
only certain ICU libraries.

Here are some things to realize about the chart.

• It gives a general overview of the ICU library dependencies.

• Internal dependencies, like the mutex API, are left out for clarity.

• Similar APIs were lumped together for clarity (e.g. Formatting). Some of these
dependency details can be viewed from the ICU API reference.

• The descriptions of each API can be found in our ICU API reference

46 ICU v3.4 User Guide

47 ICU v3.4 User Guide

ICU 2.4 Library
Dependency Chart C++ API only

C/C++ API

C API only

A→B: A depends on B

Key

String Search

Collation

Transliterator

Formatting

Calendar

TimeZone

Regular
Expressions

I18N library

utypes.h

utf.h

Converters

ustring

UnicodeString

Locale

ResourceBundle

CharacterIterator

Normalization

uchar

BiDi

Shaping

uscript

Common library

UnicodeSet

BreakIterator

Layout library

LETypes.h

LayoutEngine

Data library

Ustdio library
(unsupported)

Scanf/printf

Ustream

ICU API categories

ICU APIs, as defined in header and class files, are either "external" or "internal". External
APIs are meant to be used by applications, while internal APIs should be used only within
ICU. APIs are marked to indicate whether they are external or internal, as follows. Every
external API has a lifecycle label, see below.

External ICU4C APIs

External ICU4C APIs are

• declared in header files in unicode folders and exported at build/install time to an
include/unicode folder

• when C++ class members, are public or protected

• do not have an "@internal" label

Exception: Layout engine header files are not in a unicode folder, although the public
ones are still copied to the include/unicode folder at build/install time. External layout
engine APIs are the ones that have lifecycle labels and not an "@internal" label.

External ICU4J APIs

External ICU4J APIs are

• declared in one of the ICU4J core packages (com.ibm.icu.lang, com.ibm.icu.math,
com.ibm.icu.text, or com.ibm.icu.util) or one of the RichText packages
(com.ibm.richtext)

• public or protected class members

• public or protected contained classes

• do not have an "@internal" label

"System" APIs

"System" APIs are external APIs that are intended only for special uses for system-level
code, for example u_cleanup(). Normal users should not use them, although they are
public and supported. System APIs have a "@system" label in addition to the lifecycle
label that all external APIs have (see below).

48 ICU v3.4 User Guide

Internal APIs

All APIs that do not fit any of the descriptions above are internal, which means that they
are for ICU internal use only and may change at any time without notice. Some of them
are member functions of public C++ or Java classes, and are "technically public but
logistically internal" for implementation reasons; typically because programming
languages don't provide sufficiently access control (without clumsy mechanisms). In this
case, such APIs have an "@internal" label.

ICU API compatibility

As ICU develops, it adds external APIs - functions, classes, constants, and so on.
Occasionally it is also necessary to remove or change external APIs. In order to make this
work, we use the following process:

For all API changes (and for significant/controversial/difficult implementation changes),
we use proposals to announce and discuss them. A proposal is simply an email to the ICU
mailing list that details what is proposed to be changed, with an expiration date of
typically a week. This gives all mailing list members a chance to review upcoming
changes, and to discuss them. A proposal often changes significantly as a result of
discussion. Most proposals will eventually find consensus among list members;
otherwise, the PMC decides what to do. If the addition or change of APIs would affect
you, please subscribe to the main icu-design mailing list.

Once a new API is added to ICU, it is marked as draft with a "@draft ICU x.y" label in
the API documentation, where x.y is the ICU version when the API was introduced or last
changed. A draft API is not guaranteed to be stable! Although we will not make
gratuitous changes, sometimes the draft APIs turns out to be unsatisfactory in actual
practice and may need to be changed or even removed. Changes of "draft" API are subject
to the proposal process described above.

When an API is judged to be stable (and has not been changed for at least two ICU
releases), it is re-labeled as stable with a "@stable ICU x.y" label in the API
documentation. The ICU version x.y indicates the last time the API was introduced or
changed. A stable API is expected to be available in this form for a long time.

Even a stable API may eventually need to become deprecated or obsolete. Such APIs are
strongly discouraged from use. Typically, an improved API is introduced at the time of
deprecation/obsolescence of the old one.

• Use of deprecated APIs is strongly discouraged, but they are retained for backward
compatibility. These are marked with labels like "@deprecated ICU x.y. Use u_abc()
instead.". The ICU version x.y shows the ICU release in which the API was first
declared "deprecated".

49 ICU v3.4 User Guide

• Obsolete APIs are are those whose continued retention will cause severe conflicts or
user error, or whose continued support would be a very significant maintenance
burden. We make every effort to keep these to a minimum. Obsolete APIs are marked
with labels like "@obsolete ICU x.y. Use u_abc() instead since this API will be
removed in that release.". The x.y indicates that we plan to remove it in ICU version
x.y.

Stable C or Java APIs will not be obsoleted because doing so would break forward
binary compatibility of the ICU library. Stable APIs may be deprecated, but they will
be retained in the library.

An "obsolete" API will remain unchanged until it is removed in the indicated ICU
release, which will be usually one year after the API was declared obsolete. Sometimes
we still keep it available for some time via a compile-time switch but stop maintaining
it. In rare occasions, an API must be replaced right away because of naming conflicts
or severe defects; in such cases we provide compile-time switches (#ifdef or other
mechanisms) to select the old API.

ICU Binary Compatibility

ICU4C may be configured for use as a system library in an environment where
applications that are built with one version of ICU must continue to run without change
with later versions of the ICU shared library.

Here are the requirements for enabling binary compatibility for ICU4C:

• Applications must use only APIs that are marked as stable.

• Applications must use only plain C APIs, never C++.

• ICU must be built with function renaming disabled.

• Applications must be built using an ICU that was configured for binary compatibility.

• Use ICU version 3.0 or later.

Stable APIs Only. APIs in the ICU library that are tagged as being stable will be
maintained in future versions of the library. Stable functions will continue to exist with
the same signature and the same meaning, allowing applications to continue to work
without change.

Stable APIs do not guarantee that the results from every function will always be
completely identical between ICU versions. Bugs may be fixed. The Unicode character
data may change with new versions of the Unicode standard. Locale data may be updated
or changed, yielding different results for operations like formatting or collation.
Applications that require exact bit-for-bit, bug-for-bug compatibility of ICU results

50 ICU v3.4 User Guide

should not rely on ICU release-to-release binary compatibility, but should instead link
against a specific version of ICU.

To verify that an application uses only stable APIs, build it with the C preprocessor
symbols U_HIDE_DRAFT_API and U_HIDE_DEPRECATED_API defined. This will
produce build errors if any draft, deprecated or obsolete APIs are used.

C APIs only. Only plain C APIs remain compatible across ICU releases. The reason
C++ binary compatibility is not supported is primarily because the design of C++
language and runtime environments present extreme technical difficulties to doing so.
Stable C++ APIs are source compatible, but applications using them must be recompiled
when moving between ICU releases.

Function renaming disabled. Function renaming is an ICU feature that allows an
application to explicitly link against a specific version of the ICU library, and to continue
to use that version even when other ICU versions exist in the runtime environment. This
is the exact opposite of release-to-release binary compatibility – instead of being able to
transparently change ICU versions, an application is explicitly tied to one specific
version.

Function renaming is enabled by default, and must be disabled at ICU build time to
enable release to release binary compatibility. To disable renaming, use the configure
option
 configure -–disable-renaming [other configure options]
(Configure options may also be passed to the runConfigureICU script.)

To enable release-to-release binary compatibility, ICU must be built with --disable-
renaming, and applications must be built using the headers and libraries that resulted
from the –disable-renaming ICU build

ICU Version 3.0 or Later. Binary compatibility of ICU releases is supported beginning
with ICU version 3.0. Older versions of ICU (2.8 and earler) do not provide for binary
compatibility between versions.

51 ICU v3.4 User Guide

C/POSIX Migration
Migration from Standard C and POSIX APIs

The ISO C and POSIX standards define a number of APIs for string handling and
internationalization in C. They do not support Unicode well because they were initially
designed before Unicode/ISO 10646 were developed, and the POSIX APIs are also
problematic for other internationalization aspects.

This chapter discusses C/POSIX APIs with their problems, and shows which ICU APIs to
use instead.

We use the term "POSIX" to mean the POSIX.1 standard (IEEE Std 1003.1)
which defines system interfaces and headers with relevance for string handling
and internationalization. The XPG3, XPG4, Single Unix Specification (SUS) and
other standards include POSIX.1 as a subset, adding other specifications that are
irrelevant for this topic.

This chapter is not complete yet – more POSIX APIs are expected to be discussed in the
future.

• Strings and Characters

• Character Sets and Encodings

• Case Mappings

• Character Classes

• Formatting and Parsing

• Currency Formatting

Strings and Characters

Character Sets and Encodings

ISO C

The ISO C standard provides two basic character types (char and wchar_t) and defines
strings as arrays of units of these types. The standard allows nearly arbitrary character and
string character sets and encodings, which was necessary when there was no single
character set that worked everywhere.

For portable C programs, characters and strings are opaque, i.e., a program cannot assume

52 ICU v3.4 User Guide

that any particular character is represented by any particular code or sequence of codes.
Programs use standard library functions to handle characters and strings. Only a small set
of characters — usually the set of graphic characters available in US-ASCII — can be
reliably accessed via character and string literals.

Problems

• Many different encodings are used on each platform, making it difficult for multiple
programs and libraries to process the same text.

• Programs often need to know the codes of special characters. For example, code that
parses a filename needs to know how the path and file separators are encoded; this is
commonly possible because filenames deliberately use US-ASCII characters, but any
software that uses non-ASCII characters becomes platform-dependent. It is practically
impossible to provide sophisticated text processing without knowledge of the character
set, its string encoding, and other detailed features.

• The C/POSIX standards only provide a very limited set of useful functions for
character and string handling; many functions that are provided do not work for non-
trivial cases.

• While the size of the char type is in practice fixed to 8 bits in modern compilers, and
its common encodings are reasonably well documented, the size of wchar_t varies
between 8/16/32 bits depending on the compiler, and only few of the string encodings
used with it are documented.

• See also What size wchar_t do I need for Unicode?.

• A program based on this model must be recompiled for each platform. Usually, it must
be recompiled for each supported language or family of languages.

• The ISO C standard basically requires, by how its standard functions are defined, that
the data type for a single character code in a large character set is the same as the string
base unit type (wchar_t). This has led to C standard library implementations using
Unicode encodings which are either limited for single-character functions to only part
of Unicode, or suffer from reduced interoperability with most Unicode-aware software.

ICU

ICU always processes Unicode text. Unicode covers all languages and allows safe
hardcoding of character codes, in addition to providing many standard or recommended
algorithms and a lot of useful character property data. See the chapters about Unicode
Basics and Strings and others.

ICU uses the 16-bit encoding form of Unicode (UTF-16) for processing, making it fully
interoperable with most Unicode-aware software. (See UTF-16 for Processing.) In the
case of ICU4J, this is naturally the case because the Java language and the JDK use UTF-
16.

53 ICU v3.4 User Guide

ICU uses and/or provides direct access to all of the Unicode properties which provide a
much finer-grained classification of characters than C/POSIX character classes.

In C/C++ source code character and string literals, ICU uses only "invariant" characters.
They are the subset of graphic ASCII characters that are almost always encoded with the
same byte values on all systems. (One set of byte values for ASCII-based systems, and
another such set of byte values for EBCDIC systems.) See utypes.h for the set of
"invariant" characters.

With the use of Unicode, the implementation of many of the Unicode standard
algorithms, and its cross-platform availability, ICU provides for consistent, portable, and
reliable text processing.

Case Mappings

ISO C

The standard C functions tolower(), towupper(), etc. take and return one character
code each.

Problems

• This does not work for German, where the character "ß" (sharp s) uppercases to the
two characters "SS". (It "expands".)

• It does not work for Greek, where the character "Σ" (capital sigma) lowercases to
either "ς" (small final sigma) or "σ" (small sigma) depending on whether the capital
sigma is the last letter in a word. (It is context-dependent.)

• It does not work for Lithuanian and Turkic languages where a "combining dot above"
character may need to be removed in certain cases. (It "contracts" and is language- and
context-dependent.)

• There are a number of other such cases.

• There are no standard functions for title-casing strings.

• There are no standard functions for case-folding strings. (Case-folding is used for case-
insensitive comparisons; there are C/POSIX functions for direct, case-insensitive
comparisons of pairs of strings. Case-folding is useful when one string is compared to
many others, or as part of a chain of transformations of a string.)

ICU

Case mappings are operations taking and returning strings, to support length changes and
context dependencies. Unicode provides algorithms and data for proper case mappings,
and ICU provides APIs for them. (See the API references for various string functions and

54 ICU v3.4 User Guide

for Transforms/Transliteration.)

Character Classes

ISO C

The standard C functions isalpha(), isdigit(), etc. take a character code each and
return boolean values for whether the character belongs to the current locale's respective
character class.

Problems

• Character classes are bound to locales, instead of providing consistent classifications
for characters.

• The same character may have different classifications depending on the locale and the
platform.

• There are only very few POSIX character classes, and they are not well defined. For
example, there is a class for punctuation characters but not one for symbols.

• For example, the dollar symbol (“$”) may or may not belong to the punct class
depending on the locale, even on the same system.

• The standard allows at most two sets of decimal digits: The digits of the “portable
character set” (i.e., those in the ASCII repertoire) and one more. Some
implementations only recognize ASCII digits in the isdigit() function. However,
there are many sets of decimal digits in a multilingual character set like Unicode.

• The POSIX standard assumes that each locale definition file carries the character class
data for all relevant characters. With many locales using overlapping character
repertoires, this can lead to a lot of duplication. For efficiency, many UTF-8 locales
define character classes only for very few characters instead of for all of Unicode. For
example, some de_DE.utf-8 locales only define character classes for characters used in
German, or for the repertoire of ISO 8859-1 – in other words, for only a tiny fraction
of the representable Unicode repertoire. Processing of text using more than this
repertoire is not possible with such an implementation.

• For more about the problems with POSIX character classes in a Unicode context see
Annex C: Compatibility Properties in Unicode Technical Standard #18: Unicode
Regular Expressions and see the mailing list archives for the unicode list (on
unicode.org). See also the ICU design document about C/POSIX character classes.

ICU

ICU provides locale-independent access to all Unicode properties (except Unihan.txt

55 ICU v3.4 User Guide

properties) via functions defined in uchar.h, and in ICU4J's UCharacter class (see API
references). The Unicode Character Database defines more than 70 character properties,
their values are designed for the large character set as well as for real text processing, and
they are updated with each version of Unicode. The UCD is available online, facilitating
industry-wide consistency in the implementation of Unicode properties.

Formatting and Parsing

Currency Formatting

POSIX

The strfmon() function is used to format monetary values. The default format and the
currency display symbol or display name are selected by the LC_MONETARY locale ID. The
number formatting can also be controlled with a formatting string resembling what
printf() uses.

Problems

• Selection of the currency via a locale ID is unreliable: Countries change currencies
over time, and the locale data for a particular country may not be available. This
results in using the wrong currency. For example, an application may assume that a
country has switched from a previous currency to the Euro, but it may run on an OS
that predates the switch.

• Using a single locale ID for the whole format makes it very difficult to format values
for multiple currencies with the same number format (for example, for an exchange
rate list or for showing the price of an item adjusted for several currencies). strfmon
() allows to specify the number format fully, but then the application cannot use a
country's default number format.

• The set of formattable currencies is limited to those that are available via locale IDs on
a particular system.

• There does not appear to be a function to parse currency values.

ICU

ICU number formatting APIs have separate, orthogonal settings for the number format,
which can be selected with a locale ID, and the currency, which is specified with an ISO
code. See the Formatting Numbers chapter for details.

56 ICU v3.4 User Guide

Strings
Overview

This section explains how to handle Unicode strings with ICU in C and C++.
Subsections:

• Handling Lengths, Indexes, and Offsets in Strings

• Using C Strings: NUL-Terminated vs. Length Parameters

• Using Unicode Strings in C

• Using Unicode Strings in C++

• Using C++ Strings in C APIs

• Using C Strings in C++ APIs

• Maximizing Performance with the UnicodeString Storage Model

• Using UTF-8 strings with ICU

• Using UTF-32 strings with ICU

• Changes in ICU 2.0

Sample code is available in the ICU source code library at
icu/source/samples/ustring/ustring.cpp.

Strings in C/C++

Strings in C and C++ are, at the lowest level, arrays of some particular base type. In most
cases, the base type is a char, which is an 8-bit byte in modern compilers. Some APIs use
a "wide character" type wchar_t that is typically 8, 16, or 32 bits wide and upwards
compatible with char. C code passes char * or wchar_t pointers to the first element of
an array. C++ enables you to create a class for encapsulating these kinds of character
arrays in handy and safe objects.

The interpretation of the byte or wchar_t values depends on the platform, the compiler,
the signed state of both char and wchar_t, and the width of wchar_t. These
characteristics are not specified in the language standards. When using internationalized
text, the encoding often uses multiple chars for most characters and a wchar_t that is
wide enough to hold exactly one character code point value each. Some APIs, especially
in the standard library (stdlib), assume that wchar_t strings use a fixed-width encoding
with exactly one character code point per wchar_t.

ICU: 16-bit Unicode strings

In order to take advantage of Unicode with its large character repertoire and its well-

57 ICU v3.4 User Guide

defined properties, there must be types with consistent definitions and semantics. The
Unicode standard defines a default encoding based on 16-bit code units. This is supported
in ICU by the definition of the UChar to be an unsigned 16-bit integer type. This is the
base type for character arrays for strings in ICU.

Endianness is not an issue on this level because the interpretation of an integer is
fixed within any given platform.

With the UTF-16 encoding form, a single Unicode code point is encoded with either one
or two 16-bit UChar code units (unambiguously). "Supplementary" code points, which are
encoded with pairs of code units, are rare in most texts. The two code units are called
"surrogates", and their unit value ranges are distinct from each other and from single-unit
value ranges. Code should be generally optimized for the common, single-unit case.

16-bit Unicode strings in internal processing contain sequences of 16-bit code units that
may not always be well-formed UTF-16. ICU treats single, unpaired surrogates as
surrogate code points, i.e., they are returned in per-code point iteration, they are included
in the number of code points of a string, and they are generally treated much like normal,
unassigned code points in most APIs. Surrogate code points have Unicode properties
although they cannot be assigned an actual character.

ICU string handling functions (including append, substring, etc.) do not automatically
protect against producing malformed UTF-16 strings. Most of the time, indexes into
strings are naturally at code point boundaries because they result from other functions that
always produce such indexes. If necessary, the user can test for proper boundaries by
checking the code unit values, or adjust arbitrary indexes to code point boundaries by
using the C macros U16_SET_CP_START() and U16_SET_CP_LIMIT() (see utf.h) and the
UnicodeString functions getChar32Start() and getChar32Limit().

UTF-8 and UTF-32 are supported with converters (ucnv.h), macros (utf.h), and
convenience functions (ustring.h), but not directly as string encoding forms for most
APIs.

Separate type for single code points

A Unicode code point is an integer with a value from 0 to 0x10FFFF. ICU 2.4 and later
defines the UChar32 type for single code point values as a 32 bits wide signed integer
(int32_t). This allows the use of easily testable negative values as sentinels, to indicate
errors, exceptions or "done" conditions. All negative values and positive values greater
than 0x10FFFF are illegal as Unicode code points.

ICU 2.2 and earlier defined UChar32 depending on the platform: If the compiler's
wchar_t was 32 bits wide, then UChar32 was defined to be the same as wchar_t.
Otherwise, it was defined to be an unsigned 32-bit integer. This means that UChar32 was
either a signed or unsigned integer type depending on the compiler. This was meant for
better interoperability with existing libraries, but was of little use because ICU does not
process 32-bit strings — UChar32 is only used for single code points. The platform
dependence of UChar32 could cause problems with C++ function overloading.

58 ICU v3.4 User Guide

Compiler-dependent definitions

The compiler's and the runtime character set's codepage encodings are not specified by
the C/C++ language standards and are usually not a Unicode encoding form. They
typically depend on the settings of the individual system, process, or thread. Therefore, it
is not possible to instantiate a Unicode character or string variable directly with C/C++
character or string literals. The only safe way is to use numeric values. It is not an issue
for User Interface (UI) strings that are translated. These UI strings are loaded from a
resource bundle, which is generated from a text file that can be in Unicode or in any other
ICU-provided codepage. The binary form of the genrb tool generates UTF-16 strings that
are ready for direct use.

There is a useful exception to this for program-internal strings and test strings. Within
each "family" of character encodings, there is a set of characters that have the same
numeric code values. Such characters include Latin letters, the basic digits, the space, and
some punctuation. Most of the ASCII graphic characters are invariant characters. The
same set, with different but again consistent numeric values, is invariant among almost all
EBCDIC codepages. For details, see icu/source/common/unicode/utypes.h. With
strings that contain only these invariant characters, it is possible to use efficient ICU
constructs to write a C/C++ string literal and use it to initialize Unicode strings.

In some APIs, ICU uses char * strings. This is either for file system paths or for strings
that contain invariant characters only (such as locale identifiers). These strings are in the
platform-specific encoding of either ASCII or EBCDIC. All other codepage differences
do not matter for invariant characters and are manipulated by the C stdlib functions like
strcpy().

In some APIs where identifiers are used, ICU uses char * strings with invariant
characters. Such strings do not require the full Unicode repertoire and are easier to handle
in C and C++ with char * string literals and standard C library functions. Their useful
character repertoire is actually smaller than the set of graphic ASCII characters; for
details, see utypes.h. Examples of char * identifier uses are converter names, locale
IDs, and resource bundle table keys.

There is another, less efficient way to have human-readable Unicode string literals in C
and C++ code. ICU provides a small number of functions that allow any Unicode
characters to be inserted into a string with escape sequences similar to the one that is used
in the C and C++ language. In addition to the familiar \n and \xhh etc., ICU also
provides the \uhhhh syntax with four hex digits and the \Uhhhhhhhh syntax with eight
hex digits for hexadecimal Unicode code point values. This is very similar to the newer
escape sequences used in Java and defined in the latest C and C++ standards. Since ICU
is not a compiler extension, the "unescaping" is done at runtime and the backslash itself
must be escaped (duplicated) so that the compiler does not attempt to "unescape" the
sequence itself.

59 ICU v3.4 User Guide

Handling Lengths, Indexes, and Offsets in Strings

The length of a string and all indexes and offsets related to the string are always counted
in terms of UChar code units, not in terms of UChar32 code points. (This is the same as in
common C library functions that use char * strings with multi-byte encodings.)

Often, a user thinks of a "character" as a complete unit in a language, like an 'Ä', while it
may be represented with multiple Unicode code points including a base character and
combining marks. (See the Unicode standard for details.) This often requires users to
index and pass strings (UnicodeString or UChar *) with multiple code units or code
points. It cannot be done with single-integer character types. Indexing of such
"characters" is done with the BreakIterator class (in C: ubrk_ functions).

Even with such "higher-level" indexing functions, the actual index values will be
expressed in terms of UChar code units. When more than one code unit is used at a time,
the index value changes by more than one at a time.

ICU uses signed 32-bit integers (int32_t) for lengths and offsets. Because of internal
computations, strings (and arrays in general) are limited to 1G base units or 2G bytes,
whichever is smaller.

Using C Strings: NUL-Terminated vs. Length Parameters

Strings are either terminated with a NUL character (code point 0, U+0000) or their length
is specified. In the latter case, it is possible to have one or more NUL characters inside the
string.

Input string arguments are typically passed with two parameters: The (const) UChar *
pointer and an int32_t length argument. If the length is -1 then the string must be NUL-
terminated and the ICU function will call the u_strlen() method or treat it equivalently.
If the input string contains embedded NUL characters, then the length must be specified.

Output string arguments are typically passed with a destination UChar * pointer and an
int32_t capacity argument and the function returns the length of the output as an int32_t.
There is also almost always a UErrorCode argument. Essentially, a UChar[] array is
passed in with its start and the number of available UChars. The array is filled with the
output and if space permits the output will be NUL-terminated. The length of the output
string is returned. In all cases the length of the output string does not include the
terminating NUL. This is the same behavior found in most ICU and non-ICU string APIs,
for example u_strlen(). The output string may contain NUL characters as part of its
actual contents, depending on the input and the operation. Note that the UErrorCode
parameter is used to indicate both errors and warnings (non-errors). The following
describes some of the situations in which the UErrorCode will be set to a non-zero value:

• If the output length is greater than the output array capacity, then the UErrorCode will
be set to U_BUFFER_OVERFLOW_ERROR and the contents of the output array is

60 ICU v3.4 User Guide

undefined.

• If the output length is equal to the capacity, then the output has been completely
written minus the terminating NUL. This is also indicated by setting the UErrorCode
to U_STRING_NOT_TERMINATED_WARNING.
 Note that U_STRING_NOT_TERMINATED_WARNING does not indicate failure (it passes
the U_SUCCESS() macro).
 Note also that it is more reliable to check the output length against the capacity, rather
than checking for the warning code, because warning codes do not cause the early
termination of a function and may subsequently be overwritten.

• If neither of these two conditions apply, the error code will indicate success and not a
U_STRING_NOT_TERMINATED_WARNING. (If a U_STRING_NOT_TERMINATED_WARNING
code had been set in the UErrorCode parameter before the function call, then it is reset
to a U_ZERO_ERROR.)

Preflighting: The returned length is always the full output length even if the output
buffer is too small. It is possible to pass in a capacity of 0 (and an output array pointer of
NUL) for "pure preflighting" to determine the necessary output buffer size. Add one to
make the output string NUL-terminated.

Note that — whether the caller intends to "preflight" or not — if the output length is
equal to or greater than the capacity, then the UErrorCode is set to
U_STRING_NOT_TERMINATED_WARNING or U_BUFFER_OVERFLOW_ERROR respectively, as
described above.

However, "pure preflighting" is very expensive because the operation has to be processed
twice — once for calculating the output length, and a second time to actually generate the
output. It is much more efficient to always provide an output buffer that is expected to be
large enough for most cases, and to reallocate and repeat the operation only when an
overflow occurred. (Remember to reset the UErrorCode to U_ZERO_ERROR before calling
the function again.) In C/C++, the initial output buffer can be a stack buffer. In case of a
reallocation, it may be possible and useful to cache and reuse the new, larger buffer.

The exception to these rules are the ANSI-C-style functions like u_strcpy(),
which generally require NUL-terminated strings, forbid embedded NULs, and do
not take capacity arguments for buffer overflow checking.

Using Unicode Strings in C

In C, Unicode strings are similar to standard char * strings. Unicode strings are arrays of
UChar and most APIs take a UChar * pointer to the first element and an input length
and/or output capacity, see above. ICU has a number of functions that provide the
Unicode equivalent of the stdlib functions such as strcpy(), strstr(), etc. Compared
with their C standard counterparts, their function names begin with u_. Otherwise, their
semantics are equivalent. These functions are defined in

61 ICU v3.4 User Guide

icu/source/common/unicode/ustring.h.

Code Point Access

Sometimes, Unicode code points need to be accessed in C for iteration, movement
forward, or movement backward in a string. A string might also need to be written from
code points values. ICU provides a number of macros that are defined in the
icu/source/common/unicode/utf.h and utf8.h/utf16.h headers that it includes
(utf.h is in turn included with utypes.h).

Macros for 16-bit Unicode strings have a U16_ prefix. For example:

U16_NEXT(s, i, length, c)
U16_PREV(s, start, i, c)
U16_APPEND(s, i, length, c, isError)

There are also macros with a U_ prefix for code point range checks (e.g., test for non-
character code point), and U8_ macros for 8-bit (UTF-8) strings. See the header files and
the API References for more details.

UTF Macros before ICU 2.4

In ICU 2.4, the utf*.h macros have been revamped, improved, simplified, and renamed.
The old macros continue to be available. They are in utf_old.h, together with an
explanation of the change. utf.h, utf8.h and utf16.h contain the new macros instead.
The new macros are intended to be more consistent, more useful, and less confusing.
Some macros were simply renamed for consistency with a new naming scheme.

This subsection contains a brief introduction into the pre-ICU 2.4 utf*.h macros. Most
users can skip this and continue with "C Unicode String Literals".

The commonly used macros for 16-bit Unicode strings have a UTF_ prefix (without a
number in the prefix). For example:

UTF_NEXT_CHAR(s, i, length, c)
UTF_PREV_CHAR(s, start, i, c)
UTF_APPEND_CHAR(s, i, length, c)

In certain cases, it can be useful to select one of the other macros.

Internally, the macros are organized by:

1. Encoding form: There are sets of macros for 8/16/32-bit Unicode strings, with prefixes
UTF8_, UTF16_, and UTF32_ respectively.

2. "Safety": There are three levels of increasing "safety" and decreasing performance.
Many macros are available in the following versions:

• The _UNSAFE macros do not perform error checking and are the fastest. For
example, in forward iteration, if there is a lead surrogate code unit, then the
_UNSAFE macros assume that there is a trail surrogate after it. If this is not the case,

62 ICU v3.4 User Guide

then for example a lead surrogate is be combined with an arbitrary following code
unit, resulting in bad output.

• The _SAFE macros (with the strict parameter set to FALSE) check for well-formed
UTF sequences. For example, if a lead surrogate is not followed by a trail surrogate,
then the macro will return just the lead surrogate as a code point. _SAFE macros
also check that the current index into the UChar array is within the bounds of the
array once the index is incremented or decremented by the macro. The initial index
value that is passed to the macro is assumed to be within the bounds so that the
typical range checks in iteration loop heads are not duplicated by the macros.

• In addition, the strict flag of the _SAFE macros can be set to TRUE to effectively
modify them so that they also check for non-character code points. This is
equivalent to using the UTF_IS_UNICODE_CHAR() test macro. Non-characters are
useful and valid in internal processing but should not be exchanged with external
systems.

Summary: For example, there are 3 _SAFE and 3 _UNSAFE implementation macros for
forward iteration that read code points from Unicode strings. The 3 _SAFE versions each
have a strict parameter, which effectively results in 9 implementations — 3 UTFs times
3 "safety levels".

The UTF_ default macros are "safe but not strict": They are aliases to UTF16_..._SAFE
macros with strict=FALSE. For example, UTF_NEXT_CHAR(s, i, length, c) is the
same as UTF16_NEXT_CHAR_SAFE(s, i, length, c, FALSE).

C Unicode String Literals

There is a pair of macros that together enable users to instantiate a Unicode string in C —
a UChar [] array — from a C string literal:

 /*
 * In C, we need two macros: one to declare the UChar[] array, and
 * one to populate it; the second one is a noop on platforms where
 * wchar_t is compatible with UChar and ASCII-based.
 * The length of the string literal must be counted for both macros.
 */
 /* declare the invString array for the string */
 U_STRING_DECL(invString, "such characters are safe 123 %-.", 32);
 /* populate it with the characters */
 U_STRING_INIT(invString, "such characters are safe 123 %-.", 32);

With invariant characters, it is also possible to efficiently convert char * strings to and
from UChar * strings:

 static const char *cs1="such characters are safe 123 %-.";
 static UChar us1[40];
 static char cs2[40];
 u_charsToUChars(cs1, us1, 33); /* include the terminating NUL */
 u_UCharsToChars(us1, cs2, 33);

63 ICU v3.4 User Guide

Using Unicode Strings in C++

UnicodeString is a C++ string class that wraps a UChar array and associated
bookkeeping. It provides a rich set of string handling functions.

UnicodeString combines elements of both the Java String and StringBuffer classes.
Many UnicodeString functions are named and work similar to Java String methods but
modify the object (UnicodeString is "mutable").

UnicodeString provides functions for random access and use (insert/append/find etc.) of
both code units and code points. For each non-iterative string/code point macro in utf.h
there is at least one UnicodeString member function. The names of most of these
functions contain "32" to indicate the use of a UChar32.

Code point and code unit iteration is provided by the CharacterIterator abstract class
and its subclasses. There are concrete iterator implementations for UnicodeString
objects and plain UChar [] arrays.

Most UnicodeString constructors and functions do not have a UErrorCode parameter.
Instead, if the construction of a UnicodeString fails, for example when it is constructed
from a NULL UChar * pointer, then the UnicodeString object becomes "bogus". This can
be tested with the isBogus() function. A UnicodeString can be put into the "bogus"
state explicitly with the setToBogus() function. This is different from an empty string
(although a "bogus" string also returns TRUE from isEmpty()) and may be used
equivalently to NULL in UChar * C APIs (or null references in Java, or NULL values in
SQL). A string remains "bogus" until a non-bogus string value is assigned to it. For
complete details of the behavior of "bogus" strings see the description of the setToBogus
() function.

Some APIs work with the Replaceable abstract class. It defines a simple interface for
random access and text modification and is useful for operations on text that may have
associated meta-data (e.g., styled text), especially in the Transliterator API.
UnicodeString implements Replaceable.

C++ Unicode String Literals

Like in C, there are macros that enable users to instantiate a UnicodeString from a C
string literal. One macro requires the length of the string as in the C macros, the other one
implies a strlen().

 UnicodeString s1=UNICODE_STRING("such characters are safe 123 %-.", 32);
 UnicodeString s1=UNICODE_STRING_SIMPLE("such characters are safe 123 %-.");

It is possible to efficiently convert between invariant-character strings and
UnicodeStrings by using constructor, setTo() or extract() overloads that take
codepage data (const char *) and specifying an empty string ("") as the codepage

64 ICU v3.4 User Guide

name.

Using C++ Strings in C APIs

The internal buffer of UnicodeString objects is available for direct handling in C (or C-
style) APIs that take UChar * arguments. It is possible but usually not necessary to copy
the string contents with one of the extract functions. The following describes several
direct buffer access methods.

The UnicodeString function getBuffer() const returns a readonly const UChar *.
The length of the string is indicated by UnicodeString's length() function. Generally,
UnicodeString does not NUL-terminate the contents of its internal buffer. However, it is
possible to check for a NUL character if the length of the string is less than the capacity
of the buffer. The following code is an example of how to check the capacity of the
buffer: (s.length()<s.getCapacity() && buffer[s.length()]==0)
An easier way to NUL-terminate the buffer and get a const UChar * pointer to it is the
getTerminatedBuffer() function. Unlike getBuffer() const,
getTerminatedBuffer() is not a const function because it may have to (reallocate and)
modify the buffer to append a terminating NUL. Therefore, use getBuffer() const if
you do not need a NUL-terminated buffer.

There is also a pair of functions that allow controlled write access to the buffer of a
UnicodeString: UChar *getBuffer(int32_t minCapacity) and releaseBuffer
(int32_t newLength). UChar *getBuffer(int32_t minCapacity) provides a
writeable buffer of at least the requested capacity and returns a pointer to it. The actual
capacity of the buffer after the getBuffer(minCapacity) call may be larger than the
requested capacity and can be determined with getCapacity().

Once the buffer contents are modified, the buffer must be released with the
releaseBuffer(int32_t newLength) function, which sets the new length of the
UnicodeString (newLength=-1 can be passed to determine the length of NUL-
terminated contents like u_strlen()).

Between the getBuffer(minCapacity) and releaseBuffer(newLength) function
calls, the contents of the UnicodeString is unknown and the object behaves like it
contains an empty string. A nested getBuffer(minCapacity), getBuffer() const or
getTerminatedBuffer() will fail (return NULL) and modifications of the string via
UnicodeString member functions will have no effect.

See the UnicodeString API documentation for more information.

Using C Strings in C++ APIs

There are efficient ways to wrap C-style strings in C++ UnicodeString objects without

65 ICU v3.4 User Guide

copying the string contents. In order to use C strings in C++ APIs, the UChar * pointer
and length need to be wrapped into a UnicodeString. This can be done efficiently in two
ways: With a readonly alias and a writeable alias. The UnicodeString object that is
constructed actually uses the UChar * pointer as its internal buffer pointer instead of
allocating a new buffer and copying the string contents.

If the original string is a readonly const UChar *, then the UnicodeString must be
constructed with a read only alias. If the original string is a writeable (non-const) UChar
* and is to be modified (e.g., if the UChar * buffer is an output buffer) then the
UnicodeString should be constructed with a writeable alias. For more details see the
section "Maximizing Performance with the UnicodeString Storage Model" and search the
unistr.h header file for "alias".

Maximizing Performance with the UnicodeString Storage Model

UnicodeString uses four storage methods to maximize performance and minimize
memory consumption:

1. Short strings are normally stored inside the UnicodeString object. The object has
fields for the "bookkeeping" and a small UChar array. When the object is copied, the
internal characters are copied into the destination object.

2. Longer strings are normally stored in allocated memory. The allocated UChar array is
preceded by a reference counter. When the string object is copied, the allocated buffer
is shared by incrementing the reference counter. If any of the objects that share the
same string buffer are modified, they receive their own copy of the buffer and
decrement the reference counter of the previously co-used buffer.

3. A UnicodeString can be constructed (or set with a setTo() function) so that it
aliases a readonly buffer instead of copying the characters. In this case, the string
object uses this aliased buffer for as long as the object is not modified and it will never
attempt to modify or release the buffer. This model has copy-on-write semantics. For
example, when the string object is modified, the buffer contents are first copied into
writeable memory (inside the object for short strings or the allocated buffer for longer
strings). When a UnicodeString with a readonly setting is copied to another
UnicodeString using the fastCopyFrom() function, then both string objects share
the same readonly setting and point to the same storage. Copying a string with the
normal assignment operator or copy constructor will copy the buffer. This prevents
accidental misuse of readonly-aliased strings. (This is new in ICU 2.4; earlier, the
assignment operator and copy constructor behaved like the new fastCopyFrom() does
now.)
 Important: The aliased buffer must remain valid for as long as any UnicodeString
object aliases it. This includes unmodified fastCopyFrom() copies of the object. It is
an error to readonly-alias temporary buffers and then pass the resulting
UnicodeString objects to APIs (for example, UnicodeSet::add(const

66 ICU v3.4 User Guide

UnicodeString& s)) that store them for longer than the buffers are valid. If it is
necessary to make sure that a string is not a readonly alias, then use any modifying
function without actually changing the contents (for example, s.setCharAt(0,
s.charAt(0))). In ICU 2.4 and later, a simple assignment or copy construction will
also copy the buffer.

4. A UnicodeString can be constructed (or set with a setTo() function) so that it
aliases a writeable buffer instead of copying the characters. The difference from the
above is that the string object writes through to this aliased buffer for write operations.
A new buffer is allocated and the contents are copied only when the capacity of the
buffer is not sufficient. An efficient way to get the string contents into the original
buffer is to use the extract(..., UChar *dst, ...) function. The extract(...,
UChar *dst, ...) function copies the string contents if the dst buffer is different
from the buffer of the string object itself. If a string grows and shrinks during a
sequence of operations, then it will not use the same buffer, even if the string would
fit. When a UnicodeString with a writeable alias is assigned to another
UnicodeString, the contents are always copied. The destination string will not point
to the buffer that the source string aliases point to.

In general, UnicodeString objects have "copy-on-write" semantics. Several objects may
share the same string buffer, but a modification only affects the object that is modified
itself. This is achieved by copying the string contents if it is not owned exclusively by this
one object. Only after that is the object modified.

Even though it is fairly efficient to copy UnicodeString objects, it is even more
efficient, if possible, to work with references or pointers. Functions that output strings can
be faster by appending their results to a UnicodeString that is passed in by reference,
compared with returning a UnicodeString object or just setting the local results alone
into a string reference.

UnicodeStrings can be copied in a thread-safe manner by just using their
standard copy constructors and assignment operators. fastCopyFrom() is also
thread-safe, but if the original string is a readonly alias, then the copy shares the
same aliased buffer.

Using UTF-8 strings with ICU

As mentioned in the overview of this chapter, ICU and most other Unicode-supporting
software uses 16-bit Unicode for internal processing. However, there are circumstances
where UTF-8 is used instead. This is usually the case for software that does little or no
processing of non-ASCII characters, and/or for APIs that predate Unicode, use byte-based
strings, and cannot be changed or replaced for various reasons.

A common perception is that UTF-8 has an advantage because it was designed for
compatibility with byte-based, ASCII-based systems, although it was designed for string
storage (of Unicode characters in Unix file names) rather than for processing

67 ICU v3.4 User Guide

performance.

While ICU does not natively use UTF-8 strings, there are many ways to work with UTF-8
strings and ICU. The following list is probably incomplete.

• Conversion of whole strings: u_strFromUTF8() and u_strToUTF8() in ustring.h.

• Access to code points: U8_NEXT() and U8_APPEND() macros in utf8.h.

• Using a UTF-8 converter with all of the ICU conversion APIs in ucnv.h, including
ones with an "Algorithmic" suffix.

• UnicodeString has constructors, setTo() and extract() methods which take either
a converter object or a charset name. APIs with a charset name are the most
convenient but internally open and close a converter; ones with a converter object
parameter avoid this.

• For conversion directly between UTF-8 and another charset use ucnv_convertEx().

• Some ICU APIs work with a CharacterIterator or a UCharIterator instead of
directly with a C/C++ string parameter. ICU provides an implementation of a
UCharIterator which reads UTF-8 strings. Use uiter_setUTF8(). There is currently
no ICU CharacterIterator instance that reads UTF-8, although an application could
provide one.

Using UTF-32 strings with ICU

It is even rarer to use UTF-32 for string processing than UTF-8. While 32-bit Unicode is
convenient because it is the only fixed-width UTF, there are few or no legacy systems
with 32-bit string processing that would benefit from a compatible format, and the
memory bandwidth requirements of UTF-32 diminish the performance and handling
advantage of the fixed-width format.

In recent years, the wchar_t type of some C/C++ compilers became a 32-bit integer, and
some C libraries do use it for Unicode processing. However, application software with
good Unicode support tends to have little use for the rudimentary Unicode and
Internationalization support of the standard C/C++ libraries and often uses custom types
(like ICU's) and 16-bit Unicode strings.

For those systems where 32-bit Unicode strings are used, ICU offers similar convenience
functions as for UTF-8.

• Conversion of whole strings: u_strFromUTF32() and u_strFromUTF32() in
ustring.h.

• Access to code points is trivial and does not require any macros.

• Using a UTF-32 converter with all of the ICU conversion APIs in ucnv.h, including
ones with an "Algorithmic" suffix.

68 ICU v3.4 User Guide

• UnicodeString has constructors, setTo() and extract() methods which take either
a converter object or a charset name. APIs with a charset name are the most
convenient but internally open and close a converter; ones with a converter object
parameter avoid this.

• For conversion directly between UTF-32 and another charset use ucnv_convertEx().

• Some ICU APIs work with a CharacterIterator or a UCharIterator instead of
directly with a C/C++ string parameter. There is currently no ICU
CharacterIterator or UCharIterator instance that reads UTF-32, although an
application could provide one.

ICU converters work with byte streams in external charsets on the non-"Unicode"
side. In order to work with the internal UTF-32 character encoding form, the
correct converter must be used (UTF-32BE or UTF-32LE according to the
platform endianness [U_IS_BIG_ENDIAN]), and the strings must be cast to/from
char * and counted in bytes instead of 32-bit units. For the difference between
internal encoding forms and external encoding schemes see the Unicode
Standard.

Changes in ICU 2.0

Beginning with ICU release 2.0, there are a few changes to the ICU string facilities.

Some of the NUL-termination behavior was inconsistent across the ICU API functions. In
particular, the following functions used to count the terminating NUL character in their
output length (counted one more before ICU 2.0 than now): ucnv_toUChars,
ucnv_fromUChars, uloc_getLanguage, uloc_getCountry, uloc_getVariant,
uloc_getName, uloc_getDisplayLanguage, uloc_getDisplayCountry,
uloc_getDisplayVariant, uloc_getDisplayName
Some functions used to set an overflow error code even when only the terminating NUL
did not fit into the output buffer. These functions now set UErrorCode to
U_STRING_NOT_TERMINATED_WARNING rather than to U_BUFFER_OVERFLOW_ERROR.

The aliasing UnicodeString constructors and most extract functions have existed for
several releases prior to ICU 2.0. There is now an additional extract function with a
UErrorCode parameter. Also, the getBuffer, releaseBuffer and getCapacity
functions are new to ICU 2.0.

For more information about these changes, please consult the old and new API
documentation.

69 ICU v3.4 User Guide

Properties
Overview

Text processing requires that a program treat text appropriately. If text is exchanged
between several systems, it is important for them to process the text consistently. This is
done by assigning each character, or a range of characters, attributes or properties used for
text processing, and by defining standard algorithms for at least the basic text operations.

Traditionally, such attributes and algorithms have not been well-defined for most
character sets, and text processing had to rely on ad-hoc solutions. Over time, standards
were created for querying properties of the system codepage. However, the set of these
properties was limited. Their data was not coordinated among implementations, and
standard algorithms were not available.

It is one of the strengths of Unicode that it not only defines a very large character set, but
also assigns a comprehensive set of properties and usage notes to all characters. It defines
standard algorithms for critical text processing, and the data is publicly provided and kept
up-to-date. See http://www.unicode.org/ for more information.

Sample code is available in the ICU source code library at
icu/source/samples/props/props.cpp. See also the source code for the Unicode browser
demo application, which can be used online to browse Unicode characters with their
properties.

Unicode Character Database properties in ICU APIs

The following table shows all Unicode Character Database properties (except for purely
"extracted" ones and Unihan properties) and the corresponding ICU APIs. Most of the
time, ICU4C provides functions in icu/source/common/unicode/uchar.h and ICU4J
provides parallel functions in the com.ibm.icu.lang.UCharacter class. Properties of a
single Unicode character are accessed by its 21-bit code point value (type:
UChar32=int32_t in C/C++, int in Java). Most properties are also available via
UnicodeSet APIs and patterns.

See the Unicode Character Database itself for comparison. PropertyAliases.txt lists all
properties by name and type.

Most properties that use binary, integer, or enumerated values are available via functions
u_hasBinaryProperty and u_getIntPropertyValue which take UProperty enum
constants to select the property. (ICU4J UCharacter member functions do not have the
"u_" prefix.) The constant names include the long property name according to
PropertyAliases.txt, e.g., UCHAR_LINE_BREAK. Corresponding property value enum
constant names often contain the short property name and the long value name, e.g.,
U_LB_LINE_FEED. For enumeration/integer type properties, the enumeration result type is
also listed here.

70 ICU v3.4 User Guide

Some UnicodeSet APIs use the same UProperty constants. Other UnicodeSet APIs and
UnicodeSet and regular expression patterns use the long or short property aliases and
property value aliases (see PropertyAliases.txt and PropertyValueAliases.txt).

There is one pseudo-property, UCHAR_GENERAL_CATEGORY_MASK for which the APIs do
not use a single value but a bit-set (a mask) of zero or more values, with each bit
corresponding to one UCHAR_GENERAL_CATEGORY value. This allows ICU to represent
property value aliases for multiple general categories, like "Letters" (which stands for
"Uppercase Letters", "Lowercase Letters", etc.). In other words, there are two ICU
properties for the same Unicode property, one delivering single values (for per-code point
lookup) and the other delivering sets of values (for use with value aliases and
UnicodeSet).

UCD Name
(see

PropertyAliases
.txt)

Type ICU4C uchar.h
ICU4J UCharacter

UCD File (.txt)

Age Unicode version (U) C: u_charAge fills in
UVersionInfo
Java: getAge returns a
VersionInfo reference

DerivedAge

Alphabetic binary (U) u_isUAlphabetic,
UCHAR_ALPHABETIC

DerivedCorePro
perties

ASCII_Hex_Dig
it

binary (U) UCHAR_ASCII_HEX_D
IGIT

PropList

Bidi_Class enum
UCharDirection

(U) u_charDirection,
UCHAR_BIDI_CLASS

UnicodeData

Bidi_Control binary (U) UCHAR_BIDI_CONTR
OL

PropList

Bidi_Mirrored binary (U) u_isMirrored,
UCHAR_BIDI_MIRROR
ED

UnicodeData

Bidi_Mirroring_
Glyph

code point u_charMirror BidiMirroring

Block enum
UBlockCode
(growing)

(U) ublock_getCode,
UCHAR_BLOCK

Blocks

Canonical_Com
bining_Class

0..255 (U) u_getCombiningClass,
UCHAR_CANONICAL_
COMBINING_CLASS

UnicodeData

Case_Folding Unicode string u_strFoldCase (ustring.h) CaseFolding

71 ICU v3.4 User Guide

UCD Name
(see

PropertyAliases
.txt)

Type ICU4C uchar.h
ICU4J UCharacter

UCD File (.txt)

Composition_E
xclusion

binary (c) contributes to
Full_Composition_Exclus
ion

CompositionEx
clusions

Dash binary (U) UCHAR_DASH PropList
Decomposition_
Mapping

Unicode string available via
normalization API

UnicodeData

Decomposition_
Type

enum
UDecompositio
nType

(U) UCHAR_DECOMPOSIT
ION_TYPE

UnicodeData

Default_Ignorab
le_Code_Point

binary (U) UCHAR_DEFAULT
_IGNORABLE_CODE_P
OINT

DerivedCorePro
perties

Deprecated binary (U) UCHAR_DEPRECATED PropList
Diacritic binary (U) UCHAR_DIACRITIC PropList
East_Asian_Wi
dth

enum
UEastAsianWid
th

(U) UCHAR_EAST_ASIAN
_WIDTH

EastAsianWidth

Expands_On_N
F*

binary available via
normalization API
(unorm.h)

DerivedNormal-
izationProps

Extender binary (U) UCHAR_EXTENDER PropList
FC_NFKC_Clos
ure

Unicode string u_getFC_NFKC_Closure DerivedNormal-
izationProps

Full_Compositi
on_Exclusion

binary (U) UCHAR_FULL
_COMPOSITION_EXCL
USION

DerivedNormal-
izationProps

General_Catego
ry

enum (<= 32
values)

(U) u_charType,
UCHAR_GENERAL_C
ATEGORY,
UCHAR_GENERAL_C
ATEGORY_MASK,
UCharCategory

UnicodeData

Grapheme_Base binary (U) UCHAR_GRAPHEME_
BASE

DerivedCorePro
perties

72 ICU v3.4 User Guide

UCD Name
(see

PropertyAliases
.txt)

Type ICU4C uchar.h
ICU4J UCharacter

UCD File (.txt)

Grapheme_Exte
nd

binary (U) UCHAR_GRAPHEME_
EXTEND

DerivedCorePro
perties

Grapheme_Link binary (U) UCHAR_GRAPHEME_
LINK

DerivedCorePro
perties

Hex_Digit binary (U) UCHAR_HEX_DIGIT PropList
Hyphen binary (U) UCHAR_HYPHEN PropList
ID_Continue binary (U) UCHAR_ID_CONTINU

E
DerivedCorePro
perties

ID_Start binary (U) UCHAR_ID_START DerivedCorePro
perties

Ideographic binary (U) UCHAR_IDEOGRAPHI
C

PropList

IDS_Binary_Op
erator

binary (U) UCHAR_IDS_BINARY_
OPERATOR

PropList

IDS_Triary_Ope
rator

binary (U) UCHAR_IDS_TRINARY
_OPERATOR

PropList

ISO_Comment ASCII string u_getISOComment UnicodeData
Join_Control binary (U) UCHAR_JOIN_CONTR

OL
PropList

Joining_Group enum
UJoiningGroup

(U) UCHAR_JOINING_GRO
UP

ArabicShaping

Joining_Type enum
UJoiningType

(U) UCHAR_JOINING_TYP
E

ArabicShaping

Line_Break enum
ULineBreak

(U) UCHAR_LINE_BREAK LineBreak

Logical_Order_
Exception

binary (U) UCHAR_LOGICAL_OR
DER_EXCEPTION

PropList

Lowercase binary (U) u_isULowercase,
UCHAR_LOWERCASE

DerivedCorePro
perties

Lowercase_Map
ping

Unicode string +
conditions

 available via
u_strToLower (ustring.h)

UnicodeData +
SpecialCasing

Math binary (U) UCHAR_MATH DerivedCorePro
perties

73 ICU v3.4 User Guide

UCD Name
(see

PropertyAliases
.txt)

Type ICU4C uchar.h
ICU4J UCharacter

UCD File (.txt)

Name ASCII string (U) u_charName
(U_UNICODE_CHAR_N
AME or
U_EXTENDED_CHAR_
NAME)

UnicodeData

NF*_QuickChe
ck

no/maybe/yes available via
unorm_quickCheck
(unorm.h)

DerivedNormal-
izationProps

Noncharacter_C
ode_Point

binary (U) UCHAR_NONCHARAC
TER_CODE_POINT,
U_IS_UNICODE_NONC
HAR (utf.h)

PropList

Numeric_Type enum
UNumericType

(U) UCHAR_NUMERIC_TY
PE

UnicodeData

Numeric_Value double (U) u_getNumericValue
Java/UnicodeSet: only
non-negative integers, no
fractions

UnicodeData

Other_Alphabeti
c

binary (c) contributes to Alphabetic PropList

Other_Default_I
gnorable
_Code_Point

binary (c) contributes to
Default_Ignorable
_Code_Point

PropList

Other_Graphem
e_Extend

binary (c) contributes to
Grapheme_Extend

PropList

Other_Lowercas
e

binary (c) contributes to Lowercase PropList

Other_Math binary (c) contributes to Math PropList
Other_Uppercas
e

binary (c) contributes to Uppercase PropList

Quotation_Mark binary (U) UCHAR_QUOTATION_
MARK

PropList

Radical binary (U) UCHAR_RADICAL PropList

74 ICU v3.4 User Guide

UCD Name
(see

PropertyAliases
.txt)

Type ICU4C uchar.h
ICU4J UCharacter

UCD File (.txt)

Script enum
UScriptCode
(growing)

(U) uscript_getCode
(uscript.h),
UCHAR_SCRIPT

Scripts

Simple_Case_F
olding

code point u_foldCase CaseFolding

Simple_Lowerc
ase_ Mapping

code point u_tolower UnicodeData

Simple_Titlecas
e_ Mapping

code point u_totitle UnicodeData

Simple_Upperca
se_ Mapping

code point u_toupper UnicodeData

Soft_Dotted binary (U) UCHAR_SOFT_DOTTE
D

PropList

Special_Case_C
ondition

conditions available via
u_strToLower etc.
(ustring.h)

SpecialCasing

Terminal_Punct
uation

binary (U) UCHAR_TERMINAL_P
UNCTUATION

PropList

Titlecase_Mappi
ng

Unicode string +
conditions

 u_strToTitle (ustring.h) UnicodeData +
SpecialCasing

Unicode_1_Na
me

ASCII string (U) u_charName
(U_UNICODE_10_CHA
R_NAME or
U_EXTENDED_CHAR_
NAME)

UnicodeData

Unified_Ideogra
ph

binary (U) UCHAR_UNIFIED_IDE
OGRAPH

PropList

Uppercase binary (U) u_isUUppercase,
UCHAR_UPPERCASE

DerivedCorePro
perties

Uppercase_Map
ping

Unicode string +
conditions

 u_strToUpper (ustring.h) UnicodeData +
SpecialCasing

White_Space binary (U) u_isUWhiteSpace,
UCHAR_WHITE_SPAC
E

PropList

75 ICU v3.4 User Guide

UCD Name
(see

PropertyAliases
.txt)

Type ICU4C uchar.h
ICU4J UCharacter

UCD File (.txt)

XID_Continue binary (U) UCHAR_XID_CONTIN
UE

DerivedCorePro
perties

XID_Start binary (U) UCHAR_XID_START DerivedCorePro
perties

Notes:

• (c) - This property only contributes to "real" properties (mostly "Other_..."
properties), so there is no direct support for this property in ICU.

• (U) - This property is available via the UnicodeSet APIs and patterns. Any property
available in UnicodeSet is also available in regular expressions. Properties which are
not available in UnicodeSet are generally those that are not available through a
UProperty selector.

Customization

ICU does not provide the means to modify properties at runtime. The properties are
provided exactly as specified by a recent version of the Unicode Standard (as published in
the Character Database). However, if an application requires custom properties (for
example, for Private Use characters), then it is possible to change or add them at build-
time. This is done by modifying the Character Database files copied into the ICU source
tree at icu/source/data/unidata. For the most common properties, the file to modify
is UnicodeData.txt.

To add a character to such a file, a line must be inserted into the file with the format used
in that file (see the online documentation on the Unicode site for more information).
These files are processed by ICU tools at build time. For example, the genprops tool reads
several of the files and writes the binary file uprops.dat, which is then packaged into the
common ICU data file. It is important for the operation of those tools that the Unicode
character code points of the entries are in ascending order (gaps are allowed). Any
available Unicode code point (0 to 10ffff16) can be used. Code point values should be
written with either 4, 5, or 6 hex digits. The minimum number of digits possible should
be used (but no fewer than 4). Note that the Unicode Standard specifies that the 32 code
point U+fdd0..U+fdef and the 34 code points U+...fffe and U+...ffff are not characters,
therefore they should not be added to any of the character database files.

After modifying one of these files, the ICU data needs to be rebuilt. The makefiles should
detect the modifications and run the necessary tools automatically.

76 ICU v3.4 User Guide

CharacterIterator Class
Overview

CharacterIterator is the abstract base class that defines a protocol for accessing
characters in a text-storage object. This class has methods for iterating forward and
backward over Unicode characters to return either the individual Unicode characters or
their corresponding index values.

Using CharacterIterator ICU iterates over text that is independent of its storage
method. The text can be stored locally or remotely in a string, file, database, or other
method. The CharacterIterator methods make the text appear as if it is local.

The CharacterIterator keeps track of its current position and index in the text and can
do the following

• Move forward or backward one Unicode character at a time

• Jump to a new location using absolute or relative positioning

• Move to the beginning or end of its range

• Return a character or the index to a character

The information can be restricted to a sub-range of characters, can contain a large block
of text that can be iterated as a whole, or can be broken into smaller blocks for the
purpose of iteration.

CharacterIterator is different from Normalizer in that Normalizer walks
through the Unicode characters without interpretation.

Prior to ICU release 1.6, the CharacterIterator class allowed access to a single UChar
at a time and did not support variable-width encoding. Single UChar support makes it
difficult when supplementary support is expected in UTF16 encodings. Beginning with
ICU release 1.6, the CharacterIterator class now efficiently supports UTF-16
encodings and provides new APIs for UTF32 return values. The API names for the
UTF16 and UTF32 encodings differ because the UTF32 APIs include "32" within their
naming structure. For example, CharacterIterator::current() returns the code unit
and Character::current32() returns a code point.

Base class inherited by CharacterIterator

The class, ForwardCharacterIterator, is a superclass of the CharacterIterator class.
This superclass provides methods for forward iteration only for both UTF16 and UTF32
access, and is and based on a efficient forward iteration mechanism. In some situations,
where you need to iterate over text that does not allow random-access, the
ForwardCharacterIterator superclass is the most efficient method. For example,

77 ICU v3.4 User Guide

iterate a UChar string using a character converter with the ucnv_getNextUChar() function.

Subclasses of CharacterIterator provided by ICU

ICU provides the following concrete subclasses of the CharacterIteratorclass:

• UCharCharacterIterator subclass iterates over a UChar[] array.

• StringCharacterIterator subclass extends from UCharCharacterIterator and
iterates over the contents of a UnicodeString.

Usage

To use the methods specified in CharacterIterator class, do one of the following:

• Make a subclass that inherits from the CharacterIterator class

• Use the StringCharacterIterator subclass

• Use the UCharCharacterIterator subclass

CharacterIterator objects keep track of its current position within the text that is
iterated over. The CharacterIterator class uses an object similar to a cursor that gets
initialized to the beginning of the text and advances according to the operations that are
used on the object. The current index can move between two positions (a start and a limit)
that are set with the text. The limit position is one character greater than the position of
the last UChar character that is used.

Forward iteration

For efficiency, ICU can iterate over text using post-increment semantics or Forward
Iteration. Forward Iteration is an access method that reads a character from the current
index position and moves the index forward. It leaves the index behind the character it
read and returns the character read. ICU can usenextPostInc() or next32PostInc()
calls with hasNext() to perform Forward Iteration. These calls are the only character
access methods provided by the ForwardCharacterIterator. An iteration loop can be
started with the setToStart(), firstPostInc() or first32PostInc()calls . (The
setToStart() call is implied after instantiating the iterator or setting the text.)

The less efficient forward iteration mechanism that is available for compatibility with
Java™ provides pre-increment semantics. With these methods, the current character is
skipped, and then the following character is read and returned. This is a less efficient
method for a variable-width encoding because the width of each character is determined
twice; once to read it and once to skip it the next time ICU calls the method. The methods
used for Forward Iteration are the next() or next32() calls. An iteration loop must start
with first() or first32() calls to get the first character.

78 ICU v3.4 User Guide

Backward iteration

Backward Iteration has pre-decrement semantics, which are the exact opposite of the
post-increment Forward Iteration. The current index reads the character that precedes the
index, the character is returned, and the index is left at the beginning of this character.
The methods used for Backward Iteration are the previous() or previous32() calls
with the hasPrevious() call . An iteration loop can be started with setToEnd(), last
(), or last32() calls.

Direct index manipulation

The index can be set and moved directly without iteration to start iterating at an arbitrary
position, skip some characters, or reset the index to an earlier position. It is possible to set
the index to one after the last text code unit for backward iteration.

The setIndex() and setIndex32() calls set the index to a new position and return the
character at that new position. The setIndex32() call ensures that the new position is at
the beginning of the character (on its first code unit). Since the character at the new
position is returned, these functions can be used for both pre-increment and post-
increment iteration semantics.
Similarly, the current() and current32() calls return the character at the current index
without modifying the index. The current32() call retrieves the complete character
whether the index is on the first code unit or not.

The index and the iteration boundaries can be retrieved using separate functions. The
following syntax is used by ICU: startIndex() <= getIndex() <= endIndex().

Without accessing the text, the setToStart() and setToEnd() calls set the index to the
start or to the end of the text. Therefore, these calls are efficient in starting a forward
(post-increment) or backward iteration.

The most general functions for manipulating the index position are the move() and
move32() calls. These calls allow you to move the index forward or backward relative to
its current position, start the index, or move to the end of the index. The move() and
move32() calls do not access the text and are best used for skipping part of it. The
move32() call skips complete code points like next32PostInc() call and other
UChar32-access methods.

Access to the iteration text

The CharacterIterator class provides the following access methods for the entire text
under iteration:

• getText() sets a UnicodeString with the text

• getLength() returns just the length of the text.

This text (and the length) may include more than the actual iteration area because the start

79 ICU v3.4 User Guide

and end indexes may not be the start and end of the entire text. The text and the iteration
range are set in the implementing subclasses.

Additional Sample Code

C/C++: See icu/source/samples/citer/ in the ICU source distribution for code samples.

80 ICU v3.4 User Guide

UText
Overview

UText is a text abstraction facility for ICU

The intent is to make it possible to extend ICU to work with text data that is in formats
above and beyond those that are native to ICU.

UText makes it possible to extend ICU to work with text that

• Is stored in UTF-8 or UTF-32 format.

• Is in strings that are stored in discontiguous chunks in memory, or in application-
specific representations.

• Is in a non-Unicode code page

If ICU does not directly support a desired text format, it is possible for application
developers themselves to extend UText, and in that way gain the ability to use their text
with ICU.

UText for ICU 3.4

UText in ICU 3.4 is a technology preview, and supports only very limited set of formats
and ICU services.

 Storage Forms supported by UText in ICU 3.4
• (UChar *) UTF-16 strings.

• (char *) UTF-8 strings

• C++, instances of class UnicodeString

• C++, instances of class Replaceable.

The only ICU service supporting UText based input for ICU 3.4 is boundary analysis
(break iteration).

In the future, the supported services may be extended to include string search, regular
expressions, and possibly others. The supported string formats could be extended to
include include UTF-32, strings in some non-Unicode code pages, or file based text that
is too large to reasonably fit in memory.

Using UText

There are three fairly distinct classes of use of UText. These are

81 ICU v3.4 User Guide

• Simple wrapping of existing text. Application text data exists in a format that is
already supported by UText (such as UTF-8). The application opens a UText on the
data, and then passes the UText to an ICU service for analysis/processing. Most use of
UText from applications will follow this simple pattern. Only a very few UText APIs
and only a few lines of code are required.

• Accessing the underlying text. UText provides APIs for iterating over the text in
various ways, and for fetching individual code points from the text. These functions
will probably be used primarily from within ICU, in the implementation of services
that can accept input in the form of a UText. While applications are certainly free to
use these text access functions if necessary, there may often be no need.

• UText support for new text storage formats. If an application has text data stored in
a format that is not directly supported by ICU, extending UText to support that format
will provide the ability to conveniently use all ICU services that support UText.

 Extending UText to a new format is accomplished by implementing a well defined set
of Text Provider Functions for that format.

UText compared with CharacterIterator

CharacterIterator is an abstract base class that defines a protocol for accessing characters
in a text-storage object. This class has methods for iterating forward and backward over
Unicode characters to return either the individual Unicode characters or their
corresponding index values.

UText and CharacterIterator both provide an abstraction for accessing text while
hiding details of the actual storage format. UText is the more flexible of the two,
however, with these advantages:

• UText can conveniently operate on text stored in formats other than UTF-16.

• UText includes functions for modifying or editing the text.

• UText is more efficient. When iterating over a range of text using the
CharacterIterator API, a function call is required for every character. With UText,
iterating to the next character is usually done with small amount of inline code.

At this time, more ICU services support CharacterIterator than UText, but this is situation
will improve over time. ICU services that can operate on text represented by a
CharacterIterator are

• Normalizer

82 ICU v3.4 User Guide

• Break Iteration

• String Search

• Collation Element Iteration

Example: Counting the Words in a UTF-8 String

Here is a function that uses UText and an ICU break iterator to count the number of
words in a nul-terminated UTF-8 string. The use of UText only adds two lines of code
over what a similar function operating on normal UTF-16 strings would require.

int countWords(const char *utf8String) {
 UText *ut = NULL;
 UBreakIterator *bi = NULL;
 int wordCount = 0;
 UErrorCode status = U_ZERO_ERROR;
 ut = utext_openUTF8(ut, utf8String, -1, &status);
 bi = ubrk_open(UBRK_WORD, "en_us", NULL, 0, &status);
 ubrk_setUText(bi, ut, &status);
 while (ubrk_next(bi) != UBRK_DONE) {
 if (ubrk_getRuleStatus(bi) != UBRK_WORD_NONE) {
 /* Count only words and numbers, not spaces or punctuation */
 wordCount++;
 }
 }
 utext_close(ut);
 ubrk_close(ut);
 assert(U_SUCCESS(status));
 return wordCount;
}

UText API Functions

Opening and Closing.

Normal usage of UText by an application consists of opening a UText to wrap some
existing text, then passing the UText to ICU functions for processing. For this kind of
usage, all that is needed is the appropriate utext_open and close functions.

function description
uext_openUChars() Open a UText over a standard ICU (UChar *) string.

The string consists of a UTF-16 array in memory,
either nul terminated or with an explicit length.

utext_openUnicodeString() Open a UText over an instance of an ICU C++
UnicodeString.

83 ICU v3.4 User Guide

function description
Utext_
openConstUnicodeString() Open a UText over a read-only UnicodeString.

Disallows UText APIs that modify the text.
utext_openReplaceable() Open a UText over an instance of an ICU C++

Replaceable.
utext_openUTF8() Open a UText over a UTF-8 encoded C string. May be

either Nul terminated or have an explicit length.
utext_close Close an open UText. Frees any allocated memory;

required to prevent memory leaks.

Here are some suggestions and techniques for efficient use of UText.

Minimizing Heap Usage

Utext's open functions include features to allow applications to minimize the number of
heap memory allocations that will be needed. Specifically,

• UText structs may declared as local variables, that is, they may be stack allocated
rather than heap allocated.

• Existing UText structs may be reused to refer to new text, avoiding the need to allocate
and initialize a new UText instance.

Minimizing heap allocations is important in code that has critical performance
requirements, and is doubly important for code that must scale well in multithreaded,
multiprocessor environments.

Stack Allocation

Here is code for stack-allocating a UText:
 UText mytext = UTEXT_INITIALIZER;
 utext_openUChars(&myText, ...

The first parameter to all utext_open functions is a pointer to a UText. If it is non-null,
the supplied UText will be used; if it is null, a new UText will be heap allocated.

Stack allocated UText objects must be initialized with UTEXT_INITIALIZER. An
uninitialized instance will fail to open.

Heap Allocation

Here is code for creating a heap allocated UText:
 UText *mytext = utext_openUChars(NULL, ...

84 ICU v3.4 User Guide

This is slightly smaller and more convenient to write than the stack allocated code, and
there is no reason not to use heap allocated UText objects in the vast majority of code that
does not have extreme performance constraints.

Reuse

To reuse an existing UText, simply pass it as the first parameter to any of the UText open
functions. There is no need to close the UText first, and it may actually be more efficient
not to close it first.

Here is an example of a function that iterates over an array of UTF-8 strings, wrapping
each in a UText and passing it off to another function. On the first time through the loop
the utext open function will heap allocate a UText. On each subsequent iterations the
existing UText will be reused.

void f(char **strings, int numStrings) {
 UText *ut = NULL;
 UerrorCode status;

 for (int i=0; i<numStrings; i++) {
 status = U_ZERO_ERROR;
 ut = utext_openUTF8(ut, strings[i], -1, &status);
 assert(U_SUCCESS(status));
 do_something(ut);
 }
 utext_close(ut);

close

Closing a UText frees any storage associated with it, including the UText itself for those
that are heap allocated. Stack allocated UTexts should also be closed because in some
cases there may be additional heap allocated storage associated with them, depending on
the type of the underlying text storage.

Accessing the Text

For accessing the underlying text, UText provides functions both for iterating over the
characters, and for direct random access by index. Here are the conventions that apply for
all of the access functions:

• access to individual characters is always by code points, that is, 32 bit Unicode values
are always returned. UTF-16 surrogate values from a surrogate pair, like bytes from a
UTF-8 sequence, are not separately visible.

• Indexing always uses the index values from the original underlying text storage, in
whatever form it has. If the underlying storage is UTF-8, the indexes will be UTF-8

85 ICU v3.4 User Guide

byte indexes, not UTF-16 offsets.

• Indexes always refer to the first position of a character. This is equivalent to saying
that indexes always lie at the boundary between characters. If an index supplied to a
UText function refers to the 2nd through the Nth positions of a multi byte or multi-
code-unit character, the index will be normalized back to the first or lowest index.

• An input index that is greater than the length of the text will be set to refer to the end
of the string, and will not generate out of bounds error. This is similar to the indexing
behavior in the UnicodeString class.

• Iteration uses post-increment and pre-decrement conventions. That is, utext_next32()
fetches the code point at the current index, then leaves the index pointing at the next
character.

Here are the functions for accessing the actual text data represented by a UText. The
primary use of these functions will be in the implementation of ICU services that accept
input in the form of a UText, although application code may also use them if the need
arises.

For more detailed descriptions of each, see the API reference.

Function Description

utext_nativeLength Get the length of the text string in terms of the
underlying native storage – bytes for UTF-8, for
example

utext_isLengthExpensive Indicate whether determining the length of the string
would require scanning the string.

utext_char32At Get the code point at the specified index.
utext_current32 Get the code point at the current iteration position.

Does not advance the position.
utext_next32 Get the next code point, iterating forwards.
utext_previous32 Get the previous code point, iterating backwards.
utext_next32From Begin a forwards iteration at a specified index.
utext_previous32From Begin a reverse iteration at a specified index.
utext_getNativeIndex Get the current iteration index.
utext_setNativeIndex Set the iteration index.
utext_moveIndex32 Move the current index forwards or backwards by the

specified number of code points.
utext_extract Retrieve a range of text, placing it into a UTF-16 buffer.

86 ICU v3.4 User Guide

Function Description
UTEXT_NEXT32 inline (high performance) version of utext_next32
UTEXT_PREVIOUS32 inline (high performance) version of utext_previous32

Modifying the Text

UText provides API for modifying or editing the text.

Function Description
utext_replace() Replace a range of the original text with a replacement

string.
utext_copy() Copy or Move a range of the text to a new position.
utext_isWritable() Test whether a UText supports writing operations.
utext_hasMetaData() Test whether the text includes metadata. See class

Replaceable for more information on meta data..

Certain conventions must be followed when modifying text using these functions:

• Not all types of UText can support modifying the data. Code working with UText
instances of unknown origin should check utext_isWritable() first, and be prepared to
deal with failures.

• There must be only one UText open onto the underlying string that is being modified.
(Strings that are not being modified can be the target of any number of UTexts at the
same time) The existence of a second UText that refers to a string that is being
modified is not a situation that is detected by the implementation. The application
code must be structured to avoid the situation.

Cloning

UText instances may be cloned. The clone function,
uUText * utext_clone(UText *dest,
 const UText *src,
 UBool deep,
 UErrorCode *status)

behaves very much like a UText open functions, with the source of the text being another
UText rather than some other form of a string.

A shallow clone creates a new UText that maintains its own iteration state, but does not

87 ICU v3.4 User Guide

clone the underlying text itself.

A deep clone copies the underlying text in addition to the UText state. This would be
appropriate if you wished to modify the text without the changes being reflected back to
the original source string. Not all text providers support deep clone, so checking for error
status returns from utext_clone() is importatnt.

Thread Safety

UText follows the usual ICU conventions for thread safety: concurrent calls to functions
accessing the same non-const UText is not supported. If concurrent access to the text is
required, the UText can be cloned, allowing each thread access via a separate UText. So
long as the underlying text is not being modified, a shallow clone is sufficient.

Text Providers

A text provider is a set of functions that let UText support a specific text storage format.

ICU includes several UText text provider implementations, and applications can provide
additional ones if needed.

To implement a new UText text provider, it is necessary to have an understanding of how
UText is designed. Underneath the covers, UText is a struct that includes

• a pointer to a Text Chunk, which is a UTF-16 buffer containing a section (or all) of the
text being referenced. For text sources whose native format is UTF-16, the chunk
description can refer directly to the original text data. For non-UTF-16 sources, the
chunk will refer to a side buffer containing some range of the text that has been
converted to UTF-16 format.

• The iteration position, as a UTF-16 offset within the chunk.

If a text access function (one of those described above, in the previous section) can do its
thing based on the information maintained in the UText struct, it will. If not, it will call
out to one of the provider functions (below) to do the work, or to update the UText.

The best way to really understand what is required of a UText provider is to study the
implementations that are included with ICU, and to borrow as much as possible.

Here is the list of text provider functions.

Function Description
UTextAccess Set up the Text Chunk associated with this UText

so that it includes a requested index position.
UTextNativeLength Return the full length of the text.

88 ICU v3.4 User Guide

Function Description
UTextClone Clone the UText.
UTextExtract Extract a range of text into a caller-supplied buffer
UTextReplace Replace a range of text with a caller-supplied

replacement. May expand or shrink the overall
text.

UTextCopy Move or copy a range of text to a new position.
UTextMapOffsetToNative Within the current text chunk, translate a UTF-16

buffer offset to an absolute native index.
UTextMapNativeIndexToUTF16 Translate an absolute native index to a UTF-16

buffer offset within the current text.
UTextClose Provider specific close. Free storage as required.
Not every provider type requires all of the functions. If the text type is read-only, no
implementation for Replace or Copy is required. If the text is in UTF-16 format, no
implementation of the native to UTF-16 index conversions is required.

To fully understand what is required to support a new string type with UText, it will be
necessary to study both the provider function declarations from utext.h and the existing
text provider implementations in utext.cpp.

89 ICU v3.4 User Guide

UnicodeSet
Overview

A UnicodeSet is an object that matches a set of Unicode characters. The contents of that
object can be specified either by patterns or by building them programmatically.

UnicodeSet Patterns

Patterns are a series of characters bounded by square brackets that contain lists of
characters and Unicode property sets. Lists are a sequence of characters that may have
ranges indicated by a '-' between two characters, as in "a-z". The sequence specifies the
range of all characters from the left to the right, in Unicode order. For example, [a c d-f
m] is equivalent to [a c d e f m]. Whitespace can be freely used for clarity as [a c d-f m]
means the same as [acd-fm].

Unicode property sets are specified by a Unicode property, such as [:Letter:]. ICU
version 2.0 supports General Category, Script, and Numeric Value properties (ICU will
support additional properties in the future). For a list of the property names, see the end of
this section. The syntax for specifying the property names is an extension of either POSIX
or Perl syntax with the addition of "=value". For example, you can match letters by using
the POSIX syntax [:Letter:], or by using the Perl-style syntax \u005cp{Letter}. The
type can be omitted for the Category and Script properties, but is required for other
properties.

The table below shows the two kinds of syntax: POSIX and Perl style. Also, the table
shows the "Negative", which is a property that excludes all characters of a given kind. For
example, [:^Letter:] matches all characters that are not [:Letter:].

Positive Negative
POSIX-style Syntax [:type=value:] [:^type=value:]

Perl-style Syntax \p{type=value} \P{type=value}

These following low-level lists or properties then can be freely combined with the normal
set operations (union, inverse, difference, and intersection):

• To union two sets, simply concatenate them. For example, [[:letter:]
[:number:]]

• To intersect two sets, use the '&' operator. For example, [[:letter:] & [a-z]]
• To take the set-difference of two sets, use the '-' operator. For example, [[:letter:]

- [a-z]]
• To invert a set, place a '^' immediately after the opening '['. For example, [^a-z]. In

any other location, the '^' does not have a special meaning.

90 ICU v3.4 User Guide

The binary operators '&' and '-' have equal precedence and bind left-to-right. Thus
[[:letter:]-[a-z]-[\u0100-\u01FF]] is equivalent to [[[:letter:]-[a-z]]-
[\u0100-\u01FF]]. Another example is the set [[ace][bdf] - [abc][def]] is not the
empty set, but instead the set [def]. This only really matters for the difference operation,
as the intersection operation is commutative.

Another caveat with the '&' and '-' operators is that they operate between sets. That is,
they must be immediately preceded and immediately followed by a set. For example, the
pattern [[:Lu:]-A] is illegal, since it is interpreted as the set [:Lu:] followed by the
incomplete range -A. To specify the set of uppercase letters except for 'A', enclose the 'A'
in a set: [[:Lu:]-[A]].
[a] The set containing 'a'
[a-z] The set containing 'a' through 'z' and all

letters in between, in Unicode order
[^a-z] The set containing all characters but 'a'

through 'z', that is, U+0000 through 'a'-1
and 'z'+1 through U+FFFF

[[pat1][pat2]] The union of sets specified by pat1 and
pat2

[[pat1]&[pat2]] The intersection of sets specified by pat1
and pat2

[[pat1]-[pat2]] The asymmetric difference of sets specified
by pat1 and pat2

[:Lu:] The set of characters belonging to the given
Unicode category, as defined by
Character.getType(); in this case,
Unicode uppercase letters. The long form
for this is [:UppercaseLetter:].

[:L:] The set of characters belonging to all
Unicode categories starting with 'L', that is,
[[:Lu:][:Ll:][:Lt:][:Lm:][:Lo:]].
The long form for this is [:Letter:].

Character Quoting and Escaping in Unicode Set Patterns

SINGLE QUOTE
Two single quotes represents a single quote, either inside or outside single quotes.

Text within single quotes is not interpreted in any way (except for two adjacent single
quotes). It is taken as literal text (special characters become non-special).

Enclosing a run of characters may imply grouping. For example, in regular-expression-

91 ICU v3.4 User Guide

like environments, the single-quoted text is treated as a unit with regard to trailing
quantifiers. The pattern "a'bc'*" matches each of the following: "a", "abc", "abcbc",
but not "abcc".

BACKSLASH ESCAPES
Outside of single quotes, certain backslashed characters have special meaning:
\uhhhh Exactly 4 hex digits; h in [0-9A-Fa-f]
\Uhhhhhhhh Exactly 8 hex digits
\xhh 1-2 hex digits
\ooo 1-3 octal digits; o in [0-7]
\a U+0007 (BELL)
\b U+0008 (BACKSPACE)
\t U+0009 (HORIZONTAL TAB)
\n U+000A (LINE FEED)
\v U+000B (VERTICAL TAB)
\f U+000C (FORM FEED)
\r U+000D (CARRIAGE RETURN)
\\ U+005C (BACKSLASH)

Anything else following a backslash is mapped to itself, except in an environment where
it is defined to have some special meaning. For example, \p{Lu} is the set of uppercase
letters in UnicodeSet.

Any character formed as the result of a backslash escape loses any special meaning and is
treated as a literal. In particular, note that \u and \U escapes create literal characters. (In
contrast, javac treats Unicode escapes as just a way to represent arbitrary characters in an
ASCII source file, and any resulting characters are _not_ tagged as literals.)

WHITESPACE
Whitespace (as defined by our API) is ignored unless it is quoted or backslashed.

The rules for quoting and white space handling are common to most ICU APIs
that process rule or expression strings, including UnicodeSet, Transliteration and
(coming soon now) Break Iterators.

Programmatically Building UnicodeSets

ICU users can programmatically build a UnicodeSet by adding or removing ranges of
characters or by using the retain (intersection), remove (difference), and add (union)
operations. The following shows some examples:

92 ICU v3.4 User Guide

Property Values

The following property value variants are recognized:

short omits the type (used to prevent ambiguity
and only allowed with the Category and
Script properties)

medium uses an abbreviated type and value
long uses a full type and value
If the type or value is omitted, then the equals sign is also omitted. The short style is only
used for Category and Script properties because these properties are very common and
their omission is unambiguous.

In actual practice, you can mix type names and values that are omitted, abbreviated, or
full. For example, if Category=Unassigned you could use what is in the table explicitly, \p
{gc=Unassigned}, \p{Category=Cn}, or \p{Unassigned}.

When these are processed, case and whitespace are ignored so you may use them for
clarity, if desired. For example, \p{Category = Uppercase Letter} or \p{Category
= uppercase letter}.

The Category property is already supported by UnicodeSet in ICU 1.6, but only
in the short form. There are also the following special values in the Category:

For a list of supported properties, see the Properties section.

93 ICU v3.4 User Guide

Regular Expressions
Overview

ICU's Regular Expressions package provides applications with the ability to apply regular
expression matching to Unicode string data. The regular expression patterns and behavior
are based on Perl's regular expressions. The C++ programming API for using ICU regular
expressions is loosely based on the JDK 1.4 package java.util.regex, with some
extensions to adapt it for use in a C++ environment. A plain C API is also provided.

The ICU Regular expression API supports operations including testing for a pattern
match, searching for a pattern match, and replacing matched text. Capture groups allow
subranges within an overall match to be identified, and to appear within replacement text.

A Perl-inspired split() function that breaks a string into fields based on a delimiter pattern
is also included.

A detailed description of regular expression patterns and pattern matching behavior is not
included in this user guide. The best reference for this topic is the book "Mastering
Regular Expressions, Second Edition" by Jeffrey E. F. Friedl, O'Reilly & Associates; 2nd
edition (July 15, 2002). Matching behavior can sometimes be surprising, and this book is
highly recommended for anyone doing significant work with regular expressions.

Using ICU Regular Expressions

The ICU C++ Regular Expression API includes two classes, RegexPattern and
RegexMatcher, that parallel the classes from the Java JDK package java.util.regex. A
RegexPattern represents a compiled regular expression while RegexMatcher associates
a RegexPattern and an input string to be matched, and provides API for the various find,
match and replace operations. In most cases, however, only the class RegexMatcher is
needed, and the existence of class RegexPattern can safely be ignored.

The first step in using a regular expression is typically the creation of a RegexMatcher
object from the source (string) form of the regular expression.

RegexMatcher holds a pre-processed (compiled) pattern and a reference to an input
string to be matched, and provides API for the various find, match and replace operations.
RegexMatchers can be reset and reused with new input, thus avoiding object creation
overhead when performing the same matching operation repeatedly on different strings.

The following code will create a RegexMatcher from a string containing a regular
expression, and then perform a simple find() operation.

#include <unicode/regex.h>

94 ICU v3.4 User Guide

UErrorCode status = U_ZERO_ERROR;
 ...
RegexMatcher *matcher = new RegexMatcher("abc+", 0, status);
if (U_FAILURE(status)) {
 // Handle any syntax errors in the regular expression here
 ...
}

UnicodeString stringToTest = “Find the abc in this string”;
matcher->reset(stringToTest);
if (matcher->find(status)) {
 // We found a match.
 int startOfMatch = matcher->start(); // string index of start of match.
 ...
}

Several types of matching tests are available

Function Description
matches() True if the pattern matches the entire string. from the start through to

the last character.
lookingAt() True if the pattern matches at the start of the string. The match need

not include the entire string.
find() True if the pattern matches somewhere within the string. Successive

calls to find() will find additional matches, until the string is
exhausted.

If additional text is to be checked for a match with the same pattern, there is no need to
create a new matcher object; just reuse the existing one.

myMatcher->reset(anotherString);
if (myMatcher->matches(status)) {
 // We have a with the new string.
}

Note that matching happens directly in the string supplied by the application. This
reduces the overhead when resetting a matcher to an absolute minimum – the matcher
need only store a reference to the new string – but it does mean that the application must
be careful not to modify or delete the string while the matcher is holding a reference to
the string.

After finding a match, additional information is available about the range of the input
matched, and the contents of any capture groups. Note that, for simplicity, any error
parameters have been omitted. See the API reference for complete a complete description

95 ICU v3.4 User Guide

of the API.

Function Description
start() Return the index of the start of the matched region in the input

string .
end() Return the index of the first character following the match.
group() Return a UnicodeString containing the text that was matched.
start(n) Return the index of the start of the text matched by the nth capture

group.
end(n) Return the index of the first character following the text matched by

the nth capture group.
group(n) Return a UnicodeString containing the text that was matched by the

nth capture group..

Regular Expression Metacharacters

Character Description
\a Match a BELL, \u0007
\A Match at the beginning of the input. Differs from ^ in

that \A will not match after a new line within the input.
\b, outside of a [Set] Match if the current position is a word boundary.

Boundaries occur at the transitions between word (\w)
and non-word (\W) characters, with combining marks
ignored. For better word boundaries, see ICU Boundary
Analysis.

\b, within a [Set] Match a BACKSPACE, \u0008.
\B Match if the current position is not a word boundary.
\cX Match a control-X character.
\d Match any character with the Unicode General

Category of Nd (Number, Decimal Digit.)
\D Match any character that is not a decimal digit.
\e Match an ESCAPE, \u001B.
\E Terminates a \Q ... \E quoted sequence.
\f Match a FORM FEED, \u000C.

96 ICU v3.4 User Guide

Character Description
\G Match if the current position is at the end of the

previous match.
\n Match a LINE FEED, \u000A.
\N{UNICODE CHARACTER
NAME} Match the named character.

\p{UNICODE PROPERTY NAME} Match any character with the specified Unicode
Property.

\P{UNICODE PROPERTY NAME} Match any character not having the specified Unicode
Property.

\Q Quotes all following characters until \E.
\r Match a CARRIAGE RETURN, \u000D.
\s Match a white space character. White space is defined

as [\t\n\f\r\p{Z}].
\S Match a non-white space character.
\t Match a HORIZONTAL TABULATION, \u0009.
\uhhhh Match the character with the hex value hhhh.
\Uhhhhhhhh Match the character with the hex value hhhhhhhh.

Exactly eight hex digits must be provided, even though
the largest Unicode code point is \U0010ffff.

\w Match a word character. Word characters are [\p{Ll}\p
{Lu}\p{Lt}\p{Lo}\p{Nd}].

\W Match a non-word character.
\x{hhhh} Match the character with hex value hhhh. From one to

six hex digits may be supplied.
\xhh Match the character with two digit hex value hh
\X Match a Grapheme Cluster.
\Z Match if the current position is at the end of input, but

before the final line terminator, if one exists.
\z Match if the current position is at the end of input.
\n Back Reference. Match whatever the nth capturing

group matched. n must be a number > 1 and < total
number of capture groups in the pattern. Note: Octal
escapes, such as \012, are not supported in ICU regular
expressions

97 ICU v3.4 User Guide

Character Description
[pattern] Match any one character from the set. See UnicodeSet

for a full description of what may appear in the pattern
. Match any character.
^ Match at the beginning of a line.
$ Match at the end of a line.
\ Quotes the following character. Characters that must be

quoted to be treated as literals are * ? + [() { } ^
$ | \ . /

Regular Expression Operators

Operator Description
| Alternation. A|B matches either A or B.
* Match 0 or more times. Match as many times as

possible.
+ Match 1 or more times. Match as many times as

possible.
? Match zero or one times. Prefer one.
{n} Match exactly n times
{n,} Match at least n times. Match as many times as

possible.
{n,m} Match between n and m times. Match as many times as

possible, but not more than m.
*? Match 0 or more times. Match as few times as possible.
+? Match 1 or more times. Match as few times as possible.
?? Match zero or one times. Prefer zero.
{n}? Match exactly n times
{n,}? Match at least n times, but no more than required for an

overall pattern match
{n,m}? Match between n and m times. Match as few times as

possible, but not less than n.

98 ICU v3.4 User Guide

Operator Description
*+ Match 0 or more times. Match as many times as

possible when first encountered, do not retry with fewer
even if overall match fails (Possessive Match)

++ Match 1 or more times. Possessive match.
?+ Match zero or one times. Possessive match.
{n}+ Match exactly n times
{n,}+ Match at least n times. Possessive Match.
{n,m}+ Match between n and m times. Possessive Match.
(...) Capturing parentheses. Range of input that matched the

parenthesized subexpression is available after the
match.

(?: ...) Non-capturing parentheses. Groups the included
pattern, but does not provide capturing of matching
text. Somewhat more efficient than capturing
parentheses.

(?> ...) Atomic-match parentheses. First match of the
parenthesized subexpression is the only one tried; if it
does not lead to an overall pattern match, back up the
search for a match to a position before the "(?>"

(?# ...) Free-format comment (?# comment).
(?= ...) Look-ahead assertion. True if the parenthesized pattern

matches at the current input position, but does not
advance the input position.

(?! ...) Negative look-ahead assertion. True if the
parenthesized pattern does not match at the current
input position. Does not advance the input position.

(?<= ...) Look-behind assertion. True if the parenthesized
pattern matches text preceding the current input
position, with the last character of the match being the
input character just before the current position. Does
not alter the input position. The length of possible
strings matched by the look-behind pattern must not be
unbounded (no * or + operators.)

99 ICU v3.4 User Guide

Operator Description
(?<! ...) Negative Look-behind assertion. True if the

parenthesized pattern does not match text preceding the
current input position, with the last character of the
match being the input character just before the current
position. Does not alter the input position. The length
of possible strings matched by the look-behind pattern
must not be unbounded (no * or + operators.)

(?ismx-ismx: ...) Flag settings. Evaluate the parenthesized expression
with the specified flags enabled or -disabled.

(?ismx-ismx) Flag settings. Change the flag settings. Changes apply
to the portion of the pattern following the setting. For
example, (?i) changes to a case insensitive match.

Replacement Text

The replacement text for find-and-replace operations may contain references to capture-
group text from the find. References are of the form $n, where n is the number of the
capture group.

Character Descriptions
$n The text of capture group n will be substituted for $n. n

must be >= 0 and not greater than the number of
capture groups. A $ not followed by a digit has no
special meaning, and will appear in the substitution text
as itself, a $.

\ Treat the following character as a literal, suppressing
any special meaning. Backslash escaping in substitution
text is only required for '$' and '\', but may be used on
any other character without bad effects.

Flag Options

The following flags control various aspects of regular expression matching. The flag
values may be specified at the time that an expression is compiled into a RegexPattern
object, or they may be specified within the pattern itself using the (?ismx-ismx) pattern
options.

The UREGEX_CANON_EQ option is not yet available.

100 ICU v3.4 User Guide

Flag
(pattern)

Flag (API Constant) Description

UREGEX_CANON_EQ If set, matching will take the canonical
equivalence of characters into account.
NOTE: this flag is not yet implemented.

i UREGEX_CASE_INSENSITIVE If set, matching will take place in a case-
insensitive manner.

x UREGEX_COMMENTS If set, allow use of white space and
#comments within patterns

s UREGEX_DOTALL If set, a "." in a pattern will match a line
terminator in the input text. By default, it
will not. Note that a carriage-return /
line-feed pair in text behave as a single
line terminator, and will match a single
"." in a RE pattern

m UREGEX_MULTILINE Control the behavior of "^" and "$" in a
pattern. By default these will only match
at the start and end, respectively, of the
input text. If this flag is set, "^" and "$"
will also match at the start and end of
each line within the input text.

Using split()

ICU's split() function is similar in concept to Perl's – it will split a string into fields, with
a regular expression match defining the field delimiters and the text between the
delimiters being the field content itself.

Suppose you have a string of words separated by spaces
 UnicodeString s = “dog cat giraffe”;

This code will extract the individual words from the string.
 UErrorCode status = U_ZERO_ERROR;
 RegexMatcher m(“\\s+”, 0, status);
 const int maxWords = 10;
 UnicodeString words[maxWords];
 int numWords = split(s, words, maxWords, status);

After the split(),

101 ICU v3.4 User Guide

Variable value
numWords 3
words[0] “dog”
words[1] “cat”
words[2] “giraffe”
words[3 to 9] “”

The field delimiters, the spaces from the original string, do not appear in the output
strings.

Note that, in this example, “words” is a local, or stack array of actual UnicodeString
objects. No heap allocation is involved in initializing this array of empty strings (C++ is
not Java!). Local UnicodeString arrays like this are a very good fit for use with split();
after extracting the fields, any values that need to be kept in some more permanent way
can be copied to their ultimate destination.

If the number if fields in a string being split exceeds the capacity of the destination array,
the last destination string will contain all of the input string data that could not be split,
including any embedded field delimiters. This is similar to split() in Perl.

If the pattern expression contains capturing parentheses, the captured data ($1, $2, etc.)
will also be saved in the destination array, interspersed with the fields themselves.

If, in the “dog cat giraffe” example, the pattern had been “(\s+)” instead of “\s+”, split()
would have produced five output strings instead of three. Words[1] and words[3] would
have been the spaces.

Find and Replace

Description of AppendReplacement() and AppendTail(). To be added.

102 ICU v3.4 User Guide

Conversion Basics
• Overview

• Recommendations

Conversion Overview

A converter is used to convert from one character encoding to another. In the case of ICU,
the conversion is always between Unicode and another encoding, or vice-versa. A text
encoding is a particular mapping from a given character set definition to the actual bits
used to represent the data.

Unicode provides a single character set that covers the major languages of the world, and
a small number of machine-friendly encoding forms and schemes to fit the needs of
existing applications and protocols. It is designed for best interoperability with both
ASCII and ISO-8859-1 (the most widely used character sets) to make it easier for
Unicode to be used in almost all applications and protocols.

Hundreds of encodings have been developed over the years, each for small groups of
languages and for special purposes. As a result, the interpretation of text, input, sorting,
display, and storage depends on the knowledge of all the different types of character sets
and their encodings. Programs have been written to handle either one single encoding at a
time and switch between them, or to convert between external and internal encodings.

There is no single, authoritative source of precise definitions of many of the encodings
and their names. However, IANA is the best source for names, and our Character Set
repository is a good source of encoding definitions for each platform.

The transferring of text from one machine to another one often causes some loss of
information. Some platforms have a different interpretation of the text than the other
platforms. For example, Shift-JIS can be interpreted differently on Windows™ compared
to UNIX®. Windows maps byte value 0x5C to the backslash symbol, while some UNIX
machines map that byte value to the Yen symbol. Another problem arises when a
character in the codepage looks like the Unicode Greek letter Mu or the Unicode micro
symbol. Some platforms map this codepage byte sequence to one Unicode character,
while another platform maps it to the other Unicode character. Fallbacks can partially fix
this problem by mapping both Unicode characters to the same codepage byte sequence.
Even though some character information is lost, the text is still readable.

ICU's converter API has the following main features:

• Unicode surrogate support

• Support for all major encodings

• Consistent text conversion across all computer platforms

103 ICU v3.4 User Guide

• Text data can be streamed (buffered) through the API

• Fast text conversion

• Supports fallbacks to the codepage

• Supports reverse fallbacks to Unicode

• Allows callbacks for handling and substituting invalid or unmapped byte sequences

• Allows a user to add support for unsupported encodings

This section deals with the processes of converting encodings to and from Unicode.

Recommendations

1. Use Unicode encodings whenever possible. Together with Unicode for internal
processing, it makes completely globalized systems possible and avoids the many
problems with non-algorithmic conversions. (For a discussion of such problems, see
for example "Character Conversions and Mapping Tables" on
http://icu.sourceforge.net/docs/ and the XML Japanese Profile.)

1. Use UTF-8 and UTF-16.

2. Use UTF-16BE, SCSU and BOCU-1 as appropriate.

3. In special environments, other Unicode encodings may be used as well, such as
UTF-16LE, UTF-32, UTF-32BE, UTF-32LE, UTF-7, UTF-EBCDIC, and CESU-8.
(For turning Unicode filenames into ASCII-only filename strings, the IMAP-
mailbox-name encoding can be used.)

4. Do not exchange text with single/unpaired surrogates.

2. Use legacy charsets only when absolutely necessary. For best data fidelity:

1. ISO-8859-1 is relatively unproblematic — if its limited character repertoire is
sufficient — because it is converted trivially (1:1) to Unicode, avoiding conversion
table problems for its small set of characters. (By contrast, proper conversion from
US-ASCII requires a check for illegal byte values 0x80..0xff, which is an
unnecessary complication for modern systems with 8-bit bytes. ISO-8859-1 is
nearly as ubiquitous for modern systems as US-ASCII was for 7-bit systems.)

2. If you need to communicate with a certain platform, then use the same conversion
tables as that platform itself, or at least ones that are very, very close.

3. ICU's conversion table repository contains hundreds of Unicode conversion tables
from a number of common vendors and platforms as well as comparisons between
these conversion tables: http://icu.sourceforge.net/charts/charset/.

4. Do not trust codepage documentation that is not machine-readable, for example

104 ICU v3.4 User Guide

nice-looking charts: They are usually incomplete and out of date.

5. ICU's default build includes about 200 conversion tables. See the ICU Data chapter
for how to add or remove conversion tables and other data.

6. In ICU, you can (and should) also use APIs that map a charset name together with a
standard/platform name. This allows you to get different converters for the same
ambiguous charset name (like "Shift-JIS"), depending on the standard or platform
specified. See the convrtrs.txt alias table, the Using Converters chapter and API
references.

7. For data exchange (rather than pure display), turn off fallback mappings:
ucnv_setFallback(cnv, FALSE);

8. For some text formats, especially XML and HTML, it is possible to set an "escape
callback" function that turns unmappable Unicode code points into corresponding
escape sequences, preventing data loss. See the API references and the ucnv sample
code.

9. Never modify a conversion table. Instead, use existing ones that match precisely
those in systems with which you communicate. "Modifying" a conversion table in
reality just creates a new one, which makes the whole situation even less
manageable.

105 ICU v3.4 User Guide

Using Converters
Overview

When designing applications around Unicode characters, it is sometimes required to
convert between Unicode encodings or between Unicode and legacy text data. The vast
majority of modern Operating Systems support Unicode to some degree, but sometimes
the legacy text data from older systems need to be converted to and from Unicode. This
conversion process can be done with an ICU converter.

ICU converters

ICU provides comprehensive character set conversion services, mapping tables, and
implementations for many encodings. Since ICU uses Unicode (UTF-16) internally, all
converters convert between UTF-16 (with the endianness according to the current
platform) and another encoding. This includes Unicode encodings. In other words,
internal text is 16-bit Unicode, while "external text" used as source or target for a
conversion is always treated as a byte stream.

ICU converters are available for a wide range of encoding schemes. Most of them are
based on mapping table data that is handled by few generic implementations. Some
encodings are implemented algorithmically in addition to (or instead of) using mapping
tables, especially Unicode encodings. The partly or entirely table-based encoding schemes
include: All ICU converters map only single Unicode character code points to and from
single codepage character code points. ICU converters do not deal directly with
combining characters, bidirectional reordering, or Arabic shaping, for example. Such
processes, if required, must be handled separately. For example, while in Unicode, the
ICU BiDi APIs can be used for bidirectional reordering after a conversion to Unicode or
before a conversion from Unicode.

ICU converters are not designed to perform any encoding autodetection. This means that
the converters do not autodetect "endianness", the 6 Unicode encoding signatures, or the
Shift-JIS vs. EUC-JP, etc. The converter names UTF-16, UCS-2, UTF-32, etc. are just
aliases for the respective UTFs in the current platform's "endianness". They do not read
the BOM (if present, nor use heuristics) to figure out the actual "endianness".

The ICU mapping tables mostly come from an IBM® codepage repository. For non-IBM
codepages, there is typically an equivalent codepage registered with this repository.
However, the textual data format (.ucm files) is generic, and data for other codepage
mapping tables can also be added.

Using the Default Codepage

ICU has code to determine the default codepage of the system or process. This default
codepage can be used to convert char * strings to and from Unicode.

106 ICU v3.4 User Guide

Depending on system design, setup and APIs, it may not always be possible to find a
default codepage that fully works as expected. For example,

• On Windows there are three encodings in use at the same time. Unicode (UTF-16) is
always used inside of Windows, while for char * encodings there are two classes,
called "ANSI" and "OEM" codepages. ICU will use the ANSI codepage. Note that the
OEM codepage is used by default for console window output.

• On some UNIX-type systems, non-standard names are used for encodings, or non-
standard encodings are used altogether. Although ICU supports over 200 encodings in
its standard build and many more aliases for them, it will not be able to recognize such
non-standard names.

• Some systems do not have a notion of a system or process codepage, and may not have
APIs for that.

If you have means of detecting a default codepage name that are more appropriate for
your application, then you should set that name with ucnv_setDefaultName() as the
first ICU function call. This makes sure that the internally cached default converter will
be instantiated from your preferred name.

Starting in ICU 2.0, when a converter for the default codepage cannot be opened, a
fallback default codepage name and converter will be used. On most platforms, this will
be US-ASCII. For z/OS (OS/390), ibm-1047,swaplfnl is the default fallback codepage.
For AS/400 (iSeries), ibm-37 is the default fallback codepage. This default fallback
codepage is used when the operating system is using a non-standard name for a default
codepage, or the converter was not packaged with ICU. The feature allows ICU to run in
unusual computing environments without completely failing.

Usage Model

A "Converter" refers to the C structure "UConverter". Converters are cheap to create.
Any data that is shared between converters of the same kind (such as the mappings, the
name and the properties) are automatically cached and shared in memory.

Converter Names

Codepages with encoding schemes have been given many names by various vendors and
platforms over the years. Vendors have different ways specify which codepage and
encoding are being used. IBM uses a CCSID (Coded Character Set IDentifier). Windows
uses a CPID (CodePage IDentifier). Macintosh has a TextEncoding. Many Unix vendors
use IANA character set names. Many of these names are aliases to converters within ICU.

In order to help identify which names are recognized by certain platforms, ICU provides
several converter alias functions. The complete description of these functions can be
found in the ICU API Reference.

107 ICU v3.4 User Guide

Function Names Short Description
ucnv_countAvailable
ucnv_getAvailableName

Get a list of available converter names that
can be opened.

ucnv_openAllNames Get a list of all known converter names.
ucnv_getName Get the name of an open converter.
ucnv_countAliases ucnv_getAlias Get the list of aliases for the specified

converter.
ucnv_countStandards
ucnv_getStandard

Get the list of known standards.

ucnv_openStandardNames Get a filtered list of aliases for a converter
that is known by the specified standard.

ucnv_getStandardName Get the preferred alias name specified by a
given standard.

ucnv_getCanonicalName Get the converter name from the alias that
is recognized by the specified standard.

ucnv_getDefaultName Get the default converter name that is
currently used by ICU and the operating
system.

ucnv_setDefaultName Use this function to override the default
converter name.

Even though IANA specifies a list of aliases, it usually does not specify the mappings or
the actual character set for the aliases. Sometimes vendors will map similar glyph variants
to different Unicode code points or sometimes they will assign completely different
glyphs for the same codepage code point. Because of these ambiguities, you can
sometimes get U_AMBIGUOUS_ALIAS_WARNING for the returned UErrorCode when more
than one converter uses the requested alias. This is only a warning, and the results can
still be used. This UErrorCode value is just a reminder that you may not get what you
expected. The above functions can help you to determine which converter you actually
wanted.

EBCDIC based converters do have the option to swap the newline and linefeed character
mappings. This can be useful when transferring EBCDIC documents between z/OS
(MVS, os/390 and the rest of the zSeries family) and another EBCDIC machine like
OS/400 on iSeries. The ",swaplnlf" or UCNV_SWAP_LFNL_OPTION_STRING from ucnv.h
can be appended to a converter alias in order to achieve this behavior. You can view other
available options in ucnv.h.

You can always skip many of these aliasing and mapping problems by just using
Unicode.

108 ICU v3.4 User Guide

Creating a Converter

There are four ways to create a converter:

1. By name: Converters can be created using different types of names. No distinction is
made when the converter is created, as to which name is being employed. There are
many types of aliases possible. Among these are IANA ("shift_jis", "koi8-r", or "iso-
8859-3"), host specific names ("cp1252" which is the name for a Microsoft®
Windows™ or a similar IBM® codepage). Finally, ICU's own internal canonical
names for a converter can be used. These include "UTF8" or "iso-8859-1" for built-in
conversion types, and names such as "ibm-949_P110-2000" (Shift-JIS with '\' <-> '¥'
mapping) or "ibm-949_P11A-2000" (Shift-JIS with '\' <-> '\' mapping) for data-file
based conversions.

UConverter *conv = ucnv_open("shift_jis", &myError);

 As a convenience, converter names can be passed in as Unicode. (for example, if a
user passed in the string from a Unicode-based user interface). However, the actual
names are restricted to an invariant ASCII/EBCDIC subset.
UChar *name = ...; UConverter *conv = ucnv_openU(name, &myError);
 Unlike the names of resources or other types of ICU data, converter names can not be
qualified with a path that indicates the directory or common data file containing the
corresponding converter data. The requested converter's data must be present either in
the main ICU data library or as a separate file located in the ICU data directory.
However, you can always create a package of converters with pkgdata and open a
converter from the package with ucnv_openPackage()

 UConverter *conv = ucnv_openPackage("./myPackage.dat",
 "customConverter", &myError);

2. By number: The design of the ICU is to accommodate codepages provided by
different vendors. For example, the IBM CDRA (Character Data Representation
Architecture which is an IBM architecture that defines a set of identifiers) has an ID
type called the CCSID (Coded Character Set Identifier). The ICU API for opening a
codepage by number must be given a vendor along with the number. Currently, only
IBM (UCNV_IBM) is supported. For example, the US EBCDIC codepage (IBM #37)
can be opened with the following code:

 ucnv_openCCSID(37, UCNV_IBM, &myErr);

3. By iteration: An application might not know ahead of time which codepage to use,
and thus might need to query ICU to determine the entire list of installed converters.
The ICU returns a list of its canonical (internal) names. From each names, the standard
IANA name can be determined, and also a list of aliases which point to that name can

109 ICU v3.4 User Guide

be determined. For example, ICU might return among the canonical names "ibm-367".
That name itself may or may not provide the application or its users with the
information needed. (367 is actually the decimal form of a number that is calculated by
appending certain hex digits together.) However, the IANA name can be requested
from this canonical name, which should return something like "us-ascii". The alias list
for ibm-367 can be iterated over as well, which returns additional names like "ascii",
"646", "ansi_x3.4-1968" etc. If this is not sufficient information, once a converter is
opened, it can be queried for its type, min and max char size, etc. This information is
not available without actually opening the converter (a fairly lightweight process.)

 /* Returns count of the number of available names */
 int count = ucnv_countAvailable();

 /* get the canonical name of the 36th available converter */
 const char *convName1 = ucnv_getAvailableName(36);

 /* get the 3rd alias for a given codepage. */
 const char *asciiAlias = ucnv_getAlias("ibm-367", 3, &myError);

 /* Get the IANA name of the converter */
 const char *ascii = ucnv_getStandardName("ibm-367", "IANA");

 /* Get the one of the non preferred IANA name of the converter. */
 UEnumeration *asciiEnum =
 ucnv_openStandardNames("ibm-367", "IANA", &myError);
 uenum_next(asciiEnum, &myError); /* skip preferred IANA alias */
 /* get one of the non-preferred IANA aliases */
 const char *ascii2 = uenum_next(asciiEnum, &myError);
 uenum_close(asciiEnum);

4. By using the default converter: The default converter can be opened by passing a
NULL as the name of the converter.

 ucnv_open(NULL, &myErr);

110 ICU v3.4 User Guide

ICU chooses this converter based on the best information available to it. The
purpose of this converter is to interface with the OS using a codepage (i.e. char*).
Do not use it as a way of determining the best overall converter to use. Usually
any Unicode encoding form is the best way to store and send text data so that
important data does not get lost in the conversion.
 Also, if the OS supports Unicode-based API's (such as Win32), it is better to use
only those Unicode API's. As an example, the new Windows 2000 locales (such as
Hindi) do not define the default codepage to something that supports Hindi. The
default converter is used in expressions such as: UnicodeString text("abc"); .. to
convert 'abc', and in the u_uastrcpy() C functions.
 Code operating at the OS level MAY choose to change the default converter with
ucnv_setDefaultName(). However, be aware that this change has inconsistent
results if it is done after ICU components are initialized.

Closing a Converter

Closing a converter frees memory occupied by that instance of the converter. However it
does not release the larger shared data tables the converter might use. OS-level code may
call ucnv_flushCache() to explicitly free memory occupied by unused tables.

ucnv_close(conv)

Converter Life Cycle

Note that a Converter is created with a certain type (for instance, ISO-8859-3) which does
not change over the life of that object. Converters should be allocated one per thread.
They are cheap to create, as the shared data doesn't need to be reallocated.

This is the typical life cycle of a converter, as shown step-by-step:

1. First, open up the converter with a specified name [or alias name].

 UConverter *conv = ucnv_open("shift_jis", &status);

2. Target here is the char s[] to write into, and targetSize is how big the target buffer is.
Source is the UChars that are being converted.

 int32_t len = ucnv_fromUChars(conv, target, targetSize, source,
 u_strlen(source), &status);

3. Clean up the converter.

 ucnv_close(conv);

111 ICU v3.4 User Guide

Sharing Converters Between Threads

A converter cannot be shared between threads at the same time. However, if it is reset it
can be used for unrelated chunks of data. For example, use the same converter for
converting data from Unicode to ISO-8859-3, and then reset it. Use the same converter
for converting data from ISO-8859-3 back into Unicode.

Converting Large Quantities of Data

If it is necessary to convert a large quantity of data in smaller buffers, use the same
converter to convert each buffer. This will make sure any state is preserved from one
chunk to the next. Doing this conversion is known as streaming or buffering, and is
mentioned later in this chapter.

Cloning a Converter

Cloning a converter returns a clone of the converter object along with any internal state
that the converter might be storing. Cloning routines must be used with extreme care
when using converters for stateful or multibyte encodings. If the converter object is
carrying an internal state, and the newly-created clone is used to convert a new chunk of
text, the converter produces incorrect results. Also note that the caller owns the cloned
object and has to call ucnv_close() to dispose of the object. Calling ucnv_reset() before
cloning will reset the converter to its original state.

UConverter* newCnv = ucnv_safeClone(oldCnv, 0, &bufferSize, &err)

Converter Behavior

Conversion

• The converters always consume the source buffer as far as possible, and advance the
source pointer.

• The converters write to the target all converted output as far as possible, and then write
any remaining output to the internal services buffer. When the conversion routines are
called again, the internal buffer is flushed out and written to the target buffer before
proceeding with any further conversion.

• In conversions to Unicode from Multi-byte encodings or conversions from Unicode
involving surrogates, if only a part of byte unit is retrieved from the source buffer,
"flush" parameter is set to "TRUE" and end of source is reached. Callback routines are
not called, and error is set to U_TRUNCATED_CHAR_FOUND.

Reset

112 ICU v3.4 User Guide

Converters can be reset explicity or implicitly. Explicit reset is done by calling:

• ucnv_reset(): Resets the converter to initial state in both directions.

• ucnv_resetToUnicode(): Resets the converter to initial state to Unicode direction.

• ucnv_resetFromUnicode(): Resets the converter to initial state from Unicode
direction.

The converters are reset implicitly when the conversion functions are called with the
"flush" parameter set to "TRUE" and the source is consumed.

Error

Not all characters can be converted between unicode and other codepages or vice versa.
In most cases, Unicode is a superset of the characters supported by any given codepage.

The default behavior of ICU in this case is to substitute the missing sequence, with the
appropriate substitution sequence for that codepage. For example, ISO-8859-1, along
with most ASCII based codepages, has the character 0x1A (Control-Z) as the substitution
sequence. When converting from Unicode to ISO-8859-1, any characters which cannot be
converted would be replaced by 0x1A's. In the other direction, if a codepage has a
character which cannot be converted into Unicode, that sequence is replaced by the
Unicode substitution character (U+FFFD). SubChar1 is sometimes used as substitution
character in MBCS conversions. For more information on SubChar1 please see the
Conversion Details section. In stateful converters like ISO-2022-JP. If a substitution
character has to be written to the target, then an escape/shift sequence to change the state
to single byte mode followed by a substitution character is written to the target.

Error Codes

Here are some of the errorcodes which have significant meaning for conversion:

UErrorCode Meaning
U_INDEX_OUTOFBOUNDS_ERROR in getNextUChar() - all source data has been

consumed without producing a Unicode character
U_INVALID_CHAR_FOUND No mapping was found from the source to the target

encoding. For example, U+0398 [Capital Theta] has
no mapping into ISO-8859-1, and so
U_INVALID_CHAR_FOUND will result.

113 ICU v3.4 User Guide

UErrorCode Meaning
U_TRUNCATED_CHAR_FOUND All of the source data was read, and a character

sequence was incomplete. For example, only half of a
double-byte sequence may have been encountered.
When converting FROM Unicode, this error would
occur when a conversion ends with a low surrogate
(U+D800) at the end of the source, with no
corresponding high surrogate.

U_ILLEGAL_CHAR_FOUND A character sequence was found in the source which is
disallowed in the source encoding scheme. For
example, many MBCS encodings have only certain
byte sequences which are allowed as lead bytes. When
converting from Unicode, if a low surrogate is NOT
followed immediately by a high surrogate, or a high
surrogate without its preceding low surrogate, an
illegal sequence results.

U_INVALID_TABLE_FORMAT An error occurred trying to read the backing data for
the converter. The data could be corrupt, or the wrong
version.

U_BUFFER_OVERFLOW_ERROR More output (target) characters were produced than fit
in the target buffer. If in to/fromUnicode() , then
process the target buffer and call the function again to
retrieve the overflowed characters.

Error Callbacks

What actually happens is that an "error callback function" is called at the point where the
conversion failure occurred. The function can deal with the failed characters as it sees fit.
Possible options at the callback's disposal include ignoring the bad sequence, converting
it to a different sequence, and returning an error to the caller. The callback can also
consume any data past where the error occurred, whether or not that data would have
caused an error. Only one callback is installed at a time, per direction (to or from
unicode).

A number of canned functions are provided by ICU, and an application can write new
ones. The "callbacks" are either From Unicode (to codepage), or To Unicode (from
codepage). Here is a list of the canned callbacks in ICU:

• UCNV_FROM_U_CALLBACK_SUBSTITUTE, UCNV_TO_U_CALLBACK_SUBSTITUTE: This
callback is installed by default. It will write the codepage's substitute sequence or a
user-set substitute sequence (in the FromU case), or U+FFFD in the toUnicode case.

• UCNV_FROM_U_CALLBACK_SKIP, UCNV_TO_U_CALLBACK_SKIP: Simply ignores any
invalid characters in the input, no error is returned.

114 ICU v3.4 User Guide

• UCNV_FROM_U_CALLBACK_STOP, UCNV_TO_U_CALLBACK_STOP: Stop at the error.
Return the error to the caller. (When using the 'BUFFER' mode of conversion, the
source and target pointers returned can be examined to determine where the error
occurred. ucnv_getInvalidUChars() and ucnv_getInvalidChars() return the
actual text which failed).

• UCNV_FROM_U_CALLBACK_ESCAPE, UCNV_TO_U_CALLBACK_ESCAPE: This callback is
especially useful for debugging. Missing codepage characters are replaced by strings
such as '%U094D' with the unicode value, and missing Unicode chars are replaced
with text of the form '%X0A' where the codepage had the unconvertible byte hex 0A.

When a callback is set, a "context" pointer is also provided. How this pointer is created
depends on the specific callback. There is usually a createContext() function for
that specific callback, where the caller can set certain options for the callback. Consult
the documentation for the specific callback you are using. For ICU's canned callbacks,
this pointer may be set to NULL. The functions for setting a different callback also
return the old callback, and the old context pointer. These may be stored so that the old
callback is re-installed when an operation is finished.

Additionally the following options can be passed as the context parameter to
UCNV_FROM_U_CALLBACK_ESCAPE callback function to produce different
outputs.

UCNV_ESCAPE_ICU %U12345
UCNV_ESCAPE_JAVA \u1234
UCNV_ESCAPE_C \udbc9\udd36 for Plane 1 and
 \u1234 for Plane 0 codepoints.
UCNV_ESCAPE_XML_DEC ᅬ number expressed in Decimal
UCNV_ESCAPE_XML_HEX ሴ number expressed in Hexadecimal.

Here are some examples of how to use callbacks.
UConverter *u;
void *oldContext, *newContext;
UConverterFromUCallback oldAction, newAction;
u = ucnv_open("shift_jis", &myError);
... /* do some conversion with u from unicode.. */
ucnv_setFromUCallBack(
 u, MY_FROMU_CALLBACK, newContext, &oldAction, &oldContext, &myError);
... /* do some other conversion from unicode */
/* Now, set the callback back */
ucnv_setFromUCallBack(
 u, oldAction, oldContext, &newAction, &newContext, &myError);

Writing a callback is somewhat involved, and will be covered more completely in a future
version of this document. One might look at the source to the provided callbacks as a
starting point, and address any further questions to the mailing list.

Basically, callback, unlike other ICU functions which expect to be called with

115 ICU v3.4 User Guide

U_ZERO_ERROR as the input, is called in an exceptional error condition. The callback is a
kind of 'last ditch effort' to rectify the error which occurred, before it is returned back to
the caller. This is why the implementation of STOP is very simple:

void UCNV_FROM_U_CALLBACK_STOP(...) { }

The error code such as U_INVALID_CHAR_FOUND is returned to the user. If the callback
determines that no error should be returned to the user, then the callback must set the
errorcode to U_ZERO_ERROR. Note that this is a departure from most ICU functions, which
are supposed to check the error code and return immediately if it is set.

See the functions ucnv_cb_write...() for functions which a callback may use to
perform its task.

Modes of Conversion

When a converter is instantiated, it can be used to convert both in the Unicode to
Codepage direction, and also in the Codepage to Unicode direction. There are three ways
to use the converters, as well as a convenience function which does not require the
instantiation of a converter.

1. Single-String: Simplest type of conversion to or from Unicode. The data is entirely
contained within a single string.

2. Character: Converting from the codepage to a single Unicode codepoint, one at a
time.

3. Buffer: Convert data which may not fit entirely within a single buffer. Usually the
most efficient and flexible.

4. Convenience: Convert a single buffer from one codepage to another through Unicode,
without requiring the instantiation of a converter.

1. Single-String

Data must be contained entirely within a single string or buffer.
conv = ucnv_open("shift_jis", &status);
/* Convert from Unicode to Shift JIS */
len = ucnv_fromUChars(conv, target, targetLen, source, sourceLen, &status);
ucnv_close(conv);
conv = ucnv_open("iso-8859-3", &status);
/* Convert from ISO-8859-3 to Unicode */
len = ucnv_toUChars(conv, target, targetSize, source, sourceLen, &status);
ucnv_close(conv);

2. Character

116 ICU v3.4 User Guide

In this type, the input data is in the specified codepage. With each function call, only the
next Unicode codepoint is converted at a time. This might be the most efficient way to
scan for a certain character, or other processing of a single character at a time, because
converters are stateful. This works even for multibyte charsets, and for stateful ones such
as iso-2022-jp.

conv = ucnv_open("Big-5", &status);
UChar32 target;
while(source < sourceLimit) {
 target = ucnv_getNextUChar(conv, &source, sourceLimit, &status);
 ASSERT(status);
 processChar(target);
}

3. Buffered or Streamed

This is used in situations where a large document may be read in off of disk and
processed. Also, many codepages take multiple bytes to encode a character, or have state.
These factors make it impossible to convert arbitrary chunks of data without maintaining
state across chunks. Even conversion from Unicode may encounter a leading surrogate at
the end of one buffer, which needs to be paired with the trailing surrogate in the next
buffer.

A basic API principle of the ICU to/from Unicode functions is that they will ALWAYS
attempt to consume all of the input (source) data, unless the output buffer is full or some
other error occurs. In other words, there is no need to ever test whether all of the source
data has been consumed.

The basic loop that is used with the ICU buffer conversion routines is the same in the to
and from unicode directions. In the following pseudocode, either 'source' (for
fromUnicode) or 'target' (for toUnicode) are UTF-16 UChars.

UErrorCode err = U_ZERO_ERROR;
while (... /*input data available*/) {
 ... /* read input data into buffer */

 source = ... /* beginning of read data */;
 sourceLimit = source + readLength; // end + 1
 UBool flush = (further input data still available) // (i.e. feof())
 /* loop until all source has been processed */
 do {
 /* set up target pointers */
 target = ... /* beginning of output buffer */;
 targetLimit = target + sizeOfOutput;
 err = U_ZERO_ERROR; /* so that the to/from does not fail */
 ucnv_to/fromUnicode(converter, &target, targetLimit,
 &source, sourceLimit, NULL, flush, &err);
 ... /* write (target-beginningOfOutputBuffer) items
 starting at beginning of output buffer */
 } while (err == U_BUFFER_OVERFLOW_ERROR);

117 ICU v3.4 User Guide

 if(U_FAILURE(error)) {
 ... /* process error */
 break; /* out of the 'do' loop */
 }
}
/* loop to read input data */
if(U_FAILURE(error)) {
 ... /* process error further */
}

The above code optimizes for processing entire chunks of input data. An efficient size for
the output buffer can be calculated as follows. (in bytes):

ucnv_getMinCharSize() * inputBufferSize * sizeof(UChar)
ucnv_getMaxCharSize() * inputBufferSize

There are two loops used, an outer and an inner. The outer loop fetches input data to keep
the source buffer full, and the inner loop 'writes' out data to keep the output buffer empty.

Note that while this efficiently handles data on the input side, there are some cases where
the size of the output buffer is fixed. For instance, in network applications it is sometimes
desirable to fill every output packet completely (not including the last packet in the
sequence). The above loop does not ensure that every output buffer is completely full. For
example, if a 4 UChar input buffer was used, and a 3 byte output buffer with
fromUnicode(), the loop would typically write 3 bytes, then 1, then 3, and so on. If,
instead of efficient use of the input data, the goal is filling output buffers, a slightly
different loop can be used.

In such a scenario, the inner write does not occur unless a buffer overflow occurs OR
'flush' is true. So, the 'write' and resetting of the target and targetLimit pointers would
only happen if(err == U_BUFFER_OVERFLOW_ERROR || flush == TRUE)

The flush parameter on each conversion call should be set to FALSE, until the conversion
call is called for the last time for the buffer. This is because the conversion is stateful. On
the last conversion call, the flush parameter should be set to TRUE. More details are
mentioned in the API reference in ucnv.h.

4. Pre-flighting

Preflighting is the process of asking the conversion API for the size of target buffer
required. This is accomplished by calling the ucnv_fromUChars and ucnv_toUChars
functions.

UChar uchar2;
char input_char_buffer = "This is some text";

targetsize = ucnv_toUChars(myConverter, NULL, targetcapacity,
 input_char_buffer, sizeof(input_char_buffer), &err);
if(err==U_BUFFER_OVERFLOW_ERROR) {
 err=U_ZERO_ERROR;

118 ICU v3.4 User Guide

 uchar2=(UChar*)malloc((targetsize) * sizeof(UChar));
 targetsize = ucnv_toUChars(myConverter, uchar2, targetsize,
 input_char_buffer, sizeof(input_char_buffer), &err);
 if(U_FAILURE(err)) {
 printf("ucnv_toUChars() FAILED %s\n", myErrorName(err));
 }
 else {
 printf("ucnv_toUChars() o.k.\n");
 }
}

This is inefficient since the conversion is performed twice, once for finding the
size of target and once for writing to the target.

5. Convenience

ICU provides some convenience functions for conversions:
ucnv_toUChars(myConverter, target_uchars, targetsize,
 input_char_buffer, sizeof(input_char_buffer), &err);
ucnv_fromUChars(cnv, cTarget, (cTargetLimit-cTarget),
 uSource, (uSourceLimit-uSource), &errorCode);
char target[100];
UnicodeString str("ABCDEF", "iso-8859-1");
int32_t targetsize = str.extract(0, str.length(), target, sizeof(target), "SJIS");
target[targetsize] = 0; /* NULL termination */

Conversion Examples

See the ICU Conversion Examples for more information.

119 ICU v3.4 User Guide

Conversion Data
Introduction

Algorithmic vs. Data-based

In a comprehensive conversion library, there are three kinds of codepage converter
implementations: converters that use algorithms, mapping data, or those converters that
use both.

• Most codepages have a simple and straightforward structure but have an arbitrary
relationship between input and output character codes. Mapping tables are necessary to
define the conversion. If the codepage characters use more than one byte each, then the
mapping table must also define the structure of the codepage.

• Algorithmic converters work by transforming the input stream with built-in algorithms
and possibly small, hardcoded tables. The conversion can be complex, but the actual
mapping of a character code is done numerically if the converter is purely algorithmic.

• In some cases, a converter needs to be algorithmic for its basic operations but also
relies on mapping data.

ICU provides converter implementations for all three groups of codepages. Since ICU
always converts, to or from Unicode, the purely algorithmic converters are the ones for
Unicode encodings (such as UTF-8, UTF-16BE, UTF-16LE, UTF-32BE, UTF-32LE,
SCSU, BOCU-1 and UTF-7). Since Unicode is based on US-ASCII and ISO-8859-1
("ISO Latin-1"), these encodings also use algorithmic converters for performance reasons.

Most other codepages use simple byte sequences but are not encodings of Unicode. They
are converted with generic code using mapping data tables. ICU also supports a few
encodings, like ISO-2022 and its variants, that employ an algorithmic structure to switch
between a set of codepages. The converters for these encodings are algorithmic but use
mapping tables for the embedded codepages.

Stateful vs. Stateless

Character encodings are either stateful or stateless:

• Stateless encodings define a byte sequence for each character. Complete character byte
sequences can be used in any order, and the same complete character byte sequences
always encodes the same characters. It is preferable to always encode one character
using the same byte sequence.

• Stateful encodings define byte sequences that change the state of the text stream.
Depending on the current state, the same byte sequence may encode a different
character and the same character may be encoded with different byte sequences.

120 ICU v3.4 User Guide

This distinction between stateless and stateful encodings is important, because it
determines if any available ICU converter implementation is used. The following are
some more important considerations related to stateless versus stateful encodings:

• A runtime converter object is always stateful, even for "stateless" encodings. They are
always stateful because an input buffer may end with a partial byte sequence that is to
be continued in the next input buffer in the following conversion call. The information
about this is stored in the converter object. Similarly, if the input is Unicode text, then
an input buffer may end with the first of a pair of surrogates. The converter object also
stores overflow bytes or code units if the result of a character mapping did not fit
entirely into the output buffer.

• Stateless encodings are stateful in our converter implementation to interpret "complete
byte sequences". They are "stateful" because many encodings can have the same byte
value used in different positions of byte sequences for different characters; a specific
byte value may be a lead byte or a trail byte. For instance, the lead and trail byte values
overlap in codepages like Shift-JIS. If a program does not start reading at a character
boundary, it may instead interpret the byte sequences from two or more separate
characters as one character. Often, character boundaries can be detected reliably only
by reading the non-Unicode text linearly from the beginning. This can be a problem
for non-Unicode text processing, where text insertion, deletion, and searching are
common. The UTF-8/16/32 encodings do not have this problem because the single,
lead, or trail units have disjoint values and character boundary can be easily found.

• Some stateful encodings only switch between two states: one with one byte per
character and one with two bytes per character. This type of encoding is very common
in mainframe systems based on Extended Binary Coded Decimal Interchange Code
(EBCDIC) and is actually handled in ICU with almost the same code and type of
mapping tables as stateless codepages.

• The classifications of algorithmic vs. data-based converters and of stateless vs. stateful
encodings are independent of each other: UTF-8, UTF-16, and UTF-32 encodings are
algorithmic but stateless; UTF-7 and SCSU encodings are algorithmic and stateful;
Windows-1252 and Shift-JIS encodings are data-based and stateless; ISO-2022-JP
encoding is algorithmic, data-based, and stateful.

Scope of this chapter

The following sections in this chapter discuss the mapping data tables that are used in
ICU. For related material, please see:

• ICU character set collection

• Unicode Technical Report 22

• "Cross Mapping Tables" in Unicode Online Data

121 ICU v3.4 User Guide

ICU Mapping Table Data Files

• .ucm File Format

• State table syntax in .ucm files

• Extension and delta tables

• Examples for codepage state tables

Overview

As stated above, most ICU converters rely on character mapping tables. ICU 1.8 has one
single data structure for all character mapping tables, which is used by a generic Multi-
Byte Character Set (MBCS) converter implementation. The implementation is flexible
enough to handle stateless encodings with the following parameters:

• Support for variable-length, byte-based encodings with 1 to 4 bytes per character.

• Support for all Unicode characters (code points 0..0x10ffff). Since ICU 1.8 uses the
UTF-16 encoding as its Unicode encoding form, surrogate pairs are completely
supported.

• Efficient distinction between unassigned (unmappable) and illegal byte sequences.

• It is not possible to convert from Unicode to byte sequences with leading zero bytes.

• Simple stateful encodings are also handled using only Shift-In and Shift-Out (SI/SO)
codes and one single-byte and one double-byte state.

In the context of conversion tables, "unassigned" code points or codepage byte
sequences are valid but do not have a mapping. This is different from
"unassigned" code points in a character set like Unicode or Shift-JIS which are
codes that do not have assigned characters.

Prior to version 1.8, ICU used more specific, more limited, converter implementations for
Single Byte Character Set (SBCS), Double Byte Character Set (DBCS), and the stateful
Extended Binary Coded Decimal Interchange Code (EBCDIC) codepages. Mapping table
data is provided in text files. ICU comes with several dozen .ucm files (UniCode
Mapping, in icu/source/data/mappings/) that are translated at build time by its
makeconv tool (source code in icu/source/tools/makeconv). The makeconv tool
writes one binary, memory-mappable .cnv file per .ucm file. The resulting .cnv files are
included by default in the common data file for use at runtime.

The format of the .ucm files is similar to the format of the UPMAP files as provided by
IBM® in the codepage repository and as used in the uconvdef tool on AIX. UPMAP is a
text file that specifies the mapping of a codepage character to and from Unicode.

The format of the .cnv files is ICU-specific. The .cnv file format may change between

122 ICU v3.4 User Guide

ICU versions even for the same .ucm files. The .ucm file format may be extended to
include more features.

The following sections concentrate on the .ucm file format. The .cnv file format is
described in the source code in the icu/source/common/ucnvmbcs.c directory and is
updated using the MBCS converter implementation.

These conversion tables can have more than one name. ICU allows multiple names
("aliases") for the same encoding. It matches a requested encoding name against a list of
names in icu/source/data/mappings/convrtrs.txt and when it finds a match, ICU
opens a converter with the name in the leftmost position in the matching line. The name
matching is not case-sensitive and ICU ignores spaces, dashes, and underscores. At build
time, the gencnval tool located in the icu/source/tools/gencnval directory,
generates a binary form of the convrtrs.txt file as a data file for runtime for the
cnvalias.icu file ("Converter Aliases data file").

.ucm File Format

.ucm files are line-oriented text files. Empty lines and comments starting with '#' are
ignored.

A .ucm file contains two sections:

• a header with general specifications of the codepage

• a mapping table section between the "CHARMAP" and "END CHARMAP" lines.

For example:
<code_set_name> "IBM-943"
<char_name_mask> "AXXXX"
<mb_cur_min> 1
<mb_cur_max> 2
<uconv_class> "MBCS"
<subchar> \xFC\xFC
<subchar1> \x7F
<icu:state> 0-7f, 81-9f:1, a0-df, e0-fc:1
<icu:state> 40-7e, 80-fc
#
CHARMAP
#
#
#ISO 10646 IBM-943
#_________ _________
<U0000> \x00 |0
<U0001> \x01 |0
<U0002> \x02 |0
<U0003> \x03 |0
...
<UFFE4> \xFA\x55 |1
<UFFE5> \x81\x8F |0
<UFFFD> \xFC\xFC |2
END CHARMAP

The header fields are:

123 ICU v3.4 User Guide

• code_set_name - The name of the codepage. The makeconv tool generates the .cnv file
name from the .ucm filename but uses this header field for the converter name that it
writes into the .cnv file for ucnv_getName. The makeconv tool prints a warning
message if this header field does not match the file name. The file name is not case-
sensitive.

• char_name_mask - This is ignored by makeconv tool. "AXXXX" specifies that the
POSIX-style character "name" consists of one letter (Alpha) followed by 4
hexadecimal digits. Since ICU only uses Unicode character "names" (for example,
code points) the format is fixed (see below).

• mb_cur_min - The minimum number of bytes per character.

• mb_cur_max - The maximum number of bytes per character.

• uconv_class - This can be either "SBCS", "DBCS", "MBCS", or
"EBCDIC_STATEFUL"

The most general converter class/type/category is MBCS, which requires that the
codepage structure has the following <icu:state> lines. The other types of converters
are subsets of MBCS. The makeconv tool uses predefined state tables for these other
converters when their structure is not explicitly specified. The following describes how
the converter types are interpreted:

• MBCS: Generic ICU converter type, requires a state table

• SBCS: Single-byte, 8-bit codepages

• DBCS: Double-byte EBCDIC codepages

• EBCDIC_STATEFUL: Mixed Single-Byte or Double-Byte EBCDIC codepages
(stateful, using SI/SO)

The following shows the exact implied state tables for non-MBCS types. A state table
may need to be overwritten in order to allow supplementary characters (U+10000 and
up).

• subchar - The substitution character byte sequence for this codepage. This sequence
must be a valid byte sequence according to the codepage structure.

• subchar1 - This is the single byte substitution character when subchar is defined. Some
IBM converter libraries use different substitution characters for "narrow" and "wide"
characters (single-byte and double-byte). ICU uses only one substitution character per
codepage because it is common industry practice.

• icu:state - See the "State Table Syntax in .ucm Files" section for a detailed description
of how to specify a codepage structure.

• icu:charsetFamily - This specifies if the codepage is ASCII or EBCDIC based.

124 ICU v3.4 User Guide

The subchar and subchar1 fields have been known to cause some confusion. The
following conditions outline when each are used:

• Conversion from Unicode to a codepage occurs and an unassigned codepoint is found

• If a subchar1 mapping is defined, output the subchar1

• Otherwise output the regular subchar

• Conversion from a codepage to Unicode occurs and an unassigned codepoint is found

• f the input sequence is of length 1 and a subchar1 is specified for the codepage,
output U+001A

• Otherwise output U+FFFD

In the CHARMAP section of a .ucm file, each line contains a Unicode code point (like
<U(1-6 hexadecimal digits for the code point)>), a codepage character byte sequence
(each byte like \xhh (2 hexadecimal digits}), and an optional "precision" or "fallback"
indicator.

The precision indicator either must be present in all mappings or in none of them. The
indicator is a pipe symbol followed by a 0, 1, 2, or 3 that has the following meaning:

• 0 - A "normal", roundtrip mapping from a Unicode code point and back.

• 1 - A "fallback" mapping only from Unicode to the codepage, but not back.

• 2 - The mapping is ignored by makeconv tool (indicates mappings to one of the
substitution characters)

• 3 - A "reverse fallback" mapping only from the codepage to Unicode, but not back to
the codepage

Fallback mappings from Unicode typically do not map codes for the same character, but
for "similar" ones. This mapping is sometimes done if a character exists in Unicode but
not in the codepage. To replace it, ICU maps a codepage code to a similar-looking code
for human-readable output. This mapping feature is not useful for text data transmission
especially in markup languages where a Unicode code point can be escaped with its code
point value. The ICU application programming interface (API) ucnv_setFallback()
controls this fallback behavior.

"Reverse fallbacks" are technically similar, but the same Unicode character can be
encoded twice in the codepage. ICU always uses reverse fallbacks at runtime.

A subset of the fallback mappings from Unicode is always used at runtime: Those that

125 ICU v3.4 User Guide

map private-use Unicode code points. Fallbacks from private-use code points are often
introduced as replacements for previous roundtrip mappings for the same pair of codes.
These replacements are used when a Unicode version assigns a new character that was
previously mapped to that private-use code point. The mapping table is then changed to
map the same codepage byte sequence to the new Unicode code point (as a new
roundtrip) and the mapping from the old private-use code point to the same codepage
code is preserved as a fallback.

State table syntax in .ucm files

The conversion to Unicode uses a state machine to achieve the above capabilities with
reasonable data file sizes. The state machine information itself is loaded with the
conversion data and defines the structure of the codepage, including which byte
sequences are valid, unassigned, and illegal. This data cannot (or not easily) be computed
from the pure mapping data. Instead, the .ucm files for MBCS encodings have additional
entries that are specific to the ICU makeconv tool. The state tables for SBCS, DBCS, and
EBCDIC_STATEFUL are implied, but they can be overridden (see the examples below).
These state tables are specified in the header section of the .ucm file that contains the
<icu:state> element. Each line defines one aspect of the state machine. The state
machine uses a table of as many rows as there are states (= as many as there are
<icu:state> lines). Each row has 256 entries; one for each possible byte value.

The state table lines in the .ucm header conform to the following Extended Backus-Naur
Form (EBNF)-like grammar (whitespace is allowed between all tokens):

row=[[firstentry ','] entry (',' entry)*]
firstentry="initial" | "surrogates"
 (initial state (default for state 0), output is all surrogate pairs)

Each state table row description (that follows the <icu:state>) begins with an optional
initial or surrogates keyword and is followed by one or more column entries. For the
purpose of codepage state tables, the states=rows in the table are numbered beginning at 0
for the first line in the .ucm file header. The numbers are assigned implicitly by the
makeconv tool in order of the <icu:state> lines.

A row may be empty (nothing following the <icu:state>) — that is equivalent to "all
illegal" or 0-ff.i and is useful for trail byte states for all-illegal byte sequences.

entry=range [':' nextstate] ['.' [action]]
range = number ['-' number]
nextstate = number (0..7f)
action = 'u' | 's' | 'p' | 'i'
 (unassigned, state change only, surrogate pair, illegal)
number = (1- or 2-digit hexadecimal number)

Each column entry contains at least one hexadecimal byte value or value range and is
separated by a comma. The column entry specifies how to interpret an input byte in the

126 ICU v3.4 User Guide

row's state. If neither a next state nor an action is explicitly specified (only the byte range
is given) then the byte value terminates the byte sequence, results in a valid mapping to a
Unicode BMP character, and resets the state number to 0. The first line with
<icu:state> is called state 0.

The next state can be explicitly specified with a separating colon (:) followed by the
number of the state (=number/index of the row, starting at 0). This specification is mostly
used for intermediate byte values (such as bytes that are not the last ones in a sequence).
The state machine needs to proceed to the next state and read another byte. In this case,
no other action is specified.

If the byte value(s) terminate(s) a byte sequence, then the byte sequence results in the
following depending on the action that is announced with a period (.) followed by a
letter:

letter meaning
u Unassigned. The byte sequence is valid but does not encode a character.
none (no letter) - Valid. If no action letter is specified, then the byte sequence is

valid and encodes a Unicode character up to U+ffff
p Surrogate Pair. The byte sequence is valid and the result may map to a UTF-

16 encoded surrogate pair
i Illegal. The byte sequence is illegal. This is the default for all byte values in a

row that are not otherwise specified with column entries
s State change only. The byte sequence does not encode any character but may

change the state number. This may be used with simple, stateful encodings
(for example, SI/SO codes), but currently it is not used by ICU.

If an action is specified without a next state, then the next state number defaults to 0. In
other words, a byte value (range) terminates a sequence if there is an action specified for
it, or when there is neither an action nor a next state. In this case, the byte value defaults
to "valid, next state is 0" (equivalent to :0.).

If a byte value is not specified in any column entry row, then it is illegal in the current
state. If a byte value is specified in more than one column entry of the same row, then
ICU uses the last state. These specifications allow you to assign common properties for a
wide byte value range followed by a few exceptions. This is easier than having to specify
mutually exclusive ranges, especially if many of them have the same properties.

The optional keyword at the beginning of a state line has the following effect:

127 ICU v3.4 User Guide

keword effect
initial The state machine can start reading byte sequences in this state. State 0

is always an initial state. Only initial states can be next states for final
byte values. In an initial state, the Unicode mappings for all final bytes
are also stored directly in the state table.

surrogates All Unicode mappings for final bytes in non-initial states are stored in a
separate table of 16-bit Unicode (UTF-16) code units. Since most legacy
codepages map only to Unicode code points up to U+ffff (the Basic
Multilingual Plane, BMP), the default allocation per mapping result is
one 16-bit unit. Individual byte values can be specified to map to
surrogate pairs (= two 16-bit units) with action letter p. The surrogates
keyword specifies the values for the entire state (row). Surrogate pair
mapping entries can still hold single units depending on the actual
mapping data, but single-unit mapping entries cannot hold a pair of
units. Mapping to single-unit entries is the default because the mapping
is faster, uses half as much memory in the code units table, and is
sufficient for most legacy codepages.

When converting to Unicode, the state machine starts in state number 0. In each iteration,
the state machine reads one input (codepage) byte and either proceeds to the next state as
specified, or treats it as a final byte with the specified action and an optional non-0 next
(initial) state. This means that a state table needs to have at least as many state rows as the
maximum number of bytes per character, which is the maximum length of any byte
sequence.

Exception: For EBCDIC_STATEFUL codepages, double-byte sequences start in state 1,
with the SI/SO bytes switching from state 0 to state 1 or from state 1 to state 0. See the
default state table below.

Extension and delta tables

ICU 2.8 adds an additional "extension" data structure to its conversion tables. The new
data structure supports a number of new features. When any of the following features are
used, then all mappings must use a precision indicatore.

Converting multiple characters as a unit

Before ICU 2.8, only one Unicode code point could be converted to or from one complete
codepage byte sequence. The new data structure supports the conversion between
multiple Unicode code points and multiple complete codepage byte sequences. (A

128 ICU v3.4 User Guide

"complete codepage byte sequence" is a sequence of bytes which is valid according to the
state table.)

Syntax: Simply write more than one Unicode code point on a mapping line, and/or more
than one complete codepage byte sequence. Plus signs (+) are optional between code
points and between bytes. For example,
ibm-1390_P110-2003.ucm contains
 <U304B><U309A> \xEC\xB5 |0
and test3.ucm contains
 <U101234>+<U50005>+<U60006> \x07+\x00+\x01\x02\x0f+\x09 |0

 For more examples see the ICU conversion data and the
icu/source/test/testdata/test*.ucm test data files.

ICU 2.8 supports up to 19 UChars on the Unicode side of a mapping and up to 31 bytes
on the codepage side.

The longest match possible is converted in order to properly handle tables where the
source sides of some mappings are prefixes of the source sides of other mappings.

As a side effect, if conversion offsets are written and a potential match crosses buffer
boundaries, then some of the initial offsets for the following output may be unknown (-1)
because their input was stored in the converter from a previous buffer while looking for a
longer match.

Conversion tables for SI/SO-stateful (usually EBCDIC_STATEFUL) codepages cannot
include mappings with SI or SO bytes or where there are SBCS characters in a multi-
character byte sequence. In other words, for these tables there must be exactly one byte in
a mapping or else a sequence of one or more DBCS characters.

Delta (extension-only) conversion table files

Physically, a binary conversion table (.cnv) file automatically contains both a traditional
"base table" data structure for the 1:1 mappings and a new "extension table" for the m:n
mappings if any are encountered in the .ucm file. An extension table can also be
requested manually by splitting the CHARMAP into two. The first CHARMAP section will be
used for the base table, and the second only for the extension table. M:n mappings in the
first CHARMAP will be moved to the extension table.

In order to save space for very similar conversion tables, it is possible to create delta .cnv
files that contain only an extension table and the name of another .cnv file with a base
table. The base file must be split into two CHARMAPs such that the base file's base table
does not contain any mappings that contradict any of the delta file's mappings.

The delta (extension-only) file uses only a single CHARMAP section. In addition, it nees a
line in the header that both causes building just a delta file and specifies the name of the
base file. For example, windows-936-2000.ucm contains

129 ICU v3.4 User Guide

 <icu:base> “ibm-1386_P100-2002”

makeconv ignores all mappings for the delta file that are also in the base file's base table.
If the two conversion tables are sufficiently similar, then the delta file will contain only a
relatively small set of mappings, which results in a small .cnv file. At runtime, both the
delta file and its base file are loaded, and the base file's base table is used together with
the extension file. The base file works as a standalone file, using its own extension table
for its full set of mappings. The base file must be in the same ICU data package as the
delta file.

The hard part is to split the base file's mappings into base and extension CHARMAPs such
that the base table does not overlap with any delta file, while all shared mappings should
be in the base table. (The base table data structure is more compact than the extension
table data structure.)

ICU provides the ucmkbase tool in the ucmtools collection to do this.

For example, the following illustrates how to use ucmkbase to make a base .ucm file for
three Shift-JIS conversion table variants. (ibm-943_P15A-2003.ucm becomes the base.)

C:\tmp\icu\ucm>ren ibm-943_P15A-2003.ucm ibm-943_P15A-2003.orig
C:\tmp\icu\ucm>ucmkbase ibm-943_P15A-2003.orig ibm-943_P130-1999.ucm ibm-942_P12A-
1999.ucm > ibm-943_P15A-2003.ucm

After this, the two delta .ucm files only need to get the following line added before the
start of their CHARMAPs:

<icu:base> "ibm-943_P15A-2003"

The ICU tools and runtime code handle DBCS-only conversion tables specially, allowing
them to be built into delta files with MBCS or EBCDIC_STATEFUL base files without
using their single-byte mappings, and without ucmkbase moving the single-byte
mappings of the base file into the base file's extension table. See for example ibm-
16684_P110-2003.ucm and ibm-1390_P110-2003.ucm.

Other enhancements

ICU 2.8 adds support for the specification of which unassigned Unicode code points
should be mapped to subchar1 rather than the default subchar. See the discussion of
subchar1 above for more details.

The extension table data structure also removes one minor limitation on ICU conversion
tables: Fallback mappings to a single byte 00 are now allowed and handled properly. ICU
versions before 2.8 could only handle roundtrips to/from 00.

130 ICU v3.4 User Guide

Examples for codepage state tables

The following shows the exact implied state tables for non-MBCS types, A state table
may need to be overwritten in order to allow supplementary characters (U+10000 and
up).

US-ASCII
0-7f

This single-row state table describes US-ASCII. Byte values from 0 to 0x7f are valid and
map to Unicode characters up to U+ffff. Byte values from 0x80 to 0xff are illegal.

Shift-JIS
0-7f, 81-9f:1, a0-df, e0-fc:1
40-7e, 80-fc

This two-row state table describes the Shift-JIS structure which encodes some characters
with one byte each and others with two bytes each. Bytes 0 to 0x7f and 0xa0 to 0xdf are
valid single-byte encodings. Bytes 0x81 to 0x9f and 0xe0 to 0xfc are lead bytes. (For
example, they are followed by one of the bytes that is specified as valid in state 1). A byte
sequence of 0x85 0x61 is valid while a single byte of 0x80 or 0xff is illegal. Similarly, a
byte sequence of 0x85 0x31 is illegal.

EUC-JP
0-8d, 8e:2, 8f:3, 90-9f, a1-fe:1
a1-fe
a1-e4
a1-fe:1, a1:4, a3-af:4, b6:4, d6:4, da-db:4, ed-f2:4
a1-fe.u

This fairly complicated state table describes EUC-JP. Valid byte sequences are one, two,
or three bytes long. Two-byte sequences have a lead byte of 0x8e and end in state 2, or
have lead bytes 0xa1 to 0xfe and end in state 1. Three-byte sequences have a lead byte of
0x8f and continue in state 3. Some final byte value ranges are entirely unassigned,
therefore they end in state 4 with an action letter of u for "unassigned" to save significant
memory for the code units table. Assigned three-byte sequences end in state 1 like most
two-byte sequences.

SBCS default state table:
0-ff

SBCS by default implies the structure for single-byte, 8-bit codepages.

131 ICU v3.4 User Guide

DBCS default state table:
0-3f:3, 40:2, 41-fe:1, ff:3
41-fe
40

Important:
These are four states — the fourth has an empty line (equivalent to 0-ff.i)! DBCS
codepages, by default, are defined with the EBCDIC double-byte structure. Valid
sequences are pairs of bytes from 0x41 to 0xfe and the one pair 0x40/0x40 for the double-
byte space. The structure is defined such that all illegal byte sequences are always two in
length. Therefore, every byte in the initial state is a lead byte.

EBCDIC_STATEFUL default state table:
0-ff, e:1.s, f:0.s
initial, 0-3f:4, e:1.s, f:0.s, 40:3, 41-fe:2, ff:4
0-40:1.i, 41-fe:1., ff:1.i
0-ff:1.i, 40:1.
0-ff:1.i

This is the structure of Mixed Single-byte and Double-byte EBCDIC codepages, which
are stateful and use the Shift-In/Shift-Out (SI/SO) bytes 0x0f/0x0e. The initial state 0 is
almost the same as for SBCS except for SI and SO. State 1 is also an initial state and is
the basis for a state-shifted version of the DBCS structure above. All double-byte
sequences return to state 1 and SI switches back to state 0. SI and SO are also allowed in
their own states with no effect.

If a DBCS or EBCDIC_STATEFUL codepage maps supplementary (non-BMP)
Unicode characters, then a modified state table needs to be specified in the .ucm
file. The state table needs to use the surrogates designation for a table row or .
p for some entries.

The reuse of a final or intermediate state (shown for EUC-JP) is valid for as long
as there is no circle in the state chain. The mappings will be unique because of
the different path to the shared state (sharing a state saves some memory; each
state table row occupies 1kB in the .cnv file). This table also shows the
redefinition of byte value ranges within one state row (State number 3)as
shorthand. State 3 defines bytes a1-fe to go to state 1, but the following entries
redefine and override certain bytes to go to state 4.

An initial state never needs a surrogates designation or .p because Unicode mapping
results in initial states that are stored directly in the state table, providing enough room in
each cell. The size of a generated .cnv mapping table file depends primarily on the

132 ICU v3.4 User Guide

number and distribution of the mappings and on the number of valid, multi-byte
sequences that the state table allows. Each state table row takes up one kilobyte.

For single-byte codepages, the state table cells contain all two-Unicode mappings. Code
point results for multi-byte sequences are stored in an array with enough room for all
valid byte sequences. For all byte sequences that end in a surrogates or .p state,
Unicode allocates two code units.

If possible, valid state table entries may be changed to .u to reduce the number of valid,
assignable sequences and to make the .cnv file smaller. If additional states are necessary,
then each additional state itself adds 1kB to the file size, diminishing the file size savings.
See the EUC-JP example above.

For codepages with up to two bytes per character, the makeconv tool automatically
compacts the bytes, if possible, by introducing one more trail byte state. This state
replaces valid entries in the original trail state with unassigned entries and changes each
lead byte entry to work with the new state if there are no mappings with that lead byte.

For codepages with up to three or four bytes per character, compaction must be done
manually. However, if the verbose option is set on the command line, the makeconv tool
will print useful information about unassigned byte sequences.

133 ICU v3.4 User Guide

Compression
Overview of SCSU

Compressing Unicode text for transmission or storage results in minimal bandwidth
usage and fewer storage devices. The compression scheme compresses Unicode text into
a sequence of bytes by using characteristics of Unicode text. The compressed sequence
can be used on its own or as further input to a general purpose file or disk-block based
compression scheme. Note that the combination of the Unicode compression algorithm
plus disk-block based compression produces better results than either method alone.

Strings in languages using small alphabets contain runs of characters that are coded close
together in Unicode. These runs are typically interrupted only by punctuation characters,
which are themselves coded in proximity to each other in Unicode (usually in the Basic
Latin range).

For additional detail about the compression algorithm, which has been approved by the
Unicode Consortium, please refer to Unicode Technical Report #6 (A Standard
Compression Scheme for Unicode).

The Standard Compression Scheme for Unicode (SCSU) is used to:

• express all code points in Unicode

• approximate the storage size of traditional character sets

• facilitate the use of short strings

• provide transparency for characters between U+0020-U+00FF, as well as CR, LF and
TAB

• support very simple decoders

• support simple as well as sophisticated encoders

It does not attempt to avoid the use of control bytes (including NUL) in the compressed
stream.

The compression scheme is mainly intended for use with short to medium length Unicode
strings. The resulting compressed format is intended for storage or transmission in
bandwidth limited environments. It can be used stand-alone or as input to traditional
general purpose data compression schemes. It is not intended as processing format or as
general purpose interchange format.

BOCU-1

A MIME compatible encoding called BOCU-1 is also available in ICU. Details about this
encoding can be found in the Unicode Technical Note #6. Both SCSU and BOCU-1 are
IANA registered names.

134 ICU v3.4 User Guide

Usage

The compression service in ICU is a part of Conversion framework, and follows the
semantics of converters. For more information on how to use ICU's conversion service,
please refer to Usage Model in the Using Converters Section.

uint16_t germanUTF16[]={
 0x00d6, 0x006c, 0x0020, 0x0066, 0x006c, 0x0069, 0x0065, 0x00df, 0x0074
};
uint8_t germanSCSU[]={
 0xd6, 0x6c, 0x20, 0x66, 0x6c, 0x69, 0x65, 0xdf, 0x74
};
char target[100];
UChar uTarget[100];
UErrorCode status = U_ZERO_ERROR;
UConverter *conv;
int32_t len;
/* set up the SCSU converter */
conv = ucnv_open("SCSU", &status);
assert(U_SUCCESS(status));
/* compress the string using SCSU */
len = ucnv_fromUChars(conv, target, 100, germanUTF16, -1, &status);
assert(U_SUCCESS(status));
len = ucnv_toUChars(conv, uTarget,100, germanSCSU, -1, &status);
/* close the converter */
ucnv_close(conv);

135 ICU v3.4 User Guide

Locale Class
Overview

This chapter explains locales, a fundamental concept in ICU. ICU services are
parameterized by locale, to allow client code to be written in a locale-independent way,
but to deliver culturally correct results.

Contents:

• The Locale Concept

• Locales and Services

• Canonicalization

• Usage: Creating Locales

• Usage: Retrieving Locales

• Programming in C vs. C++

The Locale Concept

A locale identifies a specific user community - a group of users who have similar culture
and language expectations for human-computer interaction (and the kinds of data they
process).

A community is usually understood as the intersection of all users speaking the same
language and living in the same country. Furthermore, a community can use more specific
conventions. For example, an English/United States/Military locale is separate from the
regular English/United States locale since the US military writes times and dates
differently than most of the civilian community.

A program should be localized according to the rules specific for the target locale. Many
ICU services rely on the proper locale identification in their function.

The locale object in ICU is an identifier that specifies a particular locale and has fields for
language, country, and an optional code to specify further variants or subdivisions. These
fields also can be represented as a string with the fields separated by an underscore.

In C++ API, locale is represented by the locale class, which provides methods for finding
language, country and variant components. In C API the locale is defined simply by a
character string. All the locale-sensitive ICU services use the locale information to
determine language and other locale specific parameters of their function. The list of
locale-sensitive services can be found in the Introduction to ICU section. Other parts of
the library use the locale as an indicator to customize their behavior.

For example, when the locale-sensitive date format service needs to format a date, it uses

136 ICU v3.4 User Guide

the convention appropriate to the current locale. If the locale is English, it uses the word
"Monday" and if it is French, it uses the word "Lundi".

The locale object also defines the concept of a default locale. The default locale is the
locale, used by many programs, that regulates the rest of the computer's behavior by
default and is usually controlled by the user in a control panel window. The locale
mechanism does not require a program to know which locale the user is using and thus
makes most programming simpler.

Since locale objects can be passed as parameters or stored in variables, the program does
not have to know specifically which locales they identify. Many applications enable a
user to select a locale. The resulting locale object is passed as a parameter, which then
produces the customized behavior for that locale.

A locale provides a means of identifying a specific region for the purposes of
internationalization and localization.

An ICU locale is frequently confused with a Portable Operating System Interface
(POSIX) locale ID. An ICU locale ID is not a POSIX locale ID. ICU locales do
not specify the encoding and specify variant locales differently.

A locale consists of one or more pieces of ordered information:

Language code

The languages are specified using a two- or three-letter lowercase code for a particular
language. For example, Spanish is "es", English is "en" and French is "fr". The two-letter
language code uses the ISO-639 standard.

Script code

The optional four-letter script code follows the language code. If specified, it should be a
valid script code as listed on the Unicode ISO 15924 Registry.

Country code

There are often different language conventions within the same language. For example,
Spanish is spoken in many countries in Central and South America but the currencies are
different in each country. To allow for these differences among specific geographical,
political, or cultural regions, locales are specified by two-letter, uppercase codes. For
example, "ES" represents Spain and "MX" represents Mexico. The two letter country
code uses the ISO-3166 standard.

Variant code

Differences may also appear in language conventions used within the same country. For

137 ICU v3.4 User Guide

example, the Euro currency is used in several European countries while the individual
country's currency is still in circulation. Variations inside a language and country pair are
handled by adding a third code, the variant code. The variant code is arbitrary and
completely application-specific. ICU adds "_EURO" to its locale designations for locales
that support the Euro currency. Variants can have any number of underscored key words.
For example, "EURO_WIN" is a variant for the Euro currency on a Windows computer.

Another use of the variant code is to designate the Collation (sorting order) of a locale.
For instance, the "es__TRADITIONAL" locale uses the traditional sorting order which is
different from the default modern sorting of Spanish.

Collation order and currency can be more flexibly specified using keywords instead of
variants; see below.

Keywords

The final element of a locale is an optional list of keywords together with their values.
Keywords must be unique. Their order is not significant. Unknown keywords are ignored.
The handling of keywords depends on the specific services that utilize them. Currently,
the following keywords are recognized:

Keyword Possible Values Description
calendar A calendar specifier such as

"gregorian", "arabic", "chinese",
"civil-arabic", "hebrew", "japanese",
or "thai-buddhist". See the Key/Type
Definitions table in the Locale Data
Markup Language for a list of
recognized values.

If present, the calendar keyword
specifies the calendar type that the
Calendar factor methods create. See
the calendar locale and keyword
handling section of the Calendar
Class chapter for details.

collation A collation specifier such as
"phonebook", "pinyin", "traditional",
"stroke", "direct", or "posix". See the
Key/Type Definitions table in the
Locale Data Markup Language for a
list of recognized values.

If present, the collation keyword
modifies how the collation service
searches through the locale data
when instantiating a collator. See the
collation locale and keyword
handling section of the Collation
Services Architecture chapter for
details.

currency Any standard three-letter currency
code, such as "USD" or "JPY". See
the LocaleExplorer currency list for a
list of currently recognized currency
codes.

If present, the currency keyword is
used by NumberFormat to determine
the currency to use to format a
currency value, and by
ucurr_forLocale() to specify a
currency.

138 ICU v3.4 User Guide

If any of these keywords is absent, the service requesting it will typically use the rest of
the locale specifier in order to determine the appropriate behavior for the locale. The
keywords allow a locale specifier to override or refine this default behavior.

Examples

Locale ID Lang
uage

Scri
pt

Coun
try

Variant Keywords Definition

en_US en US English, United
States of America.
Browse in
LocaleExplorer.

en_IE_PREEURO en IE English, Ireland.
Browse in
LocaleExplorer.

en_IE@currency=IEP en IE currency=
IEP

English, Ireland
with Irish Pound.
Browse in
LocaleExplorer.

eo eo Esperanto.
Browse in
LocaleExplorer.

fr@collation=phonebo
ok;calendar=islamic-
civil

fr collation=p
honebook
calendar=
islamic-
civil

French
(Calendar=Islamic
-Civil Calendar,
Collation=Phoneb
ook Order).
Browse in
LocaleExplorer.

sr_Latn_YU_REVISE
D@currency=USD

sr Latn YU REVISED currency=
USD

Serbian (Latin,
Yugoslavia,
Revised
Orthography,
Currency=US
Dollar) Browse in
LocaleExplorer.

Default Locales

Default locales are available to all the objects in a program. If you set a new default locale
for one section of code, it can affect the entire program. Application programs should not

139 ICU v3.4 User Guide

set the default locale as a way to request an international object. The default locale is set
to be the system locale on that platform.

For example, when you set the default locale, the change affects the default behavior of
the Collator and NumberFormat instances. When the default locale is not wanted, you
can set the desired locale using a factory method supplied with the classes such as
Collator::createInstance().

Using the ICU C functions, NULL can be passed for a locale parameter to specify the
default locale.

Locales and Services

ICU is implemented as a set of services. One example of a service is the formatting of a
numeric value into a string. Another is the sorting of a list of strings. When client code
wants to use a service, the first thing it does is request a service object for a given locale.
The resulting object is then expected to perform the its operations in a way that is
culturally correct for the requested locale.

Requested Locale

The requested locale is the one specified by the client code when the service object is
requested.

Valid Locale

A populated locale is one for which ICU has data, or one in which client code has
registered a service. If the requested locale is not populated, then ICU will fallback until it
reaches a populated locale. The first populated locale it reaches is the valid locale. The
valid locale is reachable from the requested locale via zero or more fallback steps.

Fallback
Locale fallback proceeds as follows:

1. The variant is removed, if there is one.

2. The country is removed, if there is one.

3. The script is removed, if there is one.

4. The ICU default locale is examined. The same set of steps is performed for the default
locale.

At any point, if the desired data is found, then the fallback procedure stops. Keywords are
not altered during fallback until the default locale is reached, at which point all keywords

140 ICU v3.4 User Guide

are replaced by those assigned to the default locale.

Actual Locale

Services request specific resources within the valid locale. If the valid locale directly
contains the requested resource, then it is the actual locale. If not, then ICU will fallback
until it reaches a locale that does directly contain the requested resource. The first such
locale is the actual locale. The actual locale is reachable from the valid locale via zero or
more fallback steps.

getLocale()

Client code may wish to know what the valid and actual locales are for a given service
object. To support this, ICU services provide the method getLocale(). getLocale()
takes an argument specifying whether the actual or valid locale is to be returned.

Some service object will have an empty or null return from getLocale(). This indicates
that the given service object was not created from locale data, or that it has since been
modified so that it no longer reflects locale data, typically through alteration of the pattern
(but not localized symbol changes -- such changes do not reset the actual and valid locale
settings).

Currently, the services that support the getLocale() API are the following classes and
their subclasses:

Functional Equivalence

Various services provide the API getFunctionalEquivalent to allow callers determine
the functionally equivalent locale for a requested locale. For example, when
instantiating a collator for the locale en_US_CALIFORNIA, the functionally equivalent
locale may be en.

The purpose of this is to allow applications to do intelligent caching. If an application
opens a service object for locale A with a functional equivalent Q and caches it, then later
when it requires a service object for locale B, it can first check if locale B has the same
functional equivalent as locale A; if so, it can reuse the cached A object for the B locale,
and be guaranteed the same results as if it has instantiated a service object for B. In other
words,
Service.getFunctionalEquivalent(A) == Service.getFunctionalEquivalent(B)
 implies that the object returned by Service.getInstance(A) will behave equivalently
to the object returned by Service.getInstance(B).

Here is a pseudo-code example:

The functional equivalent locale returned by a service has no meaning beyond what is
stated above. For example, if the functional equivalent of Greek is Hebrew for collation,

141 ICU v3.4 User Guide

that makes no statement about the linguistic relation of the languages -- it only means that
the two collators are functionally equivalent.

While two locales with the same functional equivalent are guaranteed to be equivalent,
the converse is not true: If two locales are in fact equivalent, they may not return the
same result from getFunctionalEquivalent. That is, if the object returned by
Service.getInstance(A) behaves equivalently to the object returned by
Service.getInstance(B), Service.getFunctionalEquivalent(A) may or may not
be equal to Service.getFunctionalEquivalent(B). Take again the example of Greek
and Hebrew, with respect to collation. These locales may happen to be functional
equivalents (since they each just turn on full normalization), but it may or may not be the
case that they return the same functionally equivalent locale. This depends on how the
data is structured internally.

The functional equivalent for a locale may change over time. Suppose that Greek were
enhanced to change sorting of additional ancient Greek characters. In that case, it would
diverge; the functional equivalent of Greek would no longer be Hebrew.

Canonicalization

ICU works with ICU format locale IDs. These are strings that obey the following
character set and syntax restrictions:

• The only permitted characters are ASCII letters, hyphen ('-'), underscore ('_'), at-sign
('@'), equals sign ('='), and semicolon (';').

• IDs consist of either a base name, keyword list, or both. If a keyword list is present it
must be preceded by an at-sign.

• The base name must precede the keyword list, if both are present.

• The base name defines the language, script, country, and variant, and can contain only
ASCII letters, hyphen, or underscore.

• The keyword list consists of keyword/value pairs. Each keyword or value consists of
one or more ASCII letters, hyphen, or underscore. Keywords and values are separated
by a single equals sign. Multiple keyword/value pairs, if present, are separated by a
single semicolon. A keyword may not appear without a value. The same keyword may
not appear twice.

ICU performs two kinds of canonicalizing operations on 'ICU format' locale IDs. Level 1
canonicalization is performed routinely and automatically by ICU API. The
recommended procedure for client code using locale IDs from outside sources (e.g.,
POSIX, user input, etc.) is to pass such "foreign IDs" through level 2 canonicalization
before use.

Level 1 canonicalization. This operation performs minor, isolated changes, such as
changing "en-us" to "en_US". Level 1 canonicalization is not designed to handle

142 ICU v3.4 User Guide

"foreign" locale IDs (POSIX, .NET) but rather IDs that are in ICU format, but which do
not have normalized case and delimiters. Level 1 canonicalization is accomplished by the
ICU functions uloc_getName, Locale::createFromName, and Locale::Locale. The
latter two API exist in both C++ and Java.

1. Level 1 canonicalization is defined only on ICU format locale IDs as defined above.
Behavior with any other kind of input is unspecified.

2. Case is normalized. Elements interpreted as language strings will be converted to
lowercase. Country and variant elements will be converted to uppercase. Script
elements will be titlecased. Keywords will be converted to lowercase. Keyword
values will remain unchanged.

3. Hyphens are converted to underscores.

4. All 3-letter country codes are converted to 2-letter equivalents.

5. Any 3-letter language codes are converted to 2-letter equivalents if possible. 3-letter
language codes with no 2-letter equivalent are kept as 3-letter codes.

6. Keywords are sorted.

Level 2 canonicalization. This operation may make major changes to the ID, possibly
replacing entire elements of the ID. An example is changing "fr-fr@EURO" to
"fr_FR@currency=EUR". Level 2 canonicalization is designed to translate POSIX and .
NET IDs, as well as nonstandard ICU locale IDs. Level 2 is a superset of level 1; every
operation performed by level 1 is also performed by level 2. Level 2 canonicalization is
performed by uloc_canonicalize and Locale::createCanonical. The latter API
exists in both C++ and Java.

1. Level 2 canonicalization operates on ICU format locale IDs with the following
additions:

1. The period ('.') is also a valid input character.

2. An at-sign may be followed by text that is not a keyword/value pair. If present, such
text is added to the variant.

2. POSIX variants are normalized, e.g., "en_US@VARIANT" => "en_US_VARIANT".

3. POSIX charset specifiers are deleted, e.g. "en_US.utf8" => "en_US".

4. The variant "EURO" is converted to the keyword specifier "currency=EUR". This
conversion applies to both "fr_FR_EURO" and "fr_FR@EURO" style IDs.

5. The variant "PREEURO" is converted to the keyword specifier "currency=K", where
K is the 3-letter currency code for the country's national currency in effect at the time
of the euro transitiion. This conversion applies to both "fr_FR_PREURO" and
"fr_FR@PREURO" style IDs. This mapping is only performed for the following
locales: ca_ES (ESP), de_AT (ATS), de_DE (DEM), de_LU (EUR), el_GR (GRD),
en_BE (BEF), en_IE (IEP), es_ES (ESP), eu_ES (ESP), fi_FI (FIM), fr_BE (BEF),
fr_FR (FRF), fr_LU (LUF), ga_IE (IEP), gl_ES (ESP), it_IT (ITL), nl_BE (BEF),

143 ICU v3.4 User Guide

nl_NL (NLG), pt_PT (PTE).

6. The following IANA registered ISO 3066 names are remapped: art_LOJBAN => jbo,
cel_GAULISH => cel__GAULISH, de_1901 => de__1901, de_1906 => de__1906,
en_BOONT => en__BOONT, en_SCOUSE => en__SCOUSE, sl_ROZAJ => sl__ROZAJ,
zh_GAN => zh__GAN, zh_GUOYU => zh, zh_HAKKA => zh__HAKKA, zh_MIN => zh__MIN,
zh_MIN_NAN => zh__MINNAN, zh_WUU => zh__WUU, zh_XIANG => zh__XIANG, zh_YUE
=> zh__YUE.

7. The following .NET identifiers are remapped: "" (empty string) => en_US_POSIX,
az_AZ_CYRL => az_Cyrl_AZ, az_AZ_LATN => az_Latn_AZ, sr_SP_CYRL =>
sr_Cyrl_SP, sr_SP_LATN => sr_Latn_SP, uz_UZ_CYRL => uz_Cyrl_UZ, uz_UZ_LATN
=> uz_Latn_UZ, zh_CHS => zh_Hans, zh_CHT => zh_Hant. The empty string is not
remapped if a keyword list is present.

8. Variants specifying collation are remapped to collation keyword specifiers, as follows:
de__PHONEBOOK => de@collation=phonebook, es__TRADITIONAL =>
es@collation=traditional, hi__DIRECT => hi@collation=direct,
zh_TW_STROKE => zh_TW@collation=stroke, zh__PINYIN =>
zh@collation=pinyin.

9. Variants specifying a calendar are remapped to calendar keyword specifiers, as
follows: ja_JP_TRADITIONAL => ja_JP@calendar=japanese, th_TH_TRADITIONAL
=> th_TH@calendar=buddhist.

10.Special case: C => en_US_POSIX.

Certain other operations are not performed by either level 1 or level 2 canonicalization.
These are listed here for completeness.

1. Language identifiers that have been superseded will not be remapped. In particular, the
following transformations are not performed:

1. no => nb

2. iw => he

3. id => in

4. nb_no_NY => nn_NO

2. The behavior of level 2 canonicalization when presented with a remapped ID
combined together with keywords is not defined. For example,
fr_FR_EURO@currency=FRF has an undefined level 2 canonicalization.

All API (with a few exceptions) in ICU4C that take a const char* locale parameter
can be assumed to automatically peform level 1 canonicalization before using the locale
ID to do resource lookup, keyword interpretation, etc. Specifically, the static API
getLanguage, getScript, getCountry, and getVariant behave exactly like their non-
static counterparts in the class Locale. That is, for any locale ID loc, new Locale(loc).
getFoo() == Locale::getFoo(loc), where Foo is one of Language, Script, Country,
or Variant.

144 ICU v3.4 User Guide

The Locale constructor (in C++ and Java) taking multiple strings behaves exactly as if
those strings were concatenated, with the '_' separator inserted between two adjacent non-
empty strings, and the result passed to uloc_getName.

Note: Throughout this dicussion Locale refers to both the C++ Locale class and the
ICU4J com.ibm.icu.util.ULocale class. Although C++ notation is used, all statements
made regarding Locale apply equally to com.ibm.icu.util.ULocale.

Usage: Creating Locales

If you are localizing an application to a locale that is not already supported, you need to
create your own Locale object. New Locale objects are created using one of the three
constructors in this class:

Locale(const char * newLanguage);
Locale(const char * language,
 const char * country);
Locale(const char * language,
 const char * country,
 const char * variant);

Because a locale object is just an identifier for a region, no validity check is performed. If
you want to verify that the particular resources are available for the locale you construct,
you must query those resources. For example, you can query the NumberFormat object
for the locales it supports using its getAvailableLocales() method.

In C++, the Locale class provides a number of convenient constants that you can use to
create locales. For example, the following refers to aNumberFormat object for the United
States:

Locale::getUS()

In C, a string with the language country and variant concatenated together with an
underscore '_' describe a locale. For example, "en_US" is a locale that is based on the
English language in the United States. The following can be used as equivalents to the
locale constants:

ULOC_US

Usage: Retrieving Locales

Locale-sensitive classes have a getAvailableLocales() method that returns all of the
locales supported by that class. This method also shows the other methods that get locale
information from the resource bundle. For example, the following shows that the
NumberFormat class provides three convenience methods for creating a default

145 ICU v3.4 User Guide

NumberFormat object::
NumberFormat::createInstance();
NumberFormat::createCurrencyInstance();
NumberFormat::createPercentInstance();

Displayable Names

Once you've created a Locale you can perform a query of the locale for information
about itself. The following shows the information you can receive from a locale:

Method Description
getCountryRetrieves Retrieves the ISO Country Code
getLanguage() Retrieves the ISO Language
getDisplayCountry() Shows the name of the country suitable for

displaying information to the user
getDisplayLanguage() Shows the name of the language suitable for

displaying to the user
The getDisplayXXX methods are themselves locale-sensitive and have two
versions: one that uses the default locale and one that takes a locale as an
argument and displays the name or country in a language appropriate to that
locale.

Each class that performs locale-sensitive operations allows you to get all the available
objects of that type. You can sift through these objects by language, country, or variant,
and use the display names to present a menu to the user. For example, you can create a
menu of all the collation objects suitable for a given language.

HTTP Accept-Language

ICU provides functions to negotiate the best locale to use for an operation, given a user's
list of acceptable locales, and the application's list of available locales. For example, a
browser sends the web server the HTTP “Accept-Language” header indicating which
locales, with a ranking, are acceptable to the user. The server must determine which
locale to use when returning content to the user.

Here is an example of selecting an acceptable locale within a CGI application:
char resultLocale[200];
UAcceptResult outResult;
available = ures_openAvailableLocales(“myBundle”, &status);
int32_t len = uloc_acceptLanguageFromHTTP(resultLocale, 200, &outResult,

getenv(“HTTP_ACCEPT_LANGUAGE”), available, &status);
if(U_SUCCESS(status)) {

printf(“Using locale %s\n”, outResult);
}

146 ICU v3.4 User Guide

Note: As of this writing, this functionality is only available in C and not Java.
Please read the following two linked documents for important considerations and
recommendations when using this header in a web application.
For further information about the Accept-Language HTTP header:
 http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.4
Notes and cautions about the use of this header:
 http://www.w3.org/International/questions/qa-accept-lang-locales

Programming in C vs. C++

See Programming for Locale in C and C++ for more information.

147 ICU v3.4 User Guide

Locale Examples
Locale Currency Conventions

Application programs should not reset the default locale as a way of requesting an
international object, because resetting default locale affects the other programs running in
the same process. Use one of the factory methods instead, e.g.
Collator::createInstance(Locale).

In general, a locale object or locale string is used for specifying the locale. Here is an
example to specify the Belgium French with Euro currency locale:

C++

Locale loc("fr", "BE");
Locale loc2("fr_BE");

C
const char *loc = "fr_BE";

 Java does not support the form Locale("xx_yy_ZZ"), instead use the form
Locale("xx","yy","ZZ")

Locale Constants

A Locale is the mechanism for identifying the kind of object (NumberFormat) that you
would like to get. The locale is just a mechanism for identifying objects, not a container
for the objects themselves. For example, the following creates various number formatters
for the "Germany" locale:

C++
UErrorCode status = U_ZERO_ERROR;
NumberFormat *nf;
nf = NumberFormat::createInstance(Locale::getGermany(), status);
delete nf;
nf = NumberFormat::createCurrencyInstance(Locale::getGermany(), status);
delete nf;
nf = NumberFormat::createPercentInstance(Locale::getGermany(), status);
delete nf;

C
UErrorCode status = U_ZERO_ERROR;
UNumberFormat *nf;
nf = unum_open(UNUM_DEFAULT, "de_DE", &status);
unum_close(nf);
nf = unum_open(UNUM_CURRENCY, "de_DE", &status);
unum_close(nf);

148 ICU v3.4 User Guide

nf = unum_open(UNUM_PERCENT, "de_DE", &status);
unum_close(nf);

Querying Locale

Each class that performs locale-sensitive operations allows you to get all the available
objects of that type. You can sift through these objects by language, country, or variant,
and use the display names to present a menu to the user. For example, you can create a
menu of all the collation objects suitable for a given language. For example, the following
shows the display name of all available locales in English (US):

C++
int32_t count;
const Locale* list = 0;
UnicodeString result;
list = Locale::getAvailable(count);
for (int i = 0; i < count; i++)
{
 list[i].getDisplayName(Locale::getUS(), result);
 /* print result */
}

C
int32_t count;
UChar result[100];
int i = 0;
UErrorCode status = U_ZERO_ERROR;
count = uloc_countAvailable();
for (i = 0; i < count; i++)
{
 uloc_getDisplayname(uloc_getAvailable(i), "en_US", result, 100, &status);
 /* print result */
}

149 ICU v3.4 User Guide

Resource Management
Overview

A software product that needs to be localized wins or loses depending on how easy is to
change the data that affects users. From the simplest point of view, that data is the
information presented to the user as well as the region specific ways of doing things - for
example, sorting. The process of localization will eventually involve translators and it
would be very convenient if the process of localizing could be done only by translators
and experts in the target culture. There are several points to keep in mind when designing
such a software product.

Keeping Data Separate

Obviously, one does not want to make translators wade through the source code and make
changes there. That would be a recipe for a disaster. Instead, the translatable data should
be kept separately, in a format that allows translators easy access. A separate resource
managing mechanism is hence required. Application access data through API calls, which
pick the appropriate entries from the resources. Resources are kept in human
readable/editable format with optional tools for content editing.

The data should contain all the elements to be localized, including, but no limited to, GUI
messages, icons, formatting patterns, and collation rules. A convenient way for keeping
binary data should also be provided - often icons for different cultures should be different.

Keeping Data Small

It is not unlikely that the data will be same for several regions - take for example Spanish
speaking countries - names of the days and month will be the same in both Mexico and
Spain. It would be very beneficial if we can prevent the duplication of data. This can be
achieved by structuring resources in such a way so that an unsuccessful query into a more
specific resource triggers the same query in a more general resource. A convenient way to
do this is to use a tree like structure.

Another way to reduce the data size is to allow linking of the resources that are same for
the regions that are not in general-specific relation.

Find the Best Available Data

Sometimes, the exact data for a region is still not available. However, if the data is
structured correctly, the user can be presented with similar data. For example, a Spanish
speaking user in Mexico would probably be happier with Spanish than with English
captions, even if some of the details for Mexico are not there.

150 ICU v3.4 User Guide

If the data is grouped correctly, the program can automatically find the most suitable data
for the situation.

The previous points all lead to a separate mechanism that stores data separately from the
code. Software is able to access the data through the API calls. Data is structured in a tree
like structure, with the most general region in the root (most commonly, the root region is
the native language of the development team). Branches lead to more specialized regions,
usually through languages, countries and country regions. Data that is already the same on
the more general level is not repeated.

The path through languages, countries and country region could be different. One
may decide to go through countries and then through languages spoken in the
particular country. In either case, some data must be duplicated - if you go
through languages, the currency data for different speaking parts of the same
country will be duplicated (consider French and English languages in Canada) -
on the other side, when you go through countries, you will need to duplicate day
names and similar information.

Here is an example of a such a resource tree structure:

 root Root
 |
 +----------+-+-------------+----+
 | | | |
 en de ja ru Language
 | | | |
 +---+ +-------+ | |
 | | | | | |
 US IE DE AT JP RU Country
 | | |
 EURO EURO EURO Variant

Let us assume that the root resource contains data written by the original implementors
and that this data is in English and conforms to the conventions used in the United States.
Therefore, resources for English and English in United States would be empty and would
take its data from the root resource. If a version for Ireland is required, appropriate
overriding changes can be made to the data for English in Ireland. Specific information
for Euro currency usage can be in the more specific resource. When making the version
for the German speaking region, all the German data would be in that resource, with the
differences in the Germany and Austria resources.

Even if all the data that would go to a certain resource comes from the more general
resources, it should be made clear that the particular region is supported by application.
This can be done by having completely empty resources.

The ICU Model

ICU bases its resource management model on the ideas presented above. All the resource
APIs are concentrated in the resource bundle framework. This framework is closely tied
in its functioning to the ICU Locale naming scheme.

ICU provides and relies on a set of locale specific data in the resource bundle format. If

151 ICU v3.4 User Guide

we think that we have correct data for a requested locale, even if all its data comes from a
more general locales, we will provide an empty resource bundle. This is reflected in our
return informational codes (see the section on APIs). A lot of ICU frameworks (collation,
formatting etc.) relies on the data stored in resource bundles.

Resource bundles rely on the ICU data framework. For more information on the
functioning of ICU data, see the appropriate section.

Users of the ICU library can also use the resource bundle framework to store and retrieve
localizable data in their projects.

Resource bundles are collections of resources. Individual resources can contain data or
other resources.

ICU4J relies on the resource bundle mechanism already provided by JDK for its
functioning. Therefore, most of the discussion here pertains only to ICU4C

Fallback Mechanism

Essential part ICU's resource management framework is the fallback mechanism. It
ensures that if the data for the requested locale is missing, an effort will be made to obtain
the most usable data. Fallback can happen in two situations:

1. When a resource bundle for a locale is requested. If it doesn't exist, a more general
resource bundle will be used. If there are no such resource bundles, a resource bundle
for default locale will be used. If this fails, the root resource bundle will be used.
When using ICU locale data, not finding the requested resource bundle means that we
don't know what the data should be for that particular locale, so you might want to
consider this situation an error. Custom packages of resource bundles may or may not
adhere to this contract. A special care should be taken in remote server situations,
when the data from the default locale might not mean anything to the remote user
(imagine a situation where a server in Japan responds to a Spanish speaking client by
using default Japanese data.

2. When a resource inside a resource bundle is requested. If the resource is not present, it
will be sought after in more general resources. If at initial opening of a resource bundle
we went through the default locale, the search for a resource will also go through it.
For example, if a resource bundle for en_IE_EURO is opened, a missing resource will
be looked for in en_IE, en and finally root. This is usually harmless, except when a
resource is only located in the default locale or in the root resource bundle.

Data Packaging

ICU allows and requires that the application specific data be stored apart from the ICU
internal data (locale, converter, transformation data etc.). Application data should be
stored in packages. ICU uses the default package (NULL) for its data. All the ICU's build
tools provide means to specify the package for your data. More about how to package

152 ICU v3.4 User Guide

application data can be found below.

Resource Bundle APIs

ICU4C provides both C and C++ APIs for using resource bundles. The core
implementation is in C, while the C++ APIs are only a thin wrapper around it. Therefore,
the code using C APIs will generally be faster.

Resource bundles use ICU's "open use close" paradigm. In C all the resource bundle
operations are done using the UResourceBundle* handle. UResourceBundle* allows
access to both resource bundles and individual resources. In C++, class ResourceBundle
should be used for both resource bundles and individual resources.

To use the resource bundle framework, you need to include the appropriate header file,
unicode/ures.h for C and unicode/resbund.h for C++.

Error Checking

If an operation with resource bundle fails, an error code will be set. It is important to
check for the value of the error code. In C you should frequently use the following
construct:

if(U_SUCCESS(status)) {
 /* everything is fine */
} else {
 /* there was an error */
}

Opening of Resource Bundles

The most common C resource bundle opening API is UResourceBundle* ures_open
(const char* package, const char* locale, UErrorCode* status). The first
argument specifies the package name or NULL for the default ICU package. The second
argument is the locale for which you want the resource bundle. Special values for the
locale are NULL for the default locale and "" (empty string) for the root locale. The third
argument should be set to U_ZERO_ERROR before calling the function. It will return the
status of operation. Apart from returning regular errors, it can return two
informational/warning codes: U_USING_FALLBACK_WARNING and
U_USING_DEFAULT_WARNING. The first informational code means that the requested
resource bundle was not found and that a more general bundle was returned. If you are
opening ICU resource bundles, do note that this means that we do not guarantee that the
contents of opened resource bundle will be correct for the requested locale. The situation
might be different for application packages. However, U_USING_DEFAULT_WARNING
means that there were no more general resource bundles found and that you were returned
either a resource bundle that is the default for the system or the root resource bundle. This
will almost certainly contain wrong data.

153 ICU v3.4 User Guide

There is a couple of other opening APIs: ures_openDirect takes the same arguments as
the ures_open but will fail if the requested locale is not found. Also, if opening is
successful, no fallback will be performed if an individual resource is not found. The
second one, ures_openU takes a UChar* for package name instead of char*.

In C++, opening is done through a constructor. There are several constructors. Most
notable difference from C APIs is that the package should be given as a UnicodeString
and the locale is passed as a Locale object. There is also a copy constructor and a
constructor that takes a C UResourceBundle* handle. The result is a ResourceBundle
object. Remarks about informational codes are also valid for the C++ APIs.

All the data accessing examples in the following sections use the ICU's root
resource bundle.

UErrorCode status = U_ZERO_ERROR;
UResourceBundle* icuRoot = ures_open(NULL, "root", &status);
if(U_SUCCESS(status)) {
 /* everything is fine */
 ...
 /* do some interesting stuff here - see below */
 ...
 /* and close the bundle afterwards */
 ures_close(icuRoot); /* discussed later */
} else {
 /* there was an error */
 /* report and exit */
}

In C++, opening would look like this:

UErrorCode status = U_ZERO_ERROR;
// we rely on automatic construction of Locale object from a char *
ResourceBundle myResource("myPackage", "de_AT_EURO", status);
if(U_SUCCESS(status)) {
 /* everything is fine */
 ...
 /* do some interesting stuff here */
 ...
 /* the bundle will be closed when going out of scope */
} else {
 /* there was an error */
 /* report and exit */
}

Closing of Resource Bundles

After using, resource bundles need to be closed to prevent memory leaks. In C, you
should call the void ures_close(UResourceBundle* resB) API. In C++, if you have
just used the ResourceBundle objects, going out of scope will close the bundles. When
using allocated objects, make sure that you call the appropriate delete function.

As alredy mentioned, resource bundles and resources share the same type. You can close
bundles and resources in any order you like. You can invoke ures_close on NULL
resource bundles. Therefore, you can always this API regardless of the success of

154 ICU v3.4 User Guide

previous operations.

Accessing Resources

Once you are in the possesion of a valid resource bundle, you can access the resources
and data that it holds. The result of accessing operations will be a new resource bundle
object. In C, UResourceBundle* handles can be reused by using the fill-in parameter.
That saves you from frequent closing and reallocating of resource bundle structures,
which can dramatically improve the performance. C++ APIs do not provide means for
object reuse. All the C examples in the following sections will use a fill-in parameter.

Types of Resources

Resource bundles can contain two main types of resources: complex and simple
resources. Complex resources store other resources and can have named or unnamed
elements. Tables store named elements, while arrays store unnamed ones. Simple
resources contain data which can be string, binary, integer array or a single integer.

There are several ways for accessing data stored in the complex resources. Tables can be
accessed using keys, indexes and by iteration. Arrays can be accessed using indexes and
by iteration.

In order to be able to distinguish between resources, one needs to know the type of the
resource at hand. To find this out, use the UResType ures_getType(UResourceBundle
*resourceBundle) API, or the C++ analogon UResType getType(void). UResType is
an enumeration defined in unicode/ures.h header file.

Indexes of resources in tables do not neccessarily corespond to the order of items
in a table. Due to the way binary structure is organized, items in a table are
sorted according to the binary ordering of the keys, therefore, the index of an
item in a table will be the index of its key in the binary order. Furthermore, the
ordering of the keys are different on ASCII and EBCDIC platforms.

Accessing by Key

To access resources using a key, you can use the UResourceBundle* ures_getByKey
(const UResourceBundle *resourceBundle, const char* key,
UResourceBundle *fillIn, UErrorCode *status) API. First argument is the parent
resource bundle, which can be either a resource bundle opened using ures_open or
similar APIs or a table resource. The key is always specified using invariant characters.
The fill-in parameter can be either NULL or a valid resource bundle handle. If it is
NULL, a new resource bundle will be constructed. If you pass an already existing
resource bundle, it will be closed and the memory will be reused for the new resource
bundle. Status indicator can return U_MISSING_RESOURCE_ERROR which indicates that no
resources with that key exist, or one of the above mentioned informational codes
(U_USING_FALLBACK_WARNING and U_USING_DEFAULT_WARNING) which do not affect the

155 ICU v3.4 User Guide

validity of data in the caseof resource retrieval.

 ...
 /* we already got zones resource from the opening example */
 UResourceBundle *zones = ures_getByKey(icuRoot, "zoneStrings", NULL, &status);
 if(U_SUCCESS(status)) {
 /* ... do interesting stuff - see below ... */
 }
 ures_close(zones);
 /* clean up the rest */
 ...

In C++, the analogous API is ResourceBundle get(const char* key, UErrorCode&
status) const.

Trying to retrieve resources by key on any other type of resource than tables will produce
a U_RESOURCE_TYPE_MISMATCH error.

Accessing by Index

Accessing by index requires you to supply an index of the resource that you want to
retrieve. Appropriate API is UResourceBundle* ures_getByIndex(const
UResourceBundle *resourceBundle, int32_t indexR, UResourceBundle
*fillIn, UErrorCode *status). The arguments have the same semantics as for the
ures_getByKey API. The only difference is the second argument, which is the index of
the resource that you want to retrieve. Indexes start at zero. If an index out of range is
specified, U_MISSING_RESOURCE_ERROR is returned. To find the size of a resource, you
can use int32_t ures_getSize(UResourceBundle *resourceBundle). The
maximum index is the result of this API minus 1.

 ...
 /* we already got zones resource from the accessing by key example */
 UResourceBundle *currentZone = NULL;
 int32_t index = 0;
 for(index = 0; index < ures_getSize(zones); index++) {
 currentZone = ures_getByIndex(zones, index, currentZone, &status);
 ... do interesting stuff here ...
 }
 ures_close(currentZone);
 /* cleanup the rest */
 ...

Accessing simple resource with an index 0 will return themselves. This is useful for
iterating over all the resources regardless of type.

C++ overloads the get API with ResourceBundle get(int32_t index, UErrorCode&
status) const.

Iterating Over Resources

If you don't care about the order of the resources and want simple code, you can use the

156 ICU v3.4 User Guide

iteration mechanism. To set up iteration over a complex resource, you can simply start
iterating using the UResourceBundle* ures_getNextResource(UResourceBundle
*resourceBundle, UResourceBundle *fillIn, UErrorCode *status). It is
advisable though to reset the iterator for a resource before starting, in order to ensure that
the iteration will indeed start from the beggining - just in case somebody else has already
been playing with this resource. To reset the iterator use void ures_resetIterator
(UResourceBundle *resourceBundle) API. To check whether there are more
resources, call UBool ures_hasNext(UResourceBundle *resourceBundle). If you
have iterated through the whole resource, NULL will be returned.

 ...
 /* we already got zones resource from the accessing by key example */
 UResourceBundle *currentZone = NULL;
 ures_resetIterator(zones);
 while(ures_hasNext(zones)) {
 currentZone = ures_getNextResource(zones, currentZone, &status);
 ... do interesting stuff here ...
 }
 ures_close(currentZone);
 /* cleanup the rest */
 ...

C++ provides analogous APIs: ResourceBundle getNext(UErrorCode& status),
void resetIterator(void) and UBool hasNext(void).

Accessing Data in the Simple Resources

In order to get to the data in the simple resources, you need to use appropriate APIs
according to the type of a simple resource. They are summarized in the tables below. All
the pointers returned should be considered pointers to read only data. Using an API on a
resource of a wrong type will result in an error.

Strings:

C const UChar* ures_getString(const
UResourceBundle* resourceBundle,
int32_t* len, UErrorCode* status)

C++ UnicodeString getString(UErrorCode&
status) const

Example:

...
UResourceBundle *version = ures_getByKey(icuRoot, "Version", NULL, &status);
if(U_SUCCESS(status)) {
 int32_t versionStringLen = 0;
 const UChar *versionString = ures_getString(version, &versionStringLen, &status);
}
ures_close(version);
...

157 ICU v3.4 User Guide

Binaries:

C const uint8_t* ures_getBinary(const UResourceBundle*
resourceBundle, int32_t* len, UErrorCode* status)

C++ const uint8_t* getBinary(int32_t& len, UErrorCode&
status) const

Integers, signed and unsigned:

C int32_t ures_getInt(const UResourceBundle*
resourceBundle, UErrorCode *status)
uint32_t ures_getUInt(const UResourceBundle*
resourceBundle, UErrorCode *status)

C++ int32_t getInt(UErrorCode& status) const
uint32_t getUInt(UErrorCode& status) const

Integer Arrays:

C const int32_t* ures_getIntVector(const UResourceBundle*
resourceBundle, int32_t* len, UErrorCode* status)

C++ const int32_t* getIntVector(int32_t& len, UErrorCode&
status) const

Convenience APIs

Since the vast majority of data stored in resource bundles are strings, ICU's resource
bundle framework provides a number of different convenience APIs that directly access
strings stored in resources. They are analogous to APIs already discussed, with the
difference that they return const UChar* or UnicodeString objects.

The C APIs that allow returning of UnicodeStrings only work if used in a C++
file. Trying to use them in a C file will produce a compiler error.

APIs that allow retrieving strings by specifying a key:

C (UChar*) const UChar* ures_getStringByKey(const UResourceBundle
resB, const char key, int32_t* len, UErrorCode
*status)

C
(UnicodeString)

UnicodeString ures_getUnicodeStringByKey(const
UResourceBundle *resB, const char* key, UErrorCode*
status)

C++ UnicodeString getStringEx(const char* key, UErrorCode&
status) const

APIs that allow retrieving strings by specifying an index:

158 ICU v3.4 User Guide

C (UChar*) const UChar* ures_getStringByIndex(const UResourceBundle
resB, int32_t indexS, int32_t len, UErrorCode *status)

C
(UnicodeString)

UnicodeString ures_getUnicodeStringByIndex(const
UResourceBundle *resB, int32_t indexS, UErrorCode*
status)

C++ UnicodeString getStringEx(int32_t index, UErrorCode&
status) const;

APIs for retrieving strings through iteration:

C (UChar*) const UChar* ures_getNextString(UResourceBundle
resourceBundle, int32_t len, const char ** key,
UErrorCode *status)

C
(UnicodeString)

UnicodeString ures_getNextUnicodeString(UResourceBundle
*resB, const char ** key, UErrorCode* status)

C++ UnicodeString getNextString(UErrorCode& status)

Other APIs

Resource bundle framework provides a number of additional APIs that allow you to get
more information on the resources you are using. They are summarized in the following
tables.

C int32_t ures_getSize(UResourceBundle *resourceBundle)

C++ int32_t getSize(void) const

Gets the number of items in a resource. Simple resources always return size 1.

C UResType ures_getType(UResourceBundle *resourceBundle)

C++ UResType getType(void)

Gets the type of the resource. For a list of resource types, see: unicode/ures.h

C const char *ures_getKey(UResourceBundle *resB)

C++ const char *getKey(void)

Gets the key of a named resource or NULL if this resource is a member of an array.

C void ures_getVersion(const UResourceBundle* resB,
UVersionInfo versionInfo)

C++ void getVersion(UVersionInfo versionInfo) const

159 ICU v3.4 User Guide

Fills out the version structure for this resource.

C const char* ures_getLocale(const UResourceBundle*
resourceBundle, UErrorCode* status)

C++ const Locale& getLocale(void) const

Returns the locale this resource is from. This API is going to change, so stay tuned.

Format of Resource Bundles

Resource bundles are written in its source format. Before using them, they must be
compiled to the binary format using the genrb utility. Currently supported source format
is a text file. The format is defined in formal definition file.

This is an example of a resource bundle source file:

// Comments start with a '//' and extend to the end of the line
// first, a locale name for the bundle is defined. The whole bundle is a table
// every resource, including the whole bundle has its name.
// The name consists of invariant characters, digits and following symbols: -, _.
root {
 menu {
 id { "mainmenu" }
 items {
 {
 id { "file" }
 name { "&File" }
 items {
 {
 id { "open" }
 name { "&Open" }
 }
 {
 id { "save" }
 name { "&Save" }
 }
 {
 id { "exit" }
 name { "&Exit" }
 }
 }
 }

 {
 id { "edit" }
 name { "&Edit" }
 items {
 {
 id { "copy" }
 name { "&Copy" }
 }
 {
 id { "cut" }
 name { "&Cut" }
 }
 {
 id { "paste" }
 name { "&Paste" }
 }
 }
 }

160 ICU v3.4 User Guide

 ...
 }
 }
 // This resource is a table, thus accessible only through iteration and
indexes...
 errors {
 "Invalid Command",
 "Bad Value",
 // Add more strings here...
 "Read the Manual"
 }
 splash:import { "splash_root.gif" } // This is a binary imported file
 pgpkey:bin { a1b2c3d4e5f67890 } // a binary value
 versionInfo { // a table
 major:int { 1 } // of integers
 minor:int { 4 }
 patch:int { 7 }
 }
 buttonSize:intvector { 10, 20, 10, 20 } // an array of 32-bit integers
 // will pick up data from zoneStrings resource in en bundle in the ICU package
 simpleAlias:alias { "/ICUDATA/en/zoneStrings" }
 // will pick up data from CollationElements resource in en bundle
 // in the ICU package
 CollationElements:alias { "/ICUDATA/en" }
}

Binary format is described in the uresdata.h header file.

Resources Syntax

Syntax of the resources that can be stored in resource bundles is specified in the following
table:

Data Type Format Description
Tables [name][:table]

{ subname1 { subresource1 }
...
subnameN { subresourceN } }

Tables are a complex resource that
holds named resources. If it is a part of
an array, it does not have a name. At
this point, a resource bundle is a table.
Access is allowed by key, index, and
iteration.

161 ICU v3.4 User Guide

Data Type Format Description
Arrays [name][:array]

{subresource1,
...
 subresourceN }

Arrays are a complex resource that
holds unnamed resources. If it is a part
of an array, it does not have a name.
Arrays require less memory than
tables (since they don't store the name
of subresources) but the index and
iteration access are as fast as with
tables.

Strings [name][:string]
{ ["]UnicodeText["] }

Strings are simple resources that hold
a chunk of Unicode encoded data. If it
is a part of an array, it does not have a
name.

Binaries name:bin { binarydata }
name:import
{ "fileNameToImport" }

Binaries are used for storing binary
information (processed data, images
etc). Information is stored on a byte
level.

Integers name:int
{ integervalue }

Integers are used for storing a 32 bit
integer value.

Integer
Vectors

name:intvector
{ integervalue,
...
integervalueN }

Integer vectors are used for storing 32
bit integer values.

Aliases name:alias
{ locale and path to aliased
resource }

Aliases point to other resources. They
are useful for preventing duplication
of data in resources that are not on the
same branch of the fallback chain.
Alias can also have an empty path. In
that case the position of the alias
resource is used to find the aliased
resource.

Although specifying type for some resources can be omitted for backward compatibility
reasons, you are strongy encouraged to always specify the type of the resources. As
structure gets more complicated, some combinations of resources that are not typed might
produce unexpected results.

The way to write your resource is to start with a table that has your locale name. Conents
of a table are between the curly brackets:

root:table {
}

162 ICU v3.4 User Guide

Then you can start adding resources to your bundle. Resources on the first level must be
named and we suggest that you specify the type:

root:table {
 usage:string { "Usage: genrb [Options] files" }
 version:int { 122 }
 errorcodes:array {
 :string { "Invalid argument" }
 :string { "File not found" }
 }
}

The resource bundle format doesn't care about indentation and line breaks. You can
continue one string over many lines - you need to have the line break outside of the
string:

aVeryLongString:string {
 "This string is quite long "
 "and therefore should be "
 "broken in several lines."
}

For more examples on syntax, take a look at our resource files for locales and test data,
especially at the testtypes resource bundle.

Making Your Own Resource Bundles

In order to make your own resource bundle package, you need to performa several steps:

1. Create your root resource bundle. This bundle should contain all the data for your
program. You are probably best off if you fill it with data in your native language.

2. Create a chain of empty resource bundles for your native language and region. For
example, if your region is sr_YU, create all the entries in root in Serbian and leave
bundles for sr and sr_YU locales empty. This way, users of your package will know
whether you support a certain locale or not.

3. If you already have some data to localize, create more bundles with localized data.

4. Decide on the name of your package. You will use the package name to access your
resources.

5. Compile the resource bundles using the genrb tool. The command line format is
genrb [options] list-of-input-files. Genrb expects that source files are in
invariant encoding and \uXXXX characters or UTF-8/UTF-16 with BOM. If you need
to use a different encoding, specify it using the --encoding option. You also need to
specify the package name for your resources using the --package-name option. Full
list of options can be retrieved by invoking genrb --help.
 You can also output Java class files. You will need to specify the --write-java

163 ICU v3.4 User Guide

option, followed by an optional encoding for the resulting .java file. Default encoding
is ASCII + \uXXXX. You will also have to specify the resource bundle name using the
--bundle-name argument. You can also specify the package name using the --
package-name option. It specifies the Java package name for this bundle and defaults
to com.ibm.icu.impl.data.
 After using genrb, you will end up with files of name
packagename_localename.res. For example, if you had root.txt, en.txt,
en_US.txt, es.txt and you invoked genrb using the following command line:
genrb -p myapplication root.txt en.txt en_US.txt es.txt, you will end up
with myapplication_root.res, myapplication_en.res etc. These files are now
ready to use and you can open them using ures_open("myapplication", "en_US",
err);.

6. However, you might want to have only one file containing all the data. In that case you
need to use the package data tool. It can produce either a memory mapped file or a
dynamically linked library. For more information on how to use package data tool, see
the appropriate section

Rolling out your own data takes some practice, especially if you want to package it all
together. You might want to take a look at how we package data. Good places to start
(except of course ICU's own data) are source/test/testdata and
source/samples/ufortune/resources directories.

Also, here is a sample Windows batch file that does compiling and packing of several
resources:

genrb -p myapplication root.txt en.txt en_GB.txt fr.txt es.txt es_ES.txt
echo root.txt en.txt en_GB.txt fr.txt es.txt es_ES.txt > packagelist.txt
pkgdata -p myapplication -m common -O R:C:\Development\icu\ packagelist.txt

Using XLIFF for Localization

ICU provides tool that allow for converting resource bundles to and from XLIFF format.
Files in XLIFF format can contain translations of resources. In that case, more than one
resulting resource bundle will be constructed.

To produce a XLIFF file from a resource bundle, use the -x option of genrb tool from
ICU4C. Assume that we want to convert a simple resource bundle to the XLIFF format:

root {
 usage {"usage: ufortune [-v] [-l locale]"}
 optionMessage {"unrecognized command line option:"}
}

To get a XLIFF file, we need to call genrb like this: genrb -x -p myResource -l en
root.txt. Option -x tells genrb to produce XLIFF file, option -l specifies the language
of the resource. If the language is not specified, genrb will try to deduce the language

164 ICU v3.4 User Guide

from the resource name (en, zh, sh). If the resource name is not an ISO language code
(root), default language for the platform will be used. Language will be a source attribute
for all the translation units. Option -p specifies the package resource belongs to. If the
package is not specified on the RB->XLIFF conversion time, it has to be specified on the
reverse conversion. XLIFF file produced from the resource above will be named
myResource.xlf and will look like this:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE xliff SYSTEM "http://www.oasis-
open.org/committees/xliff/documents/xliff.dtd">
<xliff version = "1.0">
 <file xml:space = "preserve" source-language = "en" datatype = "text"
 original = "en_fortune.txt" tool = "genrb"
 date = "2003-06-12T19:03:09Z" ts = "myResource">
 <header></header>
 <body>
 <group restype = "table" xml:space = "preserve" id = "myResource" >
 <trans-unit xml:space = "preserve" id = "myResource_optionMessage"
 resname = "optionMessage">
 <source xml:lang = "en">unrecognized command line option:
 </source>
 </trans-unit>
 <trans-unit xml:space = "preserve" id = "myResource_usage"
 resname = "usage">
 <source xml:lang = "en">usage: ufortune [-v] [-l locale]
 </source>
 </trans-unit>
 </group>
 </body>
 </file>
</xliff>

This file can be sent to translators. Using translation tools that support XLIFF, translators
will produce one or more translations for this resource. Processed file might look a bit
like this:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE xliff SYSTEM "http://www.oasis-
open.org/committees/xliff/documents/xliff.dtd">
<xliff version = "1.0">
 <file xml:space = "preserve" source-language = "en" datatype = "text"
 original = "en_fortune.txt" tool = "genrb"
 date = "2003-06-12T19:03:09Z" ts = "myResource">
 <header></header>
 <body>
 <group restype = "table" xml:space = "preserve" id = "myResource" >
 <trans-unit xml:space = "preserve" id = "myResource_optionMessage"
 resname = "optionMessage">
 <source xml:lang = "en">unrecognized command line option:
 </source>
 <target xml:lang = "sh">nepoznata opcija na komandnoj liniji:
 </target>
 </trans-unit>
 <trans-unit xml:space = "preserve" id = "myResource_usage"
 resname = "usage">
 <source xml:lang = "en">usage: ufortune [-v] [-l locale]
 </source>
 <target xml:lang = "sh">upotreba: ufortune [-v] [-l lokal]
 </target>
 </trans-unit>
 </group>
 </body>
 </file>
</xliff>

165 ICU v3.4 User Guide

In order to convert this file to a set of resource bundle files, we need to use ICU4J's
com.ibm.icu.dev.tool.localeconverter.XLIFF2ICUConverter class.

XLIFF2ICUConverter class relies on XML parser being available. JDK 1.4 and
newer provide a XML parser out of box. For earlier versions, you will need to
install xerces.

Command line for running XLIFF2ICUConverter should specify the file than needs to be
converted, myResource.xlf in this case. Optionally, you can specify input and output
directories as well as the package name. After running this tool, two files will be
produced: myResource_en.txt and myResource_sh.txt. This is how they would look like:

// ***
// *
// * Tool: com.ibm.icu.dev.tool.localeconverter.XLIFF2ICUConverter.java
// * Date & Time: 2003/6/12 12:24
// * Source File: myResource.xlf
// *
// ***

myResource_en{
 optionMessage:string{"unrecognized command line option:"}
 usage:string{"usage: ufortune [-v] [-l locale]"}
}

and
// ***
// *
// * Tool: com.ibm.icu.dev.tool.localeconverter.XLIFF2ICUConverter.java
// * Date & Time: 2003/6/12 12:24
// * Source File: myResource.xlf
// *
// ***

myResource_sh{
 optionMessage:string{"nepoznata opcija na komandnoj liniji:"}
 usage:string{"upotreba: ufortune [-v] [-l lokal]"}
}

These files can be then used as all the other resource bundle files.

166 ICU v3.4 User Guide

Localizing with ICU
Overview

There are many different formats for software localization, i.e., for resource bundles. The
most important file format feature for translation of text elements is to represent key-
value pairs where the values are strings.

Each format was designed for a certain purpose. Many but not all formats are recognized
by translation tools. For localization it is best to use a source format that is optimized for
translation, and to convert from it to the platform-specific formats at build time.

This overview concentrates on the formats that are relevant for working with ICU. The
examples below show only lists of strings, which is the lowest common denominator for
resource bundles.

Recommendation

The most promising long-term approach is to author localizable data in XLIFF format and
to convert it to native, platform/tool-specific formats at build time.

Short-term, due to the lack of ICU tools for XLIFF, either custom tools must be used to
convert from some authoring/translation format to Java/ICU formats, or one of the
Java/ICU formats needs to be used for authoring and translation.

Contents

• Java and ICU4J

• ICU4C

• XLIFF

• DITA

• Linux/gettext

• POSIX/catgets

• Windows

• ICU tools

• Further information

Java and ICU4J

.properties files

167 ICU v3.4 User Guide

Java PropertyResourceBundle uses runtime-parsed .properties files. They contain key-
value pairs where both keys and values are Unicode strings. No other native data types
(e.g., integers or binaries) are supported. There is no way to specify a charset, therefore .
properties files must be in ISO 8859-1 with \u escape sequences (see the Java
native2ascii tool).

Defined at: http://java.sun.com/j2se/1.4/docs/api/java/util/PropertyResourceBundle.html

Example: (example_de.properties)
key1=Deutsche Sprache schwere Sprache
key2=Düsseldorf

.java ListResourceBundle files

Java ListResourceBundle files provide implementation subclasses of the
ListResourceBundle abstract base class. They are Java code! Source files are .java
files that are compiled as usual with the javac compiler. Syntactic rules of Java apply. As
Java source code, they can contain arbitrary Java objects and can be nested.

Although the Java compiler allows to specify a charset on the command line, this is
uncommon, and .java resource bundle files are therefore usually encoded in ISO 8859-1
with \u escapes like .properties files.

Defined at: http://java.sun.com/j2se/1.4/docs/api/java/util/ListResourceBundle.html

Example: (example_de.java)
public class example_de extends ListResourceBundle {
 public Object[][] getContents() {
 return contents;
 }
 static final Object[][] contents={
 { "key1", "Deutsche Sprache " +
 "schwere Sprache" },
 { "key2", "Düsseldorf" }
 };
}

ICU4C

.txt resource bundles

ICU4C natively uses a plain text source format with a nested structure that was derived
from Java ListResourceBundle .java files when the original ICU Java class files were
ported to C++. The ICU4C bundle format can of course contain only data, not code,
unlike .java files. Resource bundle source files are compiled with the genrb tool into a
binary runtime form (.res files) that is portable among platforms with the same charset
family (ASCII vs. EBCDIC) and endianness.

Features:

168 ICU v3.4 User Guide

• Key-value pairs. Keys are strings of "invariant characters" - a portable subset of the
ASCII graphic character repertoire. About "invariant characters" see the definition of
the .txt file format (URL below) or icu/source/common/unicode/utypes.h

• Values can be Unicode strings, integers, binaries (BLOBs), integer arrays (vectors),
and nested structures. Nested structures are either arrays (position-indexed vectors) of
values or "tables" of key-value pairs.

• Values inside nested structures can be all of the ones as on the top level, arbitrarily
deeply nested via arrays and tables.

• Long strings can be split across lines: Adjacent strings separated only by whitespace
(including line breaks) are automatically concatenated at build time.

• At runtime, when a top-level item is not found, then ICU looks up the same key in the
parent bundle as determined by the locale ID.

• A value can also be an "alias", which is simply a reference to another bundle's item.
This is to save space by storing large data pieces only once when they cannot be
inherited along the locale ID hierarchy (e.g., collation data in ICU shared among
zh_HK and zh_TW).

• Source files can be in any charset. Unicode signature byte sequences are recognized
automatically (UTF-8/16, SCSU, ...), otherwise the tool takes a charset name on the
command line.

Defined at: icuhtml/design/bnf_rb.txt

Example: (de.txt)
de {
 key1 { "Deutsche Sprache "
 "schwere Sprache" }
 key2 { "Düsseldorf" }
}

ICU4C XML resource bundles

The ICU4C XML resource bundle format was defined simply to express the same
capabilities of the .txt and binary ICU4C resource bundles in XML form. However, we
have decided to drop the format for lack of use and instead adopt standard XLIFF format
for localization. For more information on XLIFF format, see the following section. For
examples on using ICU tools to produce and read XLIFF format see the resource
management chapter.

XLIFF

The XML Localisation Interchange File Format (XLIFF) is an emerging industry standard
"for the interchange of localization information". Version 1.0 is available (2002-apr-15),
and 1.1 is being defined right now.

169 ICU v3.4 User Guide

This is the result of a quick review of XLIFF and may need to be improved.
Features:

• Multiple resource bundles per XLIFF file are supported.

• Multiple languages per XLIFF file are supported.

• XLIFF provides a rich set of ways to communicate intent, types of items, etc. all the
way from content creation to all stages and phases of translation.

• Nesting of values appears to not be supported.

• XLIFF is independent of actual build-time or runtime resource bundle formats. .xlf
files must be converted to native formats at build time.

Defined at: http://www.oasis-open.org/committees/xliff/

Example: (example.xlf)
<?xml version="1.0"?>
<!DOCTYPE xliff PUBLIC "-//XLIFF//DTD XLIFF//EN"
 "http://www.oasis-open.org/committees/xliff/documents/xliff.dtd" >
<xliff version="1.0">
 <file source-language="en" datatype="plaintext" original="file.ext">
 <header></header>
 <body>
 <trans-unit id="key1">
 <source>German language difficult language</source>
 <target xml:lang="de">Deutsche Sprache schwere Sprache</target>
 </trans-unit>
 <trans-unit id="key2">
 <source>Raleigh</source>
 <target xml:lang="de">Düsseldorf</target>
 </trans-unit>
 </body>
 </file>
</xliff>

For examples on using ICU tools to produce and read XLIFF format see the resource
management chapter.

DITA

The Darwin Information Typing Architecture (DITA) is "IBM's XML architecture for
topic-oriented information". It is a family of XML formats for several types of
publications including manuals and resource bundles. It is extensible, i.e., subformats can
be defined by refining DTDs. One design feature is to provide cross-document references
for reuse of existing contents. For more information see
http://www.ibm.com/developerworks/xml/library/x-dita4/index.html

While it is certainly possible to define resource bundle formats via DTDs in the DITA
framework, there currently (2002-nov-27) do not appear to be resource bundle formats
actually defined, or tools available specifically for them.

170 ICU v3.4 User Guide

Linux/gettext

The OpenI18N specification requires support for message handling functions (mostly
variants of gettext()) as defined in libintl.h. See Tables 3-5 and 3-6 and Annex C in
http://www.openi18n.org/docs/html/LI18NUX-2000-amd4.htm

Resource bundles ("portable object files", extension .po) are plain text files with key-
value pairs for string values. The format and functions support a simple selection of
plural forms by associating integer values (via C language expressions) with indexes of
strings.

The msgfmt utility compiles .po files into "message object files" (extension .mo). The
charset is determined from the locale ID in LC_CTYPE. There are additional supporting
tools for .po files.

Note: The OpenI18N specification also requires POSIX gencat/catgets
support.

Defined at: Annex C of the Li18nux-2000 specification, see above.

Example: (example.po)
domain "example_domain"
msgid "key1"
msgstr "Deutsche Sprache schwere Sprache"
msgid "key2"
msgstr "Düsseldorf"

POSIX/catgets

POSIX (The Open Group specification) defines message catalogs with the catgets() C
function and the gencat build-time tool. Message catalogs contain key-value pairs where
the keys are integers 1..NL_MSGMAX (see limits.h), and the values are strings. Strings
can span multiple lines. The charset is determined from the locale ID in LC_CTYPE.

Defined at: http://www.opengroup.org/onlinepubs/009695399/utilities/gencat.html and
http://www.opengroup.org/onlinepubs/009695399/functions/catgets.html

Example: (example.txt)
1 Deutsche Sprache \
schwere Sprache
2 Düsseldorf

Windows

Windows uses a number of file formats depending on the language environment --
MSVC 6, Visual Basic, or Visual Studio.NET. The most well-known source formats are

171 ICU v3.4 User Guide

the .rc Resource and .mc Message file formats. They both get compiled into .res files that
are linked into special sections of executables. Source formats can be UTF-16, while
compiled strings are (almost) always UTF-16 from .rc files (except for predefined
ComboBox strings) and can optionally be UTF-16 from .mc files.

.rc files carry key-value pairs where the keys are usually numeric but can be strings.
Values can be strings, string tables, or one of many Windows GUI-specific structured
types that compile directly into binary formats that the GUI system interprets at runtime. .
rc files can include C #include files for #defined numeric keys. .mc files contain string
values preceded by per-message headers similar to the Linux/gettext() format. There is a
special format of messages with positional arguments, with printf-style formatting per
argument. In both .rc and .mc formats, Windows LCID values are defined to be set on the
compiled resources.

Developers and translators usually overlook the fact that binary resources are included,
and include them into each translation. This despite Windows, like Java and ICU, using
locale ID fallback at runtime.

.rc and .mc files are tightly integrated with Microsoft C/C++, Visual Studio and the
Windows platform, but are not used on any other platforms.

A sample Windows .rc file is at the end of this document.

ICU tools

ICU 2.4 provides tools for conversion between resource bundle formats:

• ICU4C .txt -> ICU4C .res: Default operation of genrb (ICU 2.0 and before).

• ICU4C .txt -> ICU4C .xml: Option with genrb (ICU 2.4).

• ICU4C .txt -> Java ListResourceBundle .java format: Option with genrb (ICU 2.2).
 Generates subclasses of ICUListResourceBundle to support non-string types.

• Java ListResourceBundle .java format -> ICU4C .txt: Use ICU4J 2.4's
src/com/ibm/icu/dev/tools/localeconverter

• ICU4C .xml -> ICU4C .txt: There is new (ICU 2.4) sample code for a tool for this
conversion, but it is not fully tested or documented. Please see
icu/source/samples/xml2txt/ in the download.

There are currently no ICU tools for XLIFF.

Converting de.txt to a ListResourceBundle

The following genrb invocation generates a ListResourceBundle from de.txt (see the
example file de.txt above):
genrb -j -b TestName -p com.example de.txt

172 ICU v3.4 User Guide

The -j option causes .java output, -b is an arbitrary bundle name prefix, and -p is an
arbitrary package name. "Arbitrary" means "depends on your product" and may be truly
arbitrary if the generated .java files are not actually used in a Java application. genrb
auto-detects .txt files encoded in Unicode charsets like UTF-8 or UTF-16 if they have a
signature byte sequence ("BOM"). The .java output file is in native2ascii format, i.e., it
is encoded in US-ASCII with \u escapes.

The output of the above genrb invocation is TestName_de.java:
package com.example;
import java.util.ListResourceBundle;
import com.ibm.icu.impl.ICUListResourceBundle;
public class TestName_de extends ICUListResourceBundle {
 public TestName_de () {
 super.contents = data;
 }
 static final Object[][] data = new Object[][] {
 {
 "key1",
 "Deutsche Sprache schwere Sprache",
 },
 {
 "key2",
 "D\u00FCsseldorf",
 },
 };
}

Converting a ListResourceBundle back to .txt

An ICUListResourceBundle .java file as generated in the previous example can be
converted to an ICU4C .txt file with the following steps:

1. Compile the .java file, e.g. with javac -d . TestName_de.java. ICU4J needs to be
on the classpath (or use the -classpath option). If the .java file is not in native2ascii
format, then use the -encoding option (e.g. -encoding UTF-8). The -d option
(specifying an output directory, in this example the current folder) is required. Without
it, the Java compiler would not generate the com/example folder hierarchy that is
required in the next step.

2. You now have a .class file com/example/TestName_de.class.

3. Invoke the ICU4J locale converter tool to generate ICU4C .txt format output for this .
class file:

 java -cp ;(folder to ICU4J)/icu4j.jar;(working folder for the
previous steps);
com.ibm.icu.dev.tool.localeconverter.ConvertICUListResourceBundle
-icu -package com.example -bundle-name TestName de > de.txt

 Note that the classpath must include the working folder for the previous steps (the
folder that contains "com"). The package name (com.example), bundle name
(TestName) and locale ID (de) must match the .java/.class files. Note also that the

173 ICU v3.4 User Guide

locale converter writes to the standard output; the command line above includes a
redirection to de.txt.

The last step generates a new de.txt in native2ascii format:
de {
 key2{"D\u00FCsseldorf"}
 key1{"Deutsche Sprache schwere Sprache"}
}

Further information

• TMX: "The purpose of TMX is to allow easier exchange of translation memory data
between tools and/or translation vendors with little or no loss of critical data during the
process."
 http://www.lisa.org/tmx/

• LISA: Localisation Industry Standards Association
 http://www.lisa.org/

Sample Windows .rc file

This file (winrc.rc) was generated with MSVC 6, using the New Project wizard to
generate a simple "Hello World!" application, changing the LCIDs to German, then
adding the two example strings as above.

//Microsoft Developer Studio generated resource script.
//
#include "resource.h"
#define APSTUDIO_READONLY_SYMBOLS
///
//
// Generated from the TEXTINCLUDE 2 resource.
//
#define APSTUDIO_HIDDEN_SYMBOLS
#include "windows.h"
#undef APSTUDIO_HIDDEN_SYMBOLS
#include "resource.h"
///
#undef APSTUDIO_READONLY_SYMBOLS
///
// German (Germany) resources
#if !defined(AFX_RESOURCE_DLL) || defined(AFX_TARG_DEU)
#ifdef _WIN32
LANGUAGE LANG_GERMAN, SUBLANG_GERMAN
#pragma code_page(1252)
#endif //_WIN32
///
//
// Icon
//
// Icon with lowest ID value placed first to ensure application icon

174 ICU v3.4 User Guide

// remains consistent on all systems.
IDI_WINRC ICON DISCARDABLE "winrc.ICO"
IDI_SMALL ICON DISCARDABLE "SMALL.ICO"
///
//
// Menu
//
IDC_WINRC MENU DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "E&xit", IDM_EXIT
 END
 POPUP "&Help"
 BEGIN
 MENUITEM "&About ...", IDM_ABOUT
 END
END

///
//
// Accelerator
//
IDC_WINRC ACCELERATORS MOVEABLE PURE
BEGIN
 "?", IDM_ABOUT, ASCII, ALT
 "/", IDM_ABOUT, ASCII, ALT
END

///
//
// Dialog
//
IDD_ABOUTBOX DIALOG DISCARDABLE 22, 17, 230, 75
STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
CAPTION "About"
FONT 8, "System"
BEGIN
 ICON IDI_WINRC,IDC_MYICON,14,9,16,16
 LTEXT "winrc Version 1.0",IDC_STATIC,49,10,119,8,SS_NOPREFIX
 LTEXT "Copyright (C) 2002",IDC_STATIC,49,20,119,8
 DEFPUSHBUTTON "OK",IDOK,195,6,30,11,WS_GROUP
END

///
//
// String Table
//
STRINGTABLE DISCARDABLE
BEGIN
 IDS_APP_TITLE "winrc"
 IDS_HELLO "Hello World!"
 IDC_WINRC "WINRC"
 IDS_SENTENCE "Deutsche Sprache schwere Sprache"
 IDS_CITY "Düsseldorf"
END
#endif // German (Germany) resources
///

///
// English (U.S.) resources

175 ICU v3.4 User Guide

#if !defined(AFX_RESOURCE_DLL) || defined(AFX_TARG_ENU)
#ifdef _WIN32
LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US
#pragma code_page(1252)
#endif //_WIN32
#ifdef APSTUDIO_INVOKED
///
//
// TEXTINCLUDE
//
2 TEXTINCLUDE DISCARDABLE
BEGIN
 "#define APSTUDIO_HIDDEN_SYMBOLS\r\n"
 "#include ""windows.h""\r\n"
 "#undef APSTUDIO_HIDDEN_SYMBOLS\r\n"
 "#include ""resource.h""\r\n"
 "\0"
END
3 TEXTINCLUDE DISCARDABLE
BEGIN
 "\r\n"
 "\0"
END
1 TEXTINCLUDE DISCARDABLE
BEGIN
 "resource.h\0"
END
#endif // APSTUDIO_INVOKED
#endif // English (U.S.) resources
///

#ifndef APSTUDIO_INVOKED
///
//
// Generated from the TEXTINCLUDE 3 resource.
//

///
#endif // not APSTUDIO_INVOKED

176 ICU v3.4 User Guide

Date/Time Services
Overview of ICU System Time Zones

A time zone represents an offset applied to Greenwich Mean Time (GMT) to obtain local
time. The offset might vary throughout the year, if daylight savings time (DST) is used, or
might be the same all year long. Typically, regions closer to the equator do not use DST.
If DST is in use, then specific rules define the point at which the offset changes and the
amount by which it changes. Thus, a time zone is described by the following information:

• An identifying string, or ID. This consists only of invariant characters (see the file
utypes.h). It typically has the format continent / city. The city chosen is not the only
city in which the zone applies, but rather a representative city for the region. Some IDs
consist of three or four uppercase letters; these are legacy zone names that are aliases
to standard zone names.

• An offset from GMT, either positive or negative. Offsets range from approximately
minus half a day to plus half a day.

If DST is observed, then three additional pieces of information are needed:

1. The precise date and time during the year when DST begins. In the first half of the year
it's in the northern hemisphere, and in the second half of the year it's in the southern
hemisphere.

2. The precise date and time during the year when DST ends. In the first half of the year
it's in the southern hemisphere, and in the second half of the year it's in the northern
hemisphere.

3. The amount by which the GMT offset changes when DST is in effect. This is almost
always one hour.

System and User Time Zones

ICU supports local time zones through the classes TimeZone and SimpleTimeZone in the
C++ API. In the C API, time zones are designated by their ID strings.

Users can construct their own time zone objects by specifying the above information to
the C++ API. However, it is more typical for users to use a pre-existing system time zone
since these represent all current international time zones in use. This document lists the
system time zones, both in order of GMT offset and in alphabetical order of ID.

Since this list changes one or more times a year, this document only represents a
snapshot. For the most current list of ICU system zones, use the method
TimeZone::getAvailableIDs().

177 ICU v3.4 User Guide

The zones are listed in binary sort order (that is, 'A' through 'Z' come before 'a'
through 'z'). This is the same order in which the zones are stored internally, and
the same order in which they are returned by TimeZone::getAvailableIDs().
The reason for this is that ICU locates zones using a binary search, and the
binary search relies on this sort order.
You might notice that zones such as Etc/GMT+1 appear to have the wrong sign
for their GMT offset. In fact, their sign is inverted since the the Etc zones follow
the POSIX sign conventions. This is the way the original Olson data is set up, and
ICU reproduces the Olson data faithfully. See the Olson files for more details.

References

The ICU system time zones are derived from the Olson data at ftp://elsie.nci.nih.gov/pub.
This is the data used by UNIX systems, and is updated one or more times each year.
Unlike the Olson zone data, ICU only contains data for current zone usage. There is no
support for historical zone data in ICU at this time.

How ICU Represents Dates/Times

ICU represents dates and times using UDates. A UDate is a scalar value that indicates a
specific point in time, independent of calendar system and local time zone. It is stored as
the number of milliseconds from a reference point known as the epoch. The epoch is
midnight Universal Time Coordinated (UTC) January 1, 1970 A.D. Negative UDate
values indicate times before the epoch.

These classes have the same architecture as the Java classes.
Most people only need to use the DateFormat classes for parsing and formatting dates and
times. However, for those who need to convert dates and times or perform numeric
calculations, the services described in this section can be very useful.

To translate a UDate to a useful form, a calendar system and local time zone must be
specified. These are specified in the form of objects of the Calendar and TimeZone
classes. Once these two objects are specified, they can be used to convert the UDate to
and from its corresponding calendar fields. The different fields are defined in the
Calendar class and include the year, month, day, hour, minute, second, and so on.

Specific Calendar objects correspond to calendar systems (such as Gregorian) and
conventions (such as the first day of the week) in use in different parts of the world. To
obtain a Calendar object for France, for example, call Calendar::createInstance
(Locale::getFrance(), status).

The TimeZone class defines the conversion between universal coordinated time (UTC),,
and local time, according to real-world rules. Different TimeZone objects correspond to
different real-world time zones. For example, call TimeZone::createTimeZone
("America/Los_Angeles") to obtain an object that implements the U.S. Pacific time
zone, both Pacific Standard Time (PST) and Pacific Daylight Time (PDT).

178 ICU v3.4 User Guide

As previously mentioned, the Calendar and TimeZone objects must be specified correctly
together. One way of doing so is to create each independently, then use the
Calendar::setTimeZone() method to associate the time zone with the calendar.
Another is to use the Calendar::createInstance() method that takes a TimeZone
object. For example, call Calendar::createInstance(TimeZone::createInstance(
"America/Los_Angeles"), Locale:getUS(), status) to obtain a Calendar
appropriate for use in the U.S. Pacific time zone.

ICU has four classes pertaining to calendars and timezones:

• Calendar
Calendar is an abstract base class that represents a calendar system. Calendar objects
map UDate values to and from the individual fields used in a particular calendar
system. Calendar also performs field computations such as advancing a date by two
months.

• Gregorian Calendar
GregorianCalendar is a concrete subclass of Calendar that implements the rules of the
Julian calendar and the Gregorian calendar, which is the common calendar in use
internationally today.

• TimeZone
TimeZone is an abstract base class that represents a time zone. TimeZone objects map
between universal coordinated time (UTC) and local time.

• SimpleTimeZone
SimpleTimeZone is a concrete subclass of TimeZone that implements standard time
and daylight savings time according to real-world rules. Individual SimpleTimeZone
objects correspond to real-world time zones.

179 ICU v3.4 User Guide

Calendar Class
Overview

ICU has two specific calendar classes used for parsing and formatting Calendar
information correctly:

• Calendar
An abstract base class that defines the calendar API. This API supports UDate to fields
conversion and field arithmetic.

• GregorianCalendar
A concrete subclass of Calendar that implements the standard calendar used today
internationally.

The Calendar class is designed to support other calendar systems in the future, such as the
Islamic, Persian, Hebrew, Chinese, and Japanese calendars. If these calendar systems are
introduced, the current code automatically accepts them (where appropriate), so long as
the factory methods are used.

Calendar classes are related to UDate, the TimeZone classes, and the
DateFormat classes.

Calendar locale and keyword handling

When a calendar object is created, via either Calendar::create(), or ucal_open(), or
indirectly within a date formatter, ICU looks up the 'default' calendar type for that locale.
At present, all locales default to a Gregorian calendar, except for the compatibility locales
th_TH_TRADITIONAL and ja_JP_TRADITIONAL. If the "calendar" keyword is supplied,
this value will override the default for that locale.

For instance, Calendar::createInstance("fr_FR", status) will create a Gregorian
calendar, but Calendar::createInstance("fr_FR@calendar=buddhist") will create
a Buddhist calendar.

It is an error to use an invalid calendar type. It will produce a missing resource error.

As of ICU 2.8, the above description applies to ICU4J only. ICU4J will have this
behavior in 3.0

Usage

This section discusses how to use the Calendar class and the GregorianCalendar subclass.

180 ICU v3.4 User Guide

Calendar

Calendar is an abstract base class. It defines common protocols for a hierarchy of classes.
Concrete subclasses of Calendar, for example the GregorianCalendar class, define
specific operations that correspond to a real-world calendar system. Calendar objects
(instantiations of concrete subclasses of Calendar), embody state that represents a specific
context. They correspond to a real-world locale. They also contain state that specifies a
moment in time.

The API defined by Calendar encompasses multiple functions:

• Representation of a specific time as a UDate

• Representation of a specific time as a set of integer fields, such as YEAR, MONTH,
HOUR, etc.

• Conversion from UDate to fields

• Conversion from fields to UDate

• Field arithmetic, including adding, rolling, and field difference

• Context management

• Factory methods

• Miscellaneous: field meta-information, time comparison

Representation and Conversion

The basic function of the Calendar class is to convert between a UDate value and a set of
integer fields. A UDate value is stored as UTC time in milliseconds, which means it is
calendar and time zone independent. UDate is the most compact and portable way to store
and transmit a date and time. Integer field values, on the other hand, depend on the
calendar system (that is, the concrete subclass of Calendar) and the calendar object's
context state.

Integer field values are needed when implementing a human interface that must
display or input a date and/or time.

At any given time, a calendar object uses (when DateFormat is not sufficient) either its
internal UDate or its integer fields (depending on which has been set most recently via
setTime() or set()), to represent a specific date and time. Whatever the current internal
representation, when the caller requests a UDate or an integer field it is computed if
necessary. The caller need never trigger the conversion explicitly. The caller must
perform a conversion to set either the UDate or the integer fields, and then retrieve the
desired data. This also applies in situations where the caller has some integer fields and
wants to obtain others.

Field Arithmetic

181 ICU v3.4 User Guide

Arithmetic with UDate values is straightforward. Since the values are millisecond scalar
values, direct addition and subtraction is all that is required. Arithmetic with integer fields
is more complicated. For example, what is the date June 4, 1999 plus 300 days? Calendar
defines three basic methods (in several variants) that perform field arithmetic: add(),
roll(), and fieldDifference().

The add() method adds positive or negative values to a specified field. For example,
calling add(Calendar::MONTH, 2) on a GregorianCalendar object set to March 15, 1999
sets the calendar to May 15, 1999. The roll() method is similar, but does not modify
fields that are larger. For example, calling roll(Calendar::HOUR, n) changes the hour
that a calendar is set to without changing the day. Calling roll(Calendar::MONTH, n)
changes the month without changing the year.

The fieldDifference() method is the inverse of the add() method. It computes the
difference between a calendar's currently set time and a specified UDate in terms of a
specified field. Repeated calls to fieldDifference() compute the difference between
two UDates in terms of whatever fields the caller specifies (for example, years, months,
days, and hours). If the add() method is called with the results of fieldDifference
(when, n) , then the calendar is moved toward field by field.

This is demonstrated in the following example:
Calendar cal = Calendar.getInstance();
cal.set(2000, Calendar.MARCH, 15);
Date date = new Date(2000-1900, Calendar.JULY, 4);
int yearDiff = cal.fieldDifference(date, Calendar.YEAR); // yearDiff <= 0
int monthDiff = cal.fieldDifference(date, Calendar.MONTH); // monthDiff ;<= 3
// At this point cal has been advanced 3 months to June 15, 2000.
int dayDiff = cal.fieldDifference(date, Calendar.DAY_OF_MONTH); // dayDiff ;<=19
// At this point cal has been advanced 19 days to July 4, 2000.

Context Management

A calendar object performs its computations within a specific context. The context affects
the results of conversions and arithmetic computations. When a calendar object is created,
it establishes its context using either default values or values specified by the caller:

• Locale-specific week data, including the first day of the week and the minimal days in
the first week. Initially, this is retrieved from the locale resource data for the specified
locale, or if none is specified, for the default locale.

• A TimeZone object. Initially, this is set to the specified zone object, or if none is
specified, the default TimeZone.

The context of a calendar object can be queried after the calendar is created using calls
such as getMinimalDaysInFirstWeek(), getFirstDayOfWeek(), and getTimeZone().
The context can be changed using calls such as setMinimalDaysInFirstWeek(),
setFirstDayOfWeek(), and setTimeZone().

Factory Methods

182 ICU v3.4 User Guide

Like other format classes, the best way to create a calendar object is by using one of the
factory methods. These are static methods on the Calendar class that create and return an
instance of a concrete subclass. Factory methods should be used to enable the code to
obtain the correct calendar for a locale without having to know specific details. The
factory methods on Calendar are named createInstance().

MONTH field
 Calendar numbers months starting from zero, so calling cal.set(1998, 3, 5)
sets cal to April 15, 1998, not March 15, 1998. This follows the Java convention.
To avoid mistakes, use the constants defined in the Calendar class for the months
and days of the week. For example, cal.set(1998, Calendar::APRIL, 15).

Gregorian Calendar

The GregorianCalendar class implements two calendar systems, the Gregorian calendar
and the Julian calendar. These calendar systems are closely related, differing mainly in
their definition of the leap year. The Julian calendar has leap years every four years; the
Gregorian calendar refines this by excluding century years that are not divisible by 400.
GregorianCalendar defines two eras, BC (B.C.E.) and AD (C.E.).

Historically, most western countries used the Julian calendar until the 16th to 20th
century, depending on the country. They then switched to the Gregorian calendar. The
GregorianCalendar class mirrors this behavior by defining a cut-over date. Before this
date, the Julian calendar algorithms are used. After it, the Gregorian calendar algorithms
are used. By default, the cut-over date is set to October 4, 1582 C.E., which reflects the
time when countries first began adopting the Gregorian calendar. The GregorianCalendar
class does not attempt historical accuracy beyond this behavior, and does not vary its cut-
over date by locale. However, users can modify the cut-over date by using the
setGregorianChange() method.

Code that is written correctly instantiates calendar objects using the Calendar factory
methods, and therefore holds a Calendar* pointer, Such code can not directly access the
GregorianCalendar-specific methods not present in Calendar. The correct way to handle
this is to perform a dynamic cast, after testing the type of the object using
getDynamicClassID(). For example:

void setCutover(Calendar *cal, UDate myCutover) {
 if (cal->getDynamicClassID() ==
 GregorianCalendar::getStaticClassID()) {
 GregorianCalendar *gc = (GregorianCalendar*)cal;
 gc->setGregorianChange(myCutover, status);
 }
}

This is a general technique that should be used throughout ICU in conjunction
with the factory methods.

Disambiguation

183 ICU v3.4 User Guide

When computing a UDate from fields, two special circumstances can arise. There might
be insufficient information to compute the UDate (such as only year and month but no
day in the month), or there might be inconsistent information (such as "Tuesday, July 15,
1996" -— July 15, 1996, is actually a Monday).

• Insufficient Information
 GregorianCalendar uses the default field values to specify missing fields. The default
for a field is the same as that of the start of the epoch (that is, YEAR = 1970, MONTH
= JANUARY, DAY_OF_MONTH = 1).

• Inconsistent Information
 If fields conflict, the calendar gives preference to fields set more recently. For
example, when determining the day, the calendar looks for one of the following
combinations of fields:
 MONTH + DAY_OF_MONTH
 MONTH + WEEK_OF_MONTH + DAY_OF_WEEK
 MONTH + DAY_OF_WEEK_IN_MONTH + DAY_OF_WEEK
 DAY_OF_YEAR
 DAY_OF_WEEK + WEEK_OF_YEAR

 For the time of day, the calendar looks for one of the following combinations of
fields:
 HOUR_OF_DAY
 AM_PM + HOUR

WEEK_OF_YEAR field
Values calculated for the WEEK_OF_YEAR field range from 1 to 53. Week 1 for
a year is the first week that contains at least getMinimalDaysInFirstWeek() days
from that year. It depends on the values of getMinimalDaysInFirstWeek(),
getFirstDayOfWeek(), and the day of the week of January 1. Weeks between week
1 of one year and week 1 of the following year are numbered sequentially from 2
to 52 or 53 (if needed).
For example, January 1, 1998 was a Thursday. If getFirstDayOfWeek() is
MONDAY and getMinimalDaysInFirstWeek() is 4 (these are the values
reflecting ISO 8601 and many national standards), then week 1 of 1998 starts on
December 29, 1997, and ends on January 4, 1998. However, if
getFirstDayOfWeek() is SUNDAY, then week 1 of 1998 starts on January 4,
1998, and ends on January 10, 1998. The first three days of 1998 are then part of
week 53 of 1997.

Programming Examples

Programming for calendar examples in C and C++.

184 ICU v3.4 User Guide

Calendar Examples
Calendar for Default Time Zone

These C++ and C examples get a Calendar based on the default time zone and add days to
a date.

C++

UErrorCode status = U_ZERO_ERROR;
GregorianCalendar* gc = new GregorianCalendar(status);
if (U_FAILURE(status)) {
 puts("Couldn't create GregorianCalendar");
 return;
 }
 // set up the date
 gc->set(2000, Calendar::FEBRUARY, 26);
 gc->set(Calendar::HOUR_OF_DAY, 23);
 gc->set(Calendar::MINUTE, 0);
 gc->set(Calendar::SECOND, 0);
 gc->set(Calendar::MILLISECOND, 0);
 // Iterate through the days and print it out.
 for (int32_t i = 0; i < 30; i++) {
 // print out the date.
 // You should use the DateFormat to properly format it
 printf("year: %d, month: %d (%d in the implementation), day: %d\n",
 gc->get(Calendar::YEAR, status),
 gc->get(Calendar::MONTH, status) + 1,
 gc->get(Calendar::MONTH, status),
 gc->get(Calendar::DATE, status));
 if (U_FAILURE(status))
 {
 puts("Calendar::get failed");
 return;
 }
 // Add a day to the date
 gc->add(Calendar::DATE, 1, status);
 if (U_FAILURE(status)) {
 puts("Calendar::add failed");
 return;
 }
 }
 delete gc;

C

UErrorCode status = U_ZERO_ERROR;
int32_t i;
UCalendar *cal = ucal_open(NULL, -1, NULL, UCAL_GREGORIAN, &status);
if (U_FAILURE(status)) {
 puts("Couldn't create GregorianCalendar");
 return;
 }
 // set up the date
 ucal_set(cal, UCAL_YEAR, 2000);
 ucal_set(cal, UCAL_MONTH, UCAL_FEBRUARY); /* FEBRUARY */
 ucal_set(cal, UCAL_DATE, 26);
 ucal_set(cal, UCAL_HOUR_OF_DAY, 23);

185 ICU v3.4 User Guide

 ucal_set(cal, UCAL_MINUTE, 0);
 ucal_set(cal, UCAL_SECOND, 0);
 ucal_set(cal, UCAL_MILLISECOND, 0);
 // Iterate through the days and print it out.
 for (i = 0; i < 30; i++) {
 // print out the date.
 // You should use the udat_* API to properly format it
 printf("year: %d, month: %d (%d in the implementation), day: %d\n",
 ucal_get(cal, UCAL_YEAR, &status),
 ucal_get(cal, UCAL_MONTH, &status) + 1,
 ucal_get(cal, UCAL_MONTH, &status),
 ucal_get(cal, UCAL_DATE, &status));
 if (U_FAILURE(status)) {
 puts("Calendar::get failed");
 return;
 }
 // Add a day to the date
 ucal_add(cal, UCAL_DATE, 1, &status);
 if (U_FAILURE(status))
 {
 puts("Calendar::add failed");
 return;
 }
 }
 ucal_close(cal);

186 ICU v3.4 User Guide

ICU TimeZone Classes
Overview

A time zone is a system that is used for relating local times in different geographical areas
to one another. For example, in the United States, Pacific Time is three hours earlier than
Eastern Time; when it's 6 P.M. in San Francisco, it's 9 P.M. in Brooklyn. To make things
simple, instead of relating time zones to one another, all time zones are related to a
common reference point.

For historical reasons, the reference point is Greenwich, England. Local time in
Greenwich is referred to as Greenwich Mean Time, or GMT. (This is similar, but not
precisely identical, to Universal Coordinated Time, or UTC. We use the two terms
interchangeably in ICU since ICU does not concern itself with either leap seconds or
historical behavior.) Using this system, Pacific Time is expressed as GMT-8:00, or GMT-
7:00 in the summer. The offset -8:00 indicates that Pacific Time is obtained from GMT
by adding -8:00, that is, by subtracting 8 hours.

The offset differs in the summer because of daylight savings time, or DST. At this point it
is useful to define three different flavors of local time:

• Standard Time
 Standard Time is local time without a daylight savings time offset. For example, in
California, standard time is GMT-8:00; that is, 8 hours before GMT.

• Daylight Savings Time
 Daylight savings time is local time with a daylight savings time offset. This offset is
typically one hour, but is sometimes less. In California, daylight savings time is GMT-
7:00. Daylight savings time is observed in most non-equatorial areas.

• Wall Time
 Wall time is what a local clock on the wall reads. In areas that observe daylight
savings time for part of the year, wall time is either standard time or daylight savings
time, depending on the date. In areas that do not observe daylight savings time, wall
time is equivalent to standard time.

Time Zones in ICU

ICU supports time zones through two classes:

1. TimeZone
 TimeZone is an abstract base class that defines the time zone API. This API supports
conversion between GMT and local time.

2. SimpleTimeZone
 SimpleTimeZone is a concrete subclass of TimeZone that implements the standard
time zones used today internationally.

187 ICU v3.4 User Guide

Timezone classes are related to UDate, the Calendar classes, and the DateFormat classes.

Timezone Class in ICU

TimeZone is an abstract base class. It defines common protocol for a hierarchy of classes.
This protocol includes:

• A programmatic ID, for example, "America/Los_Angeles". This ID is used to call up a
specific real-world time zone. It corresponds to the IDs defined in the standard Olson
data used by UNIX systems, and has the format continent/city or ocean/city.

• A raw offset. This is the difference, in milliseconds, between a time zone's standard
time and GMT. Positive raw offsets are east of Greenwich.

• Factory methods and methods for handling the default time zone.

• Display name methods.

• An API to compute the difference between local wall time and GMT.

Factory Methods and the Default Timezone

The TimeZone factory method createTimeZone() creates and returns a TimeZone object
given a programmatic ID. The user does not know what the class of the returned object is,
other than that it is a subclass of TimeZone.

The createAvailableIDs() methods return lists of the programmatic IDs of all zones
known to the system. These IDs may then be passed to createTimeZone() to create the
actual time zone objects. ICU maintains a comprehensive list of current international time
zones, as derived from the Olson data.

TimeZone maintains a static time zone object known as the default time zone. This is the
time zone that is used implicitly when the user does not specify one. ICU attempts to
match this to the host OS time zone. The user may obtain a clone of the default time zone
by calling createDefault() and may change the default time zone by calling
setDefault() or adoptDefault().

Display Name

When displaying the name of a time zone to the user, use the display name, not the
programmatic ID. The display name is returned by the getDisplayName() method. A
time zone may have three display names:

• Generic name, such as "Pacific Time". Currently, this is not supported by ICU.

• Standard name, such as "Pacific Standard Time".

• Daylight savings name, such as "Pacific Daylight Time".

Furthermore, each of these names may be LONG or SHORT. The SHORT form is

188 ICU v3.4 User Guide

typically an abbreviation, e.g., "PST", "PDT".

In addition to being available directly from the TimeZone API, the display name is used
by the date format classes to format and parse time zones.

getOffset() API

TimeZone defines the API getOffset() by which the caller can determine the difference
between local time and GMT. This is a pure virtual API, so it is implemented in the
concrete subclasses of TimeZone.

Users should not call getOffset() directly. This API is intended for use by the
Calendar classes. To convert between local and GMT time, create an appropriate
Calendar object, link it to the desired TimeZone object, and use the Calendar
API.

189 ICU v3.4 User Guide

Date and Time Zone Examples
Calendar for Default Time Zone

This sample code is used to get a Calendar, which is based on the specified time zone ID
in C++ and C.

C++

// get the supported ids for GMT-08:00 (Pacific Standard Time)
int32_t idsCount;
UErrorCode status = ZERO_ERROR;
const UnicodeString** ids = TimeZone::createAvailableIDs(-8 * 60 * 60 * 1000,
idsCount);
// if no ids were returned, something is wrong. get out.
if (idsCount == 0) {
 return;
}
// begin output
cout << "Current Time" << '\n';
// create a Pacific Standard Time time zone
SimpleTimeZone* pdt = new SimpleTimeZone(-8 * 60 * 60 * 1000, *(ids[0]));
// create a GregorianCalendar with the Pacific Daylight time zone
// and the current date and time
Calendar* calendar = new GregorianCalendar(pdt, status);
delete pdt;
delete[] ids;
delete calendar;

C

/* get the supported ids for GMT-08:00 (Pacific Standard Time) */
UErrorCode status = U_ZERO_ERROR;
UCalendar *calendar = 0;
int32_t idsCount = ucal_countAvailableTZIDs(-8 * 60 * 60 * 1000);
const Char* tz = ucal_getAvailableTZIDs(-8 * 60 * 60 * 1000, 0, &status);
/* if no ids were returned, something is wrong. get out. */
if (idsCount == 0) {
 return;
}
/* begin output */
printf("Current Time\n");
/* create a Calendar with the Pacific Daylight time zone */
/* and the current date and time */
status = U_ZERO_ERROR;
calendar = ucal_open(tz , u_strlen(tz), NULL, UCAL_GREGORIAN, &status)
ucal_close(calendar);

190 ICU v3.4 User Guide

Universal Time Scale
Overview

There are quite a few different conventions for binary datetime, depending on the
platform or protocol. Some of these have severe drawbacks. For example, people using
Unix time (seconds since Jan 1, 1970) think that they are safe until near the year 2038.
But cases can and do arise where arithmetic manipulations causes serious problems.
Consider the computation of the average of two datetimes, for example: if one calculates
them with averageTime = (time1 + time2)/2, there will be overflow even with dates
around the present. Moreover, even if these problems don't occur, there is the issue of
conversion back and forth between different systems.

Binary datetimes differ in a number of ways: the data type, the unit, and the epoch
(origin). We'll refer to these as time scales. For example:

Source Data Type Unit Epoch
Java 32-bit integer milliseconds Jan 1, 1970
Unix 32- or 64-bit integer seconds Jan 1, 1970
ICU4C double milliseconds Jan 1, 1970
Windows FILETIME 64-bit integer ticks (100 nanoseconds) Jan 1, 1601
.NET DateTime 64-bit integer ticks (100 nanoseconds) Jan 1, 0001
Macintosh (old) 32-bit integer seconds Jan 1, 1904
Macintosh double seconds Jan 1, 2001
Excel ? days Dec 31, 1899
DB2 ? days Dec 31, 1899

All of the epochs start at 00:00 am (the earliest possible time on the day in question), and
are assumed to be UTC.

The ranges, in years, for different data types are given in the following table. The range
for integer types includes the entire range expressible with positive and negative values of
the data type. The range for double is the range that would be allowed without losing
precision to the corresponding unit.

191 ICU v3.4 User Guide

Units 64-bit integer Double 32-bit integer
1 second 5.84542x1011 285,420,920.94 136.10
1 millisecond 584,542,046.09 285,420.92 0.14
1 microsecond 584,542.05 285.42 0.00
100 nanoseconds (tick) 58,454.20 28.54 0.00
1 nanosecond 584.5420461 0.2854 0.00

ICU implements a universal time scale that is similar to the .NET framework's
System.DateTime. The universal time scale is a 64-bit integer that holds ticks since
midnight, January 1st, 0001. This has enough range to guarantee that calculations
involving dates around the present are safe. ICU also provides conversion functions to
and from all other major time scale, allowing datetimes in any time scale to be converted
to the universal time scale, safely manipulated, and converted back to any other datetime
time scale.

So how did we decide what to use for the universal time scale? Java time has plenty of
range, but cannot represent a .NET System.DateTime value without severe loss of
precision. ICU4C time addresses this by using a double that is otherwise equivalent to
the Java time. However, there are disadvantages with doubles. They provide for much
more graceful degradation in arithmetic operations. But they only have 53 bits of
accuracy, which means that they will lose precision when converting back and forth to
ticks. What would really be nice would be a long double (80 bits -- 64 bit mantissa), but
that is not supported on most systems.

The Unix extended time uses a structure with two components: time in seconds and a
fractional field (microseconds). However, this is clumsy, slow, and prone to error (you
always have to keep track of overflow and underflow in the fractional field). BigDecimal
would allow for arbitrary precision and arbitrary range, but we did not want to use this as
the normal type, because it is slow and does not have a fixed size.

Because of these issues, we concluded that the .NET System.DateTime is the best
timescale to use. However, we use the full range allowed by the data type, allowing for
datetimes back to 29,000 BC and up to 29,000 AD. This time scale is very fine grained,
does not lose precision, and covers a range that will meet almost all requirements. It will
not handle the range that Java times do, but frankly, being able to handle dates before
29,000 BC or after 29,000 AD is of very limited interest.

Constants

ICU provides routines to convert from other timescales to the universal time scale, to
convert from the universal time scale to other timescales, and to get information about a
particular timescale. In all of these routines, the timescales are referenced using an integer
constant, according to the following table:

192 ICU v3.4 User Guide

Source ICU4C ICU4J
Java UDTS_JAVA_TIME JAVA_TIME
Unix UDTS_UNIX_TIME UNIX_TIME
ICU4C UDTS_ICU4C_TIME ICU4C_TIME
Windows FILETIME UDTS_WINDOWS_FILE_TIME WINDOWS_FILE_TIME
.NET DateTime UDTS_DOTNET_DATE_TIME DOTNET_DATE_TIME
Macintosh (old) UDTS_MAC_OLD_TIME MAC_OLD_TIME
Macintosh UDTS_MAC_TIME MAC_TIME
Excel UDTS_EXCEL_TIME EXCEL_TIME
DB2 UDTS_DB2_TIME DB2_TIME

The routine that gets a particular piece of information about a timescale takes an integer
constant that identifies the particular piece of information, according to the following
table:

Value ICU4C ICU4J
Precision UTSV_UNITS_VALUE UNITS_VALUE
Epoch offet UTSV_EPOCH_OFFSET_VALUE EPOCH_OFFSET_VALUE
Minimum “from” value UTSV_FROM_MIN_VALUE FROM_MIN_VALUE
Maximum “from” value UTSV_FROM_MAX_VALUE FROM_MAX_VALUE
Minimum “to” value UTSV_TO_MIN_VALUE TO_MIN_VALUE
Maximum “to” value UTSV_TO_MAX_VALUE TO_MAX_VALUE

Here is what the values mean:

Precision - the precision of the timescale, in ticks.

Epoch offset – the distance from the universal timescale's epoch to the timescale's epoch,
in the timescale's precision.

Minimum “from” value – the mimimum timescale value that can safely be converted to
the universal timescale.

Maximum “from” value – the maximum timescale value that can safely be converted to
the universal timescale.

Mimimum “to” value – the mimimum universal timescale value that can safely be
converted to the timescale.

Maximum “to” value – the maximum universal timescale value that can safely be
converted to the timescale.

193 ICU v3.4 User Guide

Converting

You can convert from other timescale values to the universal timescale using the “from”
methods. In ICU4C, you use utmscale_fromInt64:

 UErrorCode err = U_ZERO_ERROR;
 int64_t unixTime = ...;
 int64_t universalTime;
 universalTime = utmscale_fromInt64(unixTime, UDTS_UNIX_TIME, &err);

In ICU4J, you use UniversalTimeScale.from:
 long javaTime = ...;
 long universalTime;
 universalTime = UniversalTimeScale.from(javaTime, UniversalTimeScale.JAVA_TIME);

You can convert values in the universal timescale to other timescales using the “to”
methods. In ICU4C, you use utmscale_toInt64:

 UErrorCode err = U_ZERO_ERROR;
 int64_t universalTime = ...;
 int64_t unixTime;
 unixTime = utmscale_toInt64(universalTime, UDTS_UNIX_TIME, &err);

In ICU4J, you use UniversalTimeScale.to:
 long universalTime = ...;
 long javaTime;
 javaTime = UniversalTimeScale.to(universalTime, UniversalTimeScale.JAVA_TIME);

That's all there is to it! If the conversion is out of range, the ICU4C routines will set the
error code to U_ILLEGAL_ARGUMENT_ERROR, and the ICU4J methods will throw
IllegalArgumentException. In ICU4J, you can avoid out of range conversions by using
the BigDecimal methods:

 long fileTime = ...;
 double icu4cTime = ...;
 BigDecimal utICU4C, utFile, utUnix, unixTime, macTime;

 utFile = UniversalTimeScale.bigDecimalFrom(fileTime,
 UniversalTime.WINDOWS_FILE_TIME);
 utICU4C = UniversalTimeScale.bigDecimalFrom(icu4cTime,
 UniversalTimeScale.ICU4C_TIME);
 unixTime = UniversalTimeScale.toBigDecimal(utFile, UniversalTime.UNIX_TIME);
 macTime = UniversalTimeScale.toBigDecimal(utICU4C, UniversalTime.MAC_TIME);
 utUnix = UniversalTimeScale.bigDecimalFrom(unixTime, UniversalTime.UNIX_TIME);

194 ICU v3.4 User Guide

Note: because the Universal Time Scale has a finer resolution than some other
time scales, time values that can be represented exactly in the Universal Time
Scale will be rounded when converting to these time scales, and resolution will be
lost. If you convert these values back to the Universal Time Scale, you will not get
the same time value that you started with. If the time scale to which you are
converting uses a double to represent the time value, you may loose precision
even though the double supports a range that is larger than the range supported
by the Universal Time Scale.

Formatting and Parsing

Currently, ICU does not support direct formatting or parsing of Universal Time Scale
values. If you want to format a Universal Time Scale value, you will need to convert it to
an ICU time scale value first. Use UTDS_ICU4C_TIME with ICU4C, and
UniversalTimeScale.JAVA_TIME with ICU4J.

When you parse a datetime string, the result will be an ICU time scale value. You can
convert this value to a Universal Time Scale value using UDTS_ICU4C_TIME with ICU4C,
and UniversalTime.JAVA_TIME for ICU4J.

See the previous section, Converting, for details of how to do the conversion.

Getting Timescale Information

To get information about a particular timescale in ICU4C, use
utmscale_getTimeScaleValue:

 UErrorCode err = U_ZERO_ERROR;
 int64_t unixEpochOffset =
 utmscale_getTimeScaleValue(UDTS_UNIX_TIME, UTSV_EPOCH_OFFSET_VALUE, &err);

In ICU4J, use UniversalTimeScale.getTimeScaleValue:
 long javaEpochOffset =
 UniversalTimeScale.getTimeScaleValue(UniversalTimeScale.JAVA_TIME,
 UniversalTimeScale.EPOCH_OFFSET_VALUE);

If the integer constants for selecting the timescale or the timescale value are out of range,
the ICU4C routines will set the error code to U_ILLEGAL_ARGUMENT_ERROR, and the
ICU4J methods will throw IllegalArgumentException.

195 ICU v3.4 User Guide

Formatting and Parsing
Overview

Formatters translate between binary data and human-readable textual representations of
these values. For example, you cannot display the computer representation of the number
103. You can only display the numeral 103 as a textual representation (using three text
characters). The result from a formatter is a string that contains text that the user will
recognize as representing the internal value. A formatter can also parse a string by
converting a textual representation of some value back into its internal representation. For
example, it reads the characters 1, 0 and 3 followed by something other than a digit, and
produces the value 103 as an internal binary representation.

These classes encapsulate information about the display of localized times, days,
numbers, currencies, and messages. Formatting classes do both formatting and parsing
and allow the separation of the data that the end-user sees from the code. Separating the
program code from the data allows a program to be more easily localized. Formatting is
converting a date, time, number, message or other object from its internal representation
into a string. Parsing is the reverse operation. It is the process of converting a string to an
internal representation of the date, time, number, message or other object.

Using the formatting classes is an important step in internationalizing your software
because the format() and parse() methods in each of the classes make your software
language neutral, by replacing implicit conversions with explicit formatting calls.

Internationalization Formatting Tips

This section discusses some of the ways you can format and parse numbers, currencies,
dates, times and text messages in your program so that the data is separate from the code
and can be easily localized. This is the information your users see on their computer
screens, so it needs to be in a language and format that conforms to their local
conventions.

Some things you need to keep in mind while you are creating your code are the following:

• Keep your code and your data separate

• Format the data in a locale-sensitive manner

• Keep your code locale-independent

• Avoid writing special routines to handle specific locales

• String objects formatted by format() are parseable by the parse() method

Numbers and Currencies

Programs store and operate on numbers using a locale-independent binary representation.

196 ICU v3.4 User Guide

When displaying or printing a number it is converted to a locale-specific string. For
example, the number 12345.67 is "12,345.67" in the US, "12 345,67" in France and
"12.345,67" in Germany.

By invoking the methods provided by the NumberFormat class, you can format numbers,
currencies, and percentages according to the specified or default locale. NumberFormat is
locale-sensitive so you need to create a new NumberFormat for each locale.
NumberFormat methods format primitive-type numbers, such as double and output the
number as a locale-specific string.

For currencies you call getCurrencyInstance to create a formatter that returns a string
with the formatted number and the appropriate currency sign. Of course, the
NumberFormat class is unaware of exchange rates so, the number output is the same
regardless of the specified currency. This means that the same number has different
monetary values depending on the currency locale. If the number is 9988776.65 the
results will be:

• 9 988 776,65 € in France

• 9.988.776,65 € in Germany

• $9,988,776.65 in the United States

In order to format percentages, create a locale-specific formatter and call the
getPercentInstance method. With this formatter, a decimal fraction such as 0.75 is
displayed as 75%.

Customizing Number Formats

If you need to customize a number format you can use the DecimalFormat and the
DecimalFormatSymbols classes. This not usually necessary and it makes your code much
more complex, but it is available for those rare instances where you need it. In general,
you would do this by explicitly specifying the number format pattern.

If you need to format or parse spelled-out numbers, you can use the
RuleBasedNumberFormat class. You can instantiate a default formatter for a locale, or by
using the RuleBasedNumberFormat rule syntax, specify your own.

Using NumberFormat class methods with a predefined locale is the easiest and the most
accurate way to format numbers, and currencies.

Date and Times

You display or print a Date by first converting it to a locale-specific string that conforms
to the conventions of the end user's Locale. For example, Germans recognize 20.4.98 as a
valid date, and Americans recognize 4/20/98.

197 ICU v3.4 User Guide

The appropriate Calendar support is required for different locales. For example,
the Buddhist calendar is the official calendar in Thailand so the typical
assumption of Gregorian Calendar usage should not be used. ICU will pick the
appropriate Calendar based on the locale you supply when opening a Calendar
or DateFormat.

Messages

Message format helps make the order of display elements localizable. It helps address
problems of grammatical differences in languages. For example, consider the sentence, "I
go to work by car everyday." In Japanese, the grammar equivalent can be "Everyday, I to
work by car go." Another example will be the plurals in text, for example, "no space for
rent, one room for rent and many rooms for rent," where "for rent" is the only constant
text among the three.

Formatting and Parsing Classes

ICU provides four major areas and twelve classes for formatting numbers, dates and
messages:

General Formatting

• Format
The abstract superclass of all format classes. It provides the basic methods for
formatting and parsing numbers, dates, strings and other objects.

• FieldPosition
A concrete class for holding the field constant and the begin and end indices for
number and date fields.

• ParsePosition
A concrete class for holding the parse position in a string during parsing.

• Formattable
Formattable objects can be passed to the Format class or its subclasses for
formatting. It encapsulates a polymorphic piece of data to be formatted and is
used with MessageFormat. Formattable is used by some formatting operations
to provide a single "type" that encompasses all formattable values (e.g., it can
hold a number, a date, or a string, and so on).

• UParseError
UParseError is used to returned detailed information about parsing errors. It is
used by the ICU parsing engines that parse long rules, patterns, or programs.
This is helpful when the text being parsed is long enough that more
information than a UErrorCode is needed to localize the error.

Formatting Numbers

• NumberFormat

198 ICU v3.4 User Guide

The abstract superclass that provides the basic fields and methods for
formatting Number objects and number primitives to localized strings and
parsing localized strings to Number objects.

• DecimalFormat
A concrete class for formatting Number objects and number primitives to
localized strings and parsing localized strings to Number objects, in base 10.

• RuleBasedNumberFormat
A concrete class for formatting Number objects and number primitives to
localized text, especially spelled-out format such as found in check writing
(e.g. "two hundred and thirty-four"), and parsing text into Number objects.

• DecimalFormatSymbols
A concrete class for accessing localized number strings, such as the grouping
separators, decimal separator, and percent sign. Used by DecimalFormat.

Formatting Dates and Times

• DateFormat
The abstract superclass that provides the basic fields and methods for
formatting Date objects to localized strings and parsing date and time strings to
Date objects.

• SimpleDateFormat
A concrete class for formatting Date objects to localized strings and parsing
date and time strings to Date objects, using a GregorianCalendar.

• DateFormatSymbols
A concrete class for accessing localized date-time formatting strings, such as
names of the months, days of the week and the time zone.

Formatting Messages

• MessageFormat
A concrete class for producing a language-specific user message that contains
numbers, currency, percentages, date, time and string variables.

• ChoiceFormat
A concrete class for mapping strings to ranges of numbers and for handling
plurals and names series in user messages.

199 ICU v3.4 User Guide

Formatting Numbers
Overview

ICU has five classes for formatting numbers:

• NumberFormat

• Currency Formatting

• DecimalFormat

• DecimalFormatSymbols

• RuleBasedNumberFormat

• ChoiceFormat. This subclass of NumberFormat maps ranges of numbers to and from
strings. It is listed here, but it is not described in detail. See the chapter on formatting
messages for further information.

NumberFormat

NumberFormat is the abstract base class for all number formats. It provides an interface
for formatting and parsing numbers. It also provides methods to determine which locales
have number formats, and what their names are. NumberFormat helps format and parse
numbers for any locale. Your program can be written to be completely independent of the
locale conventions for decimal points or thousands-separators. It can also be written to be
independent of the particular decimal digits used or whether the number format is a
decimal. A normal decimal number can also be displayed as a currency or as a
percentage.

1234.5 //Decimal number
$1234.50 //U.S. currency
1.234,57€ //German currency
123457% //Percent

Usage

Formatting for a Locale

To format a number for the current Locale, use one of the static factory methods to create
a format, then call a format method to format it. To format a number for a different
Locale, specify the Locale in the call to createInstance().

If you are formatting multiple numbers, save processing time by constructing the
formatter once and then using it several times.

200 ICU v3.4 User Guide

Instantiating a NumberFormat

The following methods are used for instantiating NumberFormat objects:

• createInstance()
Returns the normal number format for the current locale or for a specified locale.

• createCurrencyInstance()
Returns the currency format for the current locale or for a specified locale.

• createPercentInstance()
Returns the percentage format for the current locale or for a specified locale.

• createScientificInstance()
Returns the scientific number format for the current locale or for a specified locale.

To create a format for spelled-out numbers, use a constructor on
RuleBasedNumberFormat (see below).

Currency Formatting

Currency formatting, i.e., the formatting of monetary values, combines a number with a
suitable display symbol or name for a currency. By default, the currency is set from the
locale data from when the currency format instance is created, based on the country code
in the locale ID. However, for all but trivial uses, this is fragile because countries change
currencies over time, and the locale data for a particular country may not be available.

For proper currency formatting, both the number and the currency must be specified.
Aside from achieving reliably correct results, this also allows to format monetary values
in any currency with the format of any locale, like in exchange rate lists. If the locale data
does not contain display symbols or names for a currency, then the 3-letter ISO code itself
is displayed.

The locale ID and the currency code are effectively independent: The locale ID defines
the general format for the numbers, and whether the currency symbol or name is
displayed before or after the number, while the currency code selects the actual currency
with its symbol, name, number of digits, and rounding mode.

In ICU and Java, the currency is specified in the form of a 3-letter ISO 4217 code. For
example, the code "USD" represents the US Dollar and "EUR" represents the Euro
currency.

In terms of APIs, the currency code is set as an attribute on a number format object (on a
currency instance), while the number value is passed into each format() call or returned
from parse() as usual.

• ICU4C (C++) NumberFormat.setCurrency() takes a Unicode string (const UChar
*) with the 3-letter code.

201 ICU v3.4 User Guide

• ICU4C (C API) allows to set the currency code via unum_setTextAttribute() using
the UNUM_CURRENCY_CODE selector.

• ICU4J NumberFormat.setCurrency() takes an ICU Currency object which
encapsulates the 3-letter code.

• The base JDK's NumberFormat.setCurrency() takes a JDK Currency object which
encapsulates the 3-letter code.

The functionality of Currency and setCurrency() is more advanced in ICU than in the
base JDK. When using ICU, setting the currency automatically adjusts the number format
object appropriately, i.e., it sets not only the currency symbol and display name, but also
the correct number of fraction digits and the correct rounding mode. This is not the case
with the base JDK. See the API references for more details.

There is ICU4C sample code at icu/source/samples/numfmt/main.cpp which illustrates
the use of NumberFormat.setCurrency().

Displaying Numbers

You can also control the display of numbers with methods such as
getMinimumFractionDigits. If you want even more control over the format or parsing,
or want to give your users more control, cast the NumberFormat returned from the factory
methods to a DecimalNumberFormat. This works for the vast majority of countries.

Working with Positions

You can also use forms of the parse and format methods with ParsePosition and
UFieldPosition to enable you to:

• progressively parse through pieces of a string.

• align the decimal point and other areas.

For example, you can align numbers in two ways:

• If you are using a mono-spaced font with spacing for alignment, pass the FieldPosition
in your format call with field = INTEGER_FIELD. On output, getEndIndex is set to
the offset between the last character of the integer and the decimal. Add
(desiredSpaceCount - getEndIndex) spaces at the front of the string. You can also use
the space padding feature available in DecimalFormat.

• If you are using proportional fonts, instead of padding with spaces, measure the width
of the string in pixels from the start to getEndIndex. Then move the pen by
(desiredPixelWidth - widthToAlignmentPoint) before drawing the text. It also works
where there is no decimal, but additional characters at the end (that is, with
parentheses in negative numbers: "(12)" for -12).

Emulating printf

202 ICU v3.4 User Guide

NumberFormat can produce many of the same formats as printf.

printf ICU
Width specifier, e.g., "%5d" has a width of
5.

Use DecimalFormat. Either specify the
padding, with can pad with any character,
or specify a minimum integer count and a
minimum fraction count, which will emit a
specific number of digits, with zero padded
to the left and right.

Precision specifier for %f and %e, e.g. "%.
6f" or "%.6e". This defines the number of
digits to the right of the decimal point.

Use DecimalFormat. Specify the maximum
fraction digits.

General scientific notation, %g. This
format uses either %f or %e, depending on
the magnitude of the number being
displayed.

Use ChoiceFormat with DecimalFormat.
For example, for a typical %g, which has 6
significant digits, use a ChoiceFormat with
thresholds of 1e-4 and 1e6. For values
between the two thresholds, use a fixed
DecimalFormat with the pattern "@#####".
For values outside the thresholds, use a
DecimalFormat with the pattern
"@#####E0".

DecimalFormat

DecimalFormat is a NumberFormat that converts numbers into strings using the decimal
numbering system. This is the formatter that provides standard number formatting and
parsing services for most usage scenarios in most locales. In order to access features of
DecimalFormat not exposed in the NumberFormat API, you may need to cast your
NumberFormat object to a DecimalFormat. You may also construct a DecimalFormat
directly, but this is not recommended because it can hinder proper localization.

For a complete description of DecimalFormat, including the pattern syntax, formatting
and parsing behavior, and available API, see the ICU4J DecimalFormat API or ICU4C
DecimalFormat API documentation.

DecimalFormatSymbols

DecimalFormatSymbols specifies the exact characters a DecimalFormat uses for various
parts of a number (such as the characters to use for the digits, the character to use as the
decimal point, or the character to use as the minus sign).

203 ICU v3.4 User Guide

This class represents the set of symbols needed by DecimalFormat to format numbers.
DecimalFormat creates its own instance of DecimalFormatSymbols from its locale data.
The DecimalFormatSymbols can be adopted by a DecimalFormat instance, or it can be
specified when a DecimalFormat is created. If you need to change any of these symbols,
can get the DecimalFormatSymbols object from your DecimalFormat and then modify it.

RuleBasedNumberFormat

RuleBasedNumberFormat can format and parse numbers in spelled-out format, e.g. "one
hundred and thirty-four". For example:

"one hundred and thirty-four" // 134 using en_US spellout
"one hundred and thirty-fourth" // 134 using en_US ordinal
"hundertvierunddreissig" // 134 using de_DE spellout
"MCMLVIII" // custom, 1958 in roman numerals

RuleBasedNumberFormat is based on rules describing how to format a number. The rule
syntax is designed primarily for formatting and parsing numbers as spelled-out text,
though other kinds of formatting are possible. As a convenience, custom API is provided
to allow selection from three predefined rule definitions, when available: SPELLOUT,
ORDINAL, and DURATION. Users can request formatters either by providing a locale and
one of these predefined rule selectors, or by specifying the rule definitions directly.

ICU provides number spellout rules for several locales, but not for all of the
locales that ICU supports, and not all of the predefined rule types. Also, as of
release 2.6, some of the provided rules are known to be incomplete.

Instantiation

Unlike the other standard number formats, there is no corresponding factory method on
NumberFormat. Instead, RuleBasedNumberFormat objects are instantiated via
constructors. Constructors come in two flavors, ones that take rule text, and ones that take
one of the predefined selectors. Constructors that do not take a Locale parameter use the
current default locale.

The following constructors are available:

• RuleBasedNumberFormat(int)
Returns a format using predefined rules of the selected type from the current locale.

• RuleBasedNumberFormat(Locale, int)
As above, but specifies locale.

• RuleBasedNumberFormat(String)
Returns a format using the provided rules, and symbols (if required) from the current
locale.

204 ICU v3.4 User Guide

• RuleBasedNumberFormat(String, Locale)
As above, but specifies locale.

Usage

RuleBasedNumberFormat can be used like other NumberFormats. For example, in Java:
double num = 2718.28;
NumberFormat formatter =
 new RuleBasedNumberFormat(RuleBasedNumberFormat.SPELLOUT);
String result = formatter.format(num);
System.out.println(result);
// output (in en_US locale):
// two thousand seven hundred and eighteen point two eight

Rule Sets

Rule descriptions can provide multiple named rule sets, for example, the rules for en_US
spellout provides a '%simplified' rule set that displays text without commas or the word
'and'. Rule sets can be queried and set on a RuleBasedNumberFormat. This lets you
customize a RuleBasedNumberFormat for use through its inherited NumberFormat API.
For example, in Java:

You can also format a number specifying the ruleset directly, using an additional overload
of format provided by RuleBasedNumberFormat. For example, in Java:

There is no standardization of rule set names, so you must either query the
names, as in the first example above, or know the names that are defined in the
rules for that formatter.

Rules

The following example provides a quick look at the RuleBasedNumberFormat rule
syntax.

These rules format a number using standard decimal place-value notation, but using
words instead of digits, e.g. 123.4 formats as 'one two three point four':

"-x: minus >>;\n"
+ "x.x: << point >>;\n"
+ "zero; one; two; three; four; five; six;\n"
+ " seven; eight; nine;\n"
+ "10: << >>;\n"
+ "100: << >>>;\n"
+ "1000: <<, >>>;\n"
+ "1,000,000: <<, >>>;\n"
+ "1,000,000,000: <<, >>>;\n"
+ "1,000,000,000,000: <<, >>>;\n"
+ "1,000,000,000,000,000: =#,##0=;\n";

205 ICU v3.4 User Guide

Rulesets are invoked by first applying negative and fractional rules, and then using a
recursive process. It starts by finding the rule whose range includes the current value and
applying that rule. If the rule so directs, it emits text, including text obtained by recursing
on new values as directed by the rule. As you can see, the rules are designed to
accomodate recursive processing of numbers, and so are best suited for formatting
numbers in ways that are inherently recursive.

A full explanation of this example can be found in the RuleBasedNumberFormat
examples. A complete description of the rule syntax can be found in the
RuleBasedNumberFormat API Documentation.

Additional Sample Code

C/C++: See icu/source/samples/numfmt/ in the ICU source distribution for code samples
showing the use of ICU number formatting.

206 ICU v3.4 User Guide

RBNF Rules Examples
Annotated RuleBasedNumberFormat Example

The following example provides a quick idea of how the rules work. The
RuleBasedNumberFormat API documentation describes the rule syntax in more detail.

This ruleset formats a number using standard decimal place-value notation, but using
words instead of digits, e.g. 123.4 formats as 'one two three point four':

"-x: minus >>;\n"
+ "x.x: << point >>;\n"
+ "zero; one; two; three; four; five; six;\n"
+ " seven; eight; nine;\n"
+ "10: << >>;\n"
+ "100: << >>>;\n"
+ "1000: <<, >>>;\n"
+ "1,000,000: <<, >>>;\n"
+ "1,000,000,000: <<, >>>;\n"
+ "1,000,000,000,000: <<, >>>;\n"
+ "1,000,000,000,000,000: =#,##0=;\n";

In this example, the rules consist of one (unnamed) ruleset. It lists nineteen rules, each
terminated by a semicolon. It starts with two special rules for handling negative numbers
and non-integers. (This is true of most rulesets.) Following are rules for increasing integer
ranges, up to 10e15. The portion of the rule before a colon, if any, provides information
about the range and some additional information about how to apply the rule. Most rule
bodies (following the colon) consist of recursion instructions and/or plain text
substitutions. The rules in this example work as follows:

• -x: minus >>;
If the number is negative, output the string 'minus ' and recurse using the absolute
value.

• x.x: << point >>;
If the number is not an integer, recurse using the integral part, emit the string ' point ',
and process the ruleset in 'fractional mode' for the fractional part. Generally, this emits
single digits.

• zero; one; ... nine;
Each of these ten rules applies to a range. By default, the first range starts at zero, and
succeeding ranges start at the previous start + 1. These ranges all default, so each of
these ten rules has a 'range' of a single integer, 0 to 9. When the current value is in one
of these ranges, the rules emit the corresponding text (e.g. 'one', 'two', and so on).

• 10: << >>;
This starts a new range at 10 (not default) and sets the limit of the range for the
previous rule. Divide the number by the divisor (which defaults to the highest power
of 10 lower or equal to range start value, e.g. 10), recurse using the integral part, emit

207 ICU v3.4 User Guide

the string ' ' (space), then recurse using the remainder.

• 100: << >>>;
This starts a new range at 100 (again, limiting the previous rule's range). It is similar to
the previous rule, except for the use of '>>>'. '>>' means to recurse by matching the
value against all the ranges to find the rule, '>>>' means to recurse using the previous
rule. We must force the previous rule in order to get the rule for 'ten' invoked in order
to emit '0' when processing numbers like 105.

• 1000: <<, >>>; 1,000,000: ...
These start new ranges at intervals of 1000. They are all similar to the rule for 100
except they output ', ' (comma space) to delimit thousands. Note that the range value
can include commas for readability.

• 1,000... =#,##0=;
This last rule in the ruleset applies to all values at or over 10e15. The pattern '=='
means to use the current unmodified value, and text within in the pattern (this works
for '<<' and similar patterns as well) describes the ruleset or decimal format to use. If
this text starts with '0' or '#', it is presumed to be a decimal format pattern. So this rule
means to format the unmodified number using a decimal format constructed with the
pattern '#,##0'.

Rulesets are invoked by first applying negative and fractional rules, then by finding the
rule whose range includes the current value and applying that rule, recursing as directed
by the rule. Again, a complete description of the rule syntax can be found in the API
Documentation.

More rule examples can be found in the RuleBasedNumberFormat demo source.

208 ICU v3.4 User Guide

Formatting Dates and Times

Formatting Dates and Times Overview

Date and time formatters are used to convert dates and times from their internal
representations to textual form and back again in a language-independent manner. The
date and time formatters use UDate, which is the internal representation. Converting from
the internal representation (milliseconds since midnight, January 1, 1970) to text is
known as "formatting," and converting from text to milliseconds is known as "parsing."

ICU has three formatting classes for creating dates and times that are easily localizable:

• DateFormat

• SimpleDateFormat

• DateFormatSymbols

DateFormat

DateFormat helps format and parse dates for any locale. Your code can be completely
independent of the locale conventions for months, days of the week, or calendar format.

Formatting Dates

The DateFormat interface in ICU enables you to format a Date in milliseconds into a
string representation of the date. It also parses the string back to the internal Date
representation in milliseconds.

DateFormat* df = DateFormat::createDateInstance();
UnicodeString myString;
UDate myDateArr[] = { 0.0, 100000000.0, 2000000000.0 };
for (int32_t i = 0; i < 3; ++i) {
 myString.remove();
 cout << df->format(myDateArr[i], myString) << endl;
}

To format a date for a different Locale, specify it in the call to:
 DateFormat* df = DateFormat::createDateInstance
 (DateFormat::SHORT, Locale::getFrance());

209 ICU v3.4 User Guide

Parsing Dates

Use a DateFormat to parse also:
UErrorCode status = ZERO_ERROR;
UDate myDate = df->parse(myString, status);

Producing Normal Date Formats for a Locale

Use createDateInstance to produce the normal date format for that country. There are
other static factory methods available. Use createTimeInstance to produce the normal
time format for that country. Use createDateTimeInstance to produce a DateFormat that
formats both date and time. You can pass different options to these factory methods to
control the length of the result; from SHORT to MEDIUM to LONG to FULL. The exact
result depends on the locale, but generally:

• SHORT is numeric, such as 12/13/52 or 3:30pm

• MEDIUM is longer, such as Jan. 12, 1952

• LONG is longer, such as January 12, 1952 or 3:30:32pm

• FULL is completely specified, such as Tuesday, April 12, 1952 AD or 3:30:42pm PST

Setting Time Zones

You can set the time zone on the format. If you want more control over the format or
parsing, cast the DateFormat you get from the factory methods to a SimpleDateFormat.
This works for the majority of countries.

Remember to check getDynamicClassID() before carrying out the cast.

Working with Positions

You can also use forms of the parse and format methods with ParsePosition and
FieldPosition to enable you to:

• Progressively parse through pieces of a string.

• Align any particular field, or find out where it is for selection on the screen.

SimpleDateFormat

SimpleDateFormat is a concrete class used for formatting and parsing dates in a
language-independent manner. It allows for formatting, parsing, and normalization. It
formats or parses a date or time, which is the standard milliseconds since 24:00 GMT,
Jan. 1, 1970.

210 ICU v3.4 User Guide

SimpleDateFormat is the only built-in implementation of DateFormat. It provides a
programmable interface that can be used to produce formatted dates and times in a wide
variety of formats. The formats include almost all of the most common ones.

Create a date-time formatter using the following methods rather than constructing an
instance of SimpleDateFormat. In this way, the program is guaranteed to get an
appropriate formatting pattern of the locale.

• DateFormat::getInstance()

• getDateInstance()

• getDateTimeInstance()

If you need a more unusual pattern, construct a SimpleDateFormat directly and give it an
appropriate pattern.

Date/Time Format Syntax

The date/time format is specified by means of a string time pattern. The count of pattern
letters determines the format. In this pattern, letters are reserved as pattern letters:

Symbol Meaning Presentation Example
G era designator (Text) AD
y year (Number) 1996
M month in year (Text and Number) July and 07
d day in month (Number) 10
h hour in am/pm (1~12) (Number) 12
H hour in day (0~23) (Number) 0
m minute in hour (Number) 30
s second in minute (Number) 55
S millisecond (Number) 978
E day in week (Text) Tuesday
D day in year (Number) 189
F day of week in month (Number) 2 (2nd Wed in July)
w week in year (Number) 27
W week in month (Number) 2
a am/pm marker (Text) pm
k hour in day (1~24) (Number) 24
K hour in am/pm (0~11) (Number) 0

211 ICU v3.4 User Guide

Symbol Meaning Presentation Example
Z time zone (Text) Pacific Standard Time
' escape for text
'' single quote '

Text
• Four or more, use full form, <4, use short or abbreviated form if it exists. (for example,

"EEEE"" produces " Monday", "EEE" produces "Mon")

Number
• The minimum number of digits. Shorter numbers are zero-padded to this amount (for

example, if "m" produces "6", "mm" produces "06"). Year is handled specially; that is,
if the count of 'y' is 2, the Year will be truncated to 2 digits. (for example, if "yyyy"
produces "1997", "yy" produces "97".)

Text and Number
• Three or over, use text, otherwise use number. (for example, "M" produces "1", "MM"

produces "01", "MMM" produces "Jan", and "MMMM" produces "January".)

Any characters in the pattern that are not in the ranges of ['a'..'z'] and ['A'..'Z']
will be treated as quoted text. For instance, characters like ':', '.', ' ', '#' and '@'
will appear in the resulting time text even they are not enclosed within single
quotes.
A pattern containing any invalid pattern letter results in a failing UErrorCode
result during formatting or parsing.

Format Pattern Result
"yyyy.MM.dd G 'at' HH:mm:ss Z" 1996.07.10 AD at 15:08:56 PDT
"EEE, MMM d, ''yy" Wed, July 10, '96
"h:mm a" 8:08 PM
"hh 'o''clock' a, ZZZZ" 09 o'clock AM. Eastern Standard Time
"K:mm a, Z" 9:34 AM, PST
"yyyyy.MMMMM.dd GGG hh:mm aaa" 1996.July.10 AD 12:08 PM

212 ICU v3.4 User Guide

DateFormatSymbols

DateFormatSymbols is a public class for encapsulating localizable date-time formatting
data, including time zone data. DateFormatSymbols is used by DateFormat and
SimpleDateFormat.

DateFormatSymbols specifies the exact character strings to use for various parts of a date
or time For example, the names of the months and days of the week, the strings for AM
and PM and the day of the week considered to be the first day of the week (used in
drawing calendar grids) are controlled by DateFormatSymbols.

Create a date-time formatter using the createTimeInstance, createDateInstance, or
createDateTimeInstance methods in DateFormat. Each of these methods can return a
date/time formatter initialized with a default format pattern, along with the date-time
formatting data for a given or default locale. After a formatter is created, modify the
format pattern using applyPattern.

If you want to create a date-time formatter with a particular format pattern and locale, use
one of the SimpleDateFormat constructors:

UnicodeString aPattern("GyyyyMMddHHmmssSSZ", "");
new SimpleDateFormat(aPattern, new DateFormatSymbols(Locale::getUS())

This loads the appropriate date-time formatting data from the locale.

Programming Examples

Programming for date and time formatting in C and C++.

213 ICU v3.4 User Guide

Format Date and Time Examples
Overview

The ICU DateFormat interface enables you to format a date in milliseconds into a string
representation of the date. Also, the interface enables you to parse the string back to the
internal date representation in milliseconds.

C++
DateFormat* df = DateFormat::createDateInstance();
UnicodeString myString;
UDate myDateArr[] = { 0.0, 100000000.0, 2000000000.0 };
for (int32_t i = 0; i < 3; ++i) {
 myString.remove();
 cout << df->format(myDateArr[i], myString) << endl;
}

C
 /* 1st example: format the dates in millis 100000000 and
2000000000 */
UErrorCode status=U_ZERO_ERROR;
int32_t i, myStrlen=0;
UChar* myString;
UDate myDateArr[] = { 0.0, 100000000.0, 2000000000.0 }; // test values
UDateFormat* df = udat_open(UCAL_DEFAULT, UCAL_DEFAULT, NULL, "GMT", &status);
for (i = 0; i < 3; ++i) {
 myStrlen = udat_format(df, myDateArr[i], NULL, myStrlen, NULL, &status);
 if(status==U_BUFFER_OVERFLOW_ERROR){
 status=U_ZERO_ERROR;
 myString=(UChar*)malloc(sizeof(UChar) * (myStrlen+1));
 udat_format(df, myDateArr[i], myString, myStrlen+1, NULL, &status);
 printf("%s\n", austrdup(myString));
 /* austrdup(a function used to convert UChar* to char*) */
 free(myString);
 }
}

To parse a date for a different locale, specify it in the locale call. This call creates a
formatting object.

C++

DateFormat* df = DateFormat::createDateInstance
 (DateFormat::SHORT, Locale::getFrance());

C
/* 2nd example: parse a date with short French date/time
formatter */
UDateFormat* df = udat_open(UDAT_SHORT, UDAT_SHORT, "fr_FR", "GMT", &status);
UErrorCode status = U_ZERO_ERROR;
int32_t parsepos=0;
UDate myDate = udat_parse(df, myString, u_strlen(myString), &parsepos,
&status);

214 ICU v3.4 User Guide

To get specific fields of a date, you can use the FieldPosition function for C++ or
UFieldPosition function for C.

C++
UErrorCode status = U_ZERO_ERROR;
FieldPosition pos(DateFormat::YEAR_FIELD)
UDate myDate = Calendar::getNow();
UnicodeString str;
DateFormat* df = DateFormat::createDateInstance
 (DateFormat::LONG, Locale::getFrance());
df->format(myDate, str, pos, status);
cout << pos.getBeginIndex() << "," << pos. getEndIndex() << endl;

C
UErrorCode status = U_ZERO_ERROR;
 UFieldPosition pos;
 UChar *myString;
 int32_t myStrlen = 0;
 char buffer[1024];

 pos.field = 1; /* Same as the DateFormat::EField enum */
 UDateFormat* dfmt = udat_open(UCAL_DEFAULT, UCAL_DEFAULT, NULL, "PST",
&status);
 myStrlen = udat_format(dfmt, myDate, NULL, myStrlen, &pos, &status);
 if (status==U_BUFFER_OVERFLOW_ERROR){
 status=U_ZERO_ERROR;
 myString=(UChar*)malloc(sizeof(UChar) * (myStrlen+1));
 udat_format(dfmt, myDate, myString, myStrlen+1, &pos, &status);
 }
 printf("date format: %s\n", u_austrcpy(buffer, myString));
 buffer[pos.endIndex] = 0; // NULL terminate the string.
 printf("UFieldPosition position equals %s\n", &buffer[pos.beginIndex]);

215 ICU v3.4 User Guide

Formatting Messages

Overview

Messages are a concatenation of strings, numbers, and dates that present a complex
formatting challenge——how to put together the sequences of strings, numbers, dates,
and other formats to create language-neutral messages. Localization is facilitated because
there is no required hard coding message strings or concatenation sequences. ICU has two
classes used to create language-neutral messages:

• MessageFormat

• ChoiceFormat

The MessageFormat class facilitates localization by preventing the concatenation of
message strings. This class enables localizers to create more natural messages and avoid
phrases like "3 file(s)". While the MessageFormat class formats message strings, the
ChoiceFormat class enables users to attach a format to a range of numbers. The two
classes enable localizers to change the content, format, and order of any text, as
appropriate, for any language. Both of these classes parse as well as format. However,
formatting is their main purpose.

MessageFormat

MessageFormat is a concrete class that enables users to produce concatenated, language-
neutral messages. The methods supplied in this class are used to build all the messages
that are seen by end users.

The MessageFormat class assembles messages from various fragments (such as text
fragments, numbers, and dates) supplied by the program using ICU. Because of the
MessageFormat class, the program does not need to know the order of the fragments. The
class uses the formatting specifications for the fragments to assemble them into a
message that is contained in a single string within a resource bundle. For example,
MessageFormat enables you to print the phrase "Finished printing x out of y files..." in a
manner that still allows for flexibility in translation.

Previously, an end user message was created as a sentence and handled as a string. This
procedure created problems for localizers because the sentence structure, word order,
number format and so on are very different from language to language. The language-
neutral way to create messages keeps each part of the message separate and provides keys
to the data. These keys are stored in ResourceBundles. Using these keys, the
MessageFormat class can concatenate the parts of the message, localize them, and display
a well-formed string to the end user.

216 ICU v3.4 User Guide

MessageFormat takes a set of objects, formats them, and then inserts the formatted strings
into the pattern at the appropriate places. ChoiceFormat, a class that inherits from
NumberFormat, can be used in conjunction with MessageFormat to handle plurals, match
numbers, and select from an array of items. Typically, the message format will come from
resources and the arguments will be dynamically set at runtime. The following code
fragment created this output: "At 4:34:20 PM on 23-Mar-98, there was a disturbance in
the Force on planet 7."

 UErrorCode err = U_ZERO_ERROR;
 Formattable arguments[] = {
 (int32_t)7,
 Formattable(Calendar.getNow(), Formattable::kIsDate),
 "a disturbance in the Force"
 };
 UnicodeString result;
 result = MessageFormat::format(
 "At {1,time} on {1,date}, there was {2} on planet{0,number,integer}.",
 arguments,
 3,
 result,
 err);

ChoiceFormat

The ChoiceFormat class returns a fixed string based on a numeric value. The class can be
used in conjunction with the MessageFormat class to handle plurals in messages.

ChoiceFormat enables users to attach a format to a range of numbers. The choice is
specified with an ascending list of doubles, where each item specifies a half-open interval
up to the next item as in the following:

X matches j if and only if limit[j] <= X < limit[j+1]

If there is no match, then either the first or last index is used. The first or last index is
used depending on whether the number is too low or too high. The length of the format
array must be the same as the length of the limits array. For example:

double limits[] = {1,2,3,4,5,6,7};
UnicodeString fmts[] = {"Sun","Mon","Tue","Wed","Thur","Fri","Sat"};
double limits2[] = {0, 1, 1};
UBool closures2[] = { T, T, F };
UnicodeString fmts2[] = {"no files", "one file", "many files"};

ChoiceFormat objects also may be converted to and from patterns. The conversion can be
done programmatically, as in the above example, or by using a pattern like the following:

"1#Sun|2#Mon|3#Tue|4#Wed|5#Thur|6#Fri|7#Sat"
"0#are no files|1#is one file|1<are many files"

217 ICU v3.4 User Guide

where:

<number> "#" Specifies a limit value
<number> "<" Specifies a limit of nextDouble(<number>)
<number> ">" Specifies a limit of previousDouble(<number>)

 Each limit value is followed by a string and is terminated by a vertical bar
character ("|"). The last string, however, is terminated by the end of the string.

Programming Examples

There are several programming examples for the MessageFormat and ChoiceFormat
classes in C and C++.

218 ICU v3.4 User Guide

Message Format Examples
MessageFormat Class

ICU's MessageFormat class can be used to format messages in a locale-independent
manner to localize the user interface (UI) strings.

C++
/* The strings below can be isolated into a resource
bundle
* and retrieved dynamically
*/
#define LANGUAGE_NAMES "{0}<{1}languages {2}>\n"
#define LANG_ATTRIB "{0}<language id=\"{1}\" >{2}</language>\n"
#define MONTH_NAMES "{0}<monthNames>\n"
#define END_MONTH_NAMES "{0}</monthNames>\n"
#define MONTH "{0}<month id=\"{1}\">{2}</month>\n"
#define MONTH_ABBR "{0}<monthAbbr>\n"
#define END_MONTH_ABBR "{0}</monthAbbr>\n"
UnicodeString CXMLGenerator::formatString(UnicodeString& str,UnicodeString&
argument){
Formattable args[] ={ argument};
UnicodeString result;
MessageFormat format(str,mError);
FieldPosition fpos=0;
format.format(args,1, result,fpos,mError);
if(U_FAILURE(mError)) {
 return UnicodeString("Illegal argument");
}
return result;
}
void CXMLGenerator::writeLanguage(UnicodeString& xmlString){
UnicodeString *itemTags, *items;
char* key="Languages";
int32_t numItems;
if(U_FAILURE(mError)) {
 return;
}
mRBundle.getTaggedArray(key,itemTags, items, numItems, mError);
if(mError!=U_USING_DEFAULT_ERROR && U_SUCCESS(mError) &&
mError!=U_ERROR_INFO_START){
 Formattable args[]={indentOffset,"",""};
 xmlString= formatString(UnicodeString(LANGUAGE_NAMES),args,3);
 indentOffset.append("\t");
 for(int32_t i=0;i<numItems;i++){
 args[0] = indentOffset;
 args[1] =itemTags[i] ;
 args[2] = items[i] ;
 xmlString.append(formatString(UnicodeString(LANG_ATTRIB),args,3));
 }
 chopIndent();
 args[0]=indentOffset;
 args[1] =(UnicodeString(XML_END_SLASH));
 args[2] = "";
 xmlString.append(formatString(UnicodeString(LANGUAGE_NAMES),args,3));

219 ICU v3.4 User Guide

 return;
}
mError=U_ZERO_ERROR;
xmlString.remove();
}

void CXMLGenerator::writeMonthNames(UnicodeString& xmlString){
int32_t lNum;
const UnicodeString* longMonths=
mRBundle.getStringArray("MonthNames",lNum,mError);
if(mError!=U_USING_DEFAULT_ERROR && mError!=U_ERROR_INFO_START && mError !=
U_MISSING_RESOURCE_ERROR){
 xmlString.append(formatString(UnicodeString(MONTH_NAMES),indentOffset));
 indentOffset.append("\t");
 for(int i=0;i<lNum;i++){
 char c;
 itoa(i+1,&c,10);
 Formattable args[]={indentOffset,UnicodeString(&c),longMonths[i]};
 xmlString.append(formatString(UnicodeString(MONTH),args,3));
 }
 chopIndent();
 xmlString.append(formatString(UnicodeString(END_MONTH_NAMES),indentOffset));
 mError=U_ZERO_ERROR;
 return;
}
xmlString.remove();
mError= U_ZERO_ERROR;
}

C
 void msgSample1(){
 UChar *result, *tzID, *str;
 UChar pattern[100];
 int32_t resultLengthOut, resultlength;
 UCalendar *cal;
 UDate d1;
 UErrorCode status = U_ZERO_ERROR;
 str=(UChar*)malloc(sizeof(UChar) * (strlen("disturbance in force") +1));
 u_uastrcpy(str, "disturbance in force");
 tzID=(UChar*)malloc(sizeof(UChar) * 4);
 u_uastrcpy(tzID, "PST");
 cal=ucal_open(tzID, u_strlen(tzID), "en_US", UCAL_TRADITIONAL, &status);
 ucal_setDateTime(cal, 1999, UCAL_MARCH, 18, 0, 0, 0, &status);
 d1=ucal_getMillis(cal, &status);
 u_uastrcpy(pattern, "On {0, date, long}, there was a {1} on planet
{2,number,integer}");
 resultlength=0;
 resultLengthOut=u_formatMessage("en_US", pattern, u_strlen(pattern),
NULL,
resultlength, &status, d1, str, 7);
 if(status==U_BUFFER_OVERFLOW_ERROR){
 status=U_ZERO_ERROR;
 resultlength=resultLengthOut+1;
 result=(UChar*)realloc(result, sizeof(UChar) * resultlength);
 u_formatMessage("en_US", pattern, u_strlen(pattern), result,
resultlength, &status, d1, str, 7);
 }
 printf("%s\n",austrdup(result)); //austrdup(a function used to convert
UChar* to char*)
 free(tzID);
 free(str);
 free(result);
}
char *austrdup(const UChar* unichars)

220 ICU v3.4 User Guide

{
 int length;
 char *newString;
 length = u_strlen (unichars);
 newString = (char*)malloc (sizeof(char) * 4 * (length + 1));
 if (newString == NULL)
 return NULL;
 u_austrcpy (newString, unichars);
 return newString;
}
This is a more practical sample which retrieves data from a resource bundle
and
feeds the data
to u_formatMessage to produce a formatted string
void msgSample3(){
char* key="Languages";
int32_t numItems;
 /* This constant string can also be in the resouce bundle and retrieved at
the time
 * of formatting
 * eg:
 * UResouceBundle* myResB = ures_open("myResources",currentLocale,&err);
 * UChar* Lang_Attrib = ures_getString(myResb,"LANG_ATTRIB",&err);
 */
 UChar* LANG_ATTRIB =(UChar*) "{0}<language id=\"{1}\"
>{2}</language>\n";
 UChar *result;
 UResourceBundle* pResB,*pDeltaResB=NULL;
 UErrorCode err=U_ZERO_ERROR;
 UChar* indentOffset = (UChar*)"\t\t\t";
 pResB = ures_open("","en",&err);
if(U_FAILURE(err)) {
 return;
}
 ures_getByKey(pResB, key, pDeltaResB, &err);
 if(U_SUCCESS(err)) {
 const UChar *value = 0;
 const char *key = 0;
 int32_t len = 0;
 int16_t indexR = -1;
 int32_t resultLength=0,resultLengthOut=0;
 numItems = ures_getSize(pDeltaResB);
 for(;numItems-->0;){
 key= ures_getKey(pDeltaResB);
 value = ures_get(pDeltaResB,key,&err);
 resultLength=0;
 resultLengthOut=u_formatMessage("en_US", LANG_ATTRIB,
u_strlen(LANG_ATTRIB),
 NULL, resultLength, &err,
indentOffset, value, key);
 if(err==U_BUFFER_OVERFLOW_ERROR){
 err=U_ZERO_ERROR;
 resultLength=resultLengthOut+1;
 result=(UChar*)realloc(result, sizeof(UChar) * resultLength);
 u_formatMessage("en_US",LANG_ATTRIB,u_strlen(LANG_ATTRIB),
 result,resultLength,&err,indentOffset,
 value,key);
 printf("%s\n", austrdup(result));
 }
 }
 return;

221 ICU v3.4 User Guide

}
err=U_ZERO_ERROR;
}

ChoiceFormat Class

ICU's ChoiceFormat class provides more flexibility than the printf() and scanf style
functions for formatting UI strings. This interface can be useful if you would like a
message to change according to the number of items you are displaying. Note: Some
Asian languages do not have plural words or phrases.

C++
 void msgSample1(){
 UChar *result, *tzID, *str;
 UChar pattern[100];
 int32_t resultLengthOut, resultlength;
 UCalendar *cal;
 UDate d1;
 UErrorCode status = U_ZERO_ERROR;
 str=(UChar*)malloc(sizeof(UChar) * (strlen("disturbance in force") +1));
 u_uastrcpy(str, "disturbance in force");
 tzID=(UChar*)malloc(sizeof(UChar) * 4);
 u_uastrcpy(tzID, "PST");
 cal=ucal_open(tzID, u_strlen(tzID), "en_US", UCAL_TRADITIONAL, &status);
 ucal_setDateTime(cal, 1999, UCAL_MARCH, 18, 0, 0, 0, &status);
 d1=ucal_getMillis(cal, &status);
 u_uastrcpy(pattern, "On {0, date, long}, there was a {1} on planet
{2,number,integer}");
 resultlength=0;
 resultLengthOut=u_formatMessage("en_US", pattern, u_strlen(pattern),
NULL,
resultlength, &status, d1, str, 7);
 if(status==U_BUFFER_OVERFLOW_ERROR){
 status=U_ZERO_ERROR;
 resultlength=resultLengthOut+1;
 result=(UChar*)realloc(result, sizeof(UChar) * resultlength);
 u_formatMessage("en_US", pattern, u_strlen(pattern), result,
resultlength, &status, d1, str, 7);
 }
 printf("%s\n",austrdup(result)); //austrdup(a function used to convert
UChar* to char*)
 free(tzID);
 free(str);
double filelimits[] = {0,1,2};
UErrorCode err;
UnicodeString filepart[] = {"are no files","is one file","are {2} files"};
ChoiceFormat fileform(filelimits, filepart,err);
Format testFormats[] = {fileform, null, NumberFormat.getInstance()};
MessageFormat pattform("There {0} on {1}",err);
pattform.setFormats(testFormats);
Formattable testArgs[] = {null, "ADisk", null};
for (int i = 0; i < 4; ++i) {
 testArgs[0] = i;
 testArgs[2] = testArgs[0];
 FieldPosition fpos=0;
 format.format(args,1, result,fpos,mError);
 UnicodeString result = pattform.format(testArgs);
}

C

222 ICU v3.4 User Guide

void msgSample2(){
 UChar* str;
 UErrorCode status = U_ZERO_ERROR;
 UChar *result;
 UChar pattern[100];
 int32_t resultlength,resultLengthOut, i;
 double testArgs[3]= { 100.0, 1.0, 0.0};
 str=(UChar*)malloc(sizeof(UChar) * 10);
 u_uastrcpy(str, "MyDisk");
 u_uastrcpy(pattern, "The disk {1} contains {0,choice,0#no files|1#one
file|1<{0,number,integer} files}");
 for(i=0; i<3; i++){
 resultlength=0;
 resultLengthOut=u_formatMessage("en_US", pattern, u_strlen(pattern),
NULL, resultlength, &status, testArgs[i], str);
 if(status==U_BUFFER_OVERFLOW_ERROR){
 status=U_ZERO_ERROR;
 resultlength=resultLengthOut+1;
 result=(UChar*)malloc(sizeof(UChar) * resultlength);
 u_formatMessage("en_US", pattern, u_strlen(pattern), result,
resultlength, &status, testArgs[i], str);
 }
 }
 printf("%s\n", austrdup(result)); //austrdup(a function used to
convert
UChar* to char*)
 free(result);
}

223 ICU v3.4 User Guide

Transformations
Overview

Transformations are used to process Unicode text in many different ways. Some include
case mapping, normalization, transliteration and bidirectional text handling.

Case Mappings

Case mapping is used to handle mappings of upper- and lower-case characters from one
language to another language, and writing systems that use letters of the same alphabet to
handle titlecase mappings that are particular to some class. They provide for certain
language-specific mappings as well.

Normalization

Normalization is used to convert text to a unique, equivalent form. Systems can
normalize Unicode-encoded text to one particular sequence, such as a normalizing
composite character sequences into precomposed characters. While Normalization Forms
are specified for Unicode text, they can also be extended to non-Unicode (legacy)
character encodings. This is based on mapping the legacy character set strings to and from
Unicode.

Transforms

Transforms provide a general-purpose package for processing Unicode text. They are a
powerful and flexible mechanism for handling a variety of different tasks, including:

• Uppercase, Lowercase, Titlecase, Full/Halfwidth conversions

• Normalization

• Hex and Character Name conversions

• Script to Script conversion

Bidirectional Algorithm

The Bidirectional Algorithm was developed to specify the direction of text in a text flow.

224 ICU v3.4 User Guide

Case Mappings
Overview

Case mapping is used to handle the mapping of upper-case, lower-case, and title case
characters for a given language. Case is a normative property of characters in specific
alphabets (e.g. Latin, Greek, Cyrillic, Armenian, and archaic Georgian) whereby
characters are considered to be variants of a single letter. ICU refers to these variants,
which may differ markedly in shape and size, as uppercase letters (also known as capital
or majuscule) and lower-case letters (also known as small or minuscule). Alphabets with
case differences are called bicameral and alphabets without case differences are called
unicameral.

Due to the inclusion of certain composite characters for compatibility, such as the Latin
capital letter 'DZ' (\u01F1 'DZ'), there is a third case called title case. Title case is used to
capitalize the first character of a word such as the Latin capital letter 'D' with small letter
'z' (\u01F2 'Dz'). The term "title case" can also be used to refer to words whose first letter
is an uppercase or title case letter and the rest are lowercase letters. However, not all
words in the title of a document or first words in a sentence will be title case. The use of
title case words is language dependent. For example, in English, "Taming of the Shrew"
would be the appropriate capitalization and not "Taming Of The Shrew".

 Although the archaic Georgian script contained upper- and lowercase pairs,
they are rarely used in modern Georgian.

ICU provides three types of case mapping APIs:

• General Character Case Mapping

• Language-Specific Case Mapping

• Case Folding

Sample code is available in the ICU source code library at
icu/source/samples/ustring/ustring.cpp.

Please refer to Unicode Technical Report #21 (Case Mappings) for more information
about case mapping.

General Character Case Mapping

The general case mapping in ICU is non-language based and a 1 to 1 generic character
map.

A character is considered to have a lowercase, uppercase, or title case equivalent if there
is a respective mapping specified for the character in the Unicode Character Database
(UnicodeData.txt) attribute table. If a character has no mapping equivalent, the result is

225 ICU v3.4 User Guide

the character itself.

The APIs provided for the general case mapping, located in uchar.h file, handles only
single characters of type UChar32 and returns only single characters. To convert a string
to a non-language based specific case, use the APIs in either the unistr.h or ustring.h
files with a NULL argument locale.

Language-specific Case Mapping

There are different case mappings for different locales. For instance, unlike English, the
character Latin small letter 'i' in Turkish has an equivalent Latin capital letter 'I' with dot
above (\u0130 'İ').

Similar to the general case mapping API, a character is considered to have a lowercase,
uppercase or title case equivalent if there is a respective mapping specified for the
character in the Unicode Character database (UnicodeData.txt) attribute table. In the case
where a character has no mapping equivalent, the result is the character itself.

To convert a string to a language based specific case, use the APIs in ustring.h and
unistr.h with an intended argument locale.

Case Folding

Case folding maps strings to a canonical form where case differences are erased. Using
the case folding API, ICU makes fast matches without regard to case in lookups, since
only binary comparison is required. Also, case folding uses cases such as the Latin
uppercase character dotted I (\u0130 'İ'), so that "'İSTANBUL" and "istanbul" will match
correctly.

The CaseFolding.txt file in the Unicode Character Database is used for performing locale-
independent case folding. This text file is generated from the case mappings in the
Unicode Character Database, using both the single-character and the multi-character
mappings. The CaseFolding.txt file transforms all characters having different case forms
into a common form. To compare two strings for non-case-sensitive matching, you can
transform each string and then use a binary comparison.

Character case folding APIs implementations are located in:

• uchar.h for single character folding

• ustring.h and unistr.h for character string folding.

226 ICU v3.4 User Guide

The Bidi Algorithm
Overview

Bidirectional text consists of mainly right-to-left text with some left-to-right nested
segments (such as an Arabic text with some information in English), or vice versa (such
as an English letter with a Hebrew address nested within it.) The predominant direction is
called the global orientation.

Languages involving bidirectional text are used mainly in the Middle East. They include
Arabic, Urdu, Farsi, Hebrew, and Yiddish.

In such a language, the general flow of text proceeds horizontally from right to left, but
numbers are written from left to right, the same way as they are written in English. In
addition, if some text (addresses, acronyms, or quotations) in English or another left-to-
right language is embedded, it is also written from left to right.

 Libraries that perform a bidirectional algorithm and reorder strings accordingly
are sometimes called "Storage Layout Engines". ICU's BiDi (ubidi.h) and
shaping (ushape.h) APIs can be used at the core of such "Storage Layout
Engines".

Countries with Languages that Require Bidirectional Scripting

There are over 300 million people who depend on bidirectional scripts, including Farsi
and Urdu which share the same script as Arabic, but have additional characters.

Language Number of Countries
Arabic 18
Farsi 1 (Iran)
Urdu 2 (India, Pakistan)
Hebrew 1 (Israel)
Yiddish Israel, North America, South America,

Russia, Europe

Logical Order versus Visual Order

When reading bidirectional text, whenever the eye of the experienced reader encounters
an embedded segment, it "automatically" jumps to the other end of the segment and reads
it in the opposite direction. The sequence in which the characters are pronounced is thus a
logical sequence which differs from the visual sequence in which they are presented on
the screen or page.

The logical order of bidirectional text is also the order in which it is usually keyed, and in

227 ICU v3.4 User Guide

which it is stored in memory.

Consider the following example, where Arabic or Hebrew letters are represented by
uppercase English letters and English text is represented by lowercase letters:

english CIBARA text

The English letter h is visually followed by the Arabic letter C, but logically h is followed
by the rightmost letter A. The next letter, in logical order, will be R. In other words, the
logical and storage order of the same text would be:

english ARABIC text

Text is stored and processed in logical order to make processing feasible: A contiguous
substring of logical-order text (e.g., from a copy&paste operation) contains a logically
contiguous piece of the text. For example, "ish ARA" is a logically contiguous piece of
the sample text above. By contrast, a contiguous substring of visual-order text may
contain pieces of the text from distant parts of a paragraph. ("ish" and "CIB" from the
sample text above are not logically adjacent.) Sorting and searching in text (establishing
lexical order among strings) as well as any other kind of context-sensitive text analysis
also rely on the storage of text in logical order because such processing must match user
expectations.

When text is displayed or printed, it must be "reordered" into visual order with some parts
of the text layed out left-to-right, and other parts layed out right-to-left. The Unicode
standard specifies an algorithm for this logical-to-visual reordering. It always works on a
paragraph as a whole; the actual positioning of the text on the screen or paper must then
take line breaks into account, based on the output of the bidirectional algorithm. The
reordering output is also used for cursor movement and selection.

Legacy systems frequently stored text in visual order to avoid reordering for display.
When exchanging data with such systems for processing in Unicode it is necessary to
reorder the data from visual order to logical order and back. Such not-for-display
transformations are sometimes referred to as "storage layout" transformations.

The are two problems with an "inverse reordering" from visual to logical order: There
may be more than one logical order of text that results in the same display (logical-to-
visual reordering is a many-to-one function), and there is no standard algorithm for it.
ICU's BiDi API provides a setting for "inverse" operation that modifies the standard
Unicode Bidi algorithm. However, it may not always produce the expected results.
Bidirectional data should be converted to Unicode and reordered to logical order only
once to avoid roundtrip losses. Just as it is best to never convert to non-Unicode charsets,
data should not be reordered from logical to visual order except for display and printing.

References

ICU provides an implementation of the Unicode BiDi algorithm, as well as simple

228 ICU v3.4 User Guide

functions to write a reordered version of the string using the generated meta-data. An
"inverse" flag can be set to approximate visual-to-logical reordering. See the ubidi.h
header file and the BiDi API References.

See Unicode Standard Annex #9: The Bidirectional Algorithm.

Programming Examples in C and C++

See the BiDi API reference for more information.

229 ICU v3.4 User Guide

Normalization
Overview

Normalization is used to convert text to a unique, equivalent form. Systems can
normalize Unicode-encoded text to one particular sequence, such as normalizing
composite character sequences into pre-composed characters.

Normalizer allows for easier sorting and searching of text. Normalizer supports the
standard normalization forms and are described in great detail in Unicode Technical
Report #15 (Unicode Normalization Forms) and Section 5.7 of the Unicode Standard.

Usage

Normalizer transforms text into the canonical composed and decomposed forms. In
addition, you can have it perform compatibility decompositions so that you can treat
compatibility characters the same as their equivalents.

Normalizer adds one optional behavior, IGNORE_HANGUL, that differs from the standard
Unicode Normalization Forms in not normalizing Korean syllables. This option can be
passed to the Normalizer constructors} and to the static compose and decompose
methods. This option will be turned off by default.

There are three common usage models for Normalizer:

1. You can use normalize() to process an entire input string at once.

• For example, if you have a string in Unicode that you want to convert to a Latin 1
character set, ISO-8859-1: "a´bc" is normalized to "ábc".

2. You can create a Normalizer object and use it to iterate through the normalized form
of a string by calling first() and next().

• For example, when you are comparing two strings you want to stop the comparison
as soon as a significant difference is found. This way, you do not have the overhead
of converting an entire string if only the first characters are important.

3. You can use setIndex() and getIndex() to perform a random-access iteration.

• For example, when you want to do a fast language sensitive searching, such as
Boyer-Moore.

Transformation Methods

• normalize()
Normalizes a string using the given normalization operation.

• compose()
Composes a string forming the separate Unicode characters into their corresponding

230 ICU v3.4 User Guide

user characters.

• decompose()
Decomposes a string into its separate Unicode characters.

Movement Methods

• Return characters:
• current()

Return the current character in the normalized text.

• first()
Return the first character in the normalized text.

• last()
Return the last character in the normalized text.

• next()
Return the next character in the normalized text and advance the iteration position
by one.

• previous()
Return the previous character in the normalized text and decrement the iteration
position by one.

• setIndex
Set the iteration position in the input text that is being normalized and return the
first normalized character at that position.

• Return character index values:
• endIndex()

Retrieve the index of the end of the input text.

• getIndex()
Retrieve the current iteration position in the input text that is being normalized.

• startIndex()
Retrieve the index of the start of the input text.

Normalizer objects behave like iterators and have methods such as setIndex(),
next(), previous(), etc. You should note that while the setIndex() and
getIndex() refer to indices in the underlying Unicode input text, the next() and
previous() methods iterate through characters in the normalized output. This
means that there is not necessarily a one-to-one correspondence between
characters returned by next() and previous() and the indices passed to and
returned from setIndex() and getIndex(). It is for this reason that
Normalizer does not implement the CharacterIterator interface.

231 ICU v3.4 User Guide

Programming Examples in C and C++

Programming example for normalizing a string.

232 ICU v3.4 User Guide

Normalization Examples
Normalize a String

The following examples normalize a string, based on the mode, using the canonical
decomposition with the option compatibility decomposition and ignoring the hangul
syllable options.

C++
UnicodeString source("This is a test.");
UnicodeString result;
UErrorCode status = U_ZERO_ERROR;
Normalize::normalize(source, COMPOSE_COMPAT, IGNORE_HANGUL, result, status);

C
UChar source[50];
int32_t resultLength = 0;
UChar *result = 0;
UErrorCode status = U_ZERO_ERROR;
u_uastrcpy(source, "This is a test.");
resultLength = u_normalize(source, u_strlen(source),
 UCOL_DECOMP_COMPAT, UCOL_IGNORE_HANGUL, NULL, NULL, status);
result = (UChar*)malloc(sizeof(UChar)*resultLength+1);
u_normalize(source, u_strlen(source),
 UCOL_DECOMP_COMPAT, UCOL_IGNORE_HANGUL, result, resultLength, status);
result[resultLength] = 0;

233 ICU v3.4 User Guide

Transforms
Overview

Transforms provide a general-purpose package for processing Unicode text. They are a
powerful and flexible mechanism for handling a variety of different tasks, including:

• Uppercase, Lowercase, Titlecase, Full/Halfwidth conversions

• Normalization

• Hex and Character Name conversions

• Script to Script conversion

Originally, Transforms were designed to convert characters from one script to another
(for example, from Greek to Latin, or Japanese Katakana to Latin). This is still reflected
in the class name, which remains Transliterator. However, the services performed by
that class now represent a much more general mechanism capable of handling a much
broader range of tasks. In particular, the Transforms include pre-built transformations for
case conversions, for normalization conversions, for the removal of given characters, and
also for a variety of language and script transliterations. Transforms can be chained
together to perform a series of operations and each step of the process can use a
UnicodeSet to restrict the characters that are affected.

For example, to remove accents from characters, use the following transform:

 NFD; [:Nonspacing Mark:] Remove; NFC.

This transform separates accents from their base characters, removes the accents, and
then puts the remaining text into an unaccented form.

A transliteration either can be applied to a complete string of text or can be used
incrementally for typing or buffering input. In the latter case, the transform provides the
correct time delay to process characters when there is an unambiguous mapping.
Transliterators can also be used with more complex text, such as styled text, to maintain
the style information where possible. For example, "Αλφaβητικός" will retain the two
fonts in transliterating to "Alphabētikós".

The transliteration process not only retains font size, but also other
characteristics such as font type and color.

For an online demonstration of ICU transliteration, see
http://ibm.com/software/globalization/icu/chartsdemostools.jsp.

Script Transliteration

Script Transliteration is the general process of converting characters from one script to
another. For example, it can convert characters from Greek to Latin, or Japanese katakana

234 ICU v3.4 User Guide

to Latin. The user must understand that script transliteration is not translation. Rather,
script transliteration it is the conversion of letters from one script to another without
translating the underlying words. The following shows a sample of script transliteration:

Source Transliteration

キャンパス kyanpasu
Αλφαβητικός Κατάλογος Alphabētikós Katálogos
биологическом biologichyeskom

 Some of the characters may not be visible on the screen unless you have a
Unicode font with all the Greek letters. If you have a licensed copy of Microsoft®
Office, you can use the "Arial Unicode MS" font, or you can download the
CODE2000 font for free. For more information, see Display Problems? on the
Unicode web site.

While the user may not recognize that the Japanese word "kyanpasu" is equivalent to the
English word "campus," it is easier to recognize and interpret the word in text than if the
letters were left in the original script. There are several situations where this
transliteration is especially useful. For example, when a user views names that are entered
in a world-wide database, it is extremely helpful to view and refer to the names in the
user's native script. It is also useful for product support. For example, if a service engineer
is sent a program dump that is filled with characters from foreign scripts, it is much easier
to diagnose the problem when the text is transliterated and the service engineer can
recognize the characters. Also, when the user performs searching and indexing tasks,
transliteration can retrieve information in a different script. The following shows these
retrieval capabilities:

Source Transliteration

김, 국삼 Gim, Gugsam

김, 명희 Gim, Myeonghyi

정, 병호 Jeong, Byeongho
... ...

たけだ, まさゆき Takeda, Masayuki

ますだ, よしひこ Masuda, Yoshihiko

やまもと, のぼる Yamamoto, Noboru
... ...
Ρούτση, Άννα Roútsē, Ánna
Καλούδης, Χρήστος Kaloúdēs, Chr stosḗ

Θεοδωράτου, Ελένη Theodōrátou, Elénē

235 ICU v3.4 User Guide

Transliteration can also be used to convert unfamiliar letters within the same script, such
as converting Icelandic THORN (þ) to th.

Transliterator Identifiers

Transliterators are not created directly using C++ or Java constructors. Instead, the are
created by giving an identifier—a name string in a specific format—to one of the
Transliterator factory methods, such as Transliterator.getInstance() (Java) or
Transliterator::createInstance(). The following are some examples of identifiers:

• Latin-Cyrillic

• [:Lu:] Latin-Greek (Greek-Latin/UNGEGN)

• [A-Za-z]; Lower(); Latin-Katakana; Katakana-Hiragana; ([:Hiragana:])

It is important to understand identifiers and their syntax, since it is through the use of
identifiers that one creates transforms, restricts their effective range, and combines them
together. This section describes transform identifiers in detail. Throughout this section, it
is important to distinguish between identifiers and the actual transforms that they refer
to. All actual transforms are named by well-formed identifiers, but not all well-formed
identifiers refer to actual transforms. An analogy is C++ method names. I can write the
syntactially well-formed method name "void Cursor::getPosition(Position& pos)", but
whether or not this refers to an actual method in an actual class is a different matter.

Basic IDs

The simplest identifier is a 'basic ID'. Examples of basic IDs are:

• Katakana-Latin

• Null

• Hex-Any/Perl

• Latin-el

• Greek-en_US/UNGEGN

A basic ID typically names a source and target. In "Katakana-Latin", "Katakana" is the
source and "Latin" is the target. The source specifier describes the characters or strings
that the transform will modify. The target specifier describes the result of the
modification. If the source is not given, then the source is "Any", the set of all characters.

Some basic IDs contain a further specifier following a forward slash. This is the variant,
and it further specifies the transform when several versions of a single transformation are
possible. For example, ICU provides several transforms that convert from Unicode
characters to escaped representations. These include standard Unicode syntax "U+4E01",
Perl syntax "\x{4E01}", XML syntax "丁", and others. The transforms for these

236 ICU v3.4 User Guide

operations are named "Any-Hex/Unicode", "Any-Hex/Perl", and "Any-Hex/XML",
respectively. If no variant is specified, then the default variant is selected. In the example
of "Any-Hex", this is the Java variant (for historical reasons), so "Any-Hex" is equivalent
to "Any-Hex/Java".

Filtered IDs

A filtered IDs is a basic IDs constrained by a filter. For example, to specify a transform
that converts only ASCII vowels to uppercase, use the ID:
[aeiou] Upper
The filter is a valid UnicodeSet pattern prefixed to the basic ID. Only characters within
the set will be modified by the transform. Some transforms are only useful with filters, for
example, the Remove transform, which deletes all input characters. Specifying
"[:Nonspacing Mark:] Remove" gives a transform that removes non-spacing marks from
input text.

As of ICU 2.0, the filter pattern must be enclosed in brackets. Perl-syntax
patterns of the form "\p{Lu}" cannot be used directly; instead they must be
enclosed, e.g. "[\p{Lu}]".

Inverses

Any transform ID can be modified to form an "inverse" ID. This is the ID of a related
transform that performs an inverse operation. For basic IDs, this is done by exchanging
the source and target names. For example, the inverse of "Latin-Greek/UNGEGN" is
"Greek-Latin/UNGEGN", and vice versa. The variant, if any, is unaffected.

If there is no named source, the same rule still applies, using the implicit source "Any".
So the inverse of "Hex/Perl" is "Hex-Any/Perl", since the former is really shorthand for
"Any-Hex/Perl".

The notion of inverses carries two important caveats. The first involves the semantics of
inverses. Consider a transform "A-B". Its inverse, "B-A", is thought of as reversing the
transformation accomplished by "A-B". The degree and completeness of the reversal,
however, is not guaranteed.

For example, consider the "Lower" transform. It has an inverse of "Upper" (this is a
special, non-standard inverse relationship that the transliteration service knows about).
Applying "Lower" to the string "Hello There" yields the string "hello there". Applying
"Upper" to this result then yields "HELLO THERE", which is not the same as the original
string.

Complete and exact reversal is possible if the transform has been explicitly designed to
support this. Examples of transforms that support this are "Any-Hex" and "SCRIPT-
Latin", where SCRIPT is a supported transliteration script. The "SCRIPT-Latin"
transforms support exact reversal of well-formed text in SCRIPT to Latin (via "SCRIPT-

237 ICU v3.4 User Guide

Latin") and back to SCRIPT (via "Latin-SCRIPT"). This is called round-trip integrity.
They do not, however, support round-trip integrity from Latin to SCRIPT and back to
Latin.

Do not assume that a transform's inverse will provide a complete or exact
reversal.

The second caveat with inverses has to do with existence. Although any ID can be
inverted, this does not guarantee that the inverse ID actually exists. For example, if I
create a custom translitertor Latin-Antarean and register it with the system, I can then
pass the string "Latin-Antarean" to createInstance() or getInstance() to get that
transform. If I then ask for its inverse, however, the request will fail, since I have not
created and registered "Antarean-Latin" with the system.

Any transform ID can be inverted, but the inverse ID may not name an actual
registered transform.

Custom Inverses

Consider the transforms "Any-Lower" and "Any-Upper": It is convenient to associate
these as inverses of one another. However, using the standard procedure for ID inversion
on "Any-Lower" yields "Lower-Any", which is not what we want. To override the
standard ID inversion, the inverse ID can be explicitly stated within the ID string as
follows:

"Any-Lower (Any-Upper)" or equivalently "Lower (Upper)"
When this ID is inverted, the result is "Any-Upper (Any-Lower)". Using this mechnism,
the user can form arbitrary inverse relations when necessary.

When using custom inverses of the form "A-B (C-D)", either "A-B" or "C-D" may be
empty. An empty element is the same as "Null". That is, "A-B ()" is the same as "A-B
(Null)", and it inverts to the null transform (which does nothing). The null transform it
inverts to has the ID "(A-B)", also written "Null (A-B)", and inverts back to "A-B ()".
Note that "A-B ()" is very different from both "A-B" and "(A-B)":

ID Inverse of ID
A-B B-A
A-B () (A-B)
(A-B) A-B ()

For some system transforms, special inverse mappings exists automatically. These
mappings are symmetrical, that is, the right column is the inverse of the left column, and
vice versa. The mappings are:

238 ICU v3.4 User Guide

Any-Null Any-Null
Any-NFD Any-NFC
Any-NFKD Any-NFKC
Any-Lower Any-Upper

In other words, writing "Any-NFD" is exactly equivalent to writing "Any-NFD (Any-
NFC)" since the system maps the former to the latter internally. However, one can still
alter the mapping of these transforms by specifying an explicit custom inverse, e.g. "NFD
(Lower)".

Compound IDs

Transliterators are often combined in sequence to achieve a desired transformation. This
is analogous to the composition of mathematical functions. For example, given a script
that converts lowercase ASCII characters from Latin script to Katakana script, it is
convenient to first (1) separate input base characters and accents, and then (2) convert
uppercase to lowercase. (Katakana is caseless, so it is best to write rules that operate only
on the lowercase Latin base characters and produce corresponding Katakana.) To achieve
this, a compound transform can be specified as follows:
NFKD; Lower; Latin-Katakana;
(In real life, we would probably use "NFD", but we use "NFKD" for explanatory purposes
here.) It is also desirable to modify only Latin script characters. To do so, a filter may be
prefixed to the entire compound transform. This is called a global filter to distinguish it
from filters on the individual transforms within the compound:
[:Latin:]; NFKD; Lower; Latin-Katakana;
The inverse of such a transform is formed by reversing the list and inverting each
element. In this example, this would be:
Katkana-Latin; Upper; NFKC; ([:Latin:]);
Note that two special mappings take effect: "Lower" to "Upper" and "NFKD" to "NFKC".
Note also that the global filter is enclosed in parentheses, rendering it inoperative in the
reverse direction.

In this example we probably don't really want to map Latin characters to uppercase in the
reverse direction, so we need to modify the original transform as follows:
[:Latin:]; NFKD; Lower(); Latin-Katakana;
Recall that the empty parentheses in "Lower ()" are shorthand for "Lower (Null)" where
"Null" is the null transform, that is, the transform that leaves text unchanged. The inverse
of this is "Null (Lower)", also written "(Lower)". Now the inverse of the entire compound
is:
Katakana-Latin; (Lower); NFKC; ([:Latin:]);

239 ICU v3.4 User Guide

This still isn't quite right, since we really want to recompose our output, in both
directions. We also want to only touch Katakana characters in the reverse direction. Our
final example, modified to address these two concerns, is as follows:
[:Latin:]; NFKD; Lower(); Latin-Katakana; NFC; ([:Katakana:]);
This inverts to:
[:Katakana:]; NFD; Katakana-Latin; (Lower); NFKC; ([:Latin:]);
(In real life, we would probably use only "NFD" and "NFC", but we use the compatibility
normalizers in this example so they can be distinguished.)

Compound IDs are the most complex identifiers that can be formed. Many system
transforms are actually compound transforms that have been aliased to basic IDs. It is
also possible to write a transform rule with embedded instructions for generating a
compound transform; system transforms use this approach as well.

Formal ID Syntax

Here is a formal description of the identifier syntax. This description coThe 'ID' entity can
be passed to getInstance() or createInstance().

ID := Single_ID | Compound_ID
Single_ID := filter? Basic_ID ('(' Basic_ID? ')')? | filter? '(' Basic_ID ')'
Compound_ID := (filter ';')? (Single_ID ';')+ ('(' filter ');')?
Basic_ID := Spec | Spec '-' Spec | Spec '/' Identifier | Spec '-' Spec '/' Identifier
Spec := script-name | locale-name | Identifier
Identifier := identifier-start identifier-part*

Elements enclosed in single quotes are literals. Parentheses group elements. Vertical bars
represent exclusive alternatives. The '?' suffix repeats the preceding element zero or one
times. The '+' suffix repeats the preceding element one or more times.

A 'script-name' is a string acceptable to the UScript API that specifies a script. It may be a
full script name such as "Latin" or a script abbreviation such as "Latn". A 'locale-name' is
a standard locale name such as "hi_IN". The 'identifier-start' and 'identifier-part' elements
are characters defined by the UCharacter API to start and continue identifier names.
Finally, 'filter' is a valid UnicodeSet pattern.

As of ICU 2.0, the filter must be enclosed in brackets. Top-level Perl-style
patterns are unsupported in 2.0.

240 ICU v3.4 User Guide

ICU Transliterators

Currently, there are a number of basic transliterations supplied with ICU. The following
table shows these basic transforms:

General

→ Any-Null Has no effect; leaves input text unchanged.
→ Any-Remove Deletes input characters. This is useful

when combined with a filter that restricts
the characters to be deleted.

→ Any-Lower, Any-Upper, Any-Title Converts to the specified case. See Case
Mappings for more information.

→ Any-NFD, Any-NFC, Any-NFKD, Any-
NFKC

Converts to the specified normalized form.
See Normalization for more information.

Any-Name Converts between characters and their
Unicode names in curly braces. For
example:
., {FULL STOP}{COMMA}

Any-Hex Converts between characters and their
Unicode code point values. For example:
., \u002E\u002C
Any-Hex/XML uses the &#xXXXX;
format. For example:
., .,
Variants include Any-Hex/C, Any-
Hex/Java, Any-Hex/Perl, Any-Hex/XML,
and Any-Hex/XML10. Any-Hex, with no
variant, is equivalent to Any-Hex/Java, for
historical reasons.

→ Any-Accents Lets you type e- for e-macron, etc. For
example:
 o' ó

Any-Publishing Converts between real punctuation and
typewriter punctuation. For example:
“a” — ‘b’ "a" -- 'b'

Fullwidth-Halfwidth Converts between narrow or half-width
characters and full-width. For example:
ｱｱｱｱｱｱ tech アルアノリウ　ｔｅｃｈ

241 ICU v3.4 User Guide

Script/Language

The ICU script/language transforms are based on common standards for the particular
scripts, where possible. In some cases, the transforms are augmented to support
reversibility.

Standard transliteration methods often do not follow the pronunciation rules of
any particular language in the target script. For more information on the design
of transliterations, see the Guidelines.

The built-in script transforms are:

Latin Greek, Cyrillic, Hangul, Hiragana,
Katakana, Indic

Indic Indic
Indic includes Devanagari, Gujarati, Gurmukhi, Kannada, Malayalam, Oriya, Tamil, and
Telegu. ICU can transliterate from Latin to any of these dialects and back, and from Indic
script to any other Indic script. For example, you can transliterate from Kannada to
Gujarati, or from Latin to Oriya.

In addition, ICU may supply transliterations that are specific to language pairs, or
between a language and a script. For example, ICU could have a ru-en (Russian-English)
transform.

As with locales, there is a fallback mechanism. If the Russian-English transform is
requested and is not available, then ICU will search for a Russian-Latin transform. If the
Russian-Latin transform is not available, ICU will search for a Cyrillic-Latin transform.

For information on the precise makeup of each of the script transforms, see Script
Transform Sources.

Guidelines for Script/Language Transliterations

There are a number of generally desirable guidelines for script transliterations. These
guidelines are rarely satisfied simultaneously, so constructing a reasonable transliteration
is always a process of balancing different requirements. These requirements are most
important for people who are building transliterations, but are also useful as background
information for users. The following lists the general guidelines for transliterations:

• complete: every well-formed sequence of characters in the source script should
transliterate to a sequence of characters from the target script.

• predictable: the letters themselves (without any knowledge of the languages written in
that script) should be sufficient for the transliteration, based on a relatively small
number of rules. This allows the transliteration to be performed mechanically.

• pronounceable: transliteration is not as useful if the process simply maps the characters

242 ICU v3.4 User Guide

without any regard to their pronunciation. Simply mapping "αβγδεζηθ..." to
"abcdefgh..." would yield strings that might be complete and unambiguous, but cannot
be pronounced.

• unambiguous: it is always possible to recover the text in the source script from the
transliteration in the target script. Someone that knows the transliteration rules will be
able to recover the precise spelling of the original source text (for example, it is
possible to go from Elláda back to the original Ελλάδα). It is possible to define an
reverse (or inverse) mapping. Thus, this property is sometimes called reversibility (or
invertibility).

Ambiguity

In transliteration, multiple characters may produce ambiguities unless the rules are
carefully designed. For example, the Greek character PSI (ψ) maps to ps, but ps could
also (theoretically) result from the sequence PI, SIGMA (πσ) since PI (π) maps to p and
SIGMA (σ) maps to s.

The Japanese transliteration standards provide a good mechanism for handling similar
ambiguities. Using the Japanese transliteration standards, whenever an ambiguous
sequence in the target script does not result from a single letter, the transform uses an
apostrophe to disambiguate it. For example, it uses that procedure to distinguish between
man'ichi and manichi. Using this procedure, the Greek character PI SIGMA (πσ) maps to
p's. This method is recommended for all script transliteration methods.

Some characters in a target script are not normally found outside of certain
contexts. For example, the small Japanese "ya" character, as in "kya" (), is
not normally found in isolation. To handle such characters, ICU uses a tilde. For
example, to display an isolated small "ya", type "~ya". To represent a non-final
Greek sigma (ασ) at the end of a word, use "a~s". To represent a final sigma in a
non-final position (ςα), type "~sa".

For the general script transforms, a common technique for reversibility is to use extra
accents to distinguish between letters that may not be otherwise distinguished. For
example, the following shows Greek text that is mapped to fully reversible Latin:

Greek-Latin
τί φ ς; γραφ ν σέ τις, ς οικε, γέγραπται:ῄ ὴ ὡ ἔ
ο γ ρ κε νό γε καταγνώσομαι, ς σὐ ὰ ἐ ῖ ὡ ὺ
τερον.ἕ

tí ph is; graph n sé tis, hōs éoike,ḗ ḕ
gégraptai: ou gàr ekeînó ge katagn somai,ṓ
hōs sỳ héteron.

If the user wants a version without certain accents, then a transform can be used to
remove the accents. For example, the following transliterates to Latin but removes the
macron accents on the long vowels.

243 ICU v3.4 User Guide

Greek-Latin; nfd; [\u0304] remove; nfc
τί φ ς; γραφ ν σέ τις, ς οικε, γέγραπται:ῄ ὴ ὡ ἔ
ο γ ρ κε νό γε καταγνώσομαι, ς σὐ ὰ ἐ ῖ ὡ ὺ
τερον.ἕ

tí phéis; graphèn sé tis, hos éoike,
gégraptai: ou gàr ekeînó ge katagnósomai,
hos sỳ héteron.

The following transliterates to Latin but removes all accents:

Greek-Latin; nfd; [:nonspacing marks:]
remove; nfc

τί φ ς; γραφ ν σέ τις, ς οικε, γέγραπται:ῄ ὴ ὡ ἔ
ο γ ρ κε νό γε καταγνώσομαι, ς σὐ ὰ ἐ ῖ ὡ ὺ
τερον.ἕ

ti pheis; graphen se tis, hos eoike,
gegraptai: ou gar ekeino ge katagnosomai,
hos sy heteron.

Pronunciation

Standard transliteration methods often do not follow the pronunciation rules of any
particular language in the target script. For example, the Japanese Hepburn system uses a
"j" that has the English phonetic value (as opposed to French, German, or Spanish), but
uses vowels that do not have the standard English sounds. A transliteration method might
also require some special knowledge to have the correct pronunciation. For example, in
the Japanese kunrei-siki system, "tu" is pronounced as "tsu". This is similar to situations
where there are different languages within the same script. For example, knowing that the
word Gewalt comes from German allows a knowledgeable reader to pronounce the "w"
as a "v".

In some cases, transliteration may be heavily influenced by tradition. For example, the
modern Greek letter beta (β) sounds like a "v", but a transform may continue to use a b
(as in biology). In that case, the user would need to know that a "b" in the transliterated
word corresponded to beta (β) and is to be pronounced as a "v" in modern Greek. Letters
may also be transliterated differently according to their context to make the pronunciation
more predictable. For example, since the Greek sequence GAMMA GAMMA (γγ) is
pronounced as "ng", the first GAMMA can be transcribed as an "n".

In general, predictability means that when transliterating Latin script to other
scripts, English text will not produce phonetic results. This is because the
pronunciation of English cannot be predicted easily from the letters in a word:
e.g. grove, move, and love all end with "ove", but are pronounced very differently.

Cautions

Reversibility may require modifications of traditional transcription methods. For
example, there are two standard methods for transliterating Japanese katakana and
hiragana into Latin letters. The kunrei-siki method is unambiguous. The Hepburn method
can be more easily pronounced by foreigners but is ambiguous. In the Hepburn method,
both ZI (ジ) and DI (ヂ) are represented by "ji" and both ZU (ズ) and DU (ヅ) are

244 ICU v3.4 User Guide

represented by "zu". A slightly amended version of Hepburn, that uses "dji" for DI and
"dzu" for DU, is unambiguous.

When a sequence of two letters map to one, case mappings (uppercase and lowercase)
must be handled carefully to ensure reversibility. For cased scripts, the two letters may
need to have different cases, depending on the next letter. For example, the Greek letter
PHI (Φ) maps to PH in Latin, but Φο maps to Pho, and not to PHo.

Some scripts have characters that take on different shapes depending on their context.
Usually, this is done at the display level (such as with Arabic) and does not require
special transliteration support. However, in a few cases this is represented with different
character codes, such as in Greek and Hebrew. For example, a Greek SIGMA is written in
a final form (ς) at the end of words, and a non-final form (σ) in other locations. This
requires the transform to map different characters based on the context.

It is useful for the reverse mapping to be complete so that arbitrary strings in the
target script can be reasonably mapped back to the source script. Complete
reverse mapping makes it much easier to do mechanical quality checks and so on.
For example, even though the letter "q" might not be necessary in a
transliteration of Greek, it can be mapped to a KAPPA (κ). Such reverse
mappings will not, in general, be unambiguous.

Using Transliterators

Transliterators have APIs in C, C++, and Java™. Only the C++ APIs are listed here. For
more information on the C, Java, and other APIs, see the relevant API docs.

To list the available Transliterators, use code like the following:
count = Transliterator:: countAvailableIDs();
myID =Transliterator::getAvailableID(n);

The ID should not be displayed to users as it is for internal use only. A separate string,
one that can be localized to different languages, is obtained with a static method. (This
method is static to allow the translated names to be augmented without changing the
code.) To get a localized name for use in a GUI, use the following:

 Transliterator::getDisplayName(myID, france, nameForUser);
To create a Transliterator, use the following:

myTrans = Transliterator::createInstance("Latin-Greek");
To get a pre-made compound transform, use a series of IDs separated by ";". For
example:

myTrans = Transliterator::createInstance(
 "any-NFD; [:nonspacing mark:] any-remove; any-NFC");

245 ICU v3.4 User Guide

To convert an entire string, use the following:

myTrans.transliterate(myString);
For more complex cases, such a keyboard input, the following full method provides more
control:

 myTrans.transliterate(replaceable, positions, complete);
The Replaceable interface (or abstract class in C++) allows more complex text to be used
with Transliterators, such as styled text. In ICU4J, a wrapper is supplied for StringBuffer.
A wrapper is an interface to text that handles a very few operations. For example, the
interface can access characters and replace one substring with another. By using this
interface, replacement text can take on the same style as the text it is replacing, so that
style information is not lost. With a replaceable interface to HTML or XML, even higher
level structure can be preserved.

The positions parameter contains information about the range of text that should be
transliterated, plus the possibly larger range of text that can serve as context.

The complete parameter indicates whether or not you are to consider the text up to the
limit to be complete or not. For keyboard input, the complete parameter should normally
be false. Only when the conversion is complete is that parameter set to true. For example,
suppose that a transform converts "sh" to X, and "s" in other cases to Y. If the complete
parameter is true, then a dangling "s" converts to Y; when the complete parameter is
false, then the dangling "s" should not be converted, since there is more text to come.

In keyboard input, normally start/cursor and limit/end are set to the selection at the time
the transform is chosen. The following shows how the selection is chosen:

positions.start = positions.cursor = selection.getStart();
positions.limit = positions.end = selection.getEnd();

246 ICU v3.4 User Guide

As the user types or insertsinputChars, call the following:
replacable.replace(positions.limit, positions.limit, inputChars); // update the text
positions.limit += inputChars.length(); // update the positions
myTrans.transliterate(replaceable, positions, false);

If the user performs an action that indicates he or she is done with the text, then
transliterate is called one last time using the following:

 myTrans.transliterate(replaceable, positions, false);

Transliterator objects are stateless. They retain no information between calls to
transliterate(). However, this does not mean that threads may share transforms
without synchronizing them. Transliterators are not immutable, so they must be
synchronized when shared between threads.

The statelessness might seem to limit the complexity of the operations that can be
performed. In practice, complex transliterations happen by delaying the replacement of
text until it is known that no other replacements are possible. In other words, although the
Transliterator objects are stateless, the source text itself embodies all the needed
information and delayed operation allows arbitrary complexity.

Designing Transliterators

Many people use the supplied transforms. However, there are two different ways of
designing transforms. Many transforms can be produced without subclassing, simply by
designing rules for a RuleBasedTransliterator. If conversions can be done algorithmically
much more compactly than with a long list of rules, then consider subclassing
Transliterator directly. For example, ICU itself supplies specialized subclasses for the
following:

• Hangul Jamo

• Any Hex

• Wrapping the string functions for normalization, case mapping, etc.

Subclassing Transliterators

Subclassers must override handleTransliterate(Replaceable text, Positions
positions, boolean complete). They can override some of the other methods for
efficiency, but ensure that the results are identical. In handleTransliterate convert the
text from positions.cursor up to positions.limit. The context from
positions.start to positions.end may be taken into account as context when doing
this conversion, but should not be converted themselves. Never look at any characters
before positions.start or after positions.end.

The complete parameter indicates whether or not the text up to limit is complete. For

247 ICU v3.4 User Guide

example, suppose that you would convert "sh" to X, and "s" in other cases to Y. If the
complete parameter is true, then a dangling "s" converts to Y; when the complete
parameter is false, then the dangling "s" should not be converted. When you return from
the method, positions.cursor should be set to the furthest position you processed.
Typically this will be up to limit; in case there was an incomplete sequence at the end,
cursor should be set to the position just before that sequence.

Rule-Based Transliterators

ICU supplies the foundation for producing well-behaved transliterations and supplies a
number of typing transliterations for different scripts. The simplest mechanism for
producing transliterations is called a RuleBasedTransliterator. The
RuleBasedTransliterator is a data-based class that allows transliterations to be built up
with a series of rules. These rules provide a specialized set of context-sensitive matching
operations. The operations are similar to regular-expression rules, but adapted to the
specific domain of transliterations.

The simplest rule is a conversion rule, which replaces one string of characters with
another. The conversion rule takes the following form:

xy > z ;
This converts any substring "xy" into "z". Rules are executed in order, so:

sch > sh ;
ss > z ;

This conversion rule transforms "bass school" into "baz shool". The transform walks
through the string from start to finish. Thus given the rules above "bassch" will convert to
"bazch", because the "ss" rule is found before the "sch" rule in the string (later, we'll see a
way to override this behavior). If two rules can both apply at a given point in the string,
then the transform applies the first rule in the list.

All of the ASCII characters except numbers and letters are reserved for use in the rule
syntax. Normally, these characters do not need to be converted. However, to convert them
use either a pair of single quotes or a slash. The pair of single quotes can be used to
surround a whole string of text. The slash affects only the character immediately after it.
For example, to convert from two less-than signs to the word "much less than", use one of
the following rules:

\<\< > much\ less\ than ;
'<<' > 'much less than' ;
'<<' > much' 'less\ than ;

248 ICU v3.4 User Guide

 Spaces may be inserted anywhere without any effect on the rules. Use extra
space to separate items out for clarity without worrying about the effects. This
feature is particularly useful with combining marks; it is handy to put some
spaces around it to separate it from the surrounding text. The following is an
example:

> i ; # an iota-subscript diacritic turns into an i. ͅ

 For a real space in the rules, place quotes around it. For a real backslash, either
double it \\, or quote it '\'. For a real single quote, double it '', or place a
backslash before it \'. Each of the following means the same thing:

'can''t go'
'can\'t go'
can\'t\ go
can''t' 'go

Any text that starts with a hash mark and concludes a line is a comment.
Comments help document how the rules work. The following shows a comment in
a rule:

x > ks ; # change every x into ks

We can use "\u" notation instead of any letter. For instance, instead of using the Greek πp,
we could write:

\u03C0 > p ;
We can also define and use variables, such as:

$pi = \u03C0 ; $pi > p ;

Dual Rules

Rules can also specify what happens when an inverse transform is formed. To do this, we
reverse the direction of the "<" sign. Thus the above example becomes:

$pi < p ;
With the inverse transform, "p" will convert to the Greek p. These two directions can be
combined together into a dual conversion rule by using the "<>" operator, yielding:

$pi <> p ;

249 ICU v3.4 User Guide

Context

Context can be used to have the results of a transformation be different depending on the
characters before or after. The following means "Remove hyphens, but only when they
follow lowercase letters":

[:lowercase letter:] } '-' > '' ;
The context itself ([:lowercase letter:]) is unaffected by the replacement; only the
text between the curly braces is changed.

Revisiting

If the resulting text contains a vertical bar "|", then that means that processing will
proceed from that point and that the transform will revisit part of the resulting text. For
example, if we have:

x > y | z ;
z a > w;

then the string "xa" will convert to "w". First, "xa" is converted to "yza". Then the
processing will continue from after the character "y", pick up the "za", and convert it. Had
we not had the "|", the result would have been simply "yza".

Example

The following shows how these features are combined together in the Transliterator
"Any-Publishing". This transform converts the ASCII typewriter conventions into text
more suitable for desktop publishing (in English). It turns straight quotation marks or
UNIX style quotation marks into curly quotation marks, fixes multiple spaces, and
converts double-hyphens into a dash.

Variables
$single = \' ;
$space = ' ' ;
$double = \" ;
$back = \` ;
$tab = '\u0008' ;
the following is for spaces, line ends, (, [, {, ...
$makeRight = [[:separator:][:start punctuation:][:initial punctuation:]] ;
fix UNIX quotes
$back $back > “ ; # generate right d.q.m. (double quotation mark)
$back > ‘ ;
fix typewriter quotes, by context
$makeRight { $double <> “ ; # convert a double to right d.q.m. after certain chars
^ { $double > “ ; # convert a double at the start of the line.
$double <> ” ; # otherwise convert to a left q.m.
$makeRight {$single} <> ‘ ; # do the same for s.q.m.s

250 ICU v3.4 User Guide

^ {$single} > ‘ ;
$single <> ’;
fix multiple spaces and hyphens
$space {$space} > ; # collapse multiple spaces
'--' <> — ; # convert fake dash into real one

Rule Syntax

The following describes the full format of the list of rules used to create a
RuleBasedTransliterator. Each rule in the list is terminated by a semicolon. The list
consists of the following:

• an optional filter rule

• zero or more transform rules

• zero or more variable-definition rules

• zer or more conversion rules

• an optional inverse filter rule

The filter rule, if present, must appear at the beginning of the list, before any of the other
rules. The inverse filter rule, if present, must appear at the end of the list, after all of the
other rules. The other rules may occur in any order and be freely intermixed.

The rule list can also generate the inverse of the transform. In that case, the inverse of
each of the rules is used, as described below.

Transform Rules
Each transform rule consists of two colons followed by a transform name. For example:

 :: NFD ;
The inverse of a transform rule follows the same conventions as when we create a
transform by name. For example:

:: lower () ; # only executed for the normal
:: (lower) ; # only executed for the inverse
:: lower ; # executed for both the normal and the inverse

Variable Definition Rules
Each variable definition is of the following form:

$variableName = contents ;
The variable name can contain letters and digits, but must start with a letter. More
precisely, the variable names use unicode identifiers as defined by the identifier
properties in ICU. The identifier properties allow for the use of foreign letters and

251 ICU v3.4 User Guide

numbers. See the Unicode class for C++ and the UCharacter class for Java.

The contents of a variable definition is any sequence of Unicode sets and characters or
characters. For example:

$mac = M [aA] [cC] ;
Variables are only replaced within other variable definition rules and within conversion
rules. They have no effect on transliteration rules.

Filter Rules
A filter rule consists of two colons followed by a UnicodeSet. This filter is global in that
only the characters matching the filter will be affected by any transform rules or
conversion rules. The inverse filter rule consists of two colons followed by a UnicodeSet
in parentheses. This filter is also global for the inverse transform.

For example, the Hiragana-Latin transform can be implemented by "pivoting" through the
Katakana converter, as follows:

:: [:^Katakana:] ; # don't touch any katakana that was in the text!
:: Hiragana-Katakana;
:: Katakana-Latin;
:: ([:^Katakana:]) ; # don't touchany katakana that was in the text
 # for the inverse either!

The filters keep the transform from mistakenly converting any of the "pivot" characters.
Note that this is a case where a rule list contains no conversion rules at all, just transform
rules and filters.

Conversion Rules
Conversion rules can be forward, backward, or double. The complete conversion rule
syntax is described below:

Forward
A forward conversion rule is of the following form:

before_context { text_to_replace } after_context > completed_result |
result_to_revisit ;
If there is no before_context, then the "{" can be omitted. If there is no after_context, then
the "}" can be omitted. If there is no result_to_revisit, then the "|" can be omitted. A
forward conversion rule is only executed for the normal transform and is ignored when
generating the inverse transform.

Backward
A backward conversion rule is of the following form:

completed_result | result_to_revisit < before_context { text_to_replace
} after_context ;
The same omission rules apply as in the case of forward conversion rules. A backward
conversion rule is only executed for the inverse transform and is ignored when generating

252 ICU v3.4 User Guide

the normal transform.

Dual

A dual conversion rule combines a forward conversion rule and a backward conversion
rule into one, as discussed above. It is of the form:

a { b | c } d <> e { f | g } h ;
When generating the normal transform and the inverse, the revisit mark "|" and the before
and after contexts are ignored on the sides where they don't belong. Thus, the above is
exactly equivalent to the sequence of the following two rules:

a { b c } d > f | g ;
b | c < e { f g } h ;

Intermixing Transform Rules and Conversion Rules

Starting in ICU 3.4, transform rules and conversion rules may be freely intermixed. (In
earlier versions of ICU, transform rules were only allowed at the beginning or end of the
rule set, immediately after the global filter or immediately before the reverse global
filter.) Inserting a transform rule into the middle of a set of conversion rules has an
important side effect.

Normally, conversion rules are considered together as a group. The only time their order
in the rule set is important is when more than one rule matches at the same point in the
string. In that case, the one that occurs earlier in the rule set wins. In all other situations,
when multiple rules match overlapping parts of the string, the one that matches earlier
wins.

Transform rules apply to the whole string. If you have several transform rules in a row,
the first one is applied to the whole string, then the second one is applied to the whole
string, and so on. To reconcile this behavior with the behavior of conversion rules,
transform rules have the side effect of breaking a surrounding set of conversion rules into
two groups: First all of the conversion rules before the transform rule are applied as a
group to the whole string in the usual way, then the transform rule is applied to the whole
string, and then the conversion rules after the transform rule are applied as a group to the
whole string. For example, consider the following rules:

abc > xyz;
xyz > def;
::Upper;

If you apply these rules to “abcxyz”, you get “XYZDEF”. If you move the “::Upper;” to
the middle of the rule set and change the cases accordingly...

abc > xyz;
::Upper;
XYZ > DEF;

253 ICU v3.4 User Guide

...applying this to “abcxyz” produces “DEFDEF”. This is because “::Upper;” causes the
transliterator to reset to the beginning of the string: The first rule turns the string into
“xyzxyz”, the second rule uppercases the whole thing to “XYZXYZ”, and the third rule
turns this into “DEFDEF”.

This can be useful when a transform naturally occurs in multiple “passes.” Consider this
rule set:

[:Separator:]* > ' ';
'high school' > 'H.S.';
'middle school' > 'M.S.';
'elementary school' > 'E.S.';

If you apply this rule to “high school”, you get “H.S.”, but if you apply it to “high
school” (with two spaces), you just get “high school” (with one space). To have “high
school” (with two spaces) turn into “H.S.”, you'd either have to have the first rule back up
some arbitrary distance (far enough to see “elementary”, if you want all the rules to
work), or you have to include the whole left-hand side of the first rule in the other rules,
which can make them hard to read and maintain:

$space = [:Separator:]*;
high $space school > 'H.S.';
middle $space school > 'M.S.';
elementary $space school > 'E.S.';

Instead, you can simply insert “::Null;” in order to get things to work right:
[:Separator:]* > ' ';
::Null;
'high school' > 'H.S.';
'middle school' > 'M.S.';
'elementary school' > 'E.S.';

The “::Null;” has no effect of its own (the null transliterator, by definition, doesn't do
anything), but it splits the other rules into two “passes”: The first rule is applied to the
whole string, normalizing all runs of whitespace into single spaces, and then we start over
at the beginning of the string to look for the phrases. “high school” (with four spaces)
gets correctly converted to “H.S.”.

This can also sometimes be useful with rules that have overlapping domains. Consider
this rule set from before:

sch > sh ;
ss > z ;

Apply this rule to “bassch” results in “bazch” because “ss” matches earlier in the string
than “sch”. If you really wanted “bassh”-- that is, if you wanted the first rule to win even
when the second rule matches earlier in the string, you'd either have to add another rule
for this special case...

sch > sh ;
ssch > ssh;
ss > z ;

254 ICU v3.4 User Guide

...or you could use a transform rule to apply the conversions in two passes:
sch > sh ;
::Null;
ss > z ;

Masking

When transforms are built, a warning is returned if rules are masked. This happens when
a rule could not be executed because the earlier one would always match.

a > b ;
ac > d ; # masked!

In this case, for example, every string that could have a match for "ac" will already match
"a", because the rules are executed in order. However, the transform compiler will not
currently catch cases that would be masked because of the use of UnicodeSets or regular
expression operators, such as the following:

a } [:L:] > b ;
ac > d ; # masked, but not caught by the compiler

Inverse Summary

The following table shows how the same rule list generates two different transforms,
where the inverse is restated in terms of forward rules (this is a contrived example, simply
to show the reordering):

Original Rules Forward Inverse
:: [:Uppercase Letter:] ;
:: latin-greek ;
:: greek-japanese ;
x <> y ;
z > w ;
r < m ;
:: upper;
a > b ;
c <> d ;
:: any-publishing ;
:: ([:Number:]) ;

:: [:Uppercase Letter:] ;
:: latin-greek ;
:: greek-japanese ;
x > y ;
z > w ;
:: upper ;
a > b ;
c > d ;
:: any-publishing ;

:: [:Number:] ;
:: publishing-any ;
d > c ;
:: lower ;
y > x ;
m > r ;
:: japanese-greek ;
:: greek-latin ;

Note how the irrelevant rules (the inverse filter rule and the rules containing <)
are omitted (ignored, actually) in the forward direction, and notice how things
are reversed: the transform rules are inverted and happen in the opposite order,
and the groups of conversion rules are also executed in the opposite relative
order (although the rules within each group are executed in the same order).

255 ICU v3.4 User Guide

Function Calls

As of ICU 2.1, rule-based transforms can invoke other transforms. The transform being
invoked must be registered with the system before it can be used in a rule. The syntax for
a function call resembles a Perl subroutine call:

([a-zA-Z]) ([a-zA-Z]*) > &Any-Upper($1) &Any-Lower($2) ;

This example transforms strings of ASCII letters to have an initial uppercase letter
followed by lowercase letters. (In practice, you would use the Any-Title to do proper
titlecasing.)

The formal syntax is:
'&' Basic-id '(' Text-arg ')'
Elements in single quotes are literals. Basic-id is a basic ID, as described earlier. It
specifies a source, target, and optional variant, but does not include a filter, explicit
reverse, or compound elements. Text-arg is any text that may appear on the output side
of a rule. This means nested function calls are supported.

For more information on the use of rules, and more examples of the syntax in use, see the
tutorial.

Regular Expression

The rules are similar to Regular Expressions in offering: Variables, Property matches,
Contextual matches, Rearrangement ($1, $2…), and Quantifiers (*, +, ?). They are more
powerful in offering: Ordered Rules, Cursor Backup, Buffered/Keyboard support. They
are less powerful in that they have only greedy quantifiers, no backup (so no X | Y), and
no input-side back references.

Here is a simple example that shows the difference between a set of Transliterator rules,
and successively applying regular expression replacements.

256 ICU v3.4 User Guide

Since the transform processes each of its rules at each point, it catches the yx before the
xy in the second case. Since each of the regular expressions is evaluated over the whole
string, that isn't possible. Simply using multiple regular expressions can't account for the
interaction and ordering of characters and rules. (You can, however, simulate the regex
behavior with transform rules by using a transform rule to split the conversion rules into
passes.)

For more details on constructing rules, see the Transliterator Rule Tutorial.

Script Transliterator Sources

Currently ICU offers script transliterations between Latin and certain other scripts (such
script transliterations are called romanizations), plus transliterations between the Indic
scripts (excluding Urdu). Additional romanizations and other script transliterations will
be added in the future. In general, ICU follows the UNGEGN: Working Group on
Romanization Systems where possible. The following describes the sources used.

Except where otherwise noted, all of these systems are designed to be reversible. For
bicameral scripts (those with upper and lower case), case may not be completely
preserved. The transliterations are also designed to be complete for the letters a-z. A
fallback is used for a letter that is not used in the transliteration.

257 ICU v3.4 User Guide

Korean

There are many romanizations of Korean. The default transliteration follows the Korean
Ministry of Culture & Tourism Transliteration regulations with the clause 8 variant for
reversibility:

8. When it is necessary to convert Romanized Korean back to Hangeul in special cases
such as in academic articles, Romanization is done according to Hangeul spelling and not
pronunciation. Each Hangeul letter is Romanized as explained in section 2 except that ㄱ,
ㄷ, ㅂ, ㄹ are always written as g, d, b, l. When ㅇ has no sound value, it is replaced by
a hyphen may also be used when it is necessary to distinguish between syllables.

There is one other variation: an apostrophe is used instead of a hyphen, since it has better
title casing behavior. To change this, see Modifications.

Japanese

The default transliteration for Japanese uses the a slight variant of the Hepburn system.
With Hepburn system, both ZI (ジ) and DI (ヂ) are represented by "ji" and both ZU (ズ)
and DU (ヅ) are represented by "zu". This is amended slightly for reversibility by using
"dji" for DI and "dzu" for DU.

The Katakana transliteration is reversible. Hiragana-Katakana transliteration is not
completely reversible since there are several Katakana letters that do not have
corresponding Hiragana equivalents. Also, the length mark is not used with Hiragana.
The Hiragana-Latin transliteration is also not reversible since internally it is a
combination of Katakana-Hiragana and Hiragana-Latin.

Greek

The default transliteration uses a standard transcription for Greek. The transliterations is
one that is aimed at preserving etymology. The ISO 843 variant has the following
differences:

Greek Default ISO 843
β b v
γ* n g
η ē ī
̔ h (omitted)
̀ ̀ (omitted)
~ ~ (omitted)
* before γ, κ, ξ, χ

258 ICU v3.4 User Guide

Cyrillic

Cyrillic generally follows ISO 9 for the base Cyrillic set. There are tentative plans to add
extended Cyrillic characters in the future, plus variants for GOST and other national
standards.

Indic

The default romanization uses the ISCII standard with some minor modifications for
reversibility. Internally, all Indic scripts are transliterated by converting first to an internal
form, called Interindic, then from Interindic to the target script.

Transliteration of Indic scripts in ICU follows the ISO 15919 standard for Romanization
of Indic scripts using diacritics. Internally, all Indic scripts are transliterated by converting
first to an internal form, called Inter-Indic, then from Inter-Indic to the target script. ISO
15919 differs from ISCII 91 in application of diacritics for certain characters. These
differences are shown in the following example (illustrated with Devanagari, although the
same principles apply to the other Indic scripts):

Devanagari ISCII 91 ISO 15919

ऋ ṛ r ̥
ऌ l ̱ l ̥
ॠ ṝ r ̥̄
ॡ l ̱̄ l ̥̄
ढ़ dhâ ṛha

ड़ dâ rạ
With some fonts the diacritics will not be correctly placed on the base letters. The
macron on a lowercase L may look particularly bad.

Transliteration rules in Indic are reversible with the exception of the ZWJ and ZWNJ
used to request explicit rendering effects. For example:

Devanagari Romanization Note

क ksạ normal

क�� ksạ explicit halant requested

क� �� ksạ half-consonant requested

There are two particular instances where transliterations may produce unexpected results:
(1) where a halant after a consonant is implied by the romanization (in such cases the
vowel needs to be explicitly written out), and (2) with the transliteration of 'c'.

259 ICU v3.4 User Guide

For example:

Devanagari Romanization

स�न��प Sēngupta

स�न��प Sēnagupta

म�ननच Monica

म�ननक Monika

Modifications

It is easy using transforms to create variants of the defaults. For example, to create a
variant of Korean that uses hyphens instead of apostrophes, use the following rules:

:: Latin-Hangul ;
'' <> '-' ;

More Information

For more information, see:

• UNGEGN: Working Group on Romanization Systems

• Transliteration of Non-Roman Alphabets and Scripts (Søren Binks)

• Standards for Archival Description: Romanization

• ISO-15915 (Hindi)

• ISO-15915 (Gujarati)

• ISO-15915 (Kannada)

• ISCII-91

260 ICU v3.4 User Guide

Transform Rule Tutorial
This tutorial describes the process of building a custom transform based on a set of rules.
The tutorial does not describe, in detail, the features of transform; instead, it explains the
process of building rules and describes the features needed to perform different tasks. The
focus is on building a script transform since this process provides concrete examples that
incorporates most of the rules.

Script Transliterators

The first task in building a script transform is to determine which system of transliteration
to use as a model. There are dozens of different systems for each language and script.

The International Organization for Standardization (ISO) uses a strict definition of
transliteration, which requires it to be reversible. Although the goal for ICU script
transforms is to be reversible, they do not have to adhere to this definition. In general,
most transliteration systems in use are not reversible. This tutorial will describe the
process for building a reversible transform since it illustrates more of the issues involved
in the rules. (For guidelines in building transforms, see "Guidelines for Designing Script
Transliterations" in the ICU User Guide. For external sources for script transforms, see
Script Transliterator Sources)

In this example, we start with a set of rules for Greek since they provide a real example
based on mathematics. We will use the rules that do not involve the pronunciation of
Modern Greek; instead, we will use rules that correspond to the way that Greek words
were incorporated into the English lanaguage. For example, we will transliterate
"Βιολογία-Φυσιολογία" as "Biología-Physiología", not as "Violohía-Fisiolohía". To
illustrate some of the trickier cases, we will also transliterate the Greek accents that are no
longer in use in modern Greek.

Some of the characters may not be visible on the screen unless you have a
Unicode font with all the Greek letters. If you have a licensed copy of Microsoft®
Office, you can use the "Arial Unicode MS" font, or you can download the
CODE2000 font for free. For more information, see Display Problems? on the
Unicode web site.

261 ICU v3.4 User Guide

We will also verify that every Latin letter maps to a Greek letter. This insures that when
we reverse the transliteration that the process can handle all the Latin letters.

This direction is not reversible. The following table illustrates this situation:

Source→Target Reversible φ → ph → φ
Target→Source Not (Necessarily)

Reversible
f → φ → ph

Basics

In noncomplex cases, we have a one-to-one relationship between letters in both Greek
and Latin. These rules map between a source string and a target string. The following
shows this relationship:
π <> p;
This rule states that when you transliterate from Greek to Latin, convert π to p and when
you transliterate from Latin to Greek, convert p to π. The syntax is
string1 <> string2 ;
We will start by adding a whole batch of simple mappings. These mappings will not work
yet, but we will start with them. For now, we will not use the uppercase versions of
characters.

One to One Mappings
α <> a;
β <> b;
γ <> g;
δ <> d;
ε <> e;
We will also add rules for completeness. These provide fallback mappings for Latin
characters that do not normally result from transliterating Greek characters.

Completeness Mappings
κ < c;
κ < q;

Context and Range

We have completed the simple one-to-one mappings and the rules for completeness. The
next step is to look at the characters in context. In Greek, for example, the transform
converts a "γ" to an "n" if it is before any of the following characters: γ, κ, ξ, or χ.
Otherwise the transform converts it to a "g". The following list a all of the possibilities:

γγ > ng;

262 ICU v3.4 User Guide

γκ > nk;
γξ > nx;
γχ > nch;
γ > g;

All the rules are evaluated in the order they are listed. The transform will first try to
match the first four rules. If all of these rules fail, it will use the last one.

However, this method quickly becomes tiresome when you consider all the possible
uppercase and lowercase combinations. An alternative is to use two additional features:
context and range.

Context

First, we will consider the impact of context on a transform. We already have rules for
converting γ, κ, ξ, and χ. We must consider how to convert the Î³ character when it is
followed by ³, Îº, Î¾, and Ï‡. Otherwise we must permit those characters to be converted
using their specific rules. This is done with the following:

γ } γ > n;
γ } κ > n;
γ } ξ > n;
γ } χ > n;
γ > g;

A left curly brace marks the start of a context rule. The context rule will be followed
when the transform matches the rules against the source text, but itself will not be
converted. For example, if we had the sequence γγ, the transform converts the first γ into
an "n" using the first rule, then the second γ is unaffected by that rule. The "γ" matches a
"k" rule and is converts it into a "k". The result is "nk".

Range

Using context, we have the same number of rules. But, by using range, we can collapse
the first four rules into one. The following shows how we can use range:

{γ}[γκξχ] > n;
γ > g;

Any list of characters within square braces will match any one of the characters. We can
then add the uppercase variants for completeness, to get:

γ } [ΓΚΞΧγκξχ] > n;
γ > g;

Remember that we can use spaces for clarity. We can also write this rule as the following:

γ } [Γ Κ Ξ Χ γ κ ξ χ] > n ;
γ > g ;

If a range of characters happens to have adjacent code numbers, we can just use a hyphen
to abbreviate it. For example, instead of writing [a b c d e f g m n o], we can simplify the

263 ICU v3.4 User Guide

range by writing [a-g m-o].

Styled Text

Another reason to use context is that transforms will convert styled text. When transforms
convert styled text, they copy the style source text to the target text. However, the
transforms are limited in that they can only convert whole replacements since it is
impossible to know how any boundaries within the source text will correspond to the
target text. Thus the following shows the effects of the two types of rules on some sample
text:

For example, suppose that we were to convert "γγ" to "ng". By using context, if there is a
different style on the first gamma than on the second (such as font, size, color, etc), then
that style difference is preserved in the resulting two characters. That is, the "n" will have
the style of the first gamma, while the "g" will have the style of the second gamma.

Contexts preserve the styles at a much finer granularity.

Case

When converting from Greek to Latin, we can just convert "θ" to and from "th". But what
happens with the uppercase theta (Θ)? Sometimes we need to convert it to uppercase
"TH", and sometimes to uppercase "T" and lowercase "h". We can choose between these
based on the letters before and afterwards. If there is a lowercase letter after an uppercase
letter, we can choose "Th", otherwise we will use "TH".

We could manually list all the lowercase letters, but we also can use ranges. Ranges not
only list characters explicitly, but they also give you access to all the characters that have
a given Unicode property. Although the abbreviations are a bit arcane, we can specify
common sets of characters such as all the uppercase letters. The following example shows
how case and range can be used together:

Θ } [:LowercaseLetter:] <> Th;
Θ <> TH;

The example allows words like Θεολογικές‚ to map to Theologikés and not THeologikés

You either can specify properties with the POSIX-style syntax, such as
[:LowercaseLetter:], or with the Perl-style syntax, such as \p{LowercaseLetter}.

264 ICU v3.4 User Guide

Properties and Values

A Greek sigma is written as "ς" if it is at the end of a word (but not completely separate)
and as "σ" otherwise. When we convert characters from Greek to Latin, this is not a
problem. However, it is a problem when we convert the character back to Greek from
Latin. We need to convert an s depending on the context. While we could list all the
possible letters in a range, we can also use a character property. Although the range
[:Letter:] stands for all letters, we really want all the characters that aren't letters. To
accomplish this, we can use a negated range: [:^Letter:]. The following shows a negated
range:

σ < [:^Letter:] { s } [:^Letter:] ;
ς < s } [:^Letter:] ;
σ < s ;

These rules state that if an "s" is surrounded by non-letters, convert it to "σ". Otherwise, if
the "s" is followed by a non-letter, convert it to "ς". If all else fails, convert it to "σ"

Negated ranges [^...] will match at the beginning and the end of a string. This
makes the rules much easier to write.

To make the rules clearer, you can use variables. Instead of the example above, we can
write the following:

$nonletter = [:^Letter:] ;
σ < $nonletter { s } $nonletter ;
ς < s } $nonletter ;
σ < s ;

There are many more properties available that can be used in combination. For following
table lists some examples:

Combination Example Description: All code
points that are:

Union [[:Greek:] [:letter:]] either in the Greek script, or
are letters

Intersection [[:Greek:] & [:letter:]] are both Greek and letters
Set Difference [[:Greek:] - [:letter:]] are Greek but not letters
Complement [^[:Greek:] [:letter:]] are neither Greek nor letters
For more on properties, see the UnicodeSet Properties.

Repetition

Elements in a rule can also repeat. For example, in the following rules, the transform
converts an iota-subscript into a capital I if the preceding base letter is an uppercase
character. Otherwise, the transform converts the iota-subscript into a lowercase character.

265 ICU v3.4 User Guide

[:Uppercase Letter:] { } > I;ͅ
 > i;ͅ

However, this is not sufficient, since the base letter may be optionally followed by non-
spacing marks. To capture that, we can use the * syntax, which means repeat zero or more
times. The following shows this syntax:

[:Uppercase Letter:] [:Nonspacing Mark:] * { } > I ;ͅ
 > i ;ͅ

The following operators can be used for repetition:

Repetition Operators
X* zero or more X's
X+ one or more X's
X? Zero or one X
We can also use these operators as sequences with parentheses for grouping. For
example, "a (b c) * d" will match against "ad" or "abcd" or "abcbcd".

Currently, any repetition will cause the sequence to match as many times as
allowed even if that causes the rest of the rule to fail. For example, suppose we
have the following (contrived) rules:

266 ICU v3.4 User Guide

The intent was to transform a sequence like "able blue" into "ablæ blué". The
rule does not work as it produces "ablé blué". The problem is that when the left
side is matched against the text in the first rule, the [:Letter:]* matches all the
way back through the "al" characters. Then there is no "a" left to match. To have
it match properly, we must subtract the 'a' as in the following example:

Æther

The start and end of a string are treated specially. Essentially, characters off the end of the
string are handled as if they were the noncharacter \uFFFF, which is called "æther". (The
code point \uFFFF will never occur in any valid Unicode text). In particular, a negative
Unicode set will generally also match against the start/end of a string. For example, the
following rule will execute on the first a in a string, as well as an a that is actually
preceded by a non-letter.

Rule [:^L:] } a > b ;
Source a xa a
Results b xa b

This is because \uFFFF is an element of [:^L:], which includes all codepoints that do not
represent letters. To refer explicitly to æther, you can use a $ at the end of a range, such as
in the following rules:

Rules [0-9$] { a > b ;
a } [0-9$] > b ;

Source a 5a a
Results b 5b a

In these rules, an a before or after a number -- or at the start or end of a string -- will be
matched. (You could also use \uFFFF explicitly, but the $ is recommended).

Thus to disallow a match against æther in a negation, you need to add the $ to the list of
negated items. For example, the first rule and results from above would change to the
following (notice that the first a is not replaced):

Rule [^[:L:]$] } a > b ;
Source a xa a
Results a xa b

Characters that are outside the context limits -- contextStart to contextEnd -- are
also treated as æther.

The property [:any:] can be used to match all code points, including æther. Thus the
following are equivalent:

267 ICU v3.4 User Guide

Rule1 [\u0000-\U0010FFFF] } a > A ;
Rule2 [:any:] } a > A ;

However, since the transform is always greedy with no backup, this property is not very
useful in practice. What is more often required is dealing with the end of lines. If you
want to match the start or end of a line, then you can define a variable that includes all the
line separator characters, and then use it in the context of your rules. For example:

Rules $break = [[:Zp:][:Zl:] \u000A-\u000D
\u0085 $] ;
 $break } a > A ;

Source a a
a a

Results A a
A a

There is also a special character, the period (.), that is equivalent to the negation of the
$break variable we defined above. It can be used to match any characters excluding those
for linebreaks or æther. However, it cannot be used within a range: you can't have [[.] -
\u000A], for example. If you want to have different behavior you can define your own
variables and use them instead of the period.

There are a few other special escapes, that can be used in ranges. These are
listed in the table below. However, instead of the latter two it is safest to use the
above $break definition since it works for line endings across different platforms.

Escape Meaning Code
\t Tab \u0009
\n Linefeed \u000A
\r Carriage Return \u000D

Accents

We could handle each accented character by itself with rules such as the following:

ά > á;
έ > é;
...

This procedure is very complicated when we consider all the possible combinations of
accents and the fact that the text might not be normalized. In ICU 1.8, we can add other
transforms as rules either before or after all the other rules. We then can modify the rules
to the following:

:: NFD (NFC) ;
α <> a;
...

268 ICU v3.4 User Guide

ω <> ō;
:: NFC (NFD);

These modified rules first separate accents from their base characters and then put them
in a canonical order. We can then deal with the individual components, as desired. We
can use NFC (NFC) at the end to put the entire result into standard canonical form. The
inverse uses the transform rules in reverse order, so the (NFD) goes at the bottom and
(NFC) at the top.

A global filter can also be used with the transform rules. The following example shows a
filter used in the rules:

:: [[:Greek:][:Inherited:]];
:: NFD (NFC) ;
α <> a;
...
ω <> ō;
:: NFC (NFD);
:: ([[:Latin:][:Inherited:]]);

The global filter will cause any other characters to be unaffected. In particular, the NFD
then only applies to Greek characters and accents, leaving all other characters

Disambiguation

If the transliteration is to be completely reversible, what would happen if we happened to
have the Greek combination νγ? Because ν converts to n, both νγ and γγ convert to "ng"
and we have an ambiguity. Normally, this sequence does not occur in the Greek language.
However, for consistency -- and especially to aid in mechanical testing– we must consider
this situation. (There are other cases in this and other languages where both sequences
occur.)

To resolve this ambiguity, use the mechanism recommended by the Japanese and Korean
transliteration standards by inserting an apostrophe or hyphen to disambiguate the results.
We can add a rule like the following that inserts an apostrophe after an "n" if we need to
reverse the transliteration process:
 ν } [ΓΚΞΧγκξχ] > n\';
In ICU, there are several of these mechanisms for the Greek rules. The ICU rules undergo
some fairly rigorous mechanical testing to ensure reversibility. Adding these
disambiguation rules ensure that the rules can pass these tests and handle all possible
sequences of characters correctly.

There are some character forms that never occur in normal context. By convention, we
use tilde (~) for such cases to allow for reverse transliteration. Thus, if you had the text
"Θεολογικές (ς)", it would transliterate to "Theologikés (~s)". Using the tilde allows the
reverse transliteration to detect the character and convert correctly back to the original:
"Θεολογικές (ς)". Similarly, if we had the phrase "Θεολογικέσ", it would transliterate to
"Theologiké~s". These are called anomalous characters.

269 ICU v3.4 User Guide

Revisiting

Rules allow for characters to be revisited after they are replaced. For example, the
following converts "C" back "S" in front of "E", "I" or "Y". The vertical bar means that
the character will be revisited, so that the "S" or "K" in a Greek transform will be applied
to the result and will eventually produce a sigma (Σ, σ, or ς) or kappa (Κ or κ).

$softener = [eiyEIY] ;
| S < C } $softener ;
| K < C ;
| s < c } $softener ;
| k < c ;

The ability to revisit is particularly useful in reducing the number of rules required for a
given language. For example, in Japanese there are a large number of cases that follow
the same pattern: "kyo" maps to a large hiragana for "ki" (き) followed by a small
hiragana for "yo" (ょ). This can be done with a small number of rules with the following
pattern:

First, the ASCII punctuation mark, tilde "~", represents characters that never normally
occur in isolation. This is a general convention for anomalous characters within the ICU
rules in any event.

'~yu' > ゅ;

'~ye' > ぇ;

'~yo' > ょ;

Second, any syllables that use this pattern are broken into the first hiragana and are
followed by letters that will form the small hiragana.

by > び|'~y';

ch > ち|'~y';

dj > ぢ|'~y';

gy > ぎ|'~y';

j > じ|'~y';

ky > き|'~y';

my > み|'~y';

ny > に|'~y';

py > ぴ|'~y';

ry > り|'~y';

sh > し|'~y';

Using these rules, "kyo" is first converted into "き~yo". Since the "~yo" is then revisited,
this produces the desired final result, "きょ". Thus, a small number of rules (3 + 11 = 14)
provide for a large number of cases. If all of the combinations of rules were used instead,
it would require 3 x 11 = 33 rules.

270 ICU v3.4 User Guide

You can set the new revisit point (called the cursor) anywhere in the replacement text.
You can even set the revisit point before or after the target text. The at-sign, as in the
following example, is used as a filler to indicate the position, for those cases:

[aeiou] { x > | @ ks ;
ak > ack ;

The first rule will convert "x", when preceded by a vowel, into "ks". The transform will
then backup to the position before the vowel and continue. In the next pass, the "ak" will
match and be invoked. Thus, if the source text is "ax", the result will be "ack".

Although you can move the cursor forward or backward, it is limited in two ways:
(a) to the text that is matched, (b) within the original substring that is to be
converted. For example, if we have the rule "a b* {x} > |@@@@@y" and it
matches in the text "mabbx", the result will be "m|abby" (| represents the cursor
position). Even though there are five @ signs, the cursor will only backup to the
first character that is matched.

Copying

We can copy part of the matched string to the target text. Use parenthesis to group the
text to copy and use "$n" (where n is a number from 1 to 99) to indicate which group. For
example, in Korean, any vowel that does not have a consonant before it gets the null
consonant (?) inserted before it. The following example shows this rule:

 ([aeiouwy]) > ?| $1 ;
To revisit the vowel again, insert the null consonant, insert the vowel, and then backup
before the vowel to reconsider it. Similarly, we have a following rule that inserts a null
vowel (?), if no real vowel is found after a consonant:

 ([b-dg-hj-km-npr-t]) > | $1 eu;
In this case, since we are going to reconsider the text again, we put in the Latin equivalent
of the Korean null vowel, which is "eu".

Order Matters

Two rules overlap when there is a string that both rules could match at the start. For
example, the first part of the following rule does not overlap, but the last two parts do
overlap:

β > b;
γ } [Γ Κ Ξ Χ γ κ ξ χ] > n ;
γ > g ;

When rules do not overlap, they will produce the same result no matter what order they
are in. It does not matter whether we have either of the following:

271 ICU v3.4 User Guide

β > b;
γ > g ;
or
γ > g ;
β > b;

When rules do overlap, order is important. In fact, a rule could be rendered completely
useless. Suppose we have:

β } [aeiou] > b;
β } [^aeiou] > v;
β > p;

In this case, the last rule is masked as none of the text that will match the rule will already
be matched by previous rules. If a rule is masked, then a warning will be issued when you
attempt to build a transform with the rules.

Combinations

In Greek, a rough breathing mark on one of the first two vowels in a word represents an
"H". This mark is invalid anywhere else in the language. In the normalize (NFD) form,
the rough-breathing mark will be first accent after the vowel (with perhaps other accents
following). So, we will start with the following variables and rule. The rule transforms a
rough breathing mark into an "H", and moves it to before the vowels.

$gvowel = [ΑΕΗΙΟΥΩαεηιουω];
($gvowel +) > H | $1;̔

A word like ΤΑΝ" is transformed into "HOTAN". This transformation does not workὍ
with a lowercase word like " ταν". To handle lowercase words, we insert another ruleὅ
that moves the "H" over lowercase vowels and changes it to lowercase. The following
shows this rule:

$gvowel = [ΑΕΗΙΟΥΩαεηιουω];
$lcgvowel = [αεηιουω];
($lcgvowel +) > h | $1; # fix lowercase̔
($gvowel +) > H | $1;̔

This rule provides the correct results as the lowercase word " ταν" is transformed intoὅ
"hotan".

There are also titlecase words such as " ταν". For this situation, we need to lowercaseὍ
the uppercase letters as the transform passes over them. We need to do that in two
circumstances: (a) the breathing mark is on a capital letter followed by a lowercase, or (b)
the breathing mark is on a lowercase vowel. The following shows how to write a rule for
this situation:

$gvowel = [ΑΕΗΙΟΥΩαεηιουω];
$lcgvowel = [αεηιουω];

272 ICU v3.4 User Guide

{Ο } [:Nonspacing Mark:]* [:Ll:] > H | ο; # fix Titlecase̔
{Ο ($lcgvowel *) } > H | ο $1; # fix Titlecase̔
($lcgvowel +) > h | $1 ; # fix lowercase̔
($gvowel +) > H | $1 ;̔

This rule gives the correct results for lowercase as " ταν" is transformed into "Hotan".Ὅ
We must copy the above insertion and modify it for each of the vowels since each has a
different lowercase.

We must also write a rule to handle a single letter word like " ". In that case, we wouldὃ
need to look beyond the word, either forward or backward, to know whether to transform
it to "HO" or to transform it to "Ho". Unlike the case of a capital theta (Θ), there are cases
in the Greek language where single-vowel words have rough breathing marks. In this
case, we would use several rules to match either before or after the word and ignore
certain characters like punctuation and space (watch out for combining marks).

Pitfalls

1. Case When executing script conversions, if the source script has uppercase and
lowercase characters, and the target is lowercase, then lowercase everything before
your first rule. For example:

 :: [:Latin:] lower (); # lowercase target before applying forward
rules

 This will allow the rules to work even when they are given a mixture of upper and
lower case character. This procedure is done in the following ICU transforms:

• Latin-Hangul

• Latin-Greek

• Latin-Cyrillic

• Latin-Devenagari

• Latin-Gujarati

• etc

2. Punctuation. When executing script conversions, remember that scripts have
different punctuation conventions. For example, in the Greek language, the ";" means a
question mark. Generally, these punctuation marks also should be converted when
transliterating scripts.

3. Normalization Always design transform rules so that they work no matter whether
the source is normalized or not. (This is also true for the target, in the case of
backwards rules.) Generally, the best way to do this is to have :: NFD (NFC); as the
first line of the rules, and :: NFC (NFD); as the last line. To supply filters, as
described above, break each of these lines into two separate lines. Then, apply the
filter to either the normal or inverse direction. Each of the accents then can be

273 ICU v3.4 User Guide

manipulated as separate items that are always in a canonical order. If we are not using
any accent manipulation, we could use :: NFC (NFC) ; at the top of the rules instead.

4. Ignorable Characters Letters may have following accents such as the following
example:

 [:lowercase letter:] } z > s ; # convert z after letters into s

 Normally, we want to ignore any accents that are on the z in performing the rule. To
do that, restate the rule as:

 [:lowercase letter:] [:mark:]* } z > s ; # convert z after letters
into s

 Even if we are not using NFD, this is still a good idea since some languages use
separate accents that cannot be combined.
Moreover, some languages may have embedded format codes, such as a Left-Right
Mark, or a Non-Joiner. Because of that, it is even safer to use the following:

TODO: this code should be part of the preceding list item #4.
$ignore = [[:mark:] [:format:]] * ; # define at the top of your file
...
[:letter:] $ignore } z > s ; # convert z after letters into sh

Remember that the rules themselves must be in the same normalization format.
Otherwise, nothing will match. To do this, run NFD on the rules themselves. In
some cases, we must rearrange the order of the rules because of masking. For
example, consider the following rules:
If these rules are put in normalized form, then the second rule will mask the first.
To avoid this, exchange the order because the NFD representation has the
accents separate from the base character. We will not be able to see this on the
screen if accents are rendered correctly. The following shows the NFD
representation:

274 ICU v3.4 User Guide

Collation Introduction
Overview

Traditionally, information is displayed in sorted order to enable users to easily find the
items they are looking for. However, users of different languages might have very
different expectations of what a "sorted" list should look like. Not only does the
alphabetical order vary from one language to another, but it also can vary from document
to document within the same language. For example, phonebook ordering might be
different than dictionary ordering. String comparison is one of the basic functions most
applications require, and yet implementations often do not match local conventions. The
ICU Collation Service provides string comparison capability with support for appropriate
sort orderings for each of the locales you need. In the event that you have a very unusual
requirement, you are also provided the facilities to customize orderings.

Starting in release 1.8, the ICU Collation Service is updated to be fully compliant to the
Unicode Collation Algorithm (UCA) (http://www.unicode.org/unicode/reports/tr10/) and
conforms to ISO 14651. There are several benefits to using the collation algorithms
defined in these standards. Some of the more significant benefits include:

• Unicode contains a large set of characters. This can make it difficult for collation to be
a fast operation or require collation to use significant memory or disk resources. The
ICU collation implementation is designed to be fast, have a small memory footprint
and be highly customizable.

• The algorithms have been designed and reviewed by experts in multilingual collation,
and therefore are robust and comprehensive.

• Applications that share sorted data but do not agree on how the data should be ordered
fail to perform correctly. By conforming to the UCA/14651 standard for collation,
independently developed applications, such as those used for e-business, sort data
identically and perform properly.

The ICU Collation Service also contains several enhancements that are not available in
UCA. For example:

• Additional case handling: ICU allows case differences to be ignored or flipped.
Uppercase letters can be sorted before lowercase letters, or vice-versa.

• Easy customization: Services can be easily tailored to address a wide range of
collation requirements.

• Flexibility: ICU offers both sort key generation and fast incremental string
comparison. It also provides low-level access to collation data through the collation
element iterator

There are many challenges when accommodating the world's languages and writing
systems and the different orderings that are used. However, the ICU Collation Service

275 ICU v3.4 User Guide

provides an excellent means for comparing strings in a locale-sensitive fashion.

For example, here are some of the ways languages vary in ordering strings:

• The letters A-Z can be sorted in a different order than in English. For example, in
Lithuanian, "y" is sorted between "i" and "k".

• Combinations of letters can be treated as if they were one letter. For example, in
traditional Spanish "ch" is treated as a single letter, and sorted between "c" and "d".

• Accented letters can be treated as minor variants of the unaccented letter. For example,
"é" can be treated equivalent to "e".

• Accented letters can be treated as distinct letters. For example, "Å" in Danish is treated
as a separate letter that sorts just after "Z".

• Unaccented letters that are considered distinct in one language can be indistinct in
another. For example, the letters "v" and "w" are two different letters according to
English. However, "v" and "w" are considered variant forms of the same letter in
Swedish.

• A letter can be treated as if it were two letters. For example, in traditional German "ä"
is compared as if it were "ae".

• Thai requires that the order of certain letters be reversed.

• French requires that letters sorted with accents at the end of the string be sorted ahead
of accents in the beginning of the string. For example, the word "côte" sorts before
"coté" because the acute accent on the final "e" is more significant than the circumflex
on the "o".

• Sometimes lowercase letters sort before uppercase letters. The reverse is required in
other situations. For example, lowercase letters are usually sorted before uppercase
letters in English. Latvian letters are the exact opposite.

• Even in the same language, different applications might require different sorting
orders. For example, in German dictionaries, "öf" would come before "of". In phone
books the situation is the exact opposite.

• Sorting orders can change over time due to government regulations or new
characters/scripts in Unicode.

To accommodate the many languages and differing requirements, ICU collation supports
customizing sort orderings - also known as tailoring. More details regarding tailoring are
discussed in a later chapter.

The basic ICU Collation Service is provided by two main categories of APIs:

• String comparison - used when two strings are to be compared once: APIs return result
of comparison (greater than, equal or less than). An example usage of this function is a
string search.

• Sort key generation - used when a set of strings are compared repeatedly: APIs return a
zero-terminated array of bytes per string known as a sort key. The keys can be

276 ICU v3.4 User Guide

compared directly using strcmp or memcmp standard library functions, saving repeated
computation of each string's relative weights. Typically, database applications use sort
keys to index strings that are compared multiple times.

Programming Examples

Here are some API usage conventions for the ICU Collation Service APIs.

277 ICU v3.4 User Guide

API Details
This section describes some of the usage conventions for the ICU Collation Service API.

Collator Instantiation

To use the ICU Collation Service, you must instantiate an ICU Collator. The Collator
defines the properties and behavior of the sort ordering. The Collator can be repeatedly
referenced until all collation activities have been performed. The Collator can then be
closed and removed.

Instantiating the Predefined Collators

ICU comes with a large set of already predefined collators that are suited for specific
locales. Most of the ICU locales have a predefined collator. In worst case, the default set
of rules, which is equivalent to the UCA ordering, is used.

To instantiate a predefined collator, use the APIs ucol_open, createInstance and
getInstance for C, C++ and Java codes respectively. All three APIs takes a Locale
object as an argument.

This example demonstrates the instantiation of a collator.

C:
UErrorCode status = U_ZERO_ERROR;
UCollator *coll = ucol_open("en_US", &status);
if(U_SUCCESS(status)) {
/* close the collator*/
ucol_close(coll);
}

C++:
UErrorCode status = U_ZERO_ERROR;
Collator *coll = Collator::createInstance(Locale("en", "US"),
status);
if(U_SUCCESS(status)) {
//close the collator
delete coll;
}

Java:

Collator col = null;
try {
 col = Collator.getInstance(Locale.US);
} catch (Exception e) {
 System.err.println("English collation creation failed.");
 e.printStackTrace();
}

Instatiating Collators Using Custom Rules

278 ICU v3.4 User Guide

If the ICU predefined collators are not appropriate for your intendeded usage, you can
define your own set of rules and instantiate a collator that uses them. For more details,
please see the section on collation customization.

This example demonstrates the instantiation of a collator.

C:
UErrorCode status = U_ZERO_ERROR;
UCollator *coll = ucol_openRules("en_US", &status);
if(U_SUCCESS(status)) {
/* close the collator*/
ucol_close(coll);
}

C++:
UErrorCode status = U_ZERO_ERROR;
Collator *coll = Collator::createInstance(Locale("en", "US"), status);
if(U_SUCCESS(status)) {
//close the collator
delete coll;
}

Java:

RuleBasedCollator coll = null;
String ruleset = "&9 < a, A < b, B < c, C; ch, cH, Ch, CH < d, D, e, E";
try {
 coll = new RuleBasedCollator(ruleset);
} catch (Exception e) {
 System.err.println("Customized collation creation failed.");
 e.printStackTrace();
}

Compare

Two of the most used functions in ICU collation API, ucol_strcoll and ucol_
getSortKey have their counterparts in both Win32 and ANSI APIs:

ICU C ICU C++ ICU Java ANSI/POSIX WIN32
ucol_strcoll Collator::com

pare
Collator.comp
are

Strcoll CompareString

ucol_getSortK
ey

Collator::get
CollationKey

Collator.getC
ollationKey

Strxfrm LCMapString

For more sophisticated usage, such as user-controlled language-sensitive text searching,
an iterating interface to collation is provided. Please refer to the section below on
CollationElementIterator for more detail.

The ucol_compare function is useful for one-time comparisons. Comparing two strings
is much faster than calculating sort keys for both of them. However, if comparisons
should be done repeatedly on a large number of strings, generating and storing sort keys
can improve performance. In all other cases (such as quick sort or bubble sort of a
moderately-sized list of strings), comparing strings works very well.

The C API used for comparing two strings is ucol_strcoll. It requires two UChar *

279 ICU v3.4 User Guide

strings and their lengths as parameters, as well as a pointer to a valid UCollator instance.
The result is a UCollationResult constant, which can be one of UCOL_LESS,
UCOL_EQUAL or UCOL_GREATER.

The C++ API offers the method Collator::compare with several overloads. Acceptable
input arguments are UChar * with length of strings or UnicodeString instances. The
result is a member of the EComparisonResult enum.

The Java API provides the method Collator.compare with one overload. Acceptable
input arguments are Strings or Objects. The result is an int value, which is less than
zero if source is less than target, zero if source and target are equal, or greater than zero if
source is greater than target.

There are also several convenience functions and methods returning a boolean value, such
as ucol_greater, ucol_greaterOrEqual, ucol_equal (in C) Collator::greater,
Collator::greaterOrEqual, Collator::equal (in C++) and Collator.equals (in
Java).

Examples

C:
UChar *s [] = { /* list of Unicode strings */ };
uint32_t listSize = sizeof(s)/sizeof(s[0]);
UErrorCode status = U_ZERO_ERROR;
UCollator *coll = ucol_open("en_US", &status);
uint32_t i, j;
if(U_SUCCESS(status)) {
 for(i=listSize-1; i>=1; i--) {
 for(j=0; j<i; j++) {
 if(ucol_strcoll(s[j], -1, s[j+1], -1) == UCOL_LESS) {
 swap(s[j], s[j+1]);
 }
 }
}
ucol_close(coll);
}

C++:
UnicodeString s [] = { /* list of Unicode strings */ };
uint32_t listSize = sizeof(s)/sizeof(s[0]);
UErrorCode status = U_ZERO_ERROR;
Collator *coll = Collator::createInstance(Locale("en", "US"), status);
uint32_t i, j;
if(U_SUCCESS(status)) {
 for(i=listSize-1; i>=1; i--) {
 for(j=0; j<i; j++) {
 if(coll->compare(s[j], s[j+1]) == UCOL_LESS) {
 swap(s[j], s[j+1]);
 }
 }
}
delete coll;
}

Java:

String s [] = { /* list of Unicode strings */ };
try {
 Collator coll = Collator.getInstance(Locale.US);

280 ICU v3.4 User Guide

 for (int i = s.length - 1; i > = 1; i --) {
 for (j=0; j<i; j++) {
 if (coll.compare(s[j], s[j+1]) == -1) {
 swap(s[j], s[j+1]);
 }
 }
 }
} catch (Exception e) {
 System.err.println("English collation creation failed.");
 e.printStackTrace();
}

The C API provides the ucol_getSortKey function, which requires (apart from a pointer
to a valid UCollator instance), an original UCharpointer, together with its length. It also
requires a pointer to a receiving buffer and its length.

The C++ API provides the Collator::getSortKey method with similar parameters as
the C version. It also provides Collator::getCollationKey, which produces a
CollationKey object instance (a wrapper around a sort key).

The Java API provides only the Collator.getCollationKey method, which produces a
CollationKey object instance (a wrapper around a sort key).

ucol_getSortKey() can operate in 'preflighting' mode, which returns the amount of
memory needed to store the resulting sort key. This mode is automatically activated if the
output buffer size passed is set to zero. Should the sort key become longer than the buffer
provided, function again slips into preflighting mode. The overall performance is poorer
than if the function is called with a zero output buffer . If the size of the sort key returned
is greater than the size of the buffer provided, the content of the result buffer is undefined.
In that case, the result buffer could be reallocated to its proper size and the sort key
generator function can be used again.

The best way to generate a series of sort keys is to do the following:

1. Create a big temporary buffer on the stack. Typically, this buffer is allocated only
once, and reused with every sort key generated. There is no need to keep it as small as
possible. A recommended size for the temporary buffer is four times the length of the
longest string processed.

2. Start the loop. Call ucol_getSortKey()to find out how big the sort key buffer should
be, and fill in the temporary buffer at the same time.

3. If the temporary buffer is too small, allocate or reallocate more space for in an
overflow buffer to handle the overflow situations. Fill in the sort key values in the
overflow buffer.

4. Allocate the sort key buffer with the size returned by ucol_getSortKey() and call
memcpy to copy the sort key content from the temp buffer to the sort key buffer.

5. Loop back to step 1 until you are done.

6. Delete the overflow buffer if you created one.

Example

281 ICU v3.4 User Guide

void GetSortKeys(const Ucollator* coll, const UChar*
const *source, uint32_t arrayLength)
{
 char[1000] buffer; // allocate stack buffer
 char* currBuffer = buffer;
 int32_t bufferLen = sizeof(buffer);
 int32_t expectedLen = 0;
 UErrorCode err = U_ZERO_ERROR;
 for (int i = 0; i < arrayLength; ++i) {
 expectedLen = ucol_getSortKey(coll, source[i], -1, currBuffer, bufferLen);
 if (expectedLen > bufferLen) {
 if (currBuffer == buffer) {
 currBuffer = (char*)malloc(expectedLen);
 } else
 currBuffer = (char*)realloc(currBuffer, expectedLen);
 }
 bufferLen = ucol_getSortKey(coll, source[i], -1, currBuffer, expectedLen);
 }
 processSortKey(i, currBuffer, bufferLen);
}
if (currBuffer != buffer) {
 // dump buffer
 if (currBuffer != NULL) {
 free(currBuffer);
 }
}
}

Although the API allows you to call ucol_getsortkey with NULL to see what
the sort key length is, it is strongly recommended that you NOT determine the
length first, then allocate and fill the sort key buffer. If you do, it requires twice
the processing since computing the length has to do the same calculation as
actually getting the sort key. Instead, the example shown above uses a stack
buffer.

Using Iterators for String Comparison

ICU4C's ucol_strcollIter API allows for comparing two strings that are supplied as
character iterators (UCharIterator). This is useful when you need to compare differently
encoded strings using strcoll. In that case, converting the strings first would be
probably be wasteful, since strcoll usually gives the result before whole strings are
processed. This API is implemented only as a C function in ICU4C. There are no
equivalent C++ or ICU4J functions.

...
/* we are arriving with two char*: utf8Source and utf8Target, with their
* lengths in utf8SourceLen and utf8TargetLen
*/
 UCharIterator sIter, tIter;
 uiter_setUTF8(&sIter, utf8Source, utf8SourceLen);
 uiter_setUTF8(&tIter, utf8Target, utf8TargetLen);
 compareResultUTF8 = ucol_strcollIter(myCollation, &sIter, &tIter, &status);
...

Obtaining Partial Sort Keys

When using different sort algorithms, such as radix sort, sometimes it is useful to process

282 ICU v3.4 User Guide

strings only as much as needed to feed into the sorting algorithm. For that purpose, ICU
provides ucol_nextSortKeyPart API, which also takes character iterators. This API
allows for iterating over subsequent pieces of an uncompressed sort key. Between calls to
the API you need to save a 64-bit state. Following is an example of simulating a string
compare function using partial sort key API. Your usage model is bound to look much
different.

static UCollationResult compareUsingPartials(UCollator *coll,
 const UChar source[], int32_t sLen,
 const UChar target[], int32_t tLen,
 int32_t pieceSize, UErrorCode *status) {
 int32_t partialSKResult = 0;
 UCharIterator sIter, tIter;
 uint32_t sState[2], tState[2];
 int32_t sSize = pieceSize, tSize = pieceSize;
 int32_t i = 0;
 uint8_t sBuf[16384], tBuf[16384];
 if(pieceSize > 16384) {
 *status = U_BUFFER_OVERFLOW_ERROR;
 return UCOL_EQUAL;
 }
 *status = U_ZERO_ERROR;
 sState[0] = 0; sState[1] = 0;
 tState[0] = 0; tState[1] = 0;
 while(sSize == pieceSize && tSize == pieceSize && partialSKResult == 0) {
 uiter_setString(&sIter, source, sLen);
 uiter_setString(&tIter, target, tLen);
 sSize = ucol_nextSortKeyPart(coll, &sIter, sState, sBuf, pieceSize, status);
 tSize = ucol_nextSortKeyPart(coll, &tIter, tState, tBuf, pieceSize, status);
 partialSKResult = memcmp(sBuf, tBuf, pieceSize);
 }
 if(partialSKResult < 0) {
 return UCOL_LESS;
 } else if(partialSKResult > 0) {
 return UCOL_GREATER;
 } else {
 return UCOL_EQUAL;
 }
}

Other Examples

A longer example is presented in the 'Examples' section. Here is an illustration of the
usage model.

C:
#define MAX_KEY_SIZE 100
#define MAX_BUFFER_SIZE 10000
#define MAX_LIST_LENGTH 5
const char text[] = {
 "Quick",
 "fox",
 "Moving",
 "trucks",
 "riddle"
};
const UChar s [5][20];
int i;
int32_t length, expectedLen;
uint8_t temp[MAX_BUFFER _SIZE];
uint8_t *temp2 = NULL;

283 ICU v3.4 User Guide

uint8_t keys [MAX_LIST_LENGTH][MAX_KEY_SIZE];
UErrorCode status = U_ZERO_ERROR;

temp2 = temp;
length = MAX_BUFFER_SIZE;
for(i = 0; i < 5; i++)
{
 u_uastrcpy(s[i], text[i]);
}
UCollator *coll = ucol_open("en_US",&status);
uint32_t length;
if(U_SUCCESS(status)) {
 for(i=0; i<MAX_LIST_LENGTH; i++) {
 expectedLen = ucol_getSortKey(coll, s[i], -1,temp2,length);
 if (expectedLen > length) {
 if (temp2 == temp) {
 temp2 =(char*)malloc(expectedLen);
 } else
 temp2 =(char*)realloc(temp2, expectedLen);
 }
 length =ucol_getSortKey(coll, s[i], -1, temp2, expectedLen);
 }
 memcpy(key[i], temp2, length);
 }
}
qsort(keys, MAX_LIST_LENGTH,MAX_KEY_SIZE*sizeof(uint8_t), strcmp);
for (i = 0; i < MAX_LIST_LENGTH; i++) {
 free(key[i]);
}
ucol_close(coll);

C++:
#define MAX_LIST_LENGTH 5
const UnicodeString s [] = {
 "Quick",
 "fox",
 "Moving",
 "trucks",
 "riddle"
};
CollationKey *keys[MAX_LIST_LENGTH];
UErrorCode status = U_ZERO_ERROR;
Collator *coll = Collator::createInstance(Locale("en_US"), status);
uint32_t i;
if(U_SUCCESS(status)) {
 for(i=0; i<listSize; i++) {
 keys[i] = coll->getCollationKey(s[i], -1);
 }
 qsort(keys, MAX_LIST_LENGTH, sizeof(CollationKey),compareKeys);
 delete[] keys;
 delete coll;
}

Java:

String s [] = {
 "Quick",
 "fox",
 "Moving",
 "trucks",
 "riddle"
};
CollationKey keys[] = new CollationKey[s.length];
try {
 Collator coll = Collator.getInstance(Locale.US);
 for (int i = 0; i < s.length; i ++) {
 keys[i] = coll.getCollationKey(s[i]);
 }
 Arrays.sort(keys);
}

284 ICU v3.4 User Guide

catch (Exception e) {
 System.err.println("Error creating English collator");
 e.printStackTrace();
}

Collation ElementIterator

A collation element iterator can only be used in one direction. This is established at the
time of the first call to retrieve a collation element. Once ucol_next (C),
CollationElementIterator::next (C++) or CollationElementIterator.next
(Java)are invoked, ucol_previous (C), CollationElementIterator::previous (C++)
or CollationElementIterator.previous (Java) should not be used (and vice versa).
The direction can be changed immediately after ucol_first , ucol_last, ucol_reset
(in C), CollationElementIterator::first, CollationElementIterator::last,
CollationElementIterator::reset (in C++) or
CollationElementIterator.first, CollationElementIterator.last,
CollationElementIterator.reset (in Java) is called, or when it reaches the end of
string while traversing the string.

When ucol_next is called at the end of the string buffer, UCOL_NULLORDER is always
returned with any subsequent calls to ucol_next. The same applies to ucol_previous.

An example of how iterators are used is the Boyer-Moore search implementation, which
can be found in the samples section.

API Example

C:
UCollator *coll = ucol_open("en_US",status);
UErrorCode status = U_ZERO_ERROR;
UChar text[20];
UCollationElements *collelemitr;
uint32_t collelem;
u_uastrcpy(text, "text");
collelemitr = ucol_openElements(coll, text, -1, &status);
collelem = 0;
do {
 collelem = ucol_next(collelemitr, &status);
} while (collelem != UCOL_NULLORDER);
ucol_closeElements(collelemitr);
ucol_close(coll);

C++:

UErrorCode status = U_ZERO_ERROR;
Collator *coll = Collator::createInstance(Locale::getUS(), status);
UnicodeString text("text");
CollationElementIterator *collelemitr = coll->createCollationElementIterator(text);
uint32_t collelem = 0;
do {
 collelem = collelemitr->next(status);
} while (collelem != CollationElementIterator::NULLORDER);
delete collelemitr;
delete coll;

285 ICU v3.4 User Guide

Java:

try {
 RuleBasedCollator coll = (RuleBasedCollator)Collator.getInstance(Locale.US);
 String text = "text";
 CollationElementIterator collelemitr = coll.getCollationElementIterator(text);
 int collelem = 0;
 do {
 collelem = collelemitr.next();
 } while (collelem != CollationElementIterator.NULLORDER);
} catch (Exception e) {
 System.err.println("Error in collation iteration");
 e.printStackTrace();
}

Setting and Getting Attributes

The general attribute setting APIs are ucol_setAttribute (in C) and
Collator::setAttribute (in C++). These APIs take an attribute name and an attribute
value. If the name and the value pass a syntax and range check, the property of the
collator is changed. If the name and value do not pass a syntax and range check, however,
the state is not changed and the error code variable is set to an error condition. The Java
version does not provide general attribute setting APIs, instead, each attribute will have
its own setter API of the form RuleBasedCollator.setATTRIBUTE_NAME(arguments).

The attribute getting APIs are ucol_getAttribute (C) and Collator::getAttribute
(C++). Both APIs require an attribute name as an argument and return an attribute value
if a valid attribute name was supplied. If a valid attribute name was not supplied,
however, they return an undefined result and set the error code. Similarly to the setter
APIs for the Java version, no generic getter API is provided. Each attribute will have its
own setter API of the form RuleBasedCollator.getATTRIBUTE_NAME() in the Java
version.

References:

• Mark Davis, Ken Whistler: "Unicode Technical Standard #10, Unicode Collation
Algorithm" (http://www.unicode.org/unicode/reports/tr10/)

• Mark Davis: "ICU Collation Design Document" (http://dev.icu-project.org/cgi-
bin/viewcvs.cgi/*checkout*/icuhtml/design/collation/ICU_collation_design.htm)

• The Unicode Standard 3.0, chapter 5, "Implementation guidelines"
(http://www.unicode.org/unicode/uni2book/ch05.pdf)

• Laura Werner: "Efficient text searching in Java: Finding the right string in any
language"
(http://icu.sourceforge.net/docs/papers/efficient_text_searching_in_java.html)

• Mark Davis, Martin Dürst: "Unicode Standard Annex #15: Unicode Normalization
Forms" (http://www.unicode.org/unicode/reports/tr15/).

286 ICU v3.4 User Guide

Collation Concepts
The previous section demonstrated many of the requirements imposed on string
comparison routines that try to correctly collate strings according to conventions of more
than a hundred different languages, written in many different scripts. This section
describes the principles and architecture behind the ICU Collation Service.

The following topics are discussed:

• Comparison Levels

• French secondary sorting

• Contractions

• Expansions

• Contractions Producing Expansions

• Normalization

• Punctuation

• Case Ordering

• Sorting of Japanese Text (JIS X 4061)

• Thai/Lao reordering

• Collator naming scheme

Comparison Levels

In general, when comparing and sorting objects, some properties can take precedence
over others. For example, in geometry, you might consider first the number of sides a
shape has, followed by the number of sides of equal length. This causes triangles to be
sorted together, then rectangles, then pentangles, etc. Within each category, the shapes
would be ordered according to whether they had 0, 2, 3 or more sides of the same length.
However, this is not the only way the shapes can be sorted. For example, it might be
preferable to sort shapes by color first, so that all red shapes are grouped together, then
blue, etc. Another approach would be to sort the shapes by the amount of area they
enclose.

Similarly, character strings have properties, some of which can take precedence over
others. There is more than one way to prioritize the properties.

For example, a common approach is to distinguish characters first by their unadorned
base letter (for example, without accents, vowels or tone marks), then by accents, and
then by the case of the letter (upper vs. lower). Ideographic characters might be sorted by
their component radicals and then by the number of strokes it takes to draw the character.

287 ICU v3.4 User Guide

An alternative ordering would be to sort these characters by strokes first and then by their
radicals.

The ICU Collation Service supports many levels of comparison (named "Levels", but also
known as "Strengths"). Having these categories enables ICU to sort strings precisely
according to local conventions. However, by allowing the levels to be selectively
employed, searching for a string in text can be performed with various matching
conditions.

Performance optimizations have been made for ICU collation with the default level
settings. Performance specific impacts are discussed in the Performance section below.

Following is a list of the names for each level and an example usage:

• Primary Level: Typically, this is used to denote differences between base characters
(for example, "a" < "b"). It is the strongest difference. For example, dictionaries are
divided into different sections by base character. This is also called the level-1
strength.

• Secondary Level: Accents in the characters are considered secondary differences (for
example, "as" < "às" < "at"). Other differences between letters can also be considered
secondary differences, depending on the language. A secondary difference is ignored
when there is a primary difference anywhere in the strings. This is also called the
level-2 strength.
 Note: In some languages (such as Danish), certain accented letters are considered to
be separate base characters. In most languages, however, an accented letter only has a
secondary difference from the unaccented version of that letter.

• Tertiary Level: Upper and lower case differences in characters are distinguished at the
tertiary level (for example, "ao" < "Ao" < "aò"). In addition, a variant of a letter differs
from the base form on the tertiary level (such as "A" and " "). Another example is the
difference between large and small Kana. A tertiary difference is ignored when there is
a primary or secondary difference anywhere in the strings. This is also called the level-
3 strength.

• Quaternary Level: When punctuation is ignored (see Ignoring Punctuations) at level 1-
3, an additional level can be used to distinguish words with and without punctuation
(for example, "ab" < "a-b" < "aB"). This difference is ignored when there is a primary,
secondary or tertiary difference. This is also known as the level-4 strength. The
quaternary level should only be used if ignoring punctuation is required or when
processing Japanese text (see Hiragana processing).

• Identical Level: When all other levels are equal, the identical level is used as a
tiebreaker. The Unicode code point values of the NFD form of each string are
compared at this level, just in case there is no difference at levels 1-4 . For example,
Hebrew cantellation marks are only distinguished at this level. This level should be
used sparingly, as only code point values differences between two strings is an
extremely rare occurrence. Using this level substantially decreases the performance for

288 ICU v3.4 User Guide

both incremental comparison and sort key generation (as well as increasing the sort
key length). It is also known as level 5 strength.

French Secondary Sorting

Some languages, particularly French, require words to be ordered on the secondary level
according to the last accent difference, as opposed to the first accent difference. This
behavior is called French secondary sorting or French accent ordering.

Example:

English

French

cote
 coté
 côte
 côté

cote
 côte
 coté
 côté

Contractions

A contraction is a sequence consisting of two or more letters. It is considered a single
letter in sorting.

For example, in the traditional Spanish sorting order, "ch" is considered a single letter.
All words that begin with "ch" sort after all other words beginning with "c", but before
words starting with "d".

Other examples of contractions are "ch" in Czech, which sorts after "h", and "lj" and "nj"
in Croatian and Latin Serbian, which sort after "l" and "n" respectively.

Example:

Order without
contraction

Order with contraction "lj"
sorting after letter "l"

la
 li
 lj
 lja
 ljz
 lk
 lz
 ma

la
 li
 lk
 lz
 lj
 lja
 ljz
 ma

289 ICU v3.4 User Guide

Contracting sequences such as the above are not very common in most languages. They
are very important, however, since they are also used in the ordering of accented letters.
This is because the implementation of ICU treats tailored precomposed characters (such
as Ã in Spanish) as contracting sequence (e.g. N + ~).

Since ICU 2.2, and as required by the UCA, if a completely ignorable code point
appears in text in the middle of contraction, it will not break the contraction. For
example, in Czech sorting, cU+0000h will sort as it were ch

Expansions

If a letter sorts as if it were a sequence of more than one letter, it is called an expansion.

For example, in traditional German sorting, "ä" sorts as though it were equivalent to the
sequence "ae." All words starting with "ä" will sort between words starting with "ad" and
words starting with "af".

In the case of Unicode encoding, characters can often be represented either as pre-
composed characters or in decomposed form. For example, the letter "à" can be
represented in its decomposed (a+`) and pre-composed (à) form. Most applications do not
want to distinguish text by the way it is encoded. A search for "à" should find all
instances of the letter, regardless of whether the instance is in pre-composed or
decomposed form. Therefore, either form of the letter must result in the same sort
ordering. The architecture of the ICU Collation Service supports this.

Contractions Producing Expansions

It is possible to have contractions that produce expansions.

One example occurs in Japanese, where the vowel with a prolonged sound mark is treated
to be equivalent to the long vowel version:

カアｱ<<< カイｱ and
 キイｱ<<< キイｱ

Since ICU 2.0 Japanese tailoring uses prefix analysis instead of contraction
producing expansions.

Normalization

In the section on expansions, we discussed that text in Unicode can often be represented
in either pre-composed or decomposed forms. There are other types of equivalences
possible with Unicode, including Canonical and Compatibility. The process of

290 ICU v3.4 User Guide

Normalization ensures that text is written in a predictable way so that searches are not
made unnecessarily complicated by having to match on equivalences. Not all text is
normalized, however, so it is useful to have a collation service that can address text that is
not normalized, but do so with efficiency.

The ICU Collation Service handles un-normalized text properly, producing the same
results as if the text were normalized.

In practice, most data that is encountered is in normalized or semi-normalized form
already. The ICU Collation Service is designed so that it can process a wide range of
normalized or un-normalized text without a need for normalization processing. When a
case is encountered that requires normalization, the ICU Collation Service drops into
code specific to this purpose. This maximizes performance for the majority of text that
does not require normalization.

In addition, if the text is known with certainty not to contain un-normalized text, then
even the overhead of checking for normalization can be eliminated. The ICU Collation
Service has the ability to turn Normalization Checking either on or off. If Normalization
Checking is turned off, it is the user's responsibility to insure that all text is already in the
appropriate form. This is true in a great majority of the world languages, so normalization
checking is turned off by default for most locales.

If the text requires normalization processing, Normalization Checking should be on. Any
language that uses multiple combining characters such as Arabic, ancient Greek, Hebrew,
Hindi, Thai or Vietnamese either requires Normalization Checking to be on, or the text to
go through a normalization process before collation.

ICU supports two modes of normalization: on and off. Java.text.* classes offer
compatibility decomposition mode, which is not supported in ICU.

Ignoring Punctuation

In some cases, punctuation can be ignored while searching or sorting data. For example,
this enables a search for "biweekly" to also return instances of "bi-weekly". In other cases,
it is desirable for punctuated text to be distinguished from text without punctuation, but to
have the text sort close together.

These two behaviors can be accomplished if there is a way for a character to be ignored
on all levels except for the quaternary level. If this is the case, then two strings which
compare as identical on the first three levels (base letter, accents, and case) are then
distinguished at the fourth level based on their punctuation (if any). If the comparison
function ignores differences at the fourth level, then strings that differ by punctuation
only are compared as equal.

The following table shows the results of sorting a list of terms in 3 different ways. In the
first column, punctuation characters (space " ", and hyphen "-") are not ignored (" " < "-"
< "b"). In the second column, punctuation characters are ignored in the first 3 levels and

291 ICU v3.4 User Guide

compared only in the fourth level. In the third column, punctuation characters are ignored
in the first 3 levels and the fourth level is not considered. In the last column, punctuated
terms are equivalent to the identical terms without punctuation.

Example:

Non-ignorable

Ignorable and Quaternary
strength

Ignorable and Tertiary
strength

black bird
 black Bird
 black birds
 black-bird
 black-Bird
 black-birds
 blackbird
 blackBird
 blackbirds

black bird
 black-bird
 blackbird
 black Bird
 black-Bird
 blackBird
 black birds
 black-birds
 blackbirds

black bird
 black-bird
 blackbird
 black Bird
 black-Bird
 blackBird
 black birds
 black-birds
 blackbirds

The strings with the same font format in the last column are compared as equal
by ICU Collator.
Since ICU 2.2 and as prescribed by the UCA, primary ignorable code points that
follow shifted code points will be completely ignored. This means that an accent
following a space will compare as if it was a space alone.

Case Ordering

The tertiary level is used to distinguish text by case, by small versus large Kana, and other
letter variants as noted above.

Some applications prefer to emphasize case differences so that words starting with the
same case sort together. Some Japanese applications require the difference between small
and large Kana be emphasized over other tertiary differences.

The UCA does not provide means to separate out either case or Kana differences from the
remaining tertiary differences. However, the ICU Collation Service has two options that
help in customize case and/or Kana differences. Both options are turned off by default.

CaseFirst

The Case-first option makes case the most significant part of the tertiary level. Primary
and secondary levels are unaffected. With this option, words starting with the same case
sort together. The Case-first option can be set to make either lowercase sort before
uppercase or uppercase sort before lowercase.

292 ICU v3.4 User Guide

Note: The case-first option does not constitute a separate level; it is simply a reordering of
the tertiary level.

ICU makes use of the following three case categories for sorting

• uppercase: "ABC"

• mixed case: "Abc", "aBc"

• normal (lowercase or no case): "abc", "123"

Mixed case is always sorted between uppercase and normal case when the "case-first"
option is set.

CaseLevel

The Case Level option makes a separate level for case differences. This is an extra level
positioned between secondary and tertiary. The case level is used in Japanese to make the
difference between small and large Kana more important than the other tertiary
differences. It also can be used to ignore other tertiary differences, or even secondary
differences. This is especially useful in matching. For example, if the strength is set to
primary only (level-1) and the case level is turned on, the comparison ignores accents and
tertiary differences except for case. The contents of the case level are affected by the case-
first option.

The case level is independent from the strength of comparison. It is possible to have a
collator set to primary strength with the case level turned on. This provides for
comparison that takes into account the case differences, while at the same time ignoring
accents and tertiary differences other than case. This may be used in searching.

Example:

Case-first off
 Case level off

Lowercase-first
 Case level off

Uppercase-first
 Case level off

Lowercase-first
 Case level on

Uppercase-first
 Case level on

apple
 ⓐⓟⓟⓛⓔ
 Abernathy
 ｱｱｱｱｱｱｱｱｱ
 ähnlich
 Ähnlichkeit

apple
 ⓐⓟⓟⓛⓔ
 ähnlich
 Abernathy
 ｱｱｱｱｱｱｱｱｱ
 Ähnlichkeit

Abernathy
 ｱｱｱｱｱｱｱｱｱ
 Ähnlichkeit
 apple
 ⓐⓟⓟⓛⓔ
 ähnlich

apple
 Abernathy
ⓐⓟⓟⓛⓔ
 ｱｱｱｱｱｱｱｱｱ
 ähnlich
 Ähnlichkeit

Abernathy
 apple
 ｱｱｱｱｱｱｱｱｱ
 ⓐⓟⓟⓛⓔ
 Ähnlichkeit
 ähnlich

Sorting of Japanese Text (JIS X 4061)

Japanese standard JIS X 4061 requires two changes to the collation procedures: special
processing of Hiragana characters and (for performance reasons) prefix analysis of text.

293 ICU v3.4 User Guide

Hiragana Processing

JIS X 4061 standard requires more levels than provided by the UCA. To offer conformant
sorting order, ICU uses the quaternary level to distinguish between Hiragana and
Katakana. Hiragana symbols are given smaller values than Katakana symbols on
quaternary level, thus causing Hiragana sequences to sort before corresponding Katakana
sequences.

Prefix Analysis

Another characteristics of sorting according to the JIS X 4061 is a large number of
contractions followed by expansions (see Contractions Producing Expansions). This
causes all the Hiragana and Katakana codepoints to be treated as contractions, which
reduces performance. The solution we adopted introduces the prefix concept which
allows us to improve the performance of Japanese sorting. More about this can be found
in the customization section.

Thai/Lao reordering

UCA requires that certain Thai and Lao prevowels be reordered with a code point
following them. This option is always on in the ICU implementation, as prescribed by the
UCA.

There is a difference between java.text.* classes and ICU in regard to Thai
reordering. Java.text.* classes allow tailorings to turn off reordering by using the
'!' modifier. ICU ignores the '!' modifier and always reorders Thai prevowels.

Collator naming scheme

When collating or matching text, a number of attributes can be used to affect the desired
result. The following describes the attributes, their values, their effects, their normal
usage, and the string comparison performance and sort key length implications. It also
includes single-letter abbreviations for both the attributes and their values. These
abbreviations allow a 'short-form' specification of a set of collation options, such as
"UCA4.0.0_AS_LSV_S", which can be used to specific that the desired options are: UCA
version 4.0.0; ignore spaces, punctuation and symbols; use Swedish linguistic
conventions; compare case-insensitively.

A number of attribute values are common across different attributes; these include
Default (abbreviated as D), On (O), and Off (X). Unless otherwise stated, the examples
use the UCA alone with default settings.

294 ICU v3.4 User Guide

In order to achieve uniqueness, collator name always has the attribute
abbreviations sorted.

Main References

• For a full list of supported locales in ICU, see Locale Explorer, which also contains an
on-line demo showing sorting for each locale. The demo allows you to try different
attribute values, to see how they affect sorting.

• To see tabular results for different locales in ICU (with the tailored characters
marked), see the ICU Collation Charts. For a view of the UCA table itself, see the
Unicode Collation Charts.

• For the UCA specification, see UTS #10: Unicode Collation Algorithm.

• For more detail on the precise effects of these options, see Collation Customization.

295 ICU v3.4 User Guide

Attribute Ab
.

Possible
Values

Description

Locale
Script
Region
Variant
Keyword

L
Z
R
V
K

<language>
<script>
<region>
<variant>
<keyword>

The Locale attribute is typically the most important
attribute for correct sorting and matching, according
to the user expectations in different countries and
regions. The default UCA ordering will only sort a
few languages such as Dutch and Portuguese
correctly ("correctly" meaning according to the
normal expectations for users of the languages).
Otherwise, you need to supply the locale to UCA in
order to properly collate text for a given language.
Thus a locale needs to be supplied so as to choose a
collator that is correctly tailored for that locale. The
choice of a locale will automatically preset the
values for all of the attributes to something that is
reasonable for that locale. Thus most of the time the
other attributes do not need to be explicitly set. In
some cases, the choice of locale will make a
difference in string comparison performance and/or
sort key length.
 In short attribute names,
<language>_<script>_<region>_<keyword> is
represented by:
L<language>_Z<script>_R<region>_V<variant>
_K<keyword>. Not all the elements are required.
Valid values for locale elements are general valid
values for RFC 3066 locale naming.
 Example:
 Locale="sv" (Swedish) "Kypper" < "Köpfe"
 Locale="de" (German) "Köpfe" < "Kypper"

296 ICU v3.4 User Guide

Attribute Ab
.

Possible
Values

Description

Strength S 1, 2, 3, 4, I, D The Strength attribute determines whether accents or
case are taken into account when collating or
matching text. ((In writing systems without case or
accents, it controls similarly important features).
The default strength setting usually does not need to
be changed for collating (sorting), but often needs to
be changed when matching (e.g. SELECT). The
possible values include Default (D), Primary (1),
Secondary (2), Tertiary (3), Quaternary (4), and
Identical (I).
 For example, people may choose to ignore accents
or ignore accents and case when searching for text.
 Almost all characters are distinguished by the first
three levels, and in most locales the default value is
thus Tertiary. However, if Alternate is set to be
Shifted, then the Quaternary strength (4) can be used
to break ties among whitespace, punctuation, and
symbols that would otherwise be ignored. If very
fine distinctions among characters are required, then
the Identical strength (I) can be used (for example,
Identical Strength distinguishes between the
Mathematical Bold Small A and the Mathematical
Italic Small A. For more examples, look at the cells
with white backgrounds in the collation charts).
However, using levels higher than Tertiary - the
Identical strength - result in significantly longer sort
keys, and slower string comparison performance for
equal strings.
 Example:
 S=1 role = Role = rôle
 S=2 role = Role < rôle
 S=3 role < Role < rôle

297 ICU v3.4 User Guide

Attribute Ab
.

Possible
Values

Description

Case_Level E X, O, D The Case_Level attribute is used when ignoring
accents but not case. In such a situation, set Strength
to be Primary, and Case_Level to be On. In most
locales, this setting is Off by default. There is a small
string comparison performance and sort key impact
if this attribute is set to be On.
 Example:
 S=1, E=X role = Role = rôle
 S=1, E=O role = rôle < Role

Case_First C X, L, U, D The Case_First attribute is used to control whether
uppercase letters come before lowercase letters or
vice versa, in the absence of other differences in the
strings. The possible values are Uppercase_First (U)
and Lowercase_First (L), plus the standard Default
and Off. There is almost no difference between the
Off and Lowercase_First options in terms of results,
so typically users will not use Lowercase_First: only
Off or Uppercase_First. (People interested in the
detailed differences between X and L should consult
the Collation Customization).
 Specifying either L or U won't affect string
comparison performance, but will affect the sort key
length.
 Example:
 C=X or C=L "china" < "China" < "denmark" <
"Denmark"
 C=U "China" < "china" < "Denmark" < "denmark"

298 ICU v3.4 User Guide

Attribute Ab
.

Possible
Values

Description

Alternate A N, S, D The Alternate attribute is used to control the
handling of the so-called variable characters in the
UCA: whitespace, punctuation and symbols. If
Alternate is set to Non-Ignorable (N), then
differences among these characters are of the same
importance as differences among letters. If Alternate
is set to Shifted (S), then these characters are of only
minor importance. The Shifted value is often used in
combination with Strength set to Quaternary. In such
a case, white-space, punctuation, and symbols are
considered when comparing strings, but only if all
other aspects of the strings (base letters, accents, and
case) are identical. If Alternate is not set to Shifted,
then there is no difference between a Strength of 3
and a Strength of 4.
 For more information and examples, see
Variable_Weighting in the UCA. The reason the
Alternate values are not simply On and Off is that
additional Alternate values may be added in the
future. The UCA option Blanked is expressed with
Strength set to 3, and Alternate set to Shifted.
 The default for most locales is Non-Ignorable. If
Shifted is selected, it may be slower if there are
many strings that are the same except for
punctuation; sort key length will not be affected
unless the strength level is also increased.
 Example:
 S=3, A=N di Silva < Di Silva < diSilva < U.S.A. <
USA
 S=3, A=S di Silva = diSilva < Di Silva < U.S.A. =
USA
 S=4, A=S di Silva < diSilva < Di Silva < U.S.A. <
USA

299 ICU v3.4 User Guide

Attribute Ab
.

Possible
Values

Description

Variable_Top T <hex digits> The Variable_Top attribute is only meaningful if the
Alternate attribute is not set to Non-Ignorable. In
such a case, it controls which characters count as
ignorable. The string value specifies the "highest"
character (in UCA order) weight that is to be
considered ignorable.
 Thus, for example, if a user wanted white-space to
be ignorable, but not any visible characters, then s/he
would use the value Variable_Top="\u0020" (space).
The string should only be a single character. All
characters of the same primary weight are equivalent,
so Variable_Top="\u3000" (ideographic space) has
the same effect as Variable_Top="\u0020".
 This setting (alone) has little impact on string
comparison performance; setting it lower or higher
will make sort keys slightly shorter or longer
respectively
 Example:
 S=3, A=S di Silva = diSilva < U.S.A. = USA
 S=3, A=S, T=0020 di Silva = diSilva < U.S.A. <
USA

300 ICU v3.4 User Guide

Attribute Ab
.

Possible
Values

Description

Normalization
Checking

N X, O, D The Normalization setting determines whether text is
thoroughly normalized or not in comparison. Even if
the setting is off (which is the default for many
locales), text as represented in common usage will
compare correctly (for details, see UTN #5). Only if
the accent marks are in non-canonical order will
there be a problem. If the setting is On, then the best
results are guaranteed for all possible text input.

There is a medium string comparison performance
cost if this attribute is On, depending on the
frequency of sequences that require normalization.
There is no significant effect on sort key length.

If the input text is known to be in NFD or NFKD
normalization forms, there is no need to enable this
Normalization option.
 Example:
 N=X ä = a + < ä + ̣< ạ + ◌̈ ◌ ◌̈
 N=O ä = a + < ä + ̣ = ạ + ◌̈ ◌ ◌̈

French F X, O, D The French sort strings with different accents from
the back of the string. This attribute is automatically
set to On for the French locales and a few others.
Users normally would not need to explicitly set this
attribute. There is a string comparison performance
cost when it is set On, but sort key length is
unaffected.
 Example:
 F=X cote < coté < côte < côté
 F=O cote < côte < coté < côté

301 ICU v3.4 User Guide

Attribute Ab
.

Possible
Values

Description

Hiragana H X, O, D Compatibility with JIS x 4061 requires the
introduction of an additional level to distinguish
Hiragana and Katakana characters. If compatibility
with that standard is required, then this attribute
should be set On, and the strength set to Quaternary.
This will affect sort key length and string
comparison string comparison performance.
 Example:
 H=X, S=4 きゅう = キュウ < きゆう = キユウ
 H=O, S=4 きゅう < キュウ < きゆう < キユウ

If attributes in collator name are not overriden, it is assumed that they are the
same as for the given locale. For example, a collator opened with an empty string
has the same attribute settings as AN_CX_EX_FX_HX_KX_NX_S3_T0000.

Summary of Value Abbreviations:

Value Abb.
Default D
On O
Off X
Primary 1
Secondary 2
Tertiary 3
Quarternary 4
Identical I
Shifted S
Non-Ignorable N
Lower-First L
Upper-First U

Space Padding

In many database products, fields are padded with null. To get correct results, the input to
a Collator should omit any superfluous trailing padding spaces. The problem arises with
contractions, expansions, or normalization. Suppose that there are two fields, one

302 ICU v3.4 User Guide

containing "aed" and the other with "äd". A traditional German sort will compare "ä" as if
it were "ae" (on a primary level), so the order will be "äd" < "aed". But if both fields are
padded with spaces to a length of 3, then this will reverse the order, since the first will
compare as if it were one character longer. In other words, when you start with strings 1
and 2

1. a e d <space>
2. ä d <space> <space>
they end up being compared on a primary level as if they were 1' and 2'

1'. a e d <space>
2'. a e d <space> <space>

Since 2' has an extra character (the extra space), it counts as having a primary difference
when it shouldn't. The correct result occurs when the trailing padding spaces are removed,
as in 1" and 2"

1". a e d
2". a e d

303 ICU v3.4 User Guide

ICU Collation Service Architecture
This section describes the design principles, architecture and coding conventions of the
ICU Collation Service.

The following topics are discussed:

• Collator instantiaton

• Input values for collation

• Collation elements

• Sort keys

• Collation element iterators

• Collation attributes

• Collation performance

• Collation versioning

• Programming examples

ICU Collator

To use the ICU Collation Service, an ICU Collator must first be instantiated. An ICU
Collator is a data structure or object that maintains all of the property and state
information necessary to define and support the specific collation behavior provided.
Examples of properties described in the ICU Collator are the locale, whether
normalization is to be performed, and how many levels of collation are to be evaluated.
Examples of the state information described in the ICU Collator include the direction of a
Collation Element Iterator (forward or backward) and the status of the last API executed.

The ICU Collator is instantiated either by referencing a locale or by defining a custom set
of rules (a tailoring).

The ICU Collation Service uses the paradigm:

1. Open an ICU Collator,

2. Use while necessary,

3. Close the ICU Collator.

ICU Collator instances cannot be shared among threads. You should open them instead,
and use a different collator for each separate thread. The safe clone function is supported
for cloning collators in a thread-safe fashion.

304 ICU v3.4 User Guide

The ICU Collation Service follows the ICU conventions for locale designation when
opening collators:

• NULL means the machine default locale.

• The empty locale name ("") means the root locale.

The ICU Collation Service adheres to the ICU conventions described in the "ICU
Architectural Design" section of the users guide.

In particular:

• The standard error code convention is usually followed. (Functions that do not
take an error code parameter do so for backward compatibility.)

• The string length convention is followed: when passing an UChar *, the length
is required in a separate argument. If -1 is passed for the length, it is assumed
that the string is zero terminated.

Collation locale and keyword handling

When a collator is created from a locale, the collation service (like all ICU services) must
map the requested locale to the localized collation data available to ICU at the time. It
does so using the standard ICU locale fallback mechanism. See the locale chapter for
more details.

If you pass a regular locale in, like "en_US", the collation service first searches with
fallback for "collations/default" key. The first such key it finds will have an associated
string value; this is the keyword name for the collation that is default for this locale. If the
search falls all the way back to the root locale, the collation service will us the
"collations/default" key there, which has the value "standard".

If there is a locale with a keyword, like "de@collation=phonebook", the collation service
searches with fallback for "collations/phonebook". If the search is successful, the
collation service uses the string value it finds to instantiate a collator. If the search fails
because no such key is present in any of ICU's locale data (e.g., "de@collation=funky"),
the service returns a collator implementing UCA and the return UErrorCode is
U_USING_DEFAULT_WARNING.

Input values for collation

Collation deals with processing strings. ICU generally requires that all the strings should
be in UTF-16 format, and that all the required conversion should done before ICU
functions are used. In the case of collation, there are APIs that can also take instances of
character iterators (UCharIterator). Theoretically, character iterators can iterate strings

305 ICU v3.4 User Guide

in any encoding. ICU currently provides character iterator implementations for UTF-8
and UTF-16BE (useful when processing data from a big endian platform on an little
endian machine). It should be noted, however, that using iterators for collation APIs has a
performance impact. It should be used in situations when it is not desirable to convert
whole strings before the operation - such as when using string compare function.

CollationElement

As discussed in the introduction, there are many possible orderings for sorted text,
depending on language and other factors. Ideally, there is a way to describe each ordering
as a set of rules for calculating numeric values for each string of text. The collation
process then becomes one of simply comparing these numeric values.

This essentially describes the way the ICU Collation Service works. To implement a
particular sort ordering, first the relationship between each character or character
sequence is derived. For example, a Spanish ordering defines the letter sequence "CH" to
be between the letters "C" and "D". As also discussed in the introduction, to order strings
properly requires that comparison of base letters must be considered separately from
comparison of accents. Letter case must also be considered separately from either base
letters or accents. Any ordering specification language must provide a way to define the
relationships between characters or character sequences on multiple levels. ICU supports
this by using "<" to describe a relationship at the primary level, using "<<" to describe a
relationship at the secondary level, and using "<<<" to describe a relationship at the
tertiary level. Here are some example usages:

Symbol Example Description
< c < ch Make a primary (base letter) difference between "c"

and the character sequence "ch"
<< a << ä Make a secondary (accent) difference between "a"

and "ä"
<<< a<<<A Make a tertiary difference between "a" and "A"

A more complete description of the ordering specification symbols and their meanings is
provided in the section on Collation Tailoring.

Once a sort ordering is defined by specifying the desired relationships between characters
and character sequences, ICU can convert these relationships to a series of numerical
values (one for each level) that satisfy these same relationships.

This series of numeric values, representing the relative weighting of a character or
character sequence, is called a Collation Element (CE). A Collation Element is a 32-bit
value, consisting of a 16-bit primary, 8-bit secondary, 6-bit tertiary weight and 2 case bits.

306 ICU v3.4 User Guide

16b primary weight 8b secondary weight 2b case bits 6b tertiary weight

The sort weight of a string is represented by the collation elements of its component
characters and character sequences. For example, the sort weight of the string "apple"
would consist of its component Collation Elements, as shown here:

"Apple" "Apple" Collation Elements
a [1900.05.05]
p [3700.05.05]
p
l
e

[3700.05.05]
[2F00.05.05]
[2100.05.05]

In this example, the letter "a" has a 16-bit primary weight of 1900 (hex), an 8-bit
secondary weight of 05 (hex), and a combined 8-bit case-tertiary weight of 05 (hex).

String comparison is performed by comparing the collation elements of each string. Each
of the primary weights are compared. If a difference is found, that difference determines
the relationship between the two strings. If no differences are found, the secondary
weights are compared and so forth.

With ICU it is possible to specify how many levels should be compared. For some
applications, it can be desirable to compare only primary levels or to compare only
primary and secondary levels.

SortKey

If a string is to be compared repeatedly, it can be more efficient to use sort keys. Sort keys
are useful in situations where a large amount of data is indexed and frequently searched.
The sort key is generated once and used in subsequent comparisons, rather than
repeatedly generating the string's Collation Elements. The key comparison is a very
efficient and simple binary compare of strings of unsigned bytes.

An important property of ICU sort keys is that you can obtain the same results by
comparing 2 strings as you do by comparing the sort keys of the 2 strings (provided that
the same ordering and related collation attributes are used).

ICU sort key is a pre-processed sequence of bytes generated from a Unicode string. The
weights for each comparison level are concatenated, separated by a "0x01" byte. The
entire sequence is terminated with a 0x00 byte for convenience in C APIs.

307 ICU v3.4 User Guide

The diagram below represents an uncompressed sort key in ICU for ease of
understanding. ICU actually compresses the sort keys so that they take the minimum
storage in memory and in databases.

308 ICU v3.4 User Guide

Sort key size

One of the more important issues when considering using sort keys is the sort key size.
Unfortunately, it is very hard to give a fast exact answer to the following question: "What
is the maximum size for sort keys generated for strings of size X". This problem is
twofold:

1. the maximum size of the sort key depends on the size of the collation elements that are
used to build it. Size of collation elements vary greatly and depends both on the
alphabet in question and on the locale used.

2. compression is used in building sort keys. Most 'regular' sequences of characters
produce very compact sort keys.

If one is to assume the worst case and use too big buffers, a lot of space will be wasted.
However, if you use too small buffers, you will lose performance if generated sort keys
are longer than supplied buffers too often. A good strategy for this problem would be to
manually manage a large buffer for storing sortkeys and keep a list of indices to sort keys
in this buffer (see samples for more details).

Here are some rules of a thumb, please do not rely on them. If you are looking at the East
Asian locales, you probably want to go with 5 bytes per code unit. For Thai, 3 bytes per
code unit should be sufficient. For all the other locales (mostly Latin and Cyrillic), you
should be fine with 2 bytes per code unit. These values are based on average lengths of
sortkeys generated with tertiary strength - if you need quaternary and identical strength
(you should not), add 3 bytes per code unit to each of these.

Partial sort keys

In some cases, most notably when implementing radix sorting, it is useful to produce only
parts of sort keys at a time. ICU4C 2.6 provides a new API that allows producing parts of
sort keys (ucol_nextSortKeyPart API). These sort keys are not compressed. Therefore,
this API could be used if non-compressed sort keys are required.

Merging sort keys

Sometimes, it is useful to be able to merge sort keys. One example is having separate sort
keys for first and last names. If you need to perform an operation that requires a sort key
generated on the whole name, instead of concatenating strings and regenerating sort keys,
you should merge the sort keys. The merging is done by merging the corresponding levels
while inserting a terminator between merged parts. Reserved value for the merge
terminator is 0x02.

Generating bounds for a sort key (prefix matching)

Having sort keys for strings allows for easy creation of bounds - sort keys that are

309 ICU v3.4 User Guide

guaranteed to be smaller or larger than any sort key from a give range. For example, if
bounds are produced for a sortkey of string "smith", strings between upper and lower
bounds with one level would include "Smith", "SMITH", "sMiTh". Two kinds of upper
bounds can be generated - the first one will match only strings of equal length, while the
second one will match all the strings with the same initial prefix.

CollationElement Iterator

The collation element iterator is used for traversing Unicode string collation elements one
at a time. It can be used to implement language-sensitive text search algorithms like
Boyer-Moore.

For most applications, the two API categories, compare and sort key, are sufficient. Most
people do not need to manipulate collation elements directly.

Example:
Consider iterating over "apple" and "äpple". Here are sequences of collation elements:

String 1 String 1 Collation Elements
a [1900.05.05]
p [3700.05.05]
p
 l
 e

[3700.05.05]
 [2F00.05.05]
 [2100.05.05]

String 2 String 2 Collation Elements
a [1900.05.05]
\u0308 [0000.9D.05]
p [3700.05.05]
p
 l
 e

[3700.05.05]
 [2F00.05.05]
 [2100.05.05]

The resulting CEs are typically masked according to the desired strength, and zero CEs
are discarded. In the above example, masking with 0xFFFF0000 produces the results of
NULL secondary and tertiary differences. The collator then ignores the NULL differences
and declares a match. For more details see the paper "Efficient text searching in Java™:
Finding the right string in any language" by Laura Werner (
http://icu.sourceforge.net/docs/papers/efficient_text_searching_in_java.html).

310 ICU v3.4 User Guide

Collation Attributes

The ICU Collation Service has a number of attributes whose values can be changed
during run time. These attributes affect both the functionality and the performance of the
ICU Collation Service. This section describes these attributes and, where possible, their
performance impact. Performance indications are only approximate and timings may vary
significantly depending on the CPU, compiler, etc.

Although string comparison by ICU and comparison of each string's sort key give the
same results, attribute settings can impact the execution time of each method differently.
To be precise in the discussion of performance, this section refers to the API employed in
the measurement. The ucol_strcoll function is the API for string comparison. The
ucol_getSortKey function is used to create sort keys.

There is a special attribute value, UCOL_DEFAULT, that can be used to set any
attribute to its default value (which is inherited from the UCA and the tailoring).

Attribute Types

Strength level

Collation strength, or the maximum collation level used for comparison, is set by using
the UCOL_STRENGTH attribute. Valid values are:

• UCOL_PRIMARY

• UCOL_SECONDARY

• UCOL_TERTIARY (default)

• UCOL_QUATERNARY

• UCOL_IDENTICAL

French collation

The UCOL_FRENCH_COLLATION attribute determines whether to sort the secondary
differences in reverse order. Valid values are:

• UCOL_OFF (default): compares secondary differences in the order they appear
in the string.

• UCOL_ON: causes secondary differences to be considered in reverse order, as
it is done in the French language.

Normalization mode

311 ICU v3.4 User Guide

The UCOL_NORMALIZATION_MODE attribute, or its alias UCOL_DECOMPOSITION_MODE,
controls whether text normalization is performed on the input strings. Valid values are:

• UCOL_OFF (default): turns off normalization check

• UCOL_ON : normalization is checked and the collator performs normalization
if it is needed.

X FCD NFC NFD
A- ring Y Y

Angstrom Y

A + ring Y

Y

A + grave Y

Y

A-ring + grave Y

A + cedilla +
ring

Y

Y

A + ring +
cedilla
A-ring + cedilla

Y

With normalization mode turned on, the ucol_strcoll function slows down by 10%. In
addition, the time to generate a sort key also increases by about 25%.

 This attribute allows shifting of the variable (usually punctuation and symbols)
characters from the primary to the quaternary strength level. This is set by using the
UCOL_ALTERNATE_HANDLING attribute.

• UCOL_NON_IGNORABLE (default): variable characters are treated as all the other
characters

• UCOL_SHIFTED : all the variable characters will be ignored at the primary,
secondary and tertiary levels and their primary strengths will be shifted to the
quaternary level.

Case Ordering

Some conventions require uppercase letters to sort before lowercase ones, while others
require the opposite. This attribute is controlled by the value of the UCOL_CASE_FIRST.

312 ICU v3.4 User Guide

The case difference in the UCA is contained in the tertiary weights along with other
appearance characteristics (like circling of letters).

The case-first attribute allows for emphasizing of the case property of the letters by
reordering the tertiary weights with either upper-first, and/or lowercase-first. This
difference gets the most significant bit in the weight.

Valid values for this attribute are:

• UCOL_OFF (default): leave tertiary weights unaffected

• UCOL_LOWER_FIRST: causes lowercase letters and uncased characters to sort
before uppercase

• UCOL_UPPER_FIRST : causes uppercase letters to sort first

The case-first attribute does not affect the performance substantially.

Case level

When this attribute is set, an additional level is formed between the secondary and tertiary
levels, known as the Case Level. The case level is used to distinguish large and small
Japanese Kana characters. Case level could also be used in other situations. for example
to distinguish certain Pinyin characters.

Case level is controlled by UCOL_CASE_LEVEL attribute. Valid values for this attribute are

• UCOL_OFF (default): no additional case level

• UCOL_ON : adds a case level

Hiragana Quaternary

Hiragana Quaternary can be set to UCOL_ON, in which case Hiragana code points will sort
before everything else on the quaternary level. If set to UCOL_OFF Hiraganas are treated
the same as all the other code points. This setting can be changed on run-time using the
UCOL_HIRAGANA_QUATERNARY_MODE attribute. You probably won't need to use it.

Variable Top

Variable Top is a boundary which decides whether the code points will be treated as
variable (shifted to quaternary level in the shifted mode) or non-ignorable. Special APIs
are used for setting of variable top. It can basically be set either to a codepoint or a
primary strength value.

313 ICU v3.4 User Guide

Performance

ICU collation is designed to be fast, small and customizable. Several techniques are used
to enhance the performance:

1. Providing optimized processing for Latin characters.

2. Comparing strings incrementally and stop at the first significant difference.

3. Tuning to eliminate unnecessary file access or memory allocation.

4. Providing efficient preflight functions that allows fast sort key size generation.

5. Using a single, shared copy of UCA in memory for the read-only default sort order.
Only small tailoring tables are kept in memory for locale-specific customization.

6. Compressing sort keys efficiently.

7. Making the sort order to be data-driven.

In general, the best performance from the ICU Collation Service is expected by doing the
following:

• After opening a collator, keep and reuse it until done. Do not open new collators for
the same sort order. (Note the restriction on multi-threading.)

• Follow the best practice guidelines for generating sort key. Do not call
ucol_getSortKey twice to first size the key and then allocate the sort key buffer and
repeat the call to the function to fill in the buffer.

• Use ucol_strcol when comparing two strings one time. If it is necessary to compare
strings more than once, create the sort key first and compare the sort keys instead.
Generating the sort keys of two strings is about 5-10 times slower than just comparing
them directly.

Performance and Storage Implications of Attributes

Most people use the default attributes when comparing strings or when creating sort keys.
When they do want to customize the ordering, the most common options are the
following :

Attributes Description
UCOL_ALTERNATE_HANDLING ==
UCOL_SHIFTED

Used to ignore space and punctuation
characters

UCOL_ALTERNATE_HANDLING ==
UCOL_SHIFTED and
UCOL_STRENGTH ==
UCOL_QUATERNARY

Used to ignore the space and punctuation
characters except when there are no
previous letter, accent, or case/variable
differences.

314 ICU v3.4 User Guide

Attributes Description
UCOL_CASE_FIRST ==
UCOL_LOWER_FIRST or
UCOL_CASE_FIRST ==
UCOL_UPPER_FIRST

Used to change the ordering of upper vs.
lower case letters (as well as small vs. large
kana)

UCOL_CASE_LEVEL == UCOL_ON and
UCOL_STRENGTH ==
UCOL_PRIMARY

Used to ignore only the accent differences.

UCOL_NORMALIZATION_MODE ==
UCOL_ON

Force to always check for normalization.
This is used if the input text may not be in
FCD form.

UCOL_FRENCH_COLLATION ==
UCOL_OFF

This is only useful for languages like
French and Catalan that turn this attribute
on by default.

In String Comparison, most of these options have little or no effect on performance. The
only noticeable one is normalization, which can cost 10%-40% in performance.

For Sort Keys, most of these options either leave the storage alone or reduce it. Shifting
can reduce the storage by about 10%-20%; case level + primary-only can decrease it
about 20% to 40%. Using no French accents can reduce the storage by about 38% , but
only for languages like French and Catalan that turn it on by default. On the other hand,
using Shift + Quad can increase the storage by 10%-15%. (The Identical Level also
increases the length, but this option is not recommended).

 All of the above numbers are based on tests run on a particular machine, with a
particular set of data. (The data for each language is a large number of names in
that language in the format <first_name>, <last name>.) The performance and
storage may vary, depending on the particular computer, operating system, and
data.

Versioning

Sort keys are often stored on disk for later reuse. A common example is the use of keys to
build indexes in databases. When comparing keys, it is important to know that both keys
were generated by the same algorithms and weightings. Otherwise, identical strings with
keys generated on two different dates, for example, might compare as unequal. Sort keys
can be affected by new versions of ICU or its data tables, new sort key formats, or
changes to the Collator. Starting with release 1.8.1, ICU provides a versioning
mechanism to identify the version information of the following (but not limited to),

1. The run-time executable

315 ICU v3.4 User Guide

2. The collation element content

3. The Unicode/UCA database

4. The tailoring table

The version information of Collator is a 32-bit integer. If a new version of ICU has
changes affecting the content of collation elements, the version information will be
changed. In that case, to use the new version of ICU collator will require regenerating any
saved or stored sort keys. However, since ICU 1.8.1. it is possible to build your program
so that it uses more than one version of ICU. Therefore, you could use the current version
for the features you need and use the older version for collation.

Programming Examples

See the following for an example of how to compare and create sort keys with default
locale in C and C++.

316 ICU v3.4 User Guide

Collation Examples
Simple Collation Sample Customization

The following program demonstrates how to compare and create sort keys with default
locale.

In C:
 #include <stdio.h>
 #include <memory.h>
 #include <string.h>
 #include "unicode/ustring.h"
 #include "unicode/utypes.h"
 #include "unicode/uloc.h"
 #include "unicode/ucol.h"
 #define MAXBUFFERSIZE 100
 #define BIGBUFFERSIZE 5000
 UBool collateWithLocaleInC(const char* locale, UErrorCode *status)
 {
 UChar dispName [MAXBUFFERSIZE];
 int32_t bufferLen = 0;
 UChar source [MAXBUFFERSIZE];
 UChar target [MAXBUFFERSIZE];
 UCollationResult result = UCOL_EQUAL;
 uint8_t sourceKeyArray [MAXBUFFERSIZE];
 uint8_t targetKeyArray [MAXBUFFERSIZE];
 int32_t sourceKeyOut = 0,
 targetKeyOut = 0;
 UCollator *myCollator = 0;
 if (U_FAILURE(*status))
 {
 return FALSE;
 }
 u_uastrcpy(source, "This is a test.");
 u_uastrcpy(target, "THIS IS A TEST.");
 myCollator = ucol_open(locale, status);
 if (U_FAILURE(*status)){
 bufferLen = uloc_getDisplayName(locale, 0, dispName, MAXBUFFERSIZE,
status);
 /*Report the error with display name... */
 fprintf(stderr,
 "Failed to create the collator for : \"%s\"\n", dispName);
 return FALSE;
 }
 result = ucol_strcoll(myCollator, source, u_strlen(source), target,
u_strlen(target));
 /* result is 1, secondary differences only for ignorable space
characters*/
 if (result != UCOL_LESS)
 {
 fprintf(stderr,
 "Comparing two strings with only secondary differences in C
failed.\n");
 return FALSE;
 }
 /* To compare them with just primary differences */
 ucol_setStrength(myCollator, UCOL_PRIMARY);
 result = ucol_strcoll(myCollator, source, u_strlen(source), target,
u_strlen(target));
 /* result is 0 */
 if (result != 0)
 {
 fprintf(stderr,
 "Comparing two strings with no differences in C failed.\n");
 return FALSE;
 }

317 ICU v3.4 User Guide

 /* Now, do the same comparison with keys */
 sourceKeyOut = ucol_getSortKey(myCollator, source, -1, sourceKeyArray,
MAXBUFFERSIZE);
 targetKeyOut = ucol_getSortKey(myCollator, target, -1, targetKeyArray,
MAXBUFFERSIZE);
 result = 0;
 result = strcmp(sourceKeyArray, targetKeyArray);
 if (result != 0)
 {
 fprintf(stderr,
 "Comparing two strings with sort keys in C failed.\n");
 return FALSE;
 }
 ucol_close(myCollator);
 return TRUE;
 }

In C++:
 #include <stdio.h>
 #include "unicode/unistr.h"
 #include "unicode/utypes.h"
 #include "unicode/locid.h"
 #include "unicode/coll.h"
 #include "unicode/tblcoll.h"
 #include "unicode/coleitr.h"
 #include "unicode/sortkey.h"
 UBool collateWithLocaleInCPP(const Locale& locale, UErrorCode& status)
 {
 UnicodeString dispName;
 UnicodeString source("This is a test.");
 UnicodeString target("THIS IS A TEST.");
 Collator::EComparisonResult result = Collator::EQUAL;
 CollationKey sourceKey;
 CollationKey targetKey;
 Collator *myCollator = 0;
 if (U_FAILURE(status))
 {
 return FALSE;
 }
 myCollator = Collator::createInstance(locale, status);
 if (U_FAILURE(status)){
 locale.getDisplayName(dispName);
 /*Report the error with display name... */
 fprintf(stderr,
 "%s: Failed to create the collator for : \"%s\"\n", dispName);
 return FALSE;
 }
 result = myCollator->compare(source, target);
 /* result is 1, secondary differences only for ignorable space
characters*/
 if (result != UCOL_LESS)
 {
 fprintf(stderr,
 "Comparing two strings with only secondary differences in C
failed.\n");
 return FALSE;
 }
 /* To compare them with just primary differences */
 myCollator->setStrength(Collator::PRIMARY);
 result = myCollator->compare(source, target);
 /* result is 0 */
 if (result != 0)
 {
 fprintf(stderr,
 "Comparing two strings with no differences in C failed.\n");
 return FALSE;
 }
 /* Now, do the same comparison with keys */
 myCollator->getCollationKey(source, sourceKey, status);
 myCollator->getCollationKey(target, targetKey, status);
 result = Collator::EQUAL;

318 ICU v3.4 User Guide

 result = sourceKey.compareTo(targetKey);
 if (result != 0)
 {
 fprintf(stderr,
 "%s: Comparing two strings with sort keys in C failed.\n");
 return FALSE;
 }
 delete myCollator;
 return TRUE;
 }

Main Function:
 extern "C" UBool collateWithLocaleInC(const char* locale, UErrorCode *status);
 int main()
 {
 UErrorCode status = U_ZERO_ERROR;
 fprintf(stdout, "\n");
 if (collateWithLocaleInCPP(Locale("en", "US"), status) != TRUE)
 {
 fprintf(stderr,
 "Collate with locale in C++ failed.\n");
 } else
 {
 fprintf(stdout, "Collate with Locale C++ example worked!!\n");
 }
 status = U_ZERO_ERROR;
 fprintf(stdout, "\n");
 if (collateWithLocaleInC("en_US", &status) != TRUE)
 {
 fprintf(stderr,
 "%s: Collate with locale in C failed.\n");
 } else
 {
 fprintf(stdout, "Collate with Locale C example worked!!\n");
 }
 return 0;
 }

In Java:

 import com.ibm.icu.text.Collator;
 import com.ibm.icu.text.CollationElementIterator;
 import com.ibm.icu.text.CollationKey;
 import java.util.Locale;
 public class CollateExample
 {

 public static void main(String arg[])
 {
 CollateExample example = new CollateExample();
 try {
 if (!example.collateWithLocale(Locale.US)) {
 System.err.println("Collate with locale example
failed.");
 }
 else {
 System.out.println("Collate with Locale example
worked!!");
 }
 } catch (Exception e) {
 System.err.println("Collating with locale failed");
 e.printStackTrace();
 }
 }

 public boolean collateWithLocale(Locale locale) throws Exception
 {
 String source = "This is a test.";
 String target = "THIS IS A TEST.";
 Collator myCollator = Collator.getInstance(locale);

319 ICU v3.4 User Guide

 int result = myCollator.compare(source, target);
 // result is 1, secondary differences only for ignorable space
characters
 if (result >= 0) {
 System.err.println(
 "Comparing two strings with only secondary differences
failed.");
 return false;
 }
 // To compare them with just primary differences
 myCollator.setStrength(Collator.PRIMARY);
 result = myCollator.compare(source, target);
 // result is 0
 if (result != 0) {
 System.err.println(
 "Comparing two strings with no differences
failed.");
 return false;
 }
 // Now, do the same comparison with keys
 CollationKey sourceKey = myCollator.getCollationKey(source);
 CollationKey targetKey = myCollator.getCollationKey(target);
 result = sourceKey.compareTo(targetKey);
 if (result != 0) {
 System.err.println("Comparing two strings with sort keys
failed.");
 return false;
 }
 return true;
 }
 }

Language-sensitive searching

String searching is a well-researched area, and there are algorithms that can optimize the
searching process. Perhaps the best is the Boyer-Moore method. For full textual
description of concept behind the sample programs, please see Laura Werner's text
searching article for more details
(http://icu.sourceforge.net/docs/papers/efficient_text_searching_in_java.html).

The source of the language-sensitive text searching based on ICU Collation Service can
be found on the internet at http://dev.icu-project.org/cgi-
bin/viewcvs.cgi/*checkout*/icu/source/i18n/usearch.cpp.

Using large buffers to manage sort keys

A good solution for the problem of not knowing the sort key size in advance is to allocate
a large buffer and store all the sort keys there, while keeping a list of indexes or pointers
to that buffer.

Following is sample code that will take a pointer to an array of UChar pointer, an array of
key indexes. It will allocate and fill a buffer with sort keys and return the maximum size
for a sort key. Once you have done this to your string, you just need to allocate a field of
maximum size and copy your sortkeys from the buffer to fields.

uint32_t

320 ICU v3.4 User Guide

fillBufferWithKeys(UCollator *coll, UChar **source, uint32_t *keys, uint32_t
sourceSize,
 uint8_t **buffer, uint32_t *maxSize, UErrorCode *status)
{
 if(status == NULL || U_FAILURE(*status)) {
 return 0;
 }
 uint32_t bufferSize = 16384;
 uint32_t increment = 16384;
 uint32_t currentOffset = 0;
 uint32_t keySize = 0;
 uint32_t i = 0;
 *maxSize = 0;
 *buffer = (uint8_t *)malloc(bufferSize * sizeof(uint8_t));
 if(buffer == NULL) {
 *status = U_MEMORY_ALLOCATION_ERROR;
 return 0;
 }
 for(i = 0; i < sourceSize; i++) {
 keys[i] = currentOffset;
 keySize = ucol_getSortKey(coll, source[i], -1, *buffer+currentOffset, bufferSize-
currentOffset);
 if(keySize > bufferSize-currentOffset) {
 *buffer = (uint8_t *)realloc(*buffer, bufferSize+increment);
 if(buffer == NULL) {
 *status = U_MEMORY_ALLOCATION_ERROR;
 return 0;
 }
 bufferSize += increment;
 keySize = ucol_getSortKey(coll, source[i], -1, *buffer+currentOffset,
bufferSize-currentOffset);
 }
 /* here you can hook code that does something interesting with the keySize -
 * remembers the maximum or similar...
 */
 if(keySize > *maxSize) {
 *maxSize = keySize;
 }
 currentOffset += keySize;
 }
 return currentOffset;
}

321 ICU v3.4 User Guide

Collation Customization
ICU uses UCA as a default starting point for ordering. Not all languages have sorting
sequences that correspond with the UCA because UCA cannot simultaneously encompass
the specifics of all the languages currently in use.

Therefore, ICU provides a data-driven, flexible, and run-time customizable mechanism
called "tailoring". Tailoring overrides the default order of code points and the values of
the ICU Collation Service attributes.

Collation Rule

A tailoring is a set of rules. Each rule contains a string of ordered characters that starts
with an anchor point or a reset value.

The reset value is an absolute point that determines the order of other characters. For
example, "&a < g", places "g" after "a" and the "a" does not change place. This rule has
the following sorting consequences:

Without rule With rule
apple
 Abernathy
 bird
 Boston
 green
 Graham

apple
 Abernathy
 green
 bird
 Boston
 Graham

Note that only the word that starts with "g" has changed place. All the words sorted after
"a" and "A" are sorted after "g".

This is a non-complex example of a tailoring rule. Tailoring rules consist of zero or more
rules and zero or more options. There must be at least one rule or at least one option. The
rule syntax is discussed in more detail in the following sections.

Note that the tailoring rules override the UCA ordering. In addition, if a character is
reordered, it automatically reorders any other equivalent characters. For example, if the
rule "&e<a" is used to reorder "a" in the list, "á" is also greater than "é".

Syntax

The following table summarizes the basic syntax necessary for most usages:

Symbol Example Description
< a < b Identifies a primary (base

letter) difference between
"a" and "b"

322 ICU v3.4 User Guide

Symbol Example Description
<< a << ä Signifies a secondary

(accent) difference between
"a" and "ä"

<<< a<<<A Identifies a tertiary
difference between "a" and
"A"

= x = y Signifies no difference
between "x" and "y".

& &Z Instructs ICU to reset at this
letter. These rules will be
relative to this letter from
here on, but will not affect
the position of Z itself.

In releases prior to 1.8, ICU uses the notations ';' to represent secondary
relations and ',' to represent tertiary relations. Starting in release 1.8, use '<<'
symbols to represent secondary relations and '<<<' symbols to represent tertiary
relation. Rules that use the ';' and ',' notations are still processed by ICU for
compatibility; also, some of the data used for tailoring to particular locales has
not yet been updated to the new syntax. However, one should consider these
symbols deprecated.

Escaping Rules

Most of the characters can be used as parts of rules. However, whitespace characters will
be skipped over, and all ASCII characters that are not digits or letters are considered to be
part of syntax. In order to use these characters in rules, they need to be escaped. Escaping
can be done in several ways:

• Single characters can be escaped using backslash \ (U+005C).

• Strings can be escaped by putting them between single quotes 'like this'.
• Single quote can be quoted using two single quotes ''.
The following examples are other tailorings:

Serbian (Latin) or Croatian: & C < č <<< Č < ć <<< Ć

This rule is needed because UCA usually considers accents to have secondary differences
in order to base character. This ensures that 'ć' 'č' are treated as base letters.

323 ICU v3.4 User Guide

UCA Tailoring: & C < č <<< Č < ć <<< Ć
CUKIĆ RADOJICA
 ČUKIĆ SLOBODAN
 CUKIĆ SVETOZAR
 ČUKIĆ ZORAN
 CURIĆ MILOŠ
 ĆURIĆ MILOŠ
 CVRKALJ ÐURO

CUKIĆ RADOJICA
 CUKIĆ SVETOZAR
 CURIĆ MILOŠ
 CVRKALJ ÐURO
 ČUKIĆ SLOBODAN
 ČUKIĆ ZORAN
 ĆURIĆ MILOŠ

Serbian (Latin) or Croatian: & Ð < dž <<< Dž <<< DŽ

This rule is an example of a contraction. "D" alone is sorted after "C" and "Ž" is sorted
after "Z", but "DŽ", due to the tailoring rule, is treated as a single letter that gets sorted
after "Đ" and before "E" ("Đ" sorts as a base letter after "D" in the UCA). Another thing
to note in this example is capitalization of the letter "DŽ". There are three versions, since
all three can legally appear in text. The fourth version "dŽ" is omitted since it does not
occur.

UCA Tailoring:
& Ð < dž <<< Dž <<< DŽ

dan
dubok
džabe
džin
Džin
DŽIN
đak
Evropa

dan
dubok
đak
džabe
džin
Džin
DŽIN
Evropa

Danish: &V <<< w <<< W

The letter 'W' is sorted after 'V', but is treated as a tertiary difference similar to the
difference between 'v' and 'V'.

324 ICU v3.4 User Guide

UCA &V <<< w <<< W
va
Va
VA
vb
Vb
VB
vz
Vz
VZ
wa
Wa
WA
wb
Wb
WB
wz
Wz
WZ

va
Va
VA
wa
Wa
WA
vb
Vb
VB
wb
Wb
WB
vz
Vz
VZ
wz
Wz
WZ

Default Options

The tailoring inherits all the attribute values from the UCA unless they are explicitly
redefined in the tailoring. The following table summarizes the option settings. UCA
default options are in emphasis.

Option Example Description
alternate [alternate non-ignorable]

[alternate shifted]
Sets the default value of the
UCOL_ALTERNATE_HANDLING
attribute. If set to shifted, variable
code points will be ignored on the
primary level.

backwards [backwards 2] Sets the default value of the
UCOL_FRENCH_COLLATION
attribute. If set to on, secondary level
will be reversed.

variable top & X < [variable top] Sets the default value for the variable
top. All the code points with primary
strengths less than variable top will be
considered variable.

325 ICU v3.4 User Guide

Option Example Description
normalization [normalization off]

[normalization on]
Turns on or off the
UCOL_NORMALIZATION_MODE
attribute. If set to on, a quick check
and neccessary normalization will be
performed.

caseLevel [caseLevel off]
 [caseLevel on]

Turns on or off the
UCOL_CASE_LEVEL attribute. If set
to on a level consisting only of case
characteristics will be inserted in front
of tertiary level. To ignore accents but
take cases into account, set strength to
primary and case level to on.

caseFirst [caseFirst off]
 [caseFirst upper]
 [caseFirst lower]

Sets the value for the
UCOL_CASE_FIRST attribute. If set
to upper, causes upper case to sort
before lower case. If set to lower,
lower case will sort before upper case.
Useful for locales that have already
supported ordering but require
different order of cases. Affects case
and tertiary levels.

strength [strength 1]
[strength 2]
[strength 3]
[strength 4]
[strength I]

Sets the default strength for the
colator.

hiraganaQ [hiraganaQ off]
[hiraganaQ on]

Controls special treatment of Hiragana
code points on quaternary level. If
turned on, Hiragana codepoints will
get lower values than all the other
non-variable code points. Strength
must be greater or equal than
quaternary if you want this attribute to
take effect

A tailoring that consists only of options is also valid tailoring and has the same basic
ordering as the UCA. The options that modify this tailoring are described in the following
examples:

The Greek tailoring has option settings only : [normalization on]

The Latvian tailoring reorders uppercase and lowercase and uses backward French
ordering:

326 ICU v3.4 User Guide

[casefirst upper]
[backwards 2]
& C < c , C ̌ ̌
& G < g , G ̧ ̧
& I < y, Y
& K < k , K ̧ ̧
& L < l , L ̧ ̧
& N < n , N ̧ ̧
& S < s , S ̌ ̌
& Z < z , Ž ̌

Advanced Syntactical Elements

Several other syntactical elements are needed in more specific situations. These elements
are summarized in the following table:

Element Example Description
[before 1|2|3] &[before 1] a<?<à<?<á Enables users to order characters before a

given character. In UCA 3.0, the example
is equivalent to & ?<?<à<?<á (?= \u3029,
Hangzhou numeral nine) * and makes
accented 'a' letters sort before 'a'. Accents
are often used to indicate the intonations in
Pinyin. In this case, the non-accented
letters sort after the accented letters.

/ æ/e Expansion. Add the collation element for
'e' to the collation element for æ.
 After a reset "&ae << æ" is equivalent to
"&a << æ/e." See the example below.

| a|b Prefix processing. If 'b' is encountered and
it follows 'a', output the appropriate
collation element. If 'b' follows any other
letter, output the normal collation element
for 'b'. Collation element for 'a' is not
affected. This element is used to speed up
sorting under JIS X 4061. See the example
below.

327 ICU v3.4 User Guide

Element Example Description
[top] &[top] < a < b < c … Deprecated, use indirect positioning

instead Reorders a set of characters 'above'
the UCA. [top] is a virtual code point
having the biggest primary weight value
that will ever be assigned in the UCA.
Above top, there is a large number of
unassigned primary weights that can be
used for a 'large' tailoring, such as the
reordering of the CJK characters according
to a Far Eastern code page. The first
difference after the top is always primary.

The first base character (primary difference) in UCA occurs after the Hangzhou
numeric 9.

Indirect Positioning of Collation Elements

Since version 2.0 ICU allows for indirect positioning of collation elements. Similar to the
option top, these options allow for positioning of the tailoring relative to significant
sections of the UCA table. You can use [before] option to position before these sections.

Name Current CE value Note
first tertiary ignorable [,,] Start of the UCA table. This value

will never change unless CEs are
extended with higher level values

last tertiary ignorable [,,] This value will never change unless
CEs are extended with higher level
values

first secondary ignorable [,, 05] Currently there are no secondary
ignorable in the UCA table.

last secondary ignorable [,, 05] Currently there are no secondary
ignorable in the UCA table.

first primary ignorable [, 87, 05] Current code point is (U+0332).̲
last primary ignorable [, E1 B1, 05] Currently this value points to a non-

existing code point, used to facilitate
sorting of compatibility characters.

first variable [05 07, 05, 05] Current code point is U+0009. This
is the start of the variable section.
These are characters that will be
ignored on primary level when
shifted option is on.

328 ICU v3.4 User Guide

Name Current CE value Note
last variable [17 9B, 05, 05] End of variable section.
first regular [1A 20, 05, 05] Current code point is (U+02D0).ː

This is the first regular code point.
The majority of code points are
regular.

last regular [78 AA B2, 05, 05] Current code point is (U+10425).
Use instead of [top]. This will
effectively position your tailoring
between regular code points and CJK
ideographs and unassigned code
points. If you want to rearange a
large number of codepoints
(rearranging CJKs for example), this
is a right place to reset to.

first implicit [E0 03 03, 05, 05] Section of implicitly generated
collation elements. CJK ideographs
and unassigned code points get
implicit values.

last implicit [E3 DC 70 C0, 05, 05] End of implicit section.
first trailing [E5, 05, 05] Start of trailing section. This section

is reserved for future, most probably
for non starting Jamos.

last trailing [E5, 05, 05] End of trailing collation elements
section. Tailoring that starts here is
guaranteed to sort after all other non-
tailored code points.

Not all of indirect positioning anchors are useful. Most of the 'first' elements should be
used with the [before] directive, in order to make sure that your tailoring will sort before
an interesting section.

Following are several fragments of real tailorings, illustrating some of the advanced
syntactical elements:

Expansion Example:

French: & A << æ/e <<< Æ/E

Letter 'Æ' is treated as a separate letter between 'A' and 'B'. However, the French language
requires 'Æ' to be treated as a combination of letters 'A' and 'E' and to sort as an accent
variation of this combination. This is an example of an expansion.

329 ICU v3.4 User Guide

UCA &A << æ/e <<< Æ/E
aa
 Aa
 AA
 ab
 Ab
 AB
 ae
 Ae
 AE
 az
 Az
 AZ
 æ
 Æ

Aa
 Aa
 AA
 ab
 Ab
 AB
 ae
 Ae
 æ
 AE
 Æ
 az
 Az
 AZ

Prefix Example:

Prefixes are used in Japanese tailoring to reduce the number of contractions. A big
number of contractions is a performance burden, as their processing is much more
complicated than the processing of regular elements. Prefixes should be used only to
replace contractions followed by expansions and only if the expansion part is less
frequent than the start of the contraction.

&[before 3] <<< | = | = |

This could have been written as a series of contractions followed by expansion:

&[before 3] <<< = =
However, in that case , and would be treated as contractions. Since the
prolonged sound mark () occurs much less frequently than the other letters of Japanese
Katakana and Hiragana, it is much more prudent to put the extra processing on it by using
prefixes.

Example:

"Reset" always use only the base character as the insertion point even if there is an
expansion. So the following rule,

& J <<< K / B & K <<< M
is equivalent to

& J <<< K / B <<< M

330 ICU v3.4 User Guide

Which produces the following sort order:

"JA"

"MA"

"KA"

"KC"

"JC"

"MC"

Assuming the letters "J", "K" and "M" have equal primary weights, the second
letter contains the differences among these strings. However, the letter "K" is
treated as if it always has a letter "B" following it while the letters "J" and "M"
do not.

The following is the collation elements for these strings with the specified rules:

Strings Collation Elements
"JA"

[005C.00.01]

[0052.00.01]

"MA"

[005C.00.03]

[0052.00.01]

"KA"

[005C.00.02]

[0053.00.01]

[0052.00.01]

"KC"

[005C.00.02]

[0053.00.01]

[0054.00.01]

"JC"

[005C.00.01]

[0054.00.01]

"MC"

[005C.00.03]

[0054.00.01]

Tailoring Issues

ICU uses canonical closure. This means that for each code point in Unicode, if the
canonically composed form of a tailored string produces different collation elements than
the canonically decomposed form, then the canonically composed form is effectively
added to the ordering. If 'a' is tailored, for example, all of the accented 'a' characters are
also tailored. Canonical closure allows collators to process Unicode strings in the FCD
form as well as in NFD.

However, compatibility equivalents are NOT automatically added. If the rule "&b < a" is
in tailoring, and the order of (c ircled a) is important, it should be explicitly tailored.

Redundant tailoring rules are removed, with later rules "winning". The strengths around

331 ICU v3.4 User Guide

the removed rules are also fixed.

Example:

The following table summarizes effects of different redundant rules.

Original Equivalent
1. & a < b < c < d

 & r < c
& a < b < d
 & r < c

2. & a < b < c < d
 & c < m

& a < b < c < m < d

3. & a < b < c < d
 & a < m

& a < m < b < c < d

4. & a <<< b << c < d
 & a < m

& a <<< b << c < m < d

5. & a < b < c < d
 & [before 1] c < m

& a < b < m < c < d

6. & a < b <<< c << d <<< e
 & [before 3] e <<< x

& a < b <<< c << d <<< x <<< e

7. & a < b <<< c << d <<< e
 & [before 2] e <<< x

& a < b <<< c <<< x << d <<< e

8. & a < b <<< c << d <<< e
 & [before 1] e <<< x

& a <<< x < b <<< c << d <<< e

9. & a < b <<< c << d <<< e <<< f
< g
 & [before 1] g < x

& a < b <<< c << d <<< e <<< f < x < g

If two different reset lists use the same character it is removed from the first one (see 1 in
the table above). If the second character is a reset, the second list is inserted in the first
(see 2). If both are resets, then the same thing happens (see 3). Whenever such an
insertion occurs, the second strength "postpones" the position (see 4).

If there is a "[before N]" on the reset, then the reset character is effectively replaced by
the item that would be before it, either in a previous tailoring (if the letter occurs in one -
see 5) or in the UCA. The N determines the 'distance' before, based on the strength of the
difference (see 6-8). However, this is subject to postponement (see 9), so be careful!

Reset semantics

The reset semantic in ICU 1.8 is different from the previous ICU releases. Prior to version
1.8, the reset relation modifier was applicable only to the entry immediately following the

332 ICU v3.4 User Guide

reset entry. Also, the relation modifier applied to all entries that occurred until the next
reset or primary relation.

For example, was equivalent to

Starting with ICU version 1.8, the modifier is equivalent to,

The new semantic produces more intuitive results, especially when the character after the
reset is decomposable. Since all rules are converted to NFD before they are interpreted,
this can result in contractions that the rule-writer might not be aware of. Expansion
propagates only until the next reset or primary relation occurs.

For example, with the following rule: was equivalent to the following prior to ICU 1.8
and in Java,

Starting with 1.8, it is equivalent to,

& a = c / b <<< d / b << e / b <<< f / b < g <<< h

Known Limitations

The following are known limitations of the ICU collation implementation. These are
theoretical limitations, however, since there are no known languages for which these
limitations are an issue. However, for completeness they should be fixed in a future
version after 1.8.1. The examples given are designed for simplicity in testing, and do not
match any real languages.

Expansion

The goal of expansion is to sort as if the expansion text were inserted right after the
character. For example, with the rule

The text "...c..." should sort as if it were right after "...ae..." with a tertiary difference.
There are a few cases where this is not currently true.

Recursive Expansion

Given the rules

Expansion should sort the text "...c..." as if it were just after "...ae...", and that should also
sort as if it were just after "...agi...". This requires that the compilation of expansions be
recursive (and check for loops as well!). ICU currently does not do this.

Rules Desired Order Current Order
& a = b / c
 & d = c / e

add
 b
 adf

b
 add
 adf

333 ICU v3.4 User Guide

Contractions Spanning Expansions

ICU currently always pre-compiles the expansion into an internal format (a list of one or
more collation elements) when the rule is compiled. If there is contraction that spanned
the end of the expanded text and the start of the original text, however, that contraction
will not match. A text case that illustrates this is:

Rules Desired Order Current Order
& a <<< c / e
 & g <<< eh

ad
 c
 af
 g
 ch
 h

ad
 c
 ch
 af
 g
 h

Since the pre-compiled expansions are a huge performance gain, we will probably keep
the implementation the way it is, but in the future allow additional syntax to indicate
those few expansions that need to behave as if the text were inserted because of the
existence of another contraction. Note that such expansions need to be recursively
expanded (as in #1), but rather than at pre-compile time, these need to be done at runtime.

While it is possible to automatically detect these cases, it would be better to allow explicit
control in case spanning is not desired. An example of such syntax might be something
like:

Notes: ICU does handle the case where there is a contraction that is completely inside the
expansion.

Suppose that someone had the rules:

These do not cause c to sort as if it were ae, nor should they.

Normalization

The goal of normalization is to have all text sort as if it were first normalized (converted
into NFD). For performance reasons, the rules are pre-processed so there is no need to
perform normalization on strings that are already in the FCD format. The vast majority of
strings are in FCD.

Nulls in Contractions

Nulls should not be used in contractions that could invoke normalization.

Rules Desired Order Current Order
& a <<< '\u0000'^ a

 '\u0000'^
'\u0000'^
 a

334 ICU v3.4 User Guide

Contractions Spanning Normalization

The following rule specifies that a grave accent followed by a b is a contraction, and sorts
as if it were an e.

On this basis, "...àb..." should sort as if it were just after "...ae...". Because of the
preprocessing, however, the contraction will not match if this text is represented with the
pre-composed character à, but will match if given the decomposed sequence a + grave
accent. The same thing happens if the contraction spans the start of a normalized
sequence.

Rules Desired Order Current Order
& e <<< ` b

à
 ad
 àb
 af

à
 àb
 ad
 af

& g <<< ca f
 ca
 cà
 h

cà
 f
 ca
 h

Variable Top

ICU lets you set the top of the variable range. This can be done, for example, to allow you
to ignore just SPACES, and not punctuation.

Variable Top Exclusion

There is currently a limitation that causes variable top to (perhaps) exclude more
characters than it should. This happens if you not only set variable top, but also tailor a
number of characters around it with primary differences. The exact number that you can
tailor depends on the internal "gaps" between the characters in the pre-compiled UCA
table. Normally there is a gap of one. There are larger gaps between scripts (such as
between Latin and Greek), and after certain other special characters. For example, if
variable top is set to be at SPACE ('\u0020'), then it works correctly with up to 70
characters also tailored after space. However, if variable top is set to be equal to
HYPHEN ('\u2010'), only one other value can be accommodated.

335 ICU v3.4 User Guide

Rules Desired Order
 SHIFTED = ON

Current Order Comment

& \u2010
 < x
 < [variable top]
< z

-
z
zb
 a
 b
 -b
 xb
 c

-
z
zb
xb
 a
 b
 -b
 c

The goal is for x to
be ignored and z not
to be ignored.

 With ICU 1.8.1, the user is advised not to tailor the variable top to customize
more than two primary relations (for example, "& x < y < [variable top]).
Starting in ICU 2.0, a new API will be added to allow the user to set the variable
top programmatically to a legal single character or a valid contracting sequence.
In addition, the string that variable top is set to should not be treated as either
inclusive or exclusive in the rules.

Case Level/First/Second

In ICU, it is possible to override the tertiary settings programmatically. This is used to
change the default case behavior to be all upper first or all lower first. It can also be used
for a separate case level, or to ignore all other tertiary differences (such as between
circled and non-circled letters, or between half-width and full-width katakana). The case
values are derived directly from the Unicode character properties, and not set by the rules.

Mixed Case Contractions

There is currently a limitation that all contractions of multiple characters can only have
three special case values: upper, lower, and mixed. All mixed-case contractions are
grouped together, and are not affected by the upper first vs. lower first flag.

Rules Desired Order
 UPPER_FIRST

Current Order

& c < ch
<<< cH
<<< Ch
<<< CH

C
CH
Ch
cH
ch

c
CH
cH
Ch
ch

Cautions

The following are not known rule limitations, but rather cautions.

336 ICU v3.4 User Guide

Resets

Since resets always work on the existing state, the user is required to make sure that the
rule entries are in the proper order.

Rules Order Comment
& a < b
 & a < c

a
 c
 b

The rules mean: put b after a, then put
c after a (inserting before the b.

Postpone Insertion

When using a reset to insert a value X with a certain strength difference after a value Y, it
actually is inserted just before the next item of the same strength or higher following Y.
Thus, the following are equivalent:

that this is different than the Java semantics. In Java, the value is inserted
immediately after the reset character.

Jamo Tailoring

If Jamo characters are tailored, that causes the code to go through a slow path, which will
have a significant effect on performance.

Compatibility Decompositions

When tailoring a letter, the customization affects all of its canonical equivalents. That is,
if tailoring rule sorts an 'a' after'e ', for example, then ""à", "á", ... are also sorted after
'e'.his is not true for compatibility equivalents. If the desired sorting order is for a
superscript-a ("ª") to be after "e", it is necessary to specify the rule for that.

Case Differences

Similarly, when tailoring an "a" to be sorted after "e", including "A" to be after "e" as
well, it is required to have a specific rule for that sorting sequence.

Automatic Expansions

ICU will automatically form expansions whenever a reset is to a multi-character value
that is not a contraction. For example, & ab <<< c is equivalent to & a <<< c / b. The
user may be unaware of this hapening, since it may not be obvious that the reset is to a
multi-character value. For example, & à<<< d is equivalent to & a <<< d / `

337 ICU v3.4 User Guide

ICU Search String Service
String searching, also known as string matching, is a very important subject in the wider
domain of text processing and analysis. Many software applications use the basic string
search algorithm in the implementations on most operating systems. With the popularity
of internet, the quantity of available data from different parts of the world has increased
dramatically within a short time. Therefore, a string search algorithm that is language-
aware has become more important. A bitwise match that uses the u_strstr (C),
UnicodeString::indexOf (C++) or String.indexOf (Java) APIs will not yield the
correct result specific to a particular language's requirements. The APIs will not yield the
correct result because all the issues that are important to language-sensitive collation are
also applicable to text searching. The following lists those issues which are applicable to
text searching:

• The accented letters
In English, accents are treated as minor variations of a letter. In French, accented
letters have much more significance as they can actually change the meaning of a
word. Very often, an accented letter is actually a distinct letter. For example, letter 'Å'
(\u00c5) may be just a letter 'A' followed by an accent symbol to English speakers.
However, it is actually a distinct letter in Danish. In some cases, such as in traditional
German, an accented letter is short-hand for something longer. In sorting, an 'ä'
(\u00e4) is treated as 'ae'.

• The conjoined letters
Special handling is required when a single letter is treated equivalent to two distinct
letters and vice versa. For example, in German, the letter 'ß' (\u00df) is treated as 'ss' in
sorting. Also, in most languages, 'æ' (\u00e6) is considered equivalent to the letter 'a'
followed by the letter 'e'. Also, the ligatures are often treated as distinct letters by
themselves. For example, 'ch' is treated as a distinct letter between the letter 'c' and the
letter 'd' in Spanish.

• Ignorable punctuation
As in collation, it is important that the user is able to choose to ignore punctuation
symbols while the user searches for a pattern in the string. For example, a user may
search for "blackbird" and want to include entries such as "black-bird".

Though the brute force algorithm works well in locating a match without error, many
improvements can be made to provide better performance. A new set of APIs is available
that provides a language-sensitive string search service. The ICU string search service
uses the Boyer-Moore searching algorithm based on automata or combinatorial properties
of strings and pre-processes the pattern.

ICU String Search Model

The ICU string search service provides similar APIs to the other text iterating services.
Allowing users to specify the starting position and direction within the text string to be

338 ICU v3.4 User Guide

searched. For more information, please see BreakIterator. The user can locate one or all
occurrences of a pattern in a string. For a given collator, a pattern match is located at the
offsets <start, end> in a string if the collator finds that the sub-string between the start and
end is equal.

The string search service provides two options to handle accent matching as described
below:

Let S' be the sub-string of a text string S between the offsets start and end <start, end>.
A pattern string P matches a text string S at the offsets <start, end> if

• option 1. P matches some canonical equivalent string of S'. Suppose the collator used
for searching has a tertiary collation strength, all accents are non-ignorable. If the
pattern "a\u0300" is searched in the target text "a\u0325\u0300", a match will be
found, since the target text is canonically equivalent to "a\u0300\u0325"

• option 2. P matches S' and if P starts or ends with a combining mark, there exists no
non-ignorable combining mark before or after S' in S respectively. Following the
example above, the pattern "a\u0300" will not find a match in "a\u0325\u0300", since
there exists a non-ignorable accent '\u0325' in the middle of 'a' and '\u0300'. Even with
a target text of "a\u0300\u0325" a match will not be found because of the non-
ignorable trailing accent \u0325.

One restriction is to be noted for option 1. Currently there are no composite characters
that consists of a character with combining class greater than 0 before a character with
combining class equals to 0. However, if such a character exists in the future, the string
search service may not work correctly with option 1 when such characters are
encountered.

Furthermore, option 1 could generate more than one "encompassing" matches. For
example, in Danish, 'å' (\u00e5) and 'aa' are considered equivalent. So the pattern "baad"
will match "a--båd--man" (a--b\u00e5d--man). However, "baad" will match "a--båd--
man" (a--b\u00e5d--man) both at starting offset 3 but also at starting offset 1 and 2. The
end offset can be either 5, 6, or 7. To be more exact, the string search added a "tightest"
match condition. In other words, if the pattern matches at offsets <start, end> as well as
offsets <start + 1, end>, the offsets <start, end> are not considered a match. Likewise, if
the pattern matches at offsets <start, end> as well as offsets <start, end + 1>, the offsets
<start, end + 1> are not considered a match. Therefore, when the option 1 is chosen in
Danish collator, 'baad' will match in the string "a--båd--man" (a--b\u00e5d--man) ONLY
at offsets <3,5>.

As in other iterator interfaces, the string search service provides APIs to perform string
matching for the first pattern occurrence, immediate next, previous match, and the last
pattern occurrence. There are also options to allow for overlapping matching. For
example, in English, if the string is "ababab" and the pattern is "abab", overlapping
matching produces results of offsets <0, 3> and <2, 5>. Otherwise, the mutually exclusive
matching produces the result offset <0, 3> only. To find a whole word match, the user can

339 ICU v3.4 User Guide

provide a locale-specific BreakIterator object to a StringSearch instance to correctly
locate the word boundaries. For example, if "c" exists in the string "abc", a match is
returned. However, the behavior can be overwritten by supplying a word BreakIterator.

Both a locale or collator can be used to specify the language-sensitive rules for searches.
When a locale is specified, a collator will be created internally and the StringSearch
instance that is created is responsible for the ownership of the collator. All the collation
attributes will be considered during the string search operation. However, the users only
can set the collator attributes using the collator APIs. Normalization is usually done
within collation and the process is outside the scope of the string search service.
Therefore, the result offsets may contain extra combining characters at either the
beginning or the end of the match. If the start of the match lies within a range of
normalized characters, the start offset returned will be one character after the immediate
preceding base letter. If the end of the match lies within a range of normalized characters,
the end offset returned will be one character before the immediate following base letter.
For example, the pattern "´¸" (\u00b4\u00b8) is considered a match in string "A´¨¸B"
(A\u00b4\u00a8\u00b8B) at offsets <1, 3>. It is important to note that the pre-composed
characters are treated equivalent to their decomposed counterparts. For example, if the
user searches for the pattern " " (\u02cb) in the string "ÀBC", (\u00c0BC) a match willˋ
be found at offsets <0, 1>. Currently, there is no existing pre-composed character that
decomposes in NFD to a character sequence with accents before a base letter. The string
search service incorporates decomposition and optimizes it for boundary checking.

When there are contractions in the collation sequence and the contraction happens to span
across the boundary of a match, it is not considered a match. For example, in traditional
Spanish where 'ch' is a contraction, the "har" pattern will not match in the string "uno
charo". Boundaries that are discontiguous contractions will yield a match result similar to
those described above, where the end of the match returned will be one character before
the immediate following base letter. In addition, only the first match will be located if a
pattern contains only combining marks and the search string contains more than one
occurrences of the pattern consecutively. For example, if the user searches for the pattern
"´" (\u00b4) in the string "A´´B", (A\u00b4\u00b4B) the result will be offsets <1, 2>.

Example

In C:

 char *tgtstr = "A quick brown fox jumped over the lazy dog.";
 char *patstr = "FoX";
 UChar target[64];
 UChar pattern[16];
 int pos = 0;
 UErrorCode status = U_ZERO_ERROR;
 u_uastrcpy(target, tgtstr);
 u_uastrcpy(pattern, patstr);

 UStringSearch *search = usearch_open(pattern, -1, target, -1, "en_US",
 &status);

340 ICU v3.4 User Guide

 if (U_FAILURE(status)) return;
 while(TRUE) {
 pos = usearch_next(search);
 if (pos = USEARCH_DONE) {
 fprintf(stdout, "No match found for pattern.\n");
 break;
 } else {
 fprintf(stdout, "Match found for pattern at position %d.\n", pos);
 }
 pos = usearch_next(search);
 }
 }

In C++:

 UErrorCode status = U_ZERO_ERROR;
 UnicodeString target("A quick fox jumped over the lazy dog.", "");
 UnicodeString easyPatterns = "FoX";
 int pos = 0;
 StringSearch *searchIter = new StringSearch(easyPatterns, target,
Locale::US, status);
 If (U_FAILURE(status)) return;
 while (TRUE)
 {
 status = U_ZERO_ERROR;
 pos = searchIter->next();
 if (pos == U_SEARCH_DONE)
 fprintf(stdout, "No match found for pattern.\n");
 break;
 } else {
 fprintf(stdout, "Match found for pattern at position %d.\n", pos);

 }
 }

In Java:

 StringCharacterIterator target = new StringCharacterIterator(
 "A quick fox jumped over the lazy
dog.");
 String easyPatterns = "FoX";
 try {
 StringSearch searchIter = new StringSearch(easyPatterns, target, Locale.US);
 while (true) {
 int pos = searchIter.next();
 if (pos == StringSearch.DONE)
 System.out.println("No match found for pattern");
 break;
 } else {
 System.out.println("Match found for pattern at position " + pos);
 }
 }
 } catch (Exception e) {
 System.err.println("StringSearch failure");
 e.printStackTrace();
 }

Performance and Other Implications

The ICU string search service is designed to be on top of the ICU collation service.

341 ICU v3.4 User Guide

Therefore, all the performance implications that apply to a collator are also applicable to
the string search service. To obtain the best performance, use the default collator
attributes described in the Performance and Storage Implications on Attributes. In
addition, users need to be aware of the following StringSearch specific considerations:

Change Iterating Direction

The ICU string search service provides a set of very dynamic APIs that allow users to
change the iterating direction randomly. For example, users can search for a particular
word going forward by calling the usearch_next (C), StringSearch::next (C++) or
StringSearch.next (Java) APIs and then search backwards at any point of the search
operation by calling the usearch_previous (C), StringSearch::previous (C++) or
StringSearch.previous (Java) APIs. Another way to change the iterating direction is
by calling the usearch_reset (C), StringSearch::previous (C++) or
StringSearch.previous (Java) APIs. Though the direction change can occur without
calling the reset APIs first, this operation comes with a reduction in speed.

Roundtripping Results

The matching results in the forward direction will, in general, match the results in the
backwards direction in the reverse order. However, this match is not guaranteed. For
example, if the pattern consists of prefix accents and a match with a starting
discontinguous boundary is found, the resulting start offset of the match includes the
initial base letter in the discontiguous contraction or does not depend on the direction of
the search. Assuming that we are searching for the accent "¨" (\u00a8) in "X´¨¸"
(X\u00b4\u00a8\u00b8) and that "X´¸" (X\u00b4\u00b8) is a contraction sequence, the
string search service will provide a match result at offsets <0, 4> during a forward search
but offsets <1,3> during a backward search.

Thai and Lao Character Boundaries

In collation, certain Thai and Lao vowels are swapped with the next character. For
example, the text string "A ขเ" (A \u0e02\u0e40) is processed internally in collation as
"A เข" (A \u0e40\u0e02). Therefore, if the user searches for the pattern "A เ" (A\u0e40)
in "A ขเ" (A \u0e02\u0e40) the string search service will match starting at offset 0. Since
this normalization process is internal to collation, there is no notification that the
swapping has happened. The return result offsets in this example will be <0, 2> even
though the range would encompass one extra character.

Canonical Equivalence

In collation process, if normalization is on, any string will be compared as if it is
canonically equivalent. However, FCD (fast C or D form) text is guaranteed to sort

342 ICU v3.4 User Guide

correctly regardless of the normalization. This process works as long as the pattern is
within the interior of the search string. However, if the pattern matches at the boundaries
of the search string, the matching may be confusing. For example, if the user searches for
the pattern "¸c´" (\u00b8c\u00b4) in the string "a¨¸c´e" (a\u00a8\u00b8c\u00b4e), the
match is located at offsets <2, 4>. If the search string is normalized, the normalized
search string will be "a¨¸c´e" (a\u00b8\u00a8c\u00b4e). Without further processing, a
match cannot be located. In order to ensure canonical equivalence, the user is provided
with two search options presented at the beginning of this document to ensure that the
same result should be returned in either case

Accents refer to characters that have a non-zero canonical combining order and have non-
zero collation elements.

Not all non-zero canonical combining order characters are ignored and vice
versa. A discontiguous match might occur in option 1. In this case, the match
offsets <start, end> may encompass more accents at the end of the match than is
expected. For example, when the user searches for the "¨c¸" (\u00a8c\u00b8)
pattern in "a¨c´¸e" (a\u00a8c\u00b4\u00b8e) with the normalization mode turned
on, a match is found. Although option 2 is more restrictive, it allows users to
search for Arabic consonants. Using option 2, the match is located against
"consonant + vowel". However, if a user searches for "consonant + vowel1", it
will not match against "consonant + vowel1 + vowel2".

343 ICU v3.4 User Guide

Collation FAQ
• Q. Should I turn Full Normalization on all the time?

• Q. Are there any cases where I would want to override the Full Normalization setting?

• Q. How to mimic word sort using collation rules?

Q. Should I turn Full Normalization on all the time?

A. You can if you want, but you don't typically need to. The key is that normalization for
most characters is already built into ICU's collation by default. Everything that can be
done without affecting performance is already there, and will work with most languages.
So the normalization parameter in ICU really only changes whether full normalization is
invoked.

The outlying cases are situations where a language uses multiple accents (non-spacing
marks) on the same base letter, such as Vietnamese or Arabic. In those cases, full
normalization needs to be turned on. If you use the right locale (or language) when
creating a collation in ICU, then full normalization will be turned on or off according to
what the language typically requires.

Q. Are there any cases where I would want to override the Full
Normalization setting?

A. The only case where you really need to worry about that parameter is for very unusual
cases, such as sorting an list containing of names according to English conventions, but
where the list contains, for example, some Vietnamese names. One way to check for such
a situation is to open a collator for each of the languages you expect to find, and see if any
of them have the full normalization flags set.

Q. How to mimic word sort using collation rules?

Word sort is a way of sorting where certain interpunction characters are completely
ignored, while other are considered. An example of word sort below ignores hypnens and
apostrophes:

Word Sort String Sort
billet bill's
bills billet

344 ICU v3.4 User Guide

Word Sort String Sort
bill's bills
cannot can't
cant cannot
can't cant
con co-op
coop con
co-op coop
This specific behaviour can be mimiced using a tailoring that makes these characters
completely ignorable. In this case, appropriate rule would be "&\u0000 = '' = '-'".

Please note that we don't think that such solution is correct, since different languages
have different word elements. Instead one should use shifted mode for comparison.

345 ICU v3.4 User Guide

Text Element Boundary Analysis
Overview of Text Boundary Analysis

Text boundary analysis is the process of locating linguistic boundaries while formatting
and handling text. Examples of this process include:

• Locating appropriate points to word-wrap text to fit within specific margins while
displaying or printing.

• Locating the beginning of a word that the user has selected.

• Counting characters, words, sentences, or paragraphs.

• Determining how far to move the text cursor when the user hits an arrow key (Some
characters require more than one position in the text store and some characters in the
text store do not display at all).

• Making a list of the unique words in a document.

• Figuring out if a given range of text contains only whole words.

• Capitalizing the first letter of each word.

• Locating a particular unit of the text (For example, finding the third word in the
document).

The BreakIterator classes were designed to support these kinds of tasks. The
BreakIterator objects maintain a location between two characters in the text. This
location will always be a text boundary. Clients can move the location forward to the next
boundary or backward to the previous boundary. Clients can also check if a particular
location within a source text is on a boundary or find the boundary which is before or
after a particular location.

Four Types of BreakIterator

ICU BreakIterators can be used to locate the following kinds of text boundaries:

• Character Boundary

• Word Boundary

• Line-break Boundary

• Sentence Boundary

Character Boundary

The character-boundary iterator locates the boundaries between "characters", where
"character" is what the end user of an application would usually expect. For example, the

346 ICU v3.4 User Guide

Ä letter can be represented in Unicode either with a single code-point value or with two
code-point values (one representing the A and another representing the umlaut). The
character-boundary iterator will treat the Ä as a single character regardless of whether or
not it is stored using one code point or two. In short, the character-boundary iterator is
used to identify sequences that should be treated as single characters from a user's
perspective.

End-user characters, as described above, are also called grapheme clusters, in an attempt
to limit the confusion caused by multiple meanings for the word "character".

Word Boundary

The word-boundary iterator locates the boundaries of words, for purposes such as double
click selection or "Find whole words" operations in an editor.

Here's an example of a sentence, showing the boundary locations that will be identified
by a word break iterator:

Word boundary locations are found according to these general principles:

• Words themselves are kept together

• Numbers are kept together, including any commas, points or currency symbols.

• Apostrophes or hyphens within a word are kept with the word. They are not broken out
separately like most other punctuation

• Punctuation, spaces and other characters that are not part of a word or number, are
broken out separately, with a boundary before and after each character.

The rules used for locating word breaks take into account the alphabets and conventions
used for different languages.

Locating word breaks for Thai text presents a special challenge, because there are no
spaces or other identifiable characters separating the words. To solve the problem of
word-breaking Thai text, ICU provides a special dictionary-based break iterator.

Line-break Boundary

The line-break iterator locates positions within the text that would be appropriate points
for a text editor to break lines when displaying the text. Line breaks differ from word
breaks in that adjoining punctuation and trailing white space are kept with the words
instead of being treated as separate "words" on their own (for example, do not wrap a line

347 ICU v3.4 User Guide

Your balance is $1,234.56... I think.

before a space).

This example shows the differences in the break locations produced by word and line
break iterators

Sentence Boundary

A sentence-break iterator locates sentence boundaries.

The exact rules used for locating each type of boundary are described in a pair of
documents from the Unicode Consortium. Unicode Standard Annex 14
(http://www.unicode.org/unicode/reports/tr14/) gives the rules for locating line
boundaries, while technical report 29 "http://www.unicode.org/unicode/reports/tr29/")
describe character, word and sentence boundaries.

Usage

To locate boundaries in a document, create a BreakIterator using the
BreakIterator::create***Instance family of methods in C++, or the ubrk_open()
function (C). "***" is Character, Word, Line or Sentence, depending on the type of
iterator wanted. These factory methods also take a parameter that specifies the locale for
the language of the text to be processed.

When creating a BreakIterator, a locale is also specified, and the behavior of the
BreakIterator obtained may be specialized in some way for that locale. For ICU 2.6,
Break Iterators for the Thai locale will make use of a Thai dictionary for finding word and
line boundaries; all other locales will use the default boundary rules.

Applications also may register customized BreakIterators for use in specific locales.
Once such a break iterator has been registered, any requests for break iterators for the
locale will return copies of the registered break iterator

In the general-usage-model, applications will use the following basic steps to analyze a
piece of text for boundaries:

1. Create a BreakIterator with the desired behavior

2. Use the setText() or adoptText() methods to set the iterator to analyze a particular

348 ICU v3.4 User Guide

Line break: Parlez-vous français ?

Word break: Parlez-vous français ?

piece of text. Since BreakIterator uses a CharacterIterator to access the text, it can
be stored in any form as long as you provide an appropriate CharacterIterator. There is
a convenience method for analyzing a UnicodeString, but the user also can analyze
part of a UnicodeString by creating a StringCharacterIterator directly.

3. Locate the desired boundaries using the appropriate combination of first(), last(),
next(), previous(), preceding(), and following() methods.

The setText() or the adoptText() method can be called more than once, allowing a
single BreakIterator to be reused to analyze different pieces of text. Because the
creation of a BreakIterator can be relatively time-consuming, it makes good sense to
cache and reuse BreakIterators within an application.

Set the text to be searched using the following:

• adoptText(CharacterIterator) sets the BreakIterator to analyze a new piece of
text. The new piece of text is specified with a CharacterIterator, which allows
BreakIterator to analyze the text for boundaries no matter how it happens to be
stored [it always accesses the text through the CharacterIterator]. The
BreakIterator takes ownership of the CharacterIterator and will delete it when
the process is completed.

• setText(UnicodeString) is a shortcut for the adoptText() method. If the text is a
UnicodeString, the user can call setText and pass it the string, rather than creating a
StringCharacterIterator and passing it to the adoptText() method. This method
will create the StringCharacterIterator. To analyze only part of a
UnicodeString, on the other hand, create the StringCharacterIterator manually,
specify the substring, and then pass it to the adoptText() method.

• getText() method returns a const reference to the CharacterIterator that the
BreakIterator is using to access the text.

• createText() method returns a clone of the CharacterIterator that the
BreakIterator is using to access the text. Ownership of the clone is transferred to the
caller. (The caller can seek the returned CharacterIterator without affecting the
BreakIterator, but if the actual text underlying the iterator is changed, the
adoptText() method must be called again to make sure the BreakIterator does not
malfunction.)

The iterator always points to a boundary position between two characters. The numerical
value of the position, as returned by current() is the zero-based index of the character
following the boundary. Thus a position of zero represents a boundary preceding the first
character of the text, and a position of one represents a boundary between the first and
second characters.

The first() and last() methods reset the iterator's current position to the beginning or
end of the text (the beginning and the end are always considered boundaries). The next()
and previous() methods advance the iterator one boundary forward or backward from
the current position. If the next() or previous() methods run off the beginning or end
of the text, it returns DONE. The current() method returns the current position.

349 ICU v3.4 User Guide

The following() and preceding() methods are used for random access or to reposition
the iterator to some arbitrary spot in the middle of the text. Since a BreakIterator
always points to a boundary position, the following() and preceding() methods will
never set the iterator to point to the position specified by the caller (even if it is, in fact, a
boundary position). BreakIterator will, however, set the iterator to the nearest boundary
position before or after the specified position. The isBoundary() method returns true or
false, based on whether or not the specified position is a boundary position. It does this by
calling the preceding() and next() methods, so it also repositions the iterator either at
the specified position or the first boundary position after it. If any of these functions is
passed an out-or-range offset, it returns DONE and repositions the iterator to the
beginning or end of the text.

Reuse

It is slow and wasteful to repeatedly create and destroy a BreakIterator when it is not
necessary. For example, do not create a separate BreakIterator for each line in a
document that is being word-wrapped. Keep around a single instance of a line
BreakIterator and use it whenever a line break iterator is needed.

Accuracy

ICU's break iterators implement the default boundary rules described in the Unicode
Consortium Technical Reports 14 and 29. These are relatively simple boundary rules that
can be implemented efficiently, and are sufficient for many purposes and languages.
However, some languages and applications will require a more sophisticated linguistic
analysis of the text in order to find boundaries with good accuracy. Such an analysis is
not directly available from ICU at this time.

Break Iterators based on custom, user-supplied boundary rules can be created and used by
applications with requirements that are not met by the standard default boundary rules.

BreakIterator Boundary Analysis Examples

Print out all the word-boundary positions in a UnicodeString:

In C++,
void listWordBoundaries(const UnicodeString& s) {
 UErrorCode status = U_ZERO_ERROR;
 BreakIterator* bi = BreakIterator::createWordInstance(Locale::getUS(), status);
 bi->setText(s);
 int32_t p = bi->first();
 while (p != BreakIterator::DONE) {
 printf("Boundary at position %d\n", p);
 p = bi->next();
 }
 delete bi;
}

350 ICU v3.4 User Guide

In C:

void listWordBoundaries(const UChar* s,
 int32_t len) {
 UBreakIterator* bi;
 int32_t p;
 UErrorCode err = U_ZERO_ERROR;
 bi = ubrk_open(UBRK_WORD, 0, s, len, &err);
 if (U_FAILURE(err)) return;
 p = ubrk_first(bi);
 while (p != UBRK_DONE) {
 printf("Boundary at position %d\n", p);
 p = ubrk_next(bi);
 }
 ubrk_close(bi);
}

Get the boundaries of the word that contains a double-click
position:

In C++:
void wordContaining(BreakIterator& wordBrk,
 int32_t idx,
 const UnicodeString& s,
 int32_t& start,
 int32_t& end) {
 // this function is written to assume that we have an
 // appropriate BreakIterator stored in an object or a
 // global variable somewhere-- When possible, programmers
 // should avoid having the create() and delete calls in
 // a function of this nature.
 if (s.isEmpty())
 return;
 wordBrk.setText(s);
 start = wordBrk.preceding(idx + 1);
 end = wordBrk.next();
 // NOTE: for this and similar operations, use preceding() and next()
 // as shown here, not following() and previous(). preceding() is
 // faster than following() and next() is faster than previous()
 // NOTE: By using preceding(idx + 1) above, we're adopting the convention
 // that if the double-click comes right on top of a word boundary, it
 // selects the word that _begins_ on that boundary (preceding(idx) would
 // instead select the word that _ends_ on that boundary).
}

In C:
void wordContaining(UBreakIterator* wordBrk,
 int32_t idx,
 const UChar* s,
 int32_t sLen,
 int32_t* start,
 int32_t* end,
 UErrorCode* err) {
 if (wordBrk == NULL || s == NULL || start == NULL || end == NULL) {
 *err = U_ILLEGAL_ARGUMENT_ERROR;
 return;

351 ICU v3.4 User Guide

 }
 ubrk_setText(wordBrk, s, sLen, err);
 if (U_SUCCESS(*err)) {
 *start = ubrk_preceding(wordBrk, idx + 1);
 *end = ubrk_next(wordBrk);
 }
}

Check for Whole Words

Use the following to check if a range of text is a "whole word":

In C++:
UBool isWholeWord(BreakIterator& wordBrk,
 const UnicodeString& s,
 int32_t start,
 int32_t end) {
 if (s.isEmpty())
 return FALSE;
 wordBrk.setText(s);
 if (!wordBrk.isBoundary(start))
 return FALSE;
 return wordBrk.isBoundary(end);}

In C:
UBool isWholeWord(UBreakIterator* wordBrk,
 const UChar* s,
 int32_t sLen,
 int32_t start,
 int32_t end,
 UErrorCode* err) {
 UBool result = FALSE;
 if (wordBrk == NULL || s == NULL) {
 *err = U_ILLEGAL_ARGUMENT_ERROR;
 return FALSE;
 }
 ubrk_setText(wordBrk, s, sLen, err);
 if (U_SUCCESS(*err)) {
 result = ubrk_isBoundary(wordBrk, start)
 >> ubrk_isBoundary(wordBrk, end);
 }
 return result;
}

Although users can check for "whole words" using these methods, it is possible to get
better performance (in most cases) with the following algorithm:

352 ICU v3.4 User Guide

bool isWholeWord(BreakIterator *wordBrk,
 const UnicodeString& s,
 int32_t start,
 int32_t end) {
 wordBrk->setText(s);
 if (!wordBrk->isBoundary(start))
 return false;
 UTextOffset p = wordBrk->current();
 while (p < end)
 p = wordBrk->next();
 return p == end;
}

This algorithm is faster because the next() method is the fastest boundary-detection
method in BreakIterator. The following() and isBoundary() method [while it calls
following()] is the slowest. Two calls to the isBoundary() method is faster only when
the selection range is long and comprises more than roughly four words.

Count the words in a document (C++ only):

int32_t containsLetters(RuleBasedBreakIterator& bi,
 const UnicodeString& s,
 int32_t start) {
 bi.setText(s);
 int32_t count = 0;
 while (start != BreakIterator::DONE) {
 int breakType = bi.getRuleStatus();
 if (breakType != UBRK_WORD_NONE) {
 // Exclude spaces, punctuation, and the like.
 ++count;
 }
 start = bi.next();
 }
 return count;
}

The function getRuleStatus() returns an enum giving additional information on the
text preceding the last break position found. Using this value, it is possible to distinguish
between numbers, words, words containing kana characters, words containing
ideographic characters, and non-word characters, such as spaces or punctuation. The
sample uses the break status value to filter out, and not count, boundaries associated with
non-word characters.

Word-wrap a document (C++ only):

The sample function below wraps a paragraph so that each line is less than or equal to 72
characters. The function fills in an array passed in by the caller with the starting offsets of
each line in the document. Also, it fills in a second array to track how many trailing white
space characters there are in the line. For simplicity, it is assumed that an outside process
has already broken the document into paragraphs. For example, it is assumed that every
string the function is passed has a single newline at the end only.

353 ICU v3.4 User Guide

int32_t wrapParagraph(const UnicodeString& s,
 const Locale& locale,
 int32_t lineStarts[],
 int32_t trailingwhitespace[],
 int32_t maxLines,
 UErrorCode &status) {
 int32_t numLines = 0;
 int32_t p, q;
 const int32_t MAX_CHARS_PER_LINE = 72;
 UChar c;
 BreakIterator *bi = BreakIterator::createLineInstance(locale, status);
 if (U_FAILURE(status)) {
 delete bi;
 return 0;
 }
 bi->setText(s);

 p = 0;
 while (p < s.length()) {
 // jump ahead in the paragraph by the maximum number of
 // characters that will fit
 q = p + MAX_CHARS_PER_LINE;
 // if this puts us on a white space character, a control character
 // (which includes newlines), or a non-spacing mark, seek forward
 // and stop on the next character that is not any of these things
 // since none of these characters will be visible at the end of a
 // line, we can ignore them for the purposes of figuring out how
 // many characters will fit on the line)
 if (q < s.length()) {
 c = s[q];
 while (q < s.length()
 && (u_isspace(c)
 || u_charType(c) == U_CONTROL_CHAR
 || u_charType(c) == U_NON_SPACING_MARK
)) {
 ++q;
 c = s[q];
 }
 }
 // then locate the last legal line-break decision at or before
 // the current position ("at or before" is what causes the "+ 1")
 q = bi->preceding(q + 1);
 // if this causes us to wind back to where we started, then the
 // line has no legal line-break positions. Break the line at
 // the maximum number of characters
 if (q == p) {
 p += MAX_CHARS_PER_LINE;
 lineStarts[numLines] = p;
 trailingwhitespace[numLines] = 0;
 ++numLines;
 }
 // otherwise, we got a good line-break position. Record the start of this
 // line (p) and then seek back from the end of this line (q) until you find
 // a non-white space character (same criteria as above) and
 // record the number of white space characters at the end of the
 // line in the other results array
 else {
 lineStarts[numLines] = p;
 int32_t nextLineStart = q;
 for (q--; q > p; q--) {
 c = s[q];
 if (!(u_isspace(c)
 || u_charType(c) == U_CONTROL_CHAR
 || u_charType(c) == U_NON_SPACING_MARK)) {
 break;
 }

354 ICU v3.4 User Guide

 }
 trailingwhitespace[numLines] = nextLineStart - q -1;
 p = nextLineStart;
 ++numLines;
 }
 if (numLines >= maxLines) {
 break;
 }
 }
 delete bi;
 return numLines;
}

Most text editors would not break lines based on the number of characters on a line. Even
with a monospaced font, there are still many Unicode characters that are not displayed
and therefore should be filtered out of the calculation. With a proportional font, character
widths are added up until a maximum line width is exceeded or an end of the paragraph
marker is reached.

Trailing white space does not need to be counted in the line-width measurement because
it does not need to be displayed at the end of a line. The sample code above returns an
array of trailing white space values because an external rendering process needs to be able
to measure the length of the line (without the trailing white space) to justify the lines. For
example, if the text is right-justified, the invisible white space would be drawn outside
the margin. The line would actually end with the last visible character.

In either case, the basic principle is to jump ahead in the text to the location where the
line would break (without taking word breaks into account). Then, move backwards using
the preceding() method to find the last legal breaking position before that location.
Iterating straight through the text with next() method will generally be slower.

ICU BreakIterator Data Files

The source code for the ICU break rules for the standard boundary types is located in the
directory icu/source/data/brkitr. These files will be built, and the corresponding binary
state tables incorporated into ICU's data, by the standard ICU4C build process. Unlike
older (version 2.0 and before) versions of ICU, no special Java tool based build of the
break data files is required.

Beginning with ICU 3.0, the same break rule source files and compiled state tables are
used for both ICU4C and ICU4J. The state tables are built using ICU4C, and the binary
tables are incorporated into ICU4J.

RBBI Rules

ICU locates boundary positions within text by means of rules, which take the form of
regular expressions. A rule matches a section of text - a word or sentence or whatever -
that should remain together, with boundaries occurring between the ranges of matched
text. A set of rules consists of a series of regular expressions separated by semicolons; the

355 ICU v3.4 User Guide

rules, taken together, define regions of text that are kept together between boundaries.
Boundaries occur at the end of text ranges matched by the rules.

Forward, Reverse, Safe Point rules

For each type of boundary, four sets of rules are required, as described in the following
table.

Forward Advance (match text) starting from a boundary position and continuing
to the next following boundary.

Reverse Starting from a boundary, match backwards, until the preceding
boundary position.

Safe Forward Starting from any arbitrary position in the text, move forward to a safe
position, which is a position from which the normal Reverse rule will
work correctly.

Safe Reverse Starting from any arbitrary position in the text, move backwards to a
safe point, which is a position from which the normal Forward rule
will work correctly.

All four rules need to be supplied.

Normal next() or previous() operations use the Forward or Reverse rules, respectively, to
move directly from one boundary position to another.

The preceding() and following() functions first apply a safe rule, then apply a normal
Forward or Reverse rule. (precdinng() and following() can start from any arbitrary
location in the input text)

Note: Earlier versions of ICU (prior to 3.0) worked with only a Forward rule and
a safe Reverse rule. While the rule builder will still recognize rules written in this
form, their use is deprecated and strongly discouraged.

A rule input file is divided into sections, one for each type of rule:
This shows the general layout of a break rule file
#
The order of the four sections doesn't matter, so long as they all appear.
#
Variable definitions can appear anywhere, so long as they are defined before
their first use in a rule. Variables carry forward across section boundaries.
#
!!forward
forward rules go here.

!!reverse
Reverse rules go here.

!!safe_forward
Safe Forward rules go here.

!!safe_reverse
Safe Reverse rules go here.

356 ICU v3.4 User Guide

Variables

A set of break rules may define and use variables, which are convenient when
subexpressions reappear more than once, or to simplify complex expressions by allowing
parts to be separately defined and named. Use of variables within a set of rules has no
effect on the efficiency of the resulting break iterator.

!!chain

ICU boundary rules can be written in two ways: chained or non-chained.

With non-chained rules, each rule (regular expression) stands by itself, matching a
segment of text between to boundary positions. When moving to the next boundary, the
single rule with the longest match defines the boundary position.

This is very much traditional regular expression behavior.

Non-chained rule matching behavior is the default for ICU break rules.

Chaining allows boundary positions to be determined by an arbitrary number of the
boundary rules, applied in an arbitrary sequence. Any character in the text that completes
a match for one rule can function as a chaining point, and simultaneously be the
beginning character of a match for any other rule. Matching continues in this way until
the longest possible match is obtained.

Chaining from one rule to the next can occur at any point that the first rule of the pair
matches. The longest match of each individual rule is not required, and if chaining from
a shorter match of an intermediate rule results in a longer overall match, that is what will
happen.

Chained rules are closer in flavor to the rules definitions in the Unicode Consortium text
boundary specifications. Line Break boundaries, in particular, were not really possible to
implement accurately with traditional, non-chained regular expression.

!!chain in a rule file enables rule chaining. !!chain applies to all rule sections, and
must appear before the first section.

The !!LBCMNoChain option modifies chaining behavior by preventing chaining from
one rule to another from occurring on any character whose Line Break property is
Combining Mark. This option is subject to change or removal, and should not be used in
general. Within ICU, it is used only with the line break rules. We hope to replace it with
something more general.

Rule Syntax

Here is the syntax for the boundary rules.

357 ICU v3.4 User Guide

Rule Name Rule Values Notes
rules statement+
statement assignment | rule | control
control “!!forward” | “!!reverse” | “!!safe_forward” |

“!!safe_reverse” | “!!chain” | “!!LBCMNoChain”
assignment variable '=' expr ';' 5
rule '!'? expr ('{'number'}')? ';' 8
number [0-9]+ 1
break-point '/'
expr expr-q | expr '|' expr | expr expr 3
expr-q term | term '*' | term '?' | term '+'
term rule-char | unicode-set | variable | quoted-sequence | '('

expr ')' | break-point
rule-special any printing ascii character except letters or numbers |

white-space
rule-char any non-escaped character that is not rule-special | '.' |

any escaped character except '\p' or '\P'
variable '$' name-start-char name-char* 7
name-start-char '_' | \p{L}
name-char name-start-char | \p{N}
quoted-sequence ''' (any char except single quote or line terminator or

two adjacent single quotes)+ '''
escaped-char See “Character Quoting and Escaping”
Unicode set See UnicodeSet 4
comment unescaped '#' [any char except new-line]* new-line 2
s unescaped \p{Z}, tab, LF, FF, CR, NEL 6
new-line LF, CR, NEL 2
Notes:

1. The number associated with a rule that actually determined a break position is
available to the application after the break has been returned.

2. Comments are recognized and removed separately from otherwise parsing the rules.
They may appear wherever a space would be allowed (and ignored.)

3. The implicit concatenation of adjacent terms has higher precedence than the '|'
operation. "ab|cd" is interpreted as "(ab)|(cd)", not as "a(b|c)d" or "(((ab)|c)d)"

358 ICU v3.4 User Guide

4. The syntax for UnicodeSet is defined (and parsed) by the UnicodeSet class. It is not
repeated here.

5. For $variables that will be referenced from inside of a UnicodeSet, the definition must
consist only of a Unicode Set. For example, when variable $a is used in a rule like this
[ab$c], then this definition of $a is ok $a=[:Lu:]; while this one is $a=abcd; would
cause an error when the $variable was used.

6. Spaces are allowed nearly anywhere, and are not significant unless escaped.
Exceptions to this are noted.

7. No spaces are allowed within a variable name. The variable name $_dictionary_ is
special. If defined, it must be a Unicode Set, the characters of which will be handled
by the word dictionary of a Dictionary based Break Iterator.

8. A leading '!' on a rule is a deprecated syntax for specifying a reverse rule. Putting
reverse rules in the !!reverse section is now preferred.

In ICU4C 2.0 and earlier, and ICU4J 2.4 and earlier, RBBI break rules, while similar, had
a slightly different syntax. Here is a summary of the changes with ICU 2.0.

1. The right hand side of an assignment is a little looser in what it will accept than is the
equivalent in the old RBBI rule syntax - the expression doesn't need to be in parens or
brackets. Spaces are allowed around the '='.

2. Spaces are allowed anywhere that it makes sense. Spaces that need to be recognized as
such within a rule or set of characters must be escaped or quoted.

3. The ICU standard conventions for quoting and escaping within rules are followed.

4. Text within single quotes is grouped, for example, 'abc'* is equivalent to (abc)*

5. Because the old style rules appeared only as literal strings within Java source code,
adding a '\' escape within a rule required a '\\' in the source, to get a single '\' into the
string. Moving the rules out to a text file required removal of the extra '\'s.

6. # Comments added.

7. {nnn} syntax added for specifying a value to be returned from the break iterator when
the expression matches.

8. Non greedy *? quantifier was removed.

9. $ignore characters don't get special handling. Explicit rules were added for dealing
with the combining marks that were previously handled including them in $ignore.

359 ICU v3.4 User Guide

EBNF Syntax used for the RBBI rules syntax description

a? zero or one instance of a
a+ one or more instances of a
a* zero or more instances of a
a | b either a or b, but not both
'a' "a" the literal string between the quotes

Additional Sample Code

C/C++: See icu/source/samples/break/ in the ICU source distribution for code samples
showing the use of ICU boundary analysis.

360 ICU v3.4 User Guide

LayoutEngine
Overview

The Latin script, which is the most commonly used script among software developers, is
also the least complex script to display especially when it is used to write English. Using
the Latin script, characters can be displayed from left to right in the order that they are
stored in memory. Some scripts require rendering behavior that is more complicated than
the Latin script. We refer to these scripts as "complex scripts" and to text written in these
scripts as "complex text." Examples of complex scripts are the Indic scripts (for example,
Devanagari, Tamil, Telugu, and Gujarati), Thai, and Arabic.

These complex scripts exhibit complications that are not found in the Latin script. The
following lists the main complications in complex text:

The ICU LayoutEngine is designed to handle these complications through a simple,
uniform client interface. Clients supply Unicode code points in reading or "logical" order,
and the LayoutEngine provides a list of what to display, indicates the correct order, and
supplies the positioning information.

Because the ICU LayoutEngine is platform independent and text rendering is inherently
platform dependent, the LayoutEngine cannot directly display text. Instead, it uses an
abstract base class to access font files. This base class models a TrueType font at a
particular point size and device resolution. The TrueType fonts have the following
characteristics:

• A font is a collection of images, called glyphs. Each glyph in the font is referred to by
a 16-bit glyph id.

• There is a mapping from Unicode code points to glyph ids. There may be glyphs in the
font for which there is no mapping.

• The font contains data tables referred to by 4 byte tags. (e.g. ''GSUB'', ''cmap''). These
tables can be read into memory for processing.

• There is a method to get the width of a glyph.

• There is a method to get the position of a control point from a glyph.

Since many of the contextual forms, ligatures, and split characters needed to display
complex text do not have Unicode code points, they can only be referred to by their glyph
indices. Because of this, the LayoutEngine's output is a list of glyph indices. This means
that the output must be displayed using an interface where the characters are specified by
glyph indices rather than code points.

A concrete instance of this base class must be written for each target platform. For a
simple example which uses the standard C library to access a TrueType font, look at the
PortableFontInstance class in icu/source/test/letest.

361 ICU v3.4 User Guide

The ICU LayoutEngine supports complex text in the following ways:

• If the font contains OpenType® tables, the LayoutEngine uses those tables.

• If the font contains Apple Advanced Typography (AAT) tables, the LayoutEngine uses
those tables.

• For Arabic and Hebrew text, if OpenType tables are not present, the LayoutEngine
uses Unicode presentation forms.

• For Thai text, the LayoutEngine uses either the Microsoft or Apple Thai forms.

OpenType processing requires script-specific processing to be done before the tables are
used. The ICU LayoutEngine performs this processing for Arabic, Devanagari, Bengali,
Gurmukhi, Gujarati, Oriya, Tamil, Telegu, Kannada, and Malayalam text.

The AAT processing in the LayoutEngine is relatively basic as it only applies the default
features in left-to-right text. This processing has been tested for Devanagari text. Since
AAT processing is not script-specific, it might not work for other scripts.

Programming with the LayoutEngine

The ICU LayoutEngine is designed to process a run of text which is in a single font. It is
written in a single direction (left-to-right or right-to-left), and is written in a single script.
Clients can use ICU's Bidi processing to determine the direction of the text and use the
ScriptRun class in icu/source/extra/scrptrun to find a run of text in the same script. Since
the representation of font information is application specific, ICU cannot help clients find
these runs of text.

Once the text has been broken into pieces that the LayoutEngine can handle, call the
LayoutEngineFactory method to create an instance of the LayoutEngine class that is
specific to the text. The following demonstrates a call to the LayoutEngineFactory:

The following example shows how to use the LayoutEngine to process the text:

This previous example computes three arrays: an array of glyph indices in display order,
an array of x, y position pairs for each glyph, and an array that maps each output glyph
back to the input text array. Use the following get methods to copy these arrays:

LEGlyphID *glyphs = new LEGlyphID[glyphCount];
le_int32 *indices = new le_int32[glyphCount];
float *positions = new float[(glyphCount * 2) + 2];
engine->getGlyphs(glyphs, error);
engine->getCharIndices(indices, error);
engine->getGlyphPositions(positions, error);

The positions array contains (glyphCount * 2) + 2 entries. This is because there
is an x and a y position for each glyph. The extra two positions hold the x, y
position of the end of the text run.

362 ICU v3.4 User Guide

Once users have the glyph indices and positions, they can use the platform-specific code
to draw the glyphs. For example, on Windows 2000, users can call ExtTextOut with the
ETO_GLYPH_INDEX option to draw the glyphs and on Linux, users can call
TT_Load_Glyph to get the bitmap for each glyph. However, users must draw the bitmaps
themselves.

The ICU LayoutEngine was developed separately from the rest of ICU and uses
different coding conventions and basic types. To use the LayoutEngine with ICU
coding conventions, users can use the ICULayoutEngine class, which is a thin
wrapper around the LayoutEngine class that incorporates ICU conventions and
basic types.

For a more detailed example of how to call the LayoutEngine, look at
icu/source/test/letest/letest.cpp. This is a simple test used to verify that the LayoutEngine
is working properly. It does not do any complex text rendering.

For more information, see ICU, the OpenType Specification, and the TrueType Font File
Specification.

363 ICU v3.4 User Guide

Data Management
Overview

ICU makes use of a wide variety of data tables to provide many of its services. Examples
include converter mapping tables, collation rules, transliteration rules, break iterator rules
and dictionaries, and other locale data. Additional data can be provided by users, either as
customizations of ICU's data or as new data altogether.

This section describes how ICU data is stored and located at run time. It also describes
how ICU data can be customized to suit the needs of a particular application.

For simple use of ICU's predefined data, this section on data management can safely be
skipped. The data is built into a library that is loaded along with the rest of ICU. No
specific action or setup is required of either the application program or the execution
environment.

ICU Data Directory

The ICU data directory is the default location for all ICU data. Any requests for data
items that do not include an explicit directory path will be resolved to files located in the
ICU data directory.

The ICU data directory is determined as follows:

1. If the application has called the function u_setDataDirectory(), use the directory
specified there, otherwise:

2. If the environment variable ICU_DATA is set, use that, otherwise:

3. If the C preprocessor variable ICU_DATA_DIR was set at the time ICU was built, use
its compiled-in value.

4. Otherwise, the ICU data directory is an empty string. This is the default behavior for
ICU using a shared library for its data and provides the highest data loading
performance.

u_setDataDirectory() is not thread-safe. Call it before calling ICU APIs from
multiple threads. If you use both u_setDataDirectory() and u_init(), then
use u_setDataDirectory() first.
Earlier versions of ICU supported two additional schemes: setting a data
directory relative to the location of the ICU shared libraries, and on Windows,
taking a location from the registry. These have both been removed to make the
behavior more predictable and easier to understand.

The ICU data directory does not need to be set in order to reference the standard built-in
ICU data. Applications that just use standard ICU capabilities (converters, locales,

364 ICU v3.4 User Guide

collation, etc.) but do not build and reference their own data do not need to specify an
ICU data directory.

Multiple-Item ICU Data Directory Values

The ICU data directory string can contain multiple directories as well as .dat
path/filenames. They must be separated by the path separator that is used on the platform,
for example a semicolon (;) on Windows. Data files will be searched in all directories and
.dat package files in the order of the directory string. For details, see the example below.

Default ICU Data

The default ICU data consists of the data needed for the converters, collators, locales, etc.
that are provided with ICU. Default data must be present in order for ICU to function.

The default data is most commonly built into a shared library that is installed with the
other ICU libraries. Nothing is required of the application for this mechanism to work.
ICU provides additional options for loading the default data if more flexibility is required.

Here are the steps followed by ICU to locate its default data. This procedure happens only
once per process, at the time an ICU data item is first requested.

1. If the application has called the function udata_setCommonData(), use the data that
was provided. The application specifies the address in memory of an image of an ICU
common format data file (either in shared-library format or .dat package file format).

2. Examine the contents of the default ICU data shared library. If it contains data, use that
data. If the data library is empty, a stub library, proceed to the next step. (A data shared
library must always be present in order for ICU to successfully link and load. A stub
data library is used when the actual ICU common data is to be provided from another
source).

3. Dynamically load (memory map, typically) a common format (.dat) file containing the
default ICU data. Loading is described in the section How Data Loading Works. The
path to the data is of the form "icudt<version><flag>", where <version> is the two-
digit ICU version number, and <flag> is a letter indicating the internal format of the
file (see Sharing ICU Data Between Platforms).

Once the default ICU data has been located, loading of individual data items proceeds as
described in the section How Data Loading Works.

Application Data

ICU-based applications can ship and use their own data for localized strings, custom
conversion tables, etc. Each data item file must have a package name as a prefix, and this
package name must match the basename of a .dat package file, if one is used. The
package name must be used in ICU APIs, for example in udata_setAppData() (instead
of udata_setCommonData() which is only used for ICU's own data) and in the pathname

365 ICU v3.4 User Guide

argument of ures_open().

The only real difference to ICU's own data is that application data cannot be simply
loaded by specifying a NULL value for the path arguments of ICU APIs, and application
data will not be used by APIs that do not have path/package name arguments at all.

The most important APIs that allow application data to be used are for Resource Bundles,
which are most often used for localized strings and other data. There are also functions
like ucnv_openPackage() that allow to specify application data, and the udata.h API
can be used to load any data with minimum requirements on the binary format, and
without ICU interpreting the contents of the data.

Flexibility vs. Installation vs. Performance

There are choices that affect ICU data loading and depend on application requirements.

Data in Shared Libraries/DLLs vs. .dat package files

Building ICU data into shared libraries is the most convenient packaging method because
shared libraries (DLLs) are easily found if they are in the same directory as the
application libraries, or if they are on the system library path. The application installer
usually just copies the ICU shared libraries in the same place. On the other hand, shared
libraries are not portable.

Packaging data into .dat files allows them to be shared across platforms, but they must
either be loaded by the application and set with udata_setCommonData() or
udata_setAppData(), or they must be in a known location that is included in the ICU
data directory string. This requires the application installer, or the application itself at
runtime, to locate the ICU and/or application data by setting the ICU data directory (see
ICU Data Directory above) or by loading the data and providing it to one of the
udata_setXYZData() functions.

Unlike shared libraries, .dat package files can be taken apart into separate data item files
with the decmn ICU tool. This allows post-installation modification of a package file. The
gencmn and pkgdata ICU tools can then be used to reassemble the .dat package file.

For more information about .dat package files see the section Sharing ICU Data Between
Platforms below.

Data Overriding vs. Loading Performance

If the ICU data directory string is empty, then ICU will not attempt to load data from the
file system. It is then only possible to load data from the linked-in shared library or via
udata_setCommonData() and udata_setAppData(). This is inflexible but provides the
highest performance.

If the ICU data directory string is not empty, then data items are searched in all directories

366 ICU v3.4 User Guide

and matching .dat files mentioned before checking in already-loaded package files. This
allows overriding of packaged data items with single files after installation but costs some
time for filesystem accesses. This is usually done only once per data item; see User Data
Caching below.

Single Data Files vs. Packages

Single data files are easy to replace and can override items inside data packages.
However, it is usually desirable to reduce the number of files during installation, and
package files use less disk space than many small files.

How Data Loading Works

ICU data items are referenced by three names - a path, a name and a type. The following
are some examples:

path name type
cnvalias icu
cp1252 cnv
en res
uprops icu

c:\some\path\dataLibName test dat
Items with no path specified are loaded from the default ICU data.

Application data items include a path, and will be loaded from user data files, not from
the ICU default data. For application data, the path argument need not contain an actual
directory, but must contain the application data's package name after the last directory
separator character (or by itself if there is no directory). If the path argument contains a
directory, then it is logically prepended to the ICU data directory string and searched first
for data. The path argument can contain at most one directory. (Path separators like
semicolon (;) are not handled here.)

The ICU data directory string itself may contain multiple directories and
path/filenames to .dat package files. See ICU Data Directory.

It is recommended to not include the directory in the path argument but to make sure via
setting the application data or the ICU data directory string that the data can be located.
This simplifies program maintenance and improves robustness.

See the API descriptions for the functions udata_open() and udata_openChoice() for
additional information on opening ICU data from within an application.

Data items can exist as individual files, or a number of them can be packaged together in
a single file for greater efficiency in loading and convenience of distribution. The

367 ICU v3.4 User Guide

combined files are called Common Files.

Based on the supplied path and name, ICU searches several possible locations when
opening data. To make things more concrete in the following descriptions, the following
values of path, name and type are used:

path = "c:\some\path\dataLibName"
 name = "test"
 type = "res"

In this case, "dataLibName" is the "package name" part of the path argument, and
"c:\some\path\" is the directory part of it.

The search sequence for the data for "test.res" is as follows (the first successful loading
attempt wins):

• Try to load the file "dataLibName_test.res" from c:\some\data\.

• Try to load the file "dataLibName_test.res" from each of the directories in the ICU
data directory string.

• Try to locate the data package for the package name "dataLibName".

• Try to locate the data package in the internal cache.

• Try to load the package file "dataLibName.dat" from c:\some\data\.

• Try to load the package file "dataLibName.dat" from each of the directories in
the ICU data directory string.

The first steps, loading the data item from an individual file, are omitted if no directory is
specified in either the path argument or the ICU data directory string.

Package files are loaded at most once and then cached. They are identified only by their
package name. Whenever a data item is requested from a package and that package has
been loaded before, then the cached package is used immediately instead of searching
through the filesystem.

ICU versions before 2.2 always searched data packages before looking for
individual files, which made it impossible to override packaged data items. See
the ICU 2.2 download page and the readme for more information about the
changes.

User Data Caching

Once loaded, data package files are cached, and stay loaded for the duration of the
process. Any requests for data items from an already loaded data package file are routed
directly to the cached data. No additional search for loadable files is made.

The user data cache is keyed by the base file name portion of the requested path, with any

368 ICU v3.4 User Guide

directory portion stripped off and ignored. Using the previous example, for the path name
"c:\some\path\dataLibName", the cache key is "dataLibName". After this is cached, a
subsequent request for "dataLibName", no matter what directory path is specified, will
resolve to the cached data.

Data can be explicitly added to the cache of common format data by means of the
udata_setAppData() function. This function takes as input the path (name) and a
pointer to a memory image of a .dat file. The data is added to the cache, causing any
subsequent requests for data items from that file name to be routed to the cache.

Only data package files are cached. Separate data files that contain just a single data item
are not cached; for these, multiple requests to ICU to open the data will result in multiple
requests to the operating system to open the underlying file.

However, most ICU services (Resource Bundles, conversion, etc.) themselves cache
loaded data, so that data is usually loaded only once until the end of the process (or until
u_cleanup() or ucnv_flushCache() or similar are called.)

There is no mechanism for removing or updating cached data files.

Directory Separator Characters

If a directory separator (generally '/' or '\') is needed in a path parameter, use the form that
is native to the platform. The ICU header "putil.h" defines U_FILE_SEP_CHAR
appropriately for the platform.

On Windows, the directory separator must be '\' for any paths passed to ICU
APIs. This is different from native Windows APIs, which generally allow either '/'
or '\'.

Sharing ICU Data Between Platforms

ICU's default data is (at the time of this writing) about 8 MB in size. Because it is
normally built as a shared library, the file format is specific to each platform (operating
system). The data libraries can not be shared between platforms even though the actual
data contents are identical.

By distributing the default data in the form of common format .dat files rather than as
shared libraries, a single data file can be shared among multiple platforms. This is
beneficial if a single distribution of the application (a CD, for example) includes binaries
for many platforms, and the size requirements for replicating the ICU data for each
platform are a problem.

ICU common format data files are not completely interchangeable between platforms.
The format depends on these properties of the platform:

• Byte Ordering (little endian vs. big endian)

369 ICU v3.4 User Guide

• Base character set - ASCII or EBCDIC

This means, for example, that ICU data files are interchangeable between Windows and
Linux on X86 (both are ASCII little endian), or between Macintosh and Solaris on
SPARC (both are ASCII big endian), but not between Solaris on SPARC and Solaris on
X86 (different byte ordering).

The single letter following the version number in the file name of the default ICU data
file encodes the properties of the file as follows:

icudt19l.dat Little Endian, ASCII
 icudt19b.dat Big Endian, ASCII
 icudt19e.dat Big Endian, EBCDIC

(There are no little endian EBCDIC systems. All non-ebcdic encodings include an
invariant subset of ASCII that is sufficient to enable these files to interoperate.)

The packaging of the default ICU data as a .dat file rather than as a shared library is
requested by using an option in the configure script at build time. Nothing is required at
run time; ICU finds and uses whatever form of the data is available.

When the ICU data is built in the form of shared libraries, the library names have
platform-specific prefixes and suffixes. On Unix-style platforms, all the libraries
have the "lib" prefix and one of the usual (".dll", ".so", ".sl", etc.) suffixes. Other
than these prefixes and suffixes, the library names are the same as the above .dat
files.

Customizing ICU's Data Library

ICU includes a standard library of data that is about 8 MB in size. Most of this consists of
conversion tables and locale information. The data itself is normally placed into a single
shared library.

The ICU data library can be easily customized, either by adding additional converters or
locales, or by removing some of the standard ones for the purpose of saving space.

ICU can load data from individual data files as well as from its default library, so building
a customized library when adding additional data is not strictly necessary. Adding to
ICU's library can simplify application installation by eliminating the need to include
separate files with an application distribution, and the need to tell ICU where they are
installed.

Reducing the size of ICU's data by eliminating unneeded resources can make sense on
small systems with limited or no disk, but for desktop or server systems there is no real
advantage to trimming. ICU's data is memory mapped into an application's address space,
and only those portions of the data actually being used are ever paged in, so there are no
significant RAM savings. As for disk space, with the large size of today's hard drives,
saving a few MB is not worth the bother.

370 ICU v3.4 User Guide

By default, ICU builds with a large set of converters and with all available locales. This
means that any extra items added must be provided by the application developer. There is
no extra ICU-supplied data that could be specified.

Details

The lists of converters and resources that ICU builds are in these configuration files:

icu/source/data/locales/resfiles.mk The standard set of locale data resource
bundles

icu/source/data/locales/reslocal.mk User-provided file with additional resource
bundles

icu/source/data/translit/trnsfiles.mk The standard set of transliterator resource
files

icu/source/data/translit/trnslocal.mk User-provided file with a set of additional
transliterator resource files

icu/source/data/mappings/ucmcore.mk Core set of conversion tables for
MIME/Unix/Windows

icu/source/data/mappings/ucmfiles.mk Additional, large set of conversion tables
for a wide range of uses

icu/source/data/mappings/ucmebcdic.mk Large set of EBCDIC conversion tables
icu/source/data/mappings/ucmlocal.mk User-provided file with additional

conversion tables
icu/source/data/misc/miscfiles.mk Miscellaneous data, like timezone

information
These files function identically for both Windows and UNIX builds of ICU. ICU will
automatically update the list of installed locales returned by uloc_getAvailable()
whenever resfiles.mk or reslocal.mk are updated and the ICU data library is rebuilt.
These files are only needed while building ICU. If any of these files are removed or
renamed, the size of the ICU data library will be reduced.

The optional files reslocal.mk and ucmlocal.mk are not included as part of a standard ICU
distribution. Thus these customization files do not need to be merged or updated when
updating versions of ICU.

Both reslocal.mk and ucmlocal.mk are makefile includes. So the usual rules for
makefiles apply. Lines may be continued by preceding the end of the line to be continued
with a back slash. Lines beginning with a # are comments. See ucmfiles.mk and
resfiles.mk for additional information.

371 ICU v3.4 User Guide

Reducing the Size of ICU's Data: Conversion Tables

The size of the ICU data file in the standard build configuration is about 8 MB. The
majority of this is used for conversion tables. ICU comes with so many conversion tables
because many ICU users need to support many encodings from many platforms. There are
conversion tables for EBCDIC and DOS codepages, for ISO 2022 variants, and for small
variations of popular encodings.

Important: ICU provides full internationalization functionality without any conversion
table data. The common library contains code to handle several important encodings
algorithmically: US-ASCII, ISO-8859-1, UTF-7/8/16/32, SCSU, BOCU-1, CESU-8, and
IMAP-mailbox-name (i.e., US-ASCII, ISO-8859-1, and all Unicode charsets; see
source/data/mappings/convrtrs.txt for the current list).

Therefore, the easiest way to reduce the size of ICU's data by a lot (without limitation of
I18N support) is to reduce the number of conversion tables that are built into the data file.

The conversion tables are listed for the build process in several makefiles
icu/source/data/mappings/ucm*.mk, roughly grouped by how commonly they are
used. If you remove or rename any of these files, then the ICU build will exclude the
conversion tables that are listed in that file. Beginning with ICU 2.0, all of these
makefiles including the main one are optional. If you remove all of them, then ICU will
include only very few conversion tables for "fallback" encodings (see note below).

If you remove or rename all ucm*.mk files, then ICU's data is reduced to about 3.6 MB. If
you remove all these files except for ucmcore.mk, then ICU's data is reduced to about 4.7
MB, while keeping support for a core set of common MIME/Unix/Windows encodings.

If you remove the conversion table for an encoding that could be a default
encoding on one of your platforms, then ICU will not be able to instantiate a
default converter. In this case, ICU 2.0 and up will automatically fall back to a
"lowest common denominator" and load a converter for US-ASCII (or, on
EBCDIC platforms, for codepages 37 or 1047). This will be good enough for
converting strings that contain only "ASCII" characters (see the comment about
"invariant characters" in utypes.h).
When ICU is built with a reduced set of conversion tables, then some tests will
fail that test the behavior of the converters based on known features of some
encodings. Also, building the testdata will fail if you remove some conversion
tables that are necessary for that (to test non-ASCII/Unicode resource bundle
source files, for example). You can ignore these failures. Build with the standard
set of conversion tables, if you want to run the tests.

Reducing the Size of ICU's Data: Locale Data

If you need to reduce the size of ICU's data even further, then you need to remove other
files or parts of files from the build as well.

372 ICU v3.4 User Guide

The largest part of the data besides conversion tables is in collation for East Asian
languages. You can remove the collation data for those languages by removing the
CollationElements entries from those icu/source/data/locales/*.txt files. When
you do that, the collation for those languages will become the same as the Unicode
Collation Algorithm.

You can remove data for entire locales by removing their files from
icu/source/data/locales/resfiles.mk. ICU will then use the data of the parent
locale instead, which is root.txt. If you remove all resource bundles for a given
language and its country/region/variant sublocales, do not remove root.txt! Also, do not
remove a parent locale if child locales exist. For example, do not remove "en" while
retaining "en_US".

Adding Converters to ICU

The first step is to obtain or create a .ucm (source) mapping data file for the desired
converter. A large archive of converter data is maintained by the ICU team at
http://dev.icu-project.org/cgi-bin/viewcvs.cgi/charset/data/ucm/

We will use solaris-eucJP-2.7.ucm, available from the repository mentioned above, as
an example.

Build the Converter

Converter source files are compiled into binary converter files (.cnv files) by using the icu
tool makeconv. For the example, you can use this command

makeconv -v solaris-eucJP-2.7.ucm

Some of the .ucm files from the repository will need additional header information before
they can be built. Use the error messages from the makeconv tool, .ucm files for similar
converters, and the ICU user guide documentation of .ucm files as a guide when making
changes. For the solaris-eucJP-2.7.ucm example, we will borrow the missing header
fields from icu/source/data/mappings/ibm-33722_P12A-2000.ucm, which is the
standard ICU eucJP converter data.

The ucm file format is described here.

After adjustment, the header of the solaris-eucJP-2.7.ucm file contains these items:

<code_set_name> "solaris-eucJP-2.7"
<subchar> \x3F
<uconv_class> "MBCS"
<mb_cur_max> 3
<mb_cur_min> 1
<icu:state> 0-8d, 8e:2, 8f:3, 90-9f, a1-fe:1
<icu:state> a1-fe
<icu:state> a1-e4
<icu:state> a1-fe:1, a1:4, a3-af:4, b6:4, d6:4, da-db:4, ed-f2:4
<icu:state> a1-fe

373 ICU v3.4 User Guide

The binary converter file produced by the makeconv tool is solaris-eucJP-2.7.cnv

Installation

Copy the new .cnv file to the desired location for use. Set the environment variable
ICU_DATA to the directory containing the data, or, alternatively, from within an
application, tell ICU the location of the new data with the function u_setDataDirectory()
before using the new converter.

If ICU is already obtaining data from files rather than a shared library, install the new file
in the same location as the existing ICU data file(s), and don't change/set the environment
variable or data directory.

If you do not want to add a converter to ICU's base data, you can also generate a
conversion table with makeconv, use pkgdata to generate your own package and use the
ucnv_openPackage() to open up a converter with that conversion table from the
generated package.

Building the new converter into ICU

The need to install a separate file and inform ICU of the data directory can be avoided by
building the new converter into ICU's standard data library. Here is the procedure for
doing so:

• Move the .ucm file(s) for the converter(s) to be added (solaris-eucJP-2.7.ucm for
our example) into the directory icu/source/data/mappings/

• Create, or edit, if it already exists, the file
icu/source/data/mappings/ucmlocal.mk Add this line:

 UCM_SOURCE_LOCAL = solaris-eucJP-2.7.ucm

Any number of converters can be listed. Extend the list to new lines with a back slash
at the end of the line. The ucmlocal.mk file is described in more detail in
icu/source/data/mappings/ucmfiles.mk (Even though they use very different
build systems, ucmlocal.mk is used for both the Windows and UNIX builds.)

• Add the converter name and aliases to icu/source/data/mappings/convrtrs.txt.
This will allow your converter to be shown in the list of available converters when you
call the ucnv_getAvailableName() function. The file syntax is described within the
file.

• Rebuild the ICU data.

374 ICU v3.4 User Guide

 For Windows, from MSVC choose the makedata project from the GUI, then build the
project.
 For UNIX, "cd icu/source/data; gmake"

When opening an ICU converter (ucnv_open()), the converter name can not be qualified
with a path that indicates the directory or common data file containing the corresponding
converter data. The required data must be present either in the main ICU data library or as
a separate .cnv file located in the ICU data directory. This is different from opening
resources or other types of ICU data, which do allow a path.

Adding Locale Data to ICU's Data

If you have data for a locale that is not included in ICU's standard build, then you can add
it to the build in a very similar way as with conversion tables above. The ICU project
provides a large number of additional locales in its locale repository on the web. Most of
this locale data is derived from the CLDR (Common Locale Data Repository) project.

You need to write a resource bundle file for it with a structure like the existing locale
resource bundles (e.g. icu/source/data/locales/ja.txt, ru_RU.txt, kok_IN.txt)
and add it by writing a file icu/source/data/locales/reslocal.mk just like above. In
this file, define the list of additional resource bundles as

 GENRB_SOURCE_LOCAL=myLocale.txt other.txt ...

Starting in ICU 2.2, these added locales are automatically listed by uloc_getAvailable
().

ICU Data File Formats

ICU uses several kinds of data files with specific source (plain text) and binary data
formats. The following table provides links to descriptions of those formats.

Each ICU data object begins with a header before the actual, specific data. The header
consists of a 16-bit header length value, the two "magic" bytes DA 27 and a UDataInfo
structure which specifies the data object's endianness, charset family, format, data
version, etc.

Files Source format Binary format Generator tool
ICU .dat package
files

(list of files on the
gencmn tool command
line)

.dat:
icu/source/tools/genc
mn/gencmn.c

gencmn

Resource bundles .txt:
icuhtml/design/bnf_rb.txt

.res:
icu/source/common/ur
esdata.h

genrb

375 ICU v3.4 User Guide

Files Source format Binary format Generator tool
Unicode conversion
mapping tables

.ucm: Conversion Data
chapter

.cnv:
icu/source/common/u
cnvmbcs.h

makeconv

Conversion (charset)
aliases

icu/source/data/mappings
/convrtrs.txt: contains
format description
 The command "uconv -l
--canon" will also
generate the alias table
from the currently used
copy of ICU.

cnvalias.icu:
icu/source/common/u
cnv_io.c

gencnval

Unicode Character
Data
(Properties)

icu/source/data/unidata/*.
txt: Unicode Character
Database

uprops.icu:
icu/source/tools/genpr
ops/store.c

genprops

Unicode Character
Data
(Case mappings)

icu/source/data/unidata/*.
txt: Unicode Character
Database

ucase.icu:
icu/source/tools/genca
se/store.c

gencase

Unicode Character
Data
(BiDi, and Arabic
shaping)

icu/source/data/unidata/*.
txt: Unicode Character
Database

ubidi.icu:
icu/source/tools/genbi
di/store.c

genbidi

Unicode Character
Data
(Normalization)

icu/source/data/unidata/*.
txt: Unicode Character
Database

unorm.icu:
icu/source/common/u
normimp.h

gennorm

Unicode Character
Data
(Character names)

icu/source/data/unidata/U
nicodeData.txt: Unicode
Character Database

unames.icu:
icu/source/tools/genna
mes/gennames.c

gennames

Unicode Character
Data
(Property [value]
aliases)

icu/source/data/unidata/P
roperty*Aliases.txt:
Unicode Character
Database

pnames.icu:
icu/source/common/pr
opname.h

genpname

376 ICU v3.4 User Guide

Files Source format Binary format Generator tool
Collation data
(UCA, code points
to weights)

Original data from
allkeys.txt in UTS #10
Unicode Collation
Algorithm
 processed into
icu/source/data/unidata/Fr
actionalUCA.txt by
icu4j/unicodetools/com/i
bm/text/UCA/ (call the
Main class with option
writeFractionalUCA)

ucadata.icu:
(icu/source/i18n/ucol_
imp.h)

genuca

Collation data
(Inverse UCA,
weights->code
points)

Processed from
FractionalUCA.txt like
ucadata.icu

invuca.icu:
(icu/source/i18n/ucol_
imp.h)

genuca

Collation data
(Tailorings, code
points->weights)

Source tailorings (text
rules) in resource
bundles: Collation
Services Customization
chapter

Binary tailorings in
resource bundles:
same format as
ucadata.icu
(icu/source/i18n/ucol_
imp.h)

genrb

Rule-based break
iterator data

.txt: Boundary Analysis
chapter

.brk: TBD
(icu/source/common/r
bbirb.h)

genbrk

Rule-based
transform
(transliterator) data

.txt (in resource bundles):
Transform Rule Tutorial
chapter

Uses genrb to make
binary format

Does not apply

Time zone data icu/source/data/misc/zone
info.txt:
ftp://elsie.nci.nih.gov/pub
/tzdata<year>

zoneinfo.res
(generated by genrb
and
source/tools/tzcode/tz.
pl)

Does not apply

StringPrep profile
data

icu/source/data/misc/Na
mePrepProfile.txt

.spp:
icu/source/tools/gensp
rep/store.c

gensprep

377 ICU v3.4 User Guide

Packaging ICU
Overview

This chapter describes, for the advanced user, how to package ICU for distribution,
whether alone or as part of an application.

Making ICU Smaller

The ICU project is intended to provide everything an application might need in order to
process Unicode. However, in doing so, the results may become quite large on disk. A
default build of ICU normally results in over 8 MB of data, and a substantial amount of
object code. This section describes some techniques to reduce the size of ICU to only the
items which are required for your application.

Reduce the number of libraries used

ICU consists of a number of different libraries. The library dependency chart can be used
to understand and determine the exact set of libraries needed.

Disable ICU features

Certain features of ICU may be turned on and off through preprocessor defines. These
switches are located in the file "uconfig.h", and disable the code for certain features from
being built.

All of these switches are defined to '0' by default, unless overridden by the build
environment, or by modifying uconfig.h itself.

Switch Name Library Effect if #defined to '1'
UCONFIG_ONLY_COLLATION common

& i18n

Turn off all other modules named here
except collation and legacy conversion

UCONFIG_NO_LEGACY_CONVERSION common Turn off conversion apart from UTF,
CESU-8, SCSU, BOCU-1, US-ASCII,
and ISO-8859-1. Not possible to turn
off legacy conversion on EBCDIC
platforms.

UCONFIG_NO_BREAK_ITERATION common Turn off break iteration
UCONFIG_NO_COLLATION i18n Turn off collation and collation-based

string search.

378 ICU v3.4 User Guide

Switch Name Library Effect if #defined to '1'
UCONFIG_NO_FORMATTING i18n Turn off all formatting (date, time,

number, etc), and calendar/timezone
services.

UCONFIG_NO_TRANSLITERATION i18n Turn off script-to-script transliteration
UCONFIG_NO_REGULAR_EXPRESSIONS i18n Turn off the regular expression

functionality

These switches do not necessarily disable data generation. For example,
disabling formatting does not prevent formatting data from being built into the
resource bundles. See the section on ICU data, for information on changing data
packaging.

Using UCONFIG switches with Environment Variables

This method involves setting an environment variable when ICU is built. For example, on
a POSIX-like platform, settings may be chosen at the point runConfigureICU is run:

env CPPFLAGS="-DUCONFIG_NO_COLLATION=1 -DUCONFIGU_NO_FORMATTING=1" \
 runConfigureICU SOLARISCC ...

Note that when end-user code is compiled, it must also have the same CPPFLAGS set, or
else calling some functions may result in a link failure.

Using UCONFIG switches by changing uconfig.h

This method involves modifying the source file
icu/source/common/unicode/uconfig.h directly, before ICU is built. It has the
advantage that the configuration change is propagated to all clients who compile against
this build of ICU, however the altered file must be tracked when the next version of ICU
is installed.

Modify 'uconfig.h' to add the following lines before the first #ifndef UCONFIG_...
section

#ifndef UCONFIG_NO_COLLATION
#define UCONFIG_NO_COLLATION 1
#enddif

#ifndef UCONFIG_NO_FORMATTING
#define UCONFIG_NO_FORMATTING 1
#endif

379 ICU v3.4 User Guide

Reduce ICU Data used

There are many ways in which ICU data may be reduced. If only certain locales or
converters will be used, others may be removed. Additionally, data may be packaged as
individual files or interchangable archives (.dat files), allowing data to be installed and
removed without rebuilding ICU. For details, see the ICU Data chapter.

ICU Versions

(This section assumes the reader is familliar with ICU version numbers as covered in the
Design chapter, and filename conventions for libraries in the ReadMe.)

POSIX Library Names

The following table gives an example of the dynamically linked library and symbolic
links built by ICU for the common ('uc') library, version 5.4.3, for Linux

File Links to Purpose
libicuuc.so libicuuc.so.54.3 Required for link: Applications compiled with

'-licuuc' will follow this symlink.
libicuuc.so.54 libicuuc.so.54.3 Required for runtime: This name is what

applications actually link against.
libicuuc.so.54.3 Actual library Required for runtime and link. Contains the

name 'libicuuc.so.54'.

This discussion gives Linux as an example, but it is typical for most platforms, of
which AIX and 390 (zOS) are exceptions.

An application compiled with '-licuuc' will follow the symlink from libicuuc.so to
libicuuc.so.54.3, and will actually read the file libicuuc.so.54.3. (fully qualified). This
library file has an embedded name (SONAME) of libicuuc.so.54, that is, with only the
major and minor number. The linker will write this name into the client application,
because Binary compatibility is for versions that share the same major+minor number.

380 ICU v3.4 User Guide

If ICU version 5.4.7 is subsequently installed, the following files may be updated.

File Links to Purpose
libicuuc.so libicuuc.so.54.7 Required for link: Newly linked applications

will follow this link, which should not cause
any functional difference at linktime.

libicuuc.so.54 libicuuc.so.54.7 Required for runtime: Because it now links to
version .7, existing applications linked to
version 5.4.3 will follow this link and use the
5.4.7 code.

libicuuc.so.54.7 Actual library Required for runtime and link. Contains the
name 'libicuuc.so.54'.

If ICU version 5.6.3 or 3.2.9 were installed, they would not affect already-linked
applications, because the major+minor numbers are different - 56 and 32, respectively, as
opposed to 54. They would, however, replace the link 'libicuuc.so', which controls which
version of ICU newly-linked applications use.

In summary, what files should an application distribute in order to include a functional
runtime copy of ICU 5.4.3? The above application should distribute libicuuc.so.54.3
and the symbolic link libicuuc.so.54. (If symbolic links pose difficulty,
libicuuc.so.54.3 may be renamed to libicuuc.so.54, and only libicuuc.so.54 distributed.
This is less informative, but functional.)

POSIX Library suffix

The --with-library-suffix option may be used with runConfigureICU or configure,
to distinguish on disk specially modified versions of ICU. For example, the option --
with-library-suffix=myapp will produce libraries with names such as
libicuucmyapp.so.54.3, thus preventing another ICU user from using myapp's custom
ICU libraries.

While two or more versions of ICU may be linked into the same application as long as the
major and minor numbers are different, changing the library suffix is not sufficient to
allow the same version of ICU to be linked. In other words, linking ICU 5.4.3, 5.6.3, and
3.2.9 together is allowed, but 5.4.3 and 5.4.7 may not be linked together, nor may 5.4.3
and 5.4.3-myapp be linked together.

381 ICU v3.4 User Guide

Windows library names

Assuming ICU version 5.4.3, Windows library names will follow this pattern:

File Purpose
icuuc.lib Release Link-time library. Needed for development. Contains

'icuuc54.dll' name internally.
icuuc54.dll Release runtime library. Needed for runtime.
icuucd.lib Debug link-time library

(The 'd' suffix indicates debug)
icuuc54d.dll Debug runtime library.

Debug applications must be linked with debug libraries, and release applications with
release libraries.

When a new version of ICU is installed, the .lib files will be replaced so as to keep new
compiles in sync with the newly installed header files, and the latest DLL. As well, if the
new ICU version has the same major+minor version (such as 5.4.7), then DLLs will be
replaced, as they are binary compatible. However, if an ICU with a different major+minor
version is installed, such as 5.5, then new DLLs will be copied with names such as
'icuuc55.dll'.

382 ICU v3.4 User Guide

Java Native Interface (JNI)
Overview

ICU4JNI is a subproject of ICU for Java™ (ICU4J). ICU4JNI provides full conformance
with Unicode 3.1.1, enhanced functionality, increased performance, better cross language,
and increased cross platform stability of results. ICU4JNI also provides greater flexibility,
customization, and access to certain ICU4C native services from Java using the Java
Native Interface (JNI). Currently, the following services are accessible through JNI:

1. Character Conversion

2. Collation

3. Normalization

Character Conversion

Character conversion is the conversion of bytes in one charset specification to another.
One of the problems in character conversion is that the mappings vary and are imprecise
across various platforms. For example, the results of a conversion for a Shift-JIS byte
stream to Unicode on an IBM® platform will not match the conversion on a Sun® Solaris
platform. This service is useful in a situation where an application is multi-language and
cannot afford differences in conversion output. It can also be used when an application
requires a higher level of customization and flexibility of character conversion. The
requirement for realizing performance gains is that the buffers passed to the converters
should be large enough to offset the JNI overhead.

Conversion service can be accessed through the following APIs:

CharToByteConverterICU and ByteToCharConverterICU classes in the
com.ibm.icu4jni converters package. These classes inherit from the
CharToByteConverter and the ByteToCharConverter classes in the
com.sun.converters package. This interface is limited in its functionality since the
public conversion APIs like String, InputStream, and OutputStream cannot access ICU's
converters unless the converters are integrated into the Java Virtual Machine (JVM).
However, this requires access to JVM's source code (please refer to the Readme for more
information). If operations on byte arrays and char arrays can be afforded by the
application (instead of relying on the Java API's conversion routines), then ICU's classes
provide methods to instantiate converter objects and to perform the conversion. The
following example shows this conversion:

try{
 CharToByteConverter cbConv =
CharToByteConverterICU.createConverter("gb-18030");
 char[] source = { '\u9001','\u3005','\u6458'} ;
 byte[] result = new byte[source.length * cbConv.getMaxBytesPerChar()];
 cbConv.convert(source, 0, source.length,result,0,result.length);

383 ICU v3.4 User Guide

}catch(Exception e){
... //do something interesting
}

The Charset, CharsetEncoderICU, CharsetDecoderICU, and CharsetProviderICU
classes in the com.ibm.icu4jni.charset package. In Java 1.4, a new public API for
character conversions will be added to provide a method for third party implementers to
plug in their converters and enable the other public APIs to use them as well. ICU4JNI's
classes are based on this new character conversion API. The following example uses
ICU4JNI's classes:

try{
 Charset cs = Charset.forName("gb-18030");
 char[] source = { '\u9001','\u3005','\u6458'} ;
 CharBuffer cb = CharBuffer.wrap(source);
 ByteBuffer result = cs.encode(cb)
}catch(Exception e){
... //do something interesting
}
ByteBuffer bb = ByteBuffer.allocate(cs.newEncoder().maxBytesPerChar()));

try{
 Charset cs = Charset.forName("gb-18030");
 CharsetEncoder encoder = cs.newEncoder();
 char[] source = { '\u9001','\u3005','\u6458'} ;
 CharBuffer cb = CharBuffer.wrap(source);
 ByteBuffer bb = ByteBuffer.allocate(cs.newEncoder().maxBytesPerChar()));

 for (i=0; i<=temp.length; i++) {
 cb.limit(i);
 CoderResult result = encoder.encode(cb,bb,false);
 }
}catch(Exception e){
... //do something interesting
}

For more information on character conversion, see the ICU Conversion chapter.

Collation

Collation service provided by ICU is fully Unicode Collation Algorithm (UCA) and ISO
14651 compliant. The following lists some of the advantages of the ICU collation service
over Java:

The following demonstrates how to create a collator:

try{
 Collator coll = Collator.createInstance(Locale("en", "US"));
}catch(ParseException e){
... //do something interesting
}

384 ICU v3.4 User Guide

The following demonstrates how to compare strings:

try{
 Collator coll = Collator.createInstance(Locale("th", "TH"));
 String jp1 = new String("\u0e01");
 String jp2 = new String("\u0e01\u0e01");
 if(coll.compare(jp1,jp2)==Collator.RESULT_LESS){
 ...//compare succeeded do something
 }else{
 ...//failed do something
 }
}catch(ParseException e){
... //do something interesting
}

Normalization

Normalization converts text into a unique, equivalent form. Systems can normalize
Unicode-encoded text into one particular sequence, such as normalizing composite
character sequences into pre-composed characters. The semantics and use are similar to
ICU4J Normalization service, except for character iteration functionality.

The following demonstrates how to use a normalizer:

try{
 String source = "\u00e0ardvark";
 String decomposed = "a\u0300ardvark";
 String composed = "\u00e0ardvark";
 If(Normalizer.normalize(source,Normalizer.UNORM_NFC).equals(composed){
 ...// do something interesting
 }
 if(Normalizer.normalize(source,Normalizer.UNORM_NFD).equals(decomposed){
 ...// do something interesting
 }
}catch(ParseException e){
... //do something interesting
}

385 ICU v3.4 User Guide

How To Use ICU4C From COBOL
Overview

This document describes how to use ICU functions within a COBOL program. It is
assumed that the programmer understands the concepts behind ICU, and is able to
identify which ICU APIs are appropriate for his/her purpose. The programmer must also
understand the meaning of the arguments passed to these APIs and of the returned value,
if any. This is all explained in the ICU documentation, although in C/C++ style. This
document’s objective is to facilitate the adaptation of these explanations to COBOL
syntax.

It must be understood that the packaging of ICU data and executable code into libraries is
platform dependent. Consequently, the calling conventions between COBOL programs
and the C/C++ functions in ICU may vary from platform to platform. In a lesser way, the
C/C++ types of arguments and return values may have different equivalents in COBOL,
depending on the platform and even the specific COBOL compiler used.

This document is supplemented with three sample programs illustrating using ICU APIs
for code page conversion, collation and normalization. Description of the sample
programs appears in the appendix at the end of this document.

ICU API invocation in COBOL

• Invocation of ICU APIs is done with the COBOL “CALL” statement.

• Variables, pointers and constants appearing in ICU *.H files (for C/C++) must be
defined in the WORKING-STORAGE section for COBOL.

• Arguments to a C/C++ API translate into arguments to a COBOL CALL statement,
passed by value or by reference as will be detailed below.

• For a C/C++ API with a non-void return value, the RETURNING clause will be used
for the CALL statement.

• Character string arguments to C/C++ must be null-terminated. In COBOL, this means
using the Z“xxx” format for literals, and adding X“00” at the end of the content of
variables.

• Special consideration must be given when a pointer is the value returned by an API,
since COBOL implements a more limited concept of pointers than C/C++. How to
handle this case will be explained below.

COBOL and C/C++ Data Types

The following table (extracted from IBM VisualAge COBOL documentation) shows the
correspondence between the data types available in COBOL and C/C++.

386 ICU v3.4 User Guide

Parts of identifier names in Cobol are separated by ‘-’, not by ‘_’ like in C.

C/C++ data types COBOL data types
wchar_t DISPLAY-1 (PICTURE N, G)

 wchar_t is the processing code whereas
DISPLAY-1 is the file code.

char PIC X.
signed char No appropriate COBOL equivalent.
unsigned char No appropriate COBOL equivalent.
short signed int PIC S9-S9(4) COMP-5. Can beCOMP,

COMP-4, or BINARY if you use the TRUNC
(BIN) compiler option.

short unsigned int PIC 9-9(4) COMP-5. Can be COMP,
COMP-4, or BINARY if you use the TRUNC
(BIN) compiler option.

long int PIC 9(5)-9(9) COMP-5. Can be COMP,
COMP-4, or BINARY if you use the TRUNC
(BIN) compiler option.

long long int PIC 9(10)-9(18) COMP-5. Can be
COMP, COMP-4, or BINARY if you use the
TRUNC(BIN) compiler option.

float COMP-1.
double COMP-2.
enumeration Equivalent to level 88, but not identical.
char(n) PICTURE X(n).
array pointer (*) to type No appropriate COBOL equivalent.
pointer(*) to function PROCEDURE-POINTER.

A number of C definitions specific to ICU (and many other compilers on POSIX
platforms) that are not presented in the table above can also be translated into COBOL
definitions.

C/C++ data types COBOL data types
int8_t PIC X. Not really equivalent.
uint8_t PIC X. Not really equivalent.
int16_t PIC S9(4) BINARY. Can beCOMP, COMP-4,

or BINARY if you use the TRUNC(BIN)
compiler option.

387 ICU v3.4 User Guide

C/C++ data types COBOL data types
uint16_t PIC 9(4) BINARY. Can beCOMP, COMP-4,

or BINARY if you use the TRUNC(BIN)
compiler option.

int32_t PIC S9(9) COMP-5. Can be COMP, COMP-4,
or BINARY if you use the TRUNC(BIN)
compiler option.

uint32_t PIC 9(9) COMP-5. Can be COMP, COMP-4,
or BINARY if you use the TRUNC(BIN)
compiler option.

Uchar PIC 9(4) BINARY. Can beCOMP, COMP-4,
or BINARY if you use the TRUNC(BIN)
compiler option.

Uchar32 PIC 9(9) COMP-5. Can be COMP, COMP-4,
or BINARY if you use the TRUNC(BIN)
compiler option.

UNormalizationMode PIC S9(9) COMP-5. Can be COMP, COMP-4,
or BINARY if you use the TRUNC(BIN)
compiler option.

UerrorCode PIC S9(9) COMP-5. Can be COMP, COMP-4,
or BINARY if you use the TRUNC(BIN)
compiler option.

pointer(*) to object
 (e.g. Uconverter *)

PIC S9(9) COMP-5. Can be COMP, COMP-4,
or BINARY if you use the TRUNC(BIN)
compiler option.

Windows Handle PIC S9(9) COMP-5. Can be COMP, COMP-4,
or BINARY if you use the TRUNC(BIN)
compiler option.

Enumerations (first possibility)

C Enumeration types do not translate very well into COBOL. There are two possible
ways to similate these enumerations.

C example

 typedef enum {
 /** No decomposition/composition. @draft ICU 1.8 */
 UNORM_NONE = 1,
 /** Canonical decomposition. @draft ICU 1.8 */
 UNORM_NFD = 2,
 . . .

388 ICU v3.4 User Guide

 } UNormalizationMode;

COBOL example

 WORKING-STORAGE section.
 *--------------- Ported from unorm.h ------------
 * enum UNormalizationMode {
 77 UNORM-NONE PIC
 S9(9) Binary value 1.
 77 UNORM-NFD PIC
 S9(9) Binary value 2.
 …

Enumerations (second possibility)

C example

 /*==== utypes.h ========*/
 typedef enum UErrorCode {
 U_USING_FALLBACK_WARNING = -128, /* (not an error) */
 U_USING_DEFAULT_WARNING = -127, /* (not an error) */
 . . .
 } UErrorCode;

COBOL example

 *==== utypes.h ========
 01 UerrorCode PIC S9(9) Binary value 0.
 * A resource bundle lookup returned a fallback
 * (not an error)
 88 U-USING-FALLBACK-WARNING value -128.
 * (not an error)
 88 U-USING-DEFAULT-WARNING value -127.
 . . .

Call statement, calling by value or by reference

In general, arguments defined in C as pointers (‘*’) must be listed in the COBOL Call
statement with the using by reference clause. Arguments which are not pointers must be
transferred with the using by value clause. The exception to this requirement is when an
argument is a pointer which has been assigned to a COBOL variable (e.g. as a value
returned by an ICU API), then it must be passed by value. For instance, a pointer to a
Converter passed as argument to conversion APIs.

Conversion Declaration Examples

C (API definition in *.h file)

389 ICU v3.4 User Guide

 /*--------------------- UCNV.H ---------------------------*/
 U_CAPI int32_t U_EXPORT2
 ucnv_toUChars(UConverter * cnv,
 UChar * dest,
 int32_t destCapacity,
 const char * src,
 int32_t srcLength,
 UErrorCode * pErrorCode);

COBOL

 PROCEDURE DIVISION.
 Call API-Pointer using
 by value Converter-toU-Pointer
 by reference Unicode-Input-Buffer
 by value destCapacity
 by reference Input-Buffer
 by value srcLength
 by reference UErrorCode
 Returning Text-Length.

Call statement, Returning clause

Returned value is Pointer or Binary

C (API definition in *.h file)

 U_CAPI UConverter * U_EXPORT2
 ucnv_open(const char * converterName,
 UErrorCode * err);

COBOL

 WORKING-STORAGE section.
 01 Converter-Pointer PIC S9(9) BINARY.
 PROCEDURE DIVISION
 Move Z"iso-8859-8" to converterNameSource.
 . . .
 Call API-Pointer using
 by reference converterNameSource
 by reference UErrorCode
 Returning Converter-Pointer.

Returned value is a Pointer to string

If the returned value in C is a string pointer (‘char *’), then in COBOL we must use a
pointer to string defined in the Linkage section.

C (API definition in *.h file)

390 ICU v3.4 User Guide

 U_CAPI const char * U_EXPORT2
 ucnv_getAvailableName(int32_t n);

COBOL

 DATA DIVISION.
 WORKING-STORAGE section.
 01 Converter-Name-Link-Pointer Usage is Pointer.
 LINKAGE section.
 01 Converter-Name-Link.
 03 Converter-Name-String pic X(80).
 PROCEDURE DIVISION using Converter-Name-Link.
 Call API-Pointer using by value Converters-Index
 Returning Converter-Name-Link-Pointer.
 SET Address of Converter-Name-Link
 to Converter-Name-Link-Pointer.
 . . .
 Move Converter-Name-String to Debug-Value.

How to invoke ICU APIs

Inter-language communication is often problematic. This is certainly the case when
calling C/C++ functions from COBOL, because of the very different roots of the two
languages. How to invoke the ICU APIs from a COBOL program is likely to depend on
the operating system and even on the specific compilers in use. The section below deals
with COBOL to C calls on a Windows platform. Similar sections should be added for
other platforms.

Windows platforms

The following instructions were tested on a Windows 2000 platform, with the IBM
VisualAge COBOL compiler and the Microsoft Visual C/C++ compiler.

For Windows, ICU APIs are normally packaged as DLLs (Dynamic Load Libraries). For
technical reasons, COBOL calls to C/C++ functions need to be done via dynamic loading
of the DLLs at execution time (load on call).

The COBOL program must be compiled with the following compiler options:

 * options CBL PGMNAME(MIXED) CALLINT(SYSTEM) NODYNAM

In order to call an ICU API, two preparation steps are needed:

• Load in memory the DLL which contains the API

• Get the address of the API

For performance, it is better to perform these steps once before the first call and to save
the returned values for future use (the sample programs get the address of APIs for each
call, for the sake of logging; production programs should get the address once and reuse it

391 ICU v3.4 User Guide

as many times as needed).

When no more APIs from a DLL are needed, the DLL should be unloaded in order to free
the associated memory.

Load DLL Into Memory

This is done as follows:

 Call "LoadLibraryA" using by reference DLL-Name
 Returning DLL-Handle.
 IF DLL-Handle = ZEROS
 Perform error handling. . .

Return value: DLL Handle, defined as PIC S9(9) BINARY
 Input Value: DLL Name (null-terminated string)

Errors may happen if the DLL name is not correct, or the string is not null-terminated, or
the DLL file is not available (in the current directory or in a directory included in the
PATH system variable).

Get API address

This is done as follows:

 Call "GetProcAddress" using by value DLL-Handle
 by reference API-Name
 Returning API-Pointer.
 IF API-Pointer = NULL
 Perform error handling. . .

Return value: API address, defined as PROCEDURE-POINTER
 Input Value: DLL Handle (returned by call to LoadLibraryA)
 Procedure Name (null-terminated string)

Errors may happen if the API name is not correct (remember that API names are case-
sensitive), or the string is not null-terminated, or the API is not included in the specified
DLL. If the API pointer is not null, the call to the API is done with following according to
the arguments and return value of the API.

 Call API-Pointer using . . . returning . . .

After calling an API, the returned error code should be checked when relevant. Code to
check for error conditions is illustrated in the sample programs.

Unload DLL from Memory

This is done as follows:

 Call "FreeLibrary" using DLL-Handle.

392 ICU v3.4 User Guide

Return value: none
 Input Value: DLL Handle (returned by call to LoadLibraryA)

Sample Programs

Three sample programs are supplied with this document. The sample programs were
developed on and for a Windows 2000 platform. Some adaptations may be necessary for
other platforms

Before running the sample programs, you must perform the following steps:

• Install the version of ICU appropriate for your platform

• Build ICU libraries if needed (see the ICU Readme file)

• Make the libraries accessible (for instance on Windows systems, add the directory
containing the libraries to the PATH system variable)

• Compile the sample programs with appropriate compiler options

• Copy the test files to a work directory

Each program is supplied with input test files and with a model log file. If the log file that
you create by running a sample program is equivalent to the model log file, your setup is
probably correct.

The three sample programs focus each on a certain ICU area of functionality:

• Conversion

• Collation

• Normalization

Conversion sample program

* The sample program includes the following steps:
* - Display the names of the converters from a list of all
* converters contained in the alias file.
* - Display the current default converter name.
* - Set new default converter name.
*
* - Read a string from Input file "ICU_Conv_Input_8.txt"
* (File in UTF-8 Format)
* - Convert this string from UTF-8 to code page iso-8859-8
* - Write the result to output file "ICU_Conv_Output.txt"
*
* - Read a line from Input file "ICU_Conv_Input.txt"
* (File in ANSI Format, code page 862)
* - Convert this string from code page ibm-862 to UTF-16
* - Convert the resulting string from UTF-16 to code page windows-1255
* - Write the result to output file "ICU_ Conv_Output.txt"
* - Write debugging information to Display and
* log file "ICU_Conv_Log.txt" (File in ANSI Format)
* - Repeat for all lines in Input file
**
* The following ICU APIs are used:

393 ICU v3.4 User Guide

* ucnv_countAvailable
* ucnv_getAvailableName
* ucnv_getDefaultName
* ucnv_setDefaultName
* ucnv_convert
* ucnv_open
* ucnv_toUChars
* ucnv_fromUChars
* ucnv_close

The ucnv_xxx APIs are documented in file "UCNV.H".

Collation sample program

* The sample program includes the following steps:
* - Read a string array from Input file "ICU_Coll_Input.txt"
* (file in ANSI format)
* - Convert string array from code page into UTF-16 format
* - Compare the string array into the canonical composed
* - Perform bubble sort of string array, according
* to Unicode string equivalence comparisons
* - Convert string array from Unicode into code page format
* - Write the result to output file "ICU_Coll_Output.txt"
* (file in ANSI format)
* - Write debugging information to Display and
* log file "ICU_Coll_Log.txt" (file in ANSI format)
**
* The following ICU APIs are used:
* ucol_open
* ucol_strcoll
* ucol_close
* ucnv_open
* ucnv_toUChars
* ucnv_fromUChars
* ucnv_close

The ucol_xxx APIs are documented in file "UCOL.H".
 The ucnv_xxx APIs are documented in file "UCNV.H".

Normalization sample program

* The sample includes the following steps:
* - Read a string from input file "ICU_NORM_Input.txt"
* (file in ANSI format)
* - Convert the string from code page into UTF-16 format
* - Perform quick check on the string, to determine if the
* string is in NFD (Canonical decomposition)
* normalization format.
* - Normalize the string into canonical composed form
* (FCD and decomposed)
* - Perform quick check on the result string, to determine
* if the string is in NFD normalization form
* - Convert the string from Unicode into the code page format
* - Write the result to output file "ICU_NORM_Output.txt"
* (file in ANSI format)
* - Write debugging information to Display and
* log file "ICU_NORM_Log.txt" (file in ANSI format)
**
* The following ICU APIs are used:
* ucnv_open
* ucnv_toUChars
* unorm_normalize
* unorm_quickCheck

394 ICU v3.4 User Guide

* ucnv_fromUChars
* ucnv_close

The unorm_xxx APIs are documented in file "UNORM.H".
 The ucnv_xxx APIs are documented in file "UCNV.H".

395 ICU v3.4 User Guide

Coding Guidelines
Overview

This section provides the guidelines for developing C and C++ code, based on the coding
conventions used by ICU programmers in the creation of the ICU library.

• Details about ICU Error Codes discusses how a pointer or reference is passed into the
UErrorCode variable.

• C and C++ Coding Conventions Overview describes the coding guidelines that the
ICU group uses for C and C++ coding.

• Java Coding Conventions Overview describes the coding guidelines that the ICU
group uses for Java coding.

• Standard Quoting in ICU discusses where and how quoting methods can be applied in
ICU.

• Adding .c, .cpp and .h files to ICU discusses how to add compilable files to ICU and
the build environment.

• Test Suite Notes discusses the testing services for the ICU C API.

• IntlTest Test Suite Documentation discusses the testing services for the ICU C++ API.

• Binary Data Formats explains how to design portable data file formats

Details about ICU Error Codes

When calling an ICU API function and an error code pointer (C) or reference (C++), a
UErrorCode variable is often passed in. This variable is allocated by the caller and must
pass the test U_SUCCESS() before the function call. Otherwise, the function will not work.
Normally, an error code variable is initialized by U_ZERO_ERROR.

UErrorCode is passed around and used this way, instead of using C++ exceptions for the
following reasons:

• It is useful in the same form for C also

• Some C++ compilers do not support exceptions

396 ICU v3.4 User Guide

This error code mechanism, in fact, works similar to exceptions. If users call
several ICU functions in a sequence, as soon as one sets a failure code, the
functions in the following example will not work. This procedure prevents the
API function from processing data that is not valid in the sequence of function
calls and relieves the caller from checking the error code after each call. It is
somewhat similar to how an exception terminates a function block or try block
early.

The following code shows the inside of an ICU function implementation:

U_CAPI const UBiDiLevel * U_EXPORT2
ubidi_getLevels(UBiDi *pBiDi, UErrorCode *pErrorCode) {
 int32_t start, length;
 if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
 return NULL;
 } else if(pBiDi==NULL || (length=pBiDi->length)<=0) {
 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
 return NULL;
 }
 ...
 return result;
}

Warning Codes

Some UErrorCode values do not indicate a failure but an additional informational return
value. Their enum constants have the _WARNING suffix and they pass the U_SUCCESS()
test.

However, experience has shown that they are problematic: They can get lost easily
because subsequent function calls may set their own "warning" codes or may reset a
UErrorCode to U_ZERO_ERROR.

The source of the problem is that the UErrorCode mechanism is designed to mimic
C++/Java exceptions. It prevents ICU function execution after a failure code is set, but
like exceptions it does not work well for non-failure information passing.

Therefore, we recommend to use warning codes very carefully:

• Try not to rely on any warning codes.

• Use real APIs to get the same information if possible.
 For example, when a string is completely written but cannot be NUL-terminated, then
U_STRING_NOT_TERMINATED_WARNING indicates this, but so does the returned
destination string length (which will have the same value as the destination capacity in
this case). Checking the string length is safer than checking the warning code. (It is
even safer to not rely on NUL-terminated strings but to use the length.)

• If warning codes must be used, then the best is to set the UErrorCode to
U_ZERO_ERROR immediately before calling the function in question, and to check for
the expected warning code immediately after the function returns.

397 ICU v3.4 User Guide

Future versions of ICU will not introduce new warning codes, and will provide real API
replacements for all existing warning codes.

C and C++ Coding Conventions Overview

The ICU group uses the following coding guidelines to create software using the ICU
C++ classes and methods as well as the ICU C methods.

• C and C++ Coding Guidelines discusses the type and format convention guidelines for
C and C++

• Memory Usage provides an overview for ICU's memory usage design.

• C++ Coding Guidelines discusses the software writing guidelines for C++.

• C Coding Guidelines discusses the software writing guidelines for C.

C and C++ Type and Format Convention Guidelines

The following C and C++ type and format conventions are used to maximize portability
across platforms and to provide consistency in the code:

Constants (#define, enum items, const)

Use uppercase letters for constants. For example, use UBREAKITERATOR_DONE,
UBIDI_DEFAULT_LTR, ULESS.

Variables and Functions

Use mixed-case letters that start with a lowercase letter for variables and functions. For
example, use getLength().

Types (class, struct, enum, union)

Use mixed-case that start with an uppercase letter for types. For example, use class
DateFormatSymbols

Function Style

Use the getProperty() and setProperty() style for functions where a lowercase letter
begins the first word and the second word is capitalized without a space between it and
the first word. For example, UnicodeString getSymbol(ENumberFormatSymbol
symbol), void setSymbol(ENumberFormatSymbol symbol, UnicodeString value)

398 ICU v3.4 User Guide

and getLength(), getSomethingAt(index/offset).

Common Parameter Names

In order to keep function parameter names consistent, the following are recommendations
for names or suffixes (usual "Camel case" applies):

• "start": the index (of the first of several code units) in a string or array

• "limit": the index (of the first code unit after a specified range) in a string or array
(the number of units are (limit-start))

• name the length (for the number of code units in a (range of a) string or array) either
"length" or "somePrefixLength"

• name the capacity (for the number of code units available in an output buffer) either
"capacity" or "somePrefixCapacity"

Order of Source/Destination Arguments

Many ICU function signatures list source arguments before destination arguments, as is
common in C++ and Java APIs. This is the preferred order for new APIs. (Example:
ucol_getSortKey(const UCollator *coll, const UChar *source, int32_t
sourceLength, uint8_t *result, int32_t resultLength))

Some ICU function signatures list destination arguments before source arguments, as is
common in C standard library functions. This should be limited to functions that closely
resemble such C standard library functions or closely related ICU functions. (Example:
u_strcpy(UChar *dst, const UChar *src))

Order of Include File Includes

Include system header files (like <stdio.h>) before ICU headers followed by application-
specific ones. This assures that ICU headers can use existing definitions from system
headers if both happen to define the same symbols. In ICU files, all used headers should
be explicitly included, even if some of them already include others.

Pointer Conversions

Do not cast pointers to integers or integers to pointers. Also, do not cast between data
pointers and function pointers. This will not work on some compilers, especially with
different sizes of such types. Exceptions are only possible in platform-specific code
where the behavior is known.

Returning a Number of Items

To return a number of items, use countItems(), not getItemCount(), even if there is

399 ICU v3.4 User Guide

no need to actually count using that member function.

Ranges of Indexes

Specify a range of indexes by having start and limit parameters with names or suffix
conventions that represent the index. A range should contain indexes from start to limit-1
such as an interval that is left-closed and right-open. Using mathematical notation, this is
represented as: [start..limit[.

Functions with Buffers

Set the default value to -1 for functions that take a buffer (pointer) and a length argument
with a default value so that the function determines the length of the input itself (for text,
calling u_strlen()). Any other negative or undefined value constitutes an error.

Primitive Types

Primitive types are defined by a utypes.h file or a header file that includes other header
files. The most common types are uint8_t, uint16_t, uint32_t, int8_t, int16_t,
int32_t, UChar (unsigned, 16-bit), UChar32, and UErrorCode.

File Names (.h, .c, .cpp, data files if possible, etc.)

Use the 8.3 standard with all characters in lowercase for file names.

Language Extensions and Standards

Proprietary features, language extensions, or library functions, must not be used because
they will not work on all C or C++ compilers.
In Microsoft Visual C++, go to Project Settings(alt-f7)->All Configurations-> C/C++-
>Customize and check Disable Language Extensions.

Tabs and Indentation

Save files with spaces instead of tab characters (\x09). The indentation size is 4.

Documentation

Use Java doc-style in-file documentation created with doxygen.

Multiple Statements

Place multiple statements in multiple lines. if() or loop heads must not be followed by
their bodies on the same line.

400 ICU v3.4 User Guide

Placements of {} Curly Braces

Place curly braces {} in reasonable and consistent locations. Each of us subscribes to
different philosophies. It is recommended to use the style of a file, instead of mixing
different styles. It is requested, however, to not have if() and loop bodies without curly
braces.

if() {...} and Loop Bodies

Use curly braces for if() and else as well as loop bodies, etc., even if there is only one
statement.

Function Declarations

Have one line that has the return type and place all the import declarations, extern
declarations, export declarations, the function name, and function signature at the
beginning of the next line. For example, use the following convention:

U_CAPI int32_t U_EXPORT2
u_formatMessage(...);

The U_CAPI and U_EXPORT2 qualifiers are required for both the declaration and
the definiton of the function.
Use U_CAPI before and U_EXPORT2 after the return type of exported C functions.
Internal functions that are visible outside a compilation unit need a U_CFUNC
before the return type.

Use Static For File Scope

Use static for variables, functions, and constants that are not exported explicitly by a
header file. Some platforms are confused if non-static symbols are not explicitly declared
extern. These platforms will not be able to build ICU nor link to it.

Using C Callbacks From C++ Code

z/OS and Windows COM wrappers around ICU need __cdecl for callback functions. The
reason is that C++ can have a different function calling convention from C. These
callback functions also usually need to be private. So the following code

UBool
isAcceptable(void * /* context */,
 const char * /* type */, const char * /* name */,
 const UDataInfo *pInfo)
{
 // Do something here.
}

401 ICU v3.4 User Guide

should be changed to look like the following by adding U_CDECL_BEGIN, static,
U_CALLCONV and U_CDECL_END.

U_CDECL_BEGIN
static UBool U_CALLCONV
isAcceptable(void * /* context */,
 const char * /* type */, const char * /* name */,
 const UDataInfo *pInfo)
{
 // Do something here.
}
U_CDECL_END

Same Module and Functionality in C and in C++

Determine if two headers are needed. If the same functionality is provided with both a C
and a C++ API, then there can be two headers, one for each language, even if one uses the
other. For example, there can be umsg.h for C and msgfmt.h for C++.

Not all functionality has or needs both kinds of API. More and more functionality is
available only via C APIs to avoid duplication of API, documentation, and maintenance.
C APIs are perfectly usable from C++ code, especially with UnicodeString methods that
alias or expose C-style string buffers.

Platform Dependencies

Use the platform dependencies that are within the header files that utypes.h files
include. They are platform.h (which is generated by the configuration script from
platform.h.in) and its more specific cousins like pwin32.h for Windows, which define
basic types, and putil.h, which defines platform utilities.
Important: Outside of these files, and a small number of implementation files that
depend on platform differences (like umutex.c), no ICU source code may have any
#ifdef OperatingSystemName instructions.

Short, Unnested Mutex Blocks

Do not use function calls within a mutex block for mutual-exclusion (mutex) blocks. This
can prevent deadlocks from occurring later. There should be as little code inside a mutex
block as possible to minimize the performance degradation from blocked threads.
Also, it is not guaranteed that mutex blocks are re-entrant; therefore, they must not be
nested.

Names of Internal Functions

Internal functions that are not declared static (regardless of inlining) must follow the
naming conventions for exported functions because many compilers and linkers do not
distinguish between library exports and intra-library visible functions.

402 ICU v3.4 User Guide

Which Language for the Implementation

Implement low-level functions in C or in C-style C++. Using C++ is acceptable even for
implementing C APIs if objects are used very carefully. C++ has advantages as "a better
C" with a relaxed placement of variable declarations and inline functions.

No Compiler Warnings

ICU must compile without compiler warnings unless such warnings are verified to be
harmless or bogus. Often times a warning on one compiler indicates a breaking error on
another.

Memory Usage

Dynamically Allocated Memory

ICU4C APIs are designed to allow separate heaps for its libraries vs. the application. This
is achieved by providing factory methods and matching destructors for all allocated
objects. The C++ API uses a common base class with overridden new/delete operators
and/or forms an equivalent pair with createXYZ() factory methods and the delete
operator. The C API provides pairs of open/close functions for each service. See the
C++ and C guideline sections below for details.

Declaring Static Data

All unmodifiable data should be declared const. This includes the pointers and the data
itself. Also if you do not need a pointer to a string, declare the string as an array. This
reduces the time to load the library and all its pointers. This should be done so that the
same library data can be shared across processes automatically. Here is an example:

#define MY_MACRO_DEFINED_STR "macro string"
const char *myCString = "myCString";
int16_t myNumbers[] = {1, 2, 3};

This should be changed to the following:

static const char MY_MACRO_DEFINED_STR[] = "macro string";
static const char myCString[] = "myCString";
static const int16_t myNumbers[] = {1, 2, 3};

No Static Initialization

The most common reason to have static initialization is to declare a static const

403 ICU v3.4 User Guide

UnicodeString, for example (see utypes.h about invariant characters):
static const UnicodeString myStr("myStr", "");

The most portable and most efficient way to declare ASCII text as a Unicode string is to
do the following instead:

static const UChar myStr[] = { 0x6D, 0x79, 0x53, 0x74, 0x72, 0}; /* "myStr" */
You can easily change a string to hexadecimal values by using simple tools like
http://www.macchiato.com/unicode/convert.html. We do not use character literals for
Unicode characters and strings because the execution character set of C/C++ compilers is
almost never Unicode and may not be ASCII-compatible (especially on EBCDIC
platforms). Depending on the API where the string is to be used, a terminating NUL (0)
may or may not be required. The length of the string (number of UChars in the array) can
be determined with sizeof(myStr)/U_SIZEOF_UCHAR, (subtract 1 for the NUL if
present). Always remember to put in a comment at the end of the declaration what the
Unicode string says.

Static initialization of C++ objects must not be used in ICU libraries because of the
following reasons:

1. It takes time to initialize the library.

2. Dependency checking is not completely done in C or C++. For instance, if an ICU user
creates an ICU object or calls an ICU function statically that depends on static data, it
is not guaranteed that the statically declared data is initialized.

3. Certain users like to manage their own memory. They can not manage ICU's memory
properly because of item #2.

4. It is easier to debug code that does not use static initialization.

5. Memory allocated at static initialization time is not guaranteed to be deallocated with a
C++ destructor when the library is unloaded. This is a problem when ICU is unloaded
and reloaded into memory and when you are using a heap debugging tool. It would
also not work with the u_cleanup() function.

6. Some platforms cannot handle static initialization or static destruction properly.
Several compilers have this random bug (even in the year 2001).

ICU users can use the U_STRING_DECL and U_STRING_INIT macros for C strings. Note
that on some platforms this will incur a small initialization cost (simple conversion).
Also, ICU users need to make sure that they properly and consistently declare the strings
with both macros. See ustring.h for details.

C++ Coding Guidelines

This section describes the C++ specific guidelines or conventions to use.

Portable Subset of C++

404 ICU v3.4 User Guide

ICU uses only a portable subset of C++ for maximum portability. Also, it does not use
features of C++ that are not implemented well in all compilers or are cumbersome. In
particular, ICU does not use exceptions, compiler-provided Run-Time Type Information,
templates, or the Standard Template Library.

ICU uses a limited form of multiple inheritance equivalent to Java's interface mechanism:
All but one base classes must be interface/mixin classes, i.e., they must contain only pure
virtual member functions. For details see the 'boilerplate' discussion below. This
restriction to at most one base class with non-virtual members eliminates problems with
the use and implementation of multiple inheritance in C++. ICU does not use virtual base
classes.

Classes and Members

Classes and their members do not need a 'U' or any other prefix.

Global Operators

Global operators (operators that are not class members) can be problematic for library
entry point versioning, may confuse users and cannot be easily ported to Java (ICU4J).
They should be avoided if possible.

The issue with library entry point versioning is that on platforms that do not support
namespaces, users must rename all classes and global functions via urename.h. This
renaming process is not possible with operators. However, a global operator can be used
in ICU4C (when necessary) if its function signature contains an ICU C++ class that is
versioned. This will result in a mangled linker name that does contain the ICU version
number via the versioned name of the class parameter. For example, ICU4C 2.8 added an
operator + for UnicodeString, with two UnicodeString reference parameters.

Namespaces

Beginning with ICU version 2.0, ICU uses namespaces. The actual namespace is
icu_M_N with M being the major ICU release number and N being the minor ICU release
number. For convenience, the namespace icu is an alias to the current release-specific
one.

Class declaractions, even forward declarations, must be scoped to the ICU namespace.
For example:

U_NAMESPACE_BEGIN
class Locale;
U_NAMESPACE_END
// outside U_NAMESPACE_BEGIN..U_NAMESPACE_END
extern void fn(U_NAMESPACE_QUALIFIER &UnicodeString);
// outside U_NAMESPACE_BEGIN..U_NAMESPACE_END

405 ICU v3.4 User Guide

// automatically set by utypes.h
U_NAMESPACE_USE
Locale loc("fi");

U_NAMESPACE_USE (expands to using namespace icu_M_N; when available) is
automatically done when utypes.h is included, so that all ICU classes are immediately
usable.

Declare Class APIs

Class APIs need to be declared like either of the following:

Inline-Implemented Member Functions

Class member functions must be declared and not inline-implemented in the class
declaration. However, inline implementations may follow after the class declaration in the
same file.

C++ class layout and 'boilerplate'

There are different sets of requirements for different kinds of C++ classes. In general, all
instantiable classes (i.e., all classes except for interface/mixin classes and ones with only
static member functions) inherit the UMemory base class. UMemory provides new/delete
operators, which allows to keep the ICU heap separate from the application heap, or to
customize ICU's memory allocation consistently.

Public ICU APIs must return or orphan only C++ objects that are to be released
with delete. They must not return allocated simple types (including pointers, and
arrays of simple types or pointers) that would have to be released with a free()
function call using the ICU library's heap. Simple types and pointers must be
returned using fill-in parameters (instead of allocation), or cached and owned by
the returning API.

Public ICU C++ classes must inherit the UObject base class and implement the
following common set of 'boilerplate' functions:

• default constructor

• copy constructor

• assignment operator

• clone()

• operator==

• operator!=

406 ICU v3.4 User Guide

Each of the above either must be implemented, verified that the default
implementation according to the C++ standard will work (typically not if any
pointers are used), or declared private without implementation.

• ICU's Run-Time Type Information mechanism with getDynamicClassID() and
getStaticClassID() (copy implementations from existing C++ APIs)

Interface/mixin classes are equivalent to Java interfaces. They are as much multiple
inheritance as ICU uses — they do not decrease performance, and they do not cause
problems associated with multiple base classes having data members. Interface/mixin
classes contain only pure virtual member functions, and must contain an empty virtual
destructor. See for example the UnicodeMatcher class. Interface/mixin classes must not
inherit any non-interface/mixin class, especially not UMemory or UObject. Instead,
implementation classes must inherit one of these two (or a subclass of them) in addition
to the interface/mixin classes they implement. See for example the UnicodeSet class.

Static classes contain only static member functions and are therefore never instantiated.
They must not inherit UMemory or UObject. Instead, they must declare a private default
constructor (without any implementation) to prevent instantiation. See for example the
LESwaps layout engine class.

C++ classes internal to ICU need not (but may) implement the boilerplate functions as
mentioned above. They must inherit at least UMemory if they are instantiable.

Make Sure The Compiler Uses C++

The XP_PLUSPLUS ensures that the compiler uses C++ and not __cplusplus.

Adoption of Objects

Some constructors and factory functions take pointers to objects that they adopt. The
newly created object contains a pointer to the adoptee and takes over ownership and
lifecycle control. If an error occurs while creating the new object (and thus in the code
that adopts an object), then the semantics used within ICU must be adopt-on-call (as
opposed to, for example, adopt-on-success):

• General: A constructor or factory function that adopts an object does so in all cases,
even if an error occurs and a UErrorCode is set. This means that either the adoptee is
deleted immediately or its pointer is stored in the new object. The former case is most
common when the constructor or factory function is called and the UErrorCodealready
indicates a failure. In the latter case, the new object must take care of deleting the
adoptee once it is deleted itself regardless of whether or not the constructor was
successful.

• Constructors: The code that creates the object with the new operator must check the
resulting pointer returned by new and delete any adoptees if it is 0 because the
constructor was not called. (Typically, a UErrorCode must be set to
U_MEMORY_ALLOCATION_ERROR.)

407 ICU v3.4 User Guide

• Factory functions (createInstance()): The factory function must set a
U_MEMORY_ALLOCATION_ERROR and delete any adoptees if it cannot allocate the new
object. If the construction of the object fails otherwise, then the factory function must
delete it and the factory function must delete its adoptees. As a result, a factory
function always returns either a valid object and a successful UErrorCode, or a 0
pointer and a failure UErrorCode. A factory function returns a pointer to an object that
must be deleted by the user/owner.

Example:
 Calendar*
Calendar::createInstance(TimeZone* zone, UErrorCode& errorCode) {
 if(U_FAILURE(errorCode)) {
 delete zone;
 return 0;
 }
 // since the Locale isn't specified, use the default locale
 Calendar* c = new GregorianCalendar(zone, Locale::getDefault(),
errorCode);
 if(c == 0) {
 errorCode = U_MEMORY_ALLOCATION_ERROR;
 delete zone;
 } else if(U_FAILURE(errorCode)) {
 delete c;
 c = 0;
 }
 return c;
}

Memory Allocation

All ICU C++ class objects directly or indirectly inherit UMemory (see 'boilerplate'
discussion above) which provides new/delete operators, which in turn call the internal
functions in cmemory.c. Creating and releasing ICU C++ objects with new/delete
automatically uses the ICU allocation functions.

Remember that (in absence of explicit :: scoping) C++ determines which
new/delete operator to use from which type is allocated or deleted, not from the
context of where the statement is. Since non-class data types (like int) cannot
define their own new/delete operators, C++ always uses the global ones for
them by default.

When global new/delete operators are to be used in the application (never inside ICU!),
then they should be properly scoped as e.g. ::new, and the application must ensure that
matching new/delete operators are used. In some cases where such scoping is missing in
non-ICU code, it may be simpler to compile ICU without its own new/delete operators.
See source/common/unicode/uobject.h for details.

In ICU library code, allocation of non-class data types — simple integer types as well as
pointers — must use the functions in cmemory.h/.c (uprv_malloc(), uprv_free(),
uprv_realloc()). Such memory objects must be released inside ICU, never by the user;
this is achieved either by providing a "close" function for a service or by avoiding to pass
ownership of these objects to the user (and instead filling user-provided buffers or

408 ICU v3.4 User Guide

returning constant pointers without passing ownership).

The cmemory.h/.c functions can be overridden at ICU compile time for custom memory
management. By default, UMemory's new/delete operators are implemented by calling
these common functions. Overriding the cmemory.h/.c functions changes the memory
management for both C and C++.

C++ objects that were either allocated with new or returned from a createXYZ() factory
method must be deleted by the user/owner.

Memory Allocation Failures

All memory allocations and object creations should be checked for success. In the event
of a failure (a NULL returned), a U_MEMORY_ALLOCATION_ERROR status should be
returned by the ICU function in question. If the allocation failure leaves the ICU service
in an invalid state, such that subsequent ICU operations could also fail, the situation
should be flagged so that the subsequent operations will fail cleanly. Under no
circumstances should a memory allocation failure result in a crash in ICU code, or cause
incorrect results rather than a clean error return from an ICU function.

Some functions, such as the C++ assignment operator, are unable to return an ICU error
status to their caller. In the event of an allocation failure, these functions should mark the
object as being in an invalid or bogus state so that subsequent attempts to use the object
will fail. Deletion of an invalid object should always succeed.

Global Inline Functions

Global functions (non-class member functions) that are declared inline must be made
static inline. Some compilers will export symbols that are declared inline but not static.

No Declarations in the for() Loop Head

Iterations through for() loops must not use declarations in the first part of the loop.
There have been two revisions for the scoping of these declarations and some compilers
do not comply to the latest scoping. Declarations of loop variables should be outside
these loops.

Common or I18N

Decide whether or not the module is part of the common or the i18n API collection. Use
the appropriate macros. For example, use U_COMMON_IMPLEMENTATION,
U_I18N_IMPLEMENTATION, U_COMMON_API, U_I18N_API. See utypes.h.

Constructor Failure

If there is a reasonable chance that a constructor fails (For example, if the constructor

409 ICU v3.4 User Guide

relies on loading data), then either it must use and set a UErrorCode or the class needs to
support an isBogus()/setToBogus() mechanism like UnicodeString and the constructor
needs to sets the object to bogus if it fails.

C Coding Guidelines

This section describes the C-specific guidelines or conventions to use.

Declare and define C APIs with both U_CAPI and U_EXPORT2

All C APIs need to be both declared and defined using the U_CAPI and U_EXPORT2
qualifiers.

U_CAPI int32_t U_EXPORT2
u_formatMessage(...);

Use U_CAPI before and U_EXPORT2 after the return type of explored C functions.
Internal functions that are visible outside a compilation unit need a U_CFUNC
before the return type.

Subdivide the Namespace

Use prefixes to avoid name collisions. Some of those prefixes contain a 3- (or sometimes
4-) letter module identifier. Very general names like u_charDirection() do not have a
module identifier in their prefix.

• For POSIX replacements, the (all lowercase) POSIX function names start with "u_":
u_strlen().

• For other API functions, a 'u' is appended to the beginning with the module identifier
(if appropriate), and an underscore '_', followed by the mixed-case function name. For
example, use u_charDirection(), ubidi_setPara().

• For types (struct, enum, union), a "U" is appended to the beginning, often "U<module
identifier>" directly to the typename, without an underscore. For example, use
UComparisonResult.

• For #defined constants and macros, a "U_" is appended to the beginning, often
"U<module identifier>_" with an underscore to the uppercase macro name. For
example, use U_ZERO_ERROR, U_SUCCESS(). For example, UNORM_NFC

Function Declarations

Function declarations need to be in the form CAPI return-type U_EXPORT2 to satisfy
all the compilers' requirements.

410 ICU v3.4 User Guide

Functions for Constructors and Destructors

Functions that roughly compare to constructors and destructors are called umod_open()
and umod_close(). See the following example:

CAPI UBiDi * U_EXPORT2
ubidi_open();
CAPI UBiDi * U_EXPORT2
ubidi_openSized(UTextOffset maxLength, UTextOffset maxRunCount);
CAPI void U_EXPORT2
ubidi_close(UBiDi *pBiDi);

Each successful call to a umod_open() returns a pointer to an object that must be released
by the user/owner by calling the matching umod_close().

Inline Implementation Functions

Some, but not all, C compilers allow ICU users to declare functions inline (which is a
C++ language feature) with various keywords. This has advantages for implementations
because inline functions are much safer and more easily debugged than macros. ICU has a
portable U_INLINE declaration macro that can be used for inline functions. On C
compilers that do not support any form of inline declaration, U_INLINE will result in a
static declaration. U_INLINE must only be used in implementation code, not in public C
APIs.

C Equivalents for Classes with Multiple Constructors

In cases like BreakIterator and NumberFormat, instead of having several different 'open'
APIs for each kind of instances, use an enum selector.

Source File Names

Source file names for C begin with a 'u'.

Memory APIs Inside ICU

For memory allocation in C implementation files for ICU, use the functions and macros
in cmemory.h. When allocated memory is returned from a C API function, there must be
a corresponding function (like a ucnv_close()) that deallocates that memory.

All memory allocations in ICU should be checked for success. In the event of a failure (a
NULL returned from uprv_malloc()), a U_MEMORY_ALLOCATION_ERROR status should be
returned by the ICU function in question. If the allocation failure leaves the ICU service
in an invalid state, such that subsequent ICU operations could also fail, the situation
should be flagged so that the subsequent operations will fail cleanly. Under no
circumstances should a memory allocation failure result in a crash in ICU code, or cause
incorrect results rather than a clean error return from an ICU function.

411 ICU v3.4 User Guide

// Comments

Do not use C++ style // comments in C files and in headers that will be included in C
files. Some of the supported platforms are not compatible with C++ style comments in C
files.

Source Code Strings with Unicode Characters

char * strings in ICU

The C/C++ languages do not provide a portable way to specify Unicode code point or
string literals other than with arrays of numeric constants. For convenience, ICU4C tends
to use char * strings in places where only "invariant characters" (a portable subset of the
7-bit ASCII repertoire) are used. This allows locale IDs, charset names, resource bundle
item keys and similar items to be easily specified as string literals in the source code. The
same types of strings are also stored as "invariant character" char * strings in the ICU data
files.

ICU has hard coded mapping tables in source/common/putil.c to convert invariant
characters to and from Unicode without using a full ICU converter. These tables must
match the encoding of string literals in the ICU code as well as in the ICU data files.

Important: ICU assumes that at least the invariant characters always have the
same codes as is common on platforms with the same charset family (ASCII vs.
EBCDIC). ICU has not been tested on platforms where this is not the case.

Some usage of char * strings in ICU assumes the system charset instead of invariant
characters. Such strings are only handled with the default converter (See the following
section). The system charset is usually a superset of the invariant characters.

The following are the ASCII and EBCDIC byte values for all of the invariant characters
(see also unicode/utypes.h):

Character(s) ASCII EBCDIC
a..i 61..69 81..89
j..r 6A..72 91..99
s..z 73..7A A2..A9
A..I 41..49 C1..C9
J..R 4A..52 D1..D9
S..Z 53..5A E2..E9
0..9 30..39 F0..F9

412 ICU v3.4 User Guide

Character(s) ASCII EBCDIC
(space) 20 40
" 22 7F
% 25 6C
& 26 50
' 27 7D
(28 4D
) 29 5D
* 2A 5C
+ 2B 4E
, 2C 6B
- 2D 60
. 2E 4B
/ 2F 61
: 3A 7A
; 3B 5E
< 3C 4C
= 3D 7E
> 3E 6E
? 3F 6F
_ 5F 6D

Rules Strings with Unicode Characters

In order to include characters in source code strings that are not part of the invariant
subset of ASCII, one has to use character escapes. In addition, rules strings for collation,
break iteration, etc. need to follow service-specific syntax, which means that spaces and
ASCII punctuation must be quoted using the following rules:

• Single quotes delineate literal text: a'>'b => a>b

• Two single quotes, either between or outside of single quoted text, indicate a literal
single quote:

 a''b => a'b
 a'>''<'b => a>'<b

413 ICU v3.4 User Guide

• A backslash precedes a single literal character:

• Several standard mechanisms are handled by u_unescape() and its variants.

All of these quoting mechanisms are supported by the
RuleBasedTransliterator. The single quote mechanisms (not backslash, not
u_unescape()) are supported by the format classes. RuleBasedBreakIterator
handles an unknown subset of these. In its infancy, ResourceBundle supported
the \uXXXX mechanism and nothing else.
This quoting method is the current policy. However, there are modules within the
ICU services that are being updated and this quoting method might not have been
applied to all of the modules.

Java Coding Conventions Overview

The ICU group uses the following coding guidelines to create software using the ICU
Java classes and methods.

Code style

The standard order for modifier keywords on APIs is:

• public static final synchronized strictfp

• public abstract

All if/else/for/while/do loops use braces, even if the controlled statement is a single line.
This is for clarity and to avoid mistakes due to bad nesting of control statements,
especially during maintenance.

Tabs should not be present in source files.

Indentation is 4 spaces.

Make sure the code is formatted cleanly with regular indentation. Follow Java style code
conventions, e.g., don't put multiple statements on a single line, use mixed-case
identifiers for classes and methods and upper case for constants, and so on.

All public and protected API in the 'API packages' (lang, math, text, util) should be
tagged with either @draft, @stable, or @internal.

Javadoc should be complete and correct when code is checked in, to avoid playing catch-
up later during the throes of the release. Please javadoc all methods, not just external
APIs, since this helps with maintenance.

Code organization

414 ICU v3.4 User Guide

Avoid putting more than one top-level class in a single file. Either use separate files or
nested classes.

Do not mix test, tool, and runtime code in the same file. If you need some access to
private or package methods or data, provide public accessors for them and mark them
@internal. Test code should be under dev/test, and tools (e.g., code that generates data,
source code, or computes constants) under dev/tool. Occasionally for very simple cases
you can leave a few lines of tool code in the main source and comment it out, but
maintenance is easier if you just comment the location of the tools in the source and put
the actual code elsewhere.

Avoid creating new interfaces unless you know you need to mix the interface into two or
more classes that have separate inheritance. Interfaces are impossible to modify later in a
backwards-compatible way. Abstract classes, on the other hand, can add new methods
with default behavior. Use interfaces only if it is required by the arcitecture, not just for
expediency.

Current releases of ICU4J are restricted to use JDK 1.4 APIs and language features. This
unfortunately means no static imports, and no enums. But since we hope eventually to
move forward to 1.5, we should avoid the fancy workarounds for these language
deficiencies that have been used in the past. So don't avoid using interfaces as a
convenience to import static constants into several files. Also, don't use the (rather
clumsy) enum idiom based on classes with a fixed number of constant instances, as it's
generally not worth the effort. Using static int constants is acceptable.

ICU Packages

Public APIs should be placed in com.ibm.icu.text, com.ibm.icu.util, and
com.ibm.icu.lang. For historical reasons and for easier migration from JDK classes,
there are also APIs in com.ibm.icu.math but new APIs should not be added there.

APIs used only during development, testing, or tools work should be placed in
com.ibm.icu.dev.

A class or method which is used by public APIs (listed above) but which is not itself
public can be placed in different places:

1. If it is only used by one class, make it private in that class.

2. If it is only used by one class and its subclasses, make it protected in that class. In
general, also tag it @internal unless you are working on a class that supports user-
subclassing (rare).

3. If it is used by multiple classes in one package, make it package private (also known as
default access) and mark it @internal.

4. If it is used by multiple packages, make it public and place the class in the
com.ibm.icu.impl package.

415 ICU v3.4 User Guide

Error Handling and Exceptions

Errors should be indicated by throwing exceptions, not by returning “bogus” values.

If an input parameter is in error, then a new IllegalArgumentException
("description") should be thrown.

Exceptions should be caught only when something must be done, for example special
cleanup or rethrowing a different exception. If the error “should never occur”, then throw
a new RuntimeException("description") (rare). In this case, a comment should be
added with a justification.

Use exception chaining: When an exception is caught and a new one created and thrown
(usually with additional information), the original exception should be chained to the new
one.

A catch expression should not catch Throwable. Catch expressions should specify the
most specific subclass of Throwable that applies. If there are two concrete subclasses,
both should be specified in separate catch statements.

Binary Data Files

ICU4J uses the same binary data files as ICU4C, in the big-endian/ASCII form. The
ICUBinary class should be used to read them.

Some data sources (for example, compressed Jar files) do not allow the use of several
InputStream and related APIs:

• Memory mapping is efficient, but not available for all data sources.

• Do not depend on InputStream.available(): It does not provide reliable
information for some data sources. Instead, the length of the data needs to be
determined from the data itself.

• Do not call mark() and reset() methods on InputStream without wrapping the
InputStream object in a new BufferedInputStream object. These methods are not
implemented by the ZipInputStream class, and their use may result in an
IOException.

Compiler Warnings

There should be no compiler warnings when building ICU4J. It is recommended to
develop using Eclipse, and to fix any problems that are shown in the Eclipse Problems
panel (below the main window).

Miscellaneous

Objects should not be cast to a class in the sun.* packages because this would cause a

416 ICU v3.4 User Guide

SecurityException when run under a SecurityManager. The exception needs to be
caught and default action taken, instead of propagating the exception.

Adding .c, .cpp and .h files to ICU

In order to add compilable files to ICU, add them to the source code control system in the
appropriate folder and also to the build environment.

To add these files, use the following steps:

1. Choose one of the ICU libraries:

• The common library provides mostly low-level utilities and basic APIs that
often do not make use of Locales. Examples are APIs that deal with character
properties, the Locale APIs themselves, and ResourceBundle APIs.

• The i18n library provides Locale-dependent and -using APIs, such as for
collation and formatting, that are most useful for internationalized user input
and output.

2. Put the source code files into the folder icu/source/library-name, then add them to
the build system:

• For most platforms, add the expected .o files to icu/source/library-
name/Makefile.in, to the OBJECTS variable. Add the public header files to
the HEADERS variable.

• For Microsoft Visual C++ 6.0, add all the source code files to
icu/source/library-name/library-name.dsp. If you don't have Visual
C++, add the filenames to the project file manually.

3. Add test code to icu/source/test/cintltest for C APIs and to
icu/source/test/intltest for C++ APIs.

4. Make sure that the API functions are called by the test code (100% API coverage) and
that at least 85% of the implementation code is exercised by the tests (>=85% code
coverage).

5. Create test code for C using the log_err(), log_info(), and log_verbose() APIs
from cintltst.h (which uses ctest.h) and check it into the appropriate folder.

6. In order to get your C test code called, add its top level function and a descriptive test
module path to the test system by calling addTest(). The function that makes the call
to addTest() ultimately must be called by addAllTests() in calltest.c. Groups of
tests typically have a common addGroup() function that calls addTest() for the test
functions in its group, according to the common part of the test module path.

7. Add that test code to the build system also. Modify Makefile.in and the appropriate
.dsp file (For example, the file for the library code).

417 ICU v3.4 User Guide

Test Suite Notes

The cintltst Test Suite contains all the tests for the International Components for Unicode
C API. These tests may be automatically run by typing "cintltst" or "cintltst -all" at the
command line. This depends on the C Test Services: cintltst or cintltst -all.

C Test Services

The purpose of the test services is to enable the writing of tests entirely in C. The services
have been designed to make creating tests or converting old ones as simple as possible
with a minimum of services overhead. A sample test file, "demo.c", is included at the end
of this document. For more information regarding C test services, please see the
\intlwork\source\tools\ctestfwdirectory.

Writing Test Functions

The following shows the possible format of test functions:
void some_test()
{
}

Output from the test is accomplished with three printf-like functions:
void log_err (const char *fmt, ...);
void log_info (const char *fmt, ...);
void log_verbose (const char *fmt, ...);

• log_info()writes to the console for informational messages.

• log_verbose() writes to the console ONLY if the VERBOSE flag is turned on (or the
-v option to the command line). This option is useful for debugging. By default, the
VERBOSE flag is turned OFF.

• log_error() can be called when a test failure is detected. The error is then logged and
error count is incremented by one.

To use the tests, link them into a hierarchical structure. The root of the structure will be
allocated by default.

TestNode *root = NULL; /* empty */
addTest(&root, &some_test, "/test");

Provide addTest() with the function pointer for the function that performs the test as
well as the absolute 'path' to the test. Paths may be up to 127 chars in length and may be
used to group tests.

The calls to addTest must be placed in a function or a hierarchy of functions (perhaps
mirroring the paths). See the existing cintltst for more details.

418 ICU v3.4 User Guide

Running the Tests

A subtree may be extracted from another tree of tests for the programmatic running of
subtests.

TestNode* sub;
sub = getTest(root, "/mytests");

And a tree of tests may be run simply by:
runTests(root); /* or 'sub' */

Similarly, showTests() lists out the tests. However, it is easier to use the command
prompt with the Usage specified below.

Globals

The command line parser resets the error count and prints a summary of the failed tests.
But if runTest is called directly, for instance, it needs to be managed manually.
ERROR_COUNT contains the number of times log_err was called. runTests resets the
count to zero before running the tests. VERBOSITY must be 1 to display log_verbose()
data. Otherwise, VERBOSITY must be set to 0 (default).

Building

To compile this test suite using Microsoft Visual C++ (MSVC), follow the instructions in
icu/source/readme.html#HowToInstall for building the allC workspace. This builds
the libraries as well as the cintltst executable.

Executing

To run the test suite from the command line, change the directories to
icu/source/test/cintltst/Debug for the debug build (or
icu/source/test/cintltst/Release for the release build) and then type cintltst.

Usage

Type cintltest -h to view its command line parameters.
Syntax:
Usage: [-l] [-v] [-verbose] [-a] [-all] [-n] \n [
-no_err_msg] [-h
] [/path/to/test]
-l To get a list of test names
-all To run all the test
-a To run all the test(same as -all)
-verbose To turn ON verbosity
-v To turn ON verbosity(same as -verbose)
-h To print this message
-n To turn OFF printing error messages
-no_err_msg (same as -n)
-[/subtest] To run a subtest

419 ICU v3.4 User Guide

For example to run just the utility tests type: cintltest /tsutil)
To run just the locale test type: cintltst /tsutil/loctst
###
/******************** sample ctestfw test ********************
********* Simply link this with libctestfw or ctestfw.dll ****
************************* demo.c *****************************/
#include "stdlib.h"
#include "ctest.h"
#include "stdio.h"
#include "string.h"
/**
* Some sample dummy tests.
* the statics simply show how often the test is called.
*/
void mytest()
{
 static i = 0;
 log_info("I am a test[%d]\n", i++);
}
void mytest_err()
{
 static i = 0;
 log_err("I am a test containing an error[%d]\n", i++);
 log_err("I am a test containing an error[%d]\n", i++);
}
void mytest_verbose()
{
 /* will only show if verbose is on (-v) */
 log_verbose("I am a verbose test, blabbing about nothing at
all.\n");
}
/**
* Add your tests from this function
*/
void add_tests(TestNode** root)
{
 addTest(root, &mytest, "/apple/bravo");
 addTest(root, &mytest, "/a/b/c/d/mytest");
 addTest(root, &mytest_err, "/d/e/f/h/junk");
 addTest(root, &mytest, "/a/b/c/d/another");
 addTest(root, &mytest, "/a/b/c/etest");
 addTest(root, &mytest_err, "/a/b/c");
 addTest(root, &mytest, "/bertrand/andre/damiba");
 addTest(root, &mytest_err, "/bertrand/andre/OJSimpson");
 addTest(root, &mytest, "/bertrand/andre/juice/oj");
 addTest(root, &mytest, "/bertrand/andre/juice/prune");
 addTest(root, &mytest_verbose, "/verbose");
}
int main(int argc, const char *argv[])
{
 TestNode *root = NULL;
 add_tests(&root); /* address of root ptr- will be filled in */
 /* Run the tests. An int is returned suitable for the OS status code.
 (0 for success, neg for parameter errors, positive for the # of
 failed tests) */
 return processArgs(root, argc, argv);
}

420 ICU v3.4 User Guide

IntlTest Test Suite Documentation

The IntlTest suite contains all of the tests for the C++ API of International Components
for Unicode. These tests may be automatically run by typing intltest at the command
line. Since the verbose option prints out a considerable amount of information, it is
recommended that the output be redirected to a file: intltest -v > testOutput.

Building

To compile this test suite using MSVC, follow the instructions for building the alCPP
(All C++ interfaces) workspace. This builds the libraries as well as the intltest
executable.

Executing

To run the test suite from the command line, change the directories to
icu/source/test/intltest/Debug, then type: intltest -v >testOutput. For the
release build, the executable will reside in the icu/source/test/intltest/Release
directory.

Usage

Type just intltest -h to see the usage:
Syntax:
IntlTest [-option1 -option2 ...] [testname1 testname2 ...]
where options are: verbose (v), all (a), noerrormsg (n),
exhaustive (e) and leaks (l).
(Specify either -all (shortcut -a) or a test name).
-all will run all of the tests.
###
To get a list of the test names type: intltest LIST
To run just the utility tests type: intltest utility
###
Test names can be nested using slashes ("testA/subtest1")
For example to list the utility tests type: intltest utility/LIST
To run just the Locale test type: intltest utility/LocaleTest
###
A parameter can be specified for a test by appending '@' and the value
to the testname.

Binary Data Formats

ICU services rely heavily on data to perform their functions. Such data is available in
various more or less structured text file formats, which make it easy to update and
maintain. For high runtime performance, most data items are pre-built into binary
formats, i.e., they are parsed and processed once and then stored in a format that is used
directly during processing.

421 ICU v3.4 User Guide

Most of the data items are pre-built into binary files that are then installed on a user's
machine. Some data can also be built at runtime but is not persistent. In the latter case, a
master object should be built once and then cloned to avoid the multiple parsing,
processing, and building of the same data.

Binary data formats for ICU must be portable across platforms that share the same
endianness and the same charset family (ASCII vs. EBCDIC). It would be possible to
handle data from other platform types, but that would require load-time or even runtime
conversion.

Data Types

Binary data items are memory-mapped, i.e., they are used as readonly, constant data.
Their structures must be portable according to the criteria above and should be efficiently
usable at runtime without building additional runtime data structures.

Most native C/C++ data types cannot be used as part of binary data formats because their
sizes are not fixed across compilers. For example, an int could be 16/32/64 or even any
other number of bits wide. Only types with absolutely known widths and semantics must
be used.

Use for example:

• uint8_t, uint16_t, int32_t etc.

• UBool: same as int8_t
• UChar: for 16-bit Unicode strings

• UChar32: for Unicode code points

• char: for "invariant characters", see utypes.h

ICU assumes that char is an 8-bit byte but makes no assumption about its
signedness.

Do not use for example:

• short, int, long, unsigned int etc.: undefined widths

• float, double: undefined formats

• bool_t: undefined width and signedness

• enum: undefined width and signedness

• wchar_t: undefined width, signedness and encoding/charset

Each field in a binary/mappable data format must be aligned naturally. This means that a
field with a primitive type of size n bytes must be at an n-aligned offset from the start of
the data block. UChar must be 2-aligned, int32_t must be 4-aligned, etc.

It is possible to use struct types, but one must make sure that each field is naturally
aligned, without possible implicit field padding by the compiler — assuming a reasonable

422 ICU v3.4 User Guide

compiler.
// bad because i will be preceded by compiler-dependent padding
// for proper alignment
struct BadExample {
 UBool flag;
 int32_t i;
};
// ok with explicitly added padding or generally conscious
// sequence of types
struct OKExample {
 UBool flag;
 uint8_t pad[3];
 int32_t i;
};

Within the binary data, a struct type field must be aligned according to its widest
member field. The struct OKExample must be 4-aligned because it contains an int32_t
field.

Another potential problem with struct types, especially in C++, is that some compilers
provide RTTI for all classes and structs, which inserts a _vtable pointer before the first
declared field. When using struct types with binary/mappable data in C++, assert in
some place in the code that offsetof the first field is 0. For an example see the
genpname tool.

Versioning

ICU data files have a UDataHeader structure preceding the actual data. Among other
fields, it contains a formatVersion field with four parts (one uint8_t each). It is best to
use only the first (major) or first and second (major/minor) fields in the runtime code to
determine binary compatibility, i.e., reject a data item only if its formatVersion contains
an unrecognized major (or major/minor) version number. The following parts of the
version should be used to indicate variations in the format that are backward compatible,
or carry other information.

For example, the current uprops.icu file's formatVersion (see the genprops tool and
uchar.c/uprops.c) is set to indicate backward-incompatible changes with the major
version number, backward-compatible additions with the minor version number, and shift
width constants for the UTrie data structure in the third and fourth version numbers
(these could change independently of the uprops.icu format).

423 ICU v3.4 User Guide

Synchronization Issues
Overview

There are a number of functions in the International Components for Unicode libraries
that need to access or allocate global or static data. For example, there is a global cache of
Collation rules, which ensures that we do not need to load collation data from a file each
time that a new Collator object is created. The first time a given Collator is loaded it is
stored in the cache, and subsequent accesses are extremely fast.

In a single-threaded environment, this is all straightforward. However, in a multithreaded
application there are synchronization issues to deal with. For example, the collation
caching mechanism needs to be protected from simultaneous access by multiple threads;
otherwise there could be problems with the data getting out of synch or with threads
performing unnecessary work.

Mutexes

We prevent these problems by using a Mutex object. A Mutex is a "mutually exclusive"
lock. Before accessing data which might be used by multiple threads, functions instantiate
a Mutex object, which acquires the exclusive lock. An other thread that tries to access the
data at the same time will also instantiate a Mutex, but the call will block until the first
thread has released its lock.

To save space, we use one underlying mutex implementation object for the entire
application. An individual Mutex object simply acquires and releases the lock on this this
global object. Since the implemention of a mutex is highly platform-dependent,
developers who plan to use the International Classes for Unicode in a multithreaded
environment are required to create their own mutex implementation object and register it
with the system.

Re-Entrancy

Using a single, global lock object can, of course, cause reentrancy problems. Deadlock
could occur where the Mutex acquire is attempted twice within the same thread before it
is released. For example, Win32 critical sections are reentrant, but our testing shows that
some POSIX mutex implementations are not. POSIX would require additional code, at a
performance loss.

To avoid these problems, the Mutex is only acquired during a pointer assignment, where
possible. In the few cases where this is not true, care is taken to not call any other
functions inside the mutex that could possibly acquire the mutex.

The result of this design principle is that the mutex may be acquired more times than
necessary, however time spent inside the mutex is then minimized.

424 ICU v3.4 User Guide

Developers implementing the Mutex are not required to provide reentrant-safe
implementations.

Implementations

The International Classes for Unicode are provided with reference implementations for
Win32 and POSIX.

• On Win32 platforms, a reentrant mutex is most naturally implemented on top of a
Critical Section.

• On POSIX platforms, pthread_mutex provides an implementation.

See Also

• mutex.h—Mutex API

• muteximp.h—The API's and instructions for providing your own mutexes

• mutex.cpp—Includes reference implementations for Win32 and POSIX

425 ICU v3.4 User Guide

Editing the ICU User Guide

Overview

The native source for the ICU user guide is Open Office Writer documents. All writing
and editing is done in Open Office, and the HTML and PDF versions are generated from
the Open Office documents.

Document Structure

The ICU userguide is organized as an Open Office “Master Document” that includes a
series of individual chapter documents.

In addition to including the chapter files, the master document provides common style
definitions, the table of contents, the index, etc.

There is a one-to-one correspondence between OO chapter files and pages in the HTML
version of the userguide.

Here is the directory structure for the user guide files

Directory or File Description
userguide/ The top level directory
userguide/OO/ Directory containing all of the user guide source (.sxw)

files.
userguide/OO/images/ Sources (.gif, .png, etc) for images used.
userguide/OODTD/ Open Office XML DTD files. Required by the Open

Office to html conversion tool.
userguide/html/ Directory into which the generated html files are built
userguide/html-template/ Directory containing a html template file and css style

sheet file. These are input files to the Open Office to
html conversion.

userguide/UGtoHtml/ Directory containing the Java tool for converting the .
sxw files to html.

All of the userguide source files are kept in the public ICU cvs system. The path to the
userguide is icu/icuhtml/userguide. See
http://ibm.com/software/globalization/icu/repository.jspfor information on accessing
ICU's cvs system.

426 ICU v3.4 User Guide

All normal editing of userguide content is done on the individual chapter files. Just open
and edit as if they were stand-alone open office files.

Opening userguide.sxg loads the complete, entire user guide. All chapters are visible, but
no editing of the content of the chapters is possible. Export to PDF or printing of the
complete document are done from this view.

Generating HTML

The HTML for the user guide is generated by a UGtoHtml, a Java tool.

Java JDK 1.4 or newer is required.

To build the UGtoHtml tool,
 cd userguide\UGtoHtml\src
 javac UGtoHtml.java

To convert a single chapter,
 cd userguide
 java -cp UGtoHtml/src UGtoHtml file-name.sxw

To convert the entire user guide,

 java -cp UGtoHtml/src UGtoHtml

In either case, the resulting html file(s) will be placed in the userguide/html directory.

The html files can be tested by simply loading them into a web browser as files. There
are no server dependencies – no SSI or dynamic server interactions that would cause
different behavior when the userguide is accessed through a web server.

HTML formatting (pretty printing): if you want to view the generated html, the format
can be improved by enabling XML pretty printing in Open Office.

From the menus choose Tools -> Options -> Load/Save -> General
 Uncheck the box “Size optimization for XML format (no pretty printing).”

Generating the PDF

Open Office makes generating the PDF easy.

Open the complete userguide file, userguide.sxg, in Open Office.

427 ICU v3.4 User Guide

From the File menu choose Export as PDF... and specify a destination file name.

Simple Formatting

Bold, italic, underline, Strike through, superscript and subscript can all be used directly, in any
combination, and will convert correctly to html. Superscript, subscript and strike through
are in the character style dialog.

Custom Styles

Use only paragraph styles with names of the form icu-XXX that appear in the Custom
Styles category in Open Office's Stylist window. (F11 to open the Stylist window)

For character styles, Default and icu-code (for fixed pitch font) are both acceptable,
meaning that the OO to HTML conversion will work correctly. Changing the font to a
fixed pitch font by hand will not work; you must use the icu-code character style. (If you
forget and manually change the font or set some other character styles, select the whole
paragraph, change its character style to Default, and then apply the icu-code style where
you want it.

Do not define any new custom styles, or use other built-in Open Office styles. These will
not be handled by the html converter.

Images

Images (figures or illustrations) are handled separately for Open Office/PDF and for the
html userguide.

For native Open Office and PDF, the image is inserted or pasted directly into the OO
document. These images are ignored by the html conversion.

For the HTML conversion, an annotation in the OO document (a Note) specifies the
image file to be inserted.

There are two reasons for this admittedly awkward scheme:

• The original external image file name is not available for images that are embedded
directly in the document, meaning that the OO -> html conversion tool needs some
other mechanism to get the name.

• A printed (PDF) document will benefit from a higher resolution image than a screen
resolution GIF or PNG.

To insert a .gif, .png or .jpg image into a OO Writer file:

Insert Menu -> Graphics -> from file -> browse to your file.

To insert a .sxd Open Office Draw image, copy and paste it from the Draw program.
This will insert the graphic in vector form, which gives the best printed results. From the

428 ICU v3.4 User Guide

draw program, also export a .gif or .png screen resolution version of the image for use in
the html page.

HTML image file name To insert the name of the image file to be used in the html page,

• Position the cursor at the point that the image will appear in the html text flow.

• Insert menu -> Note...

• Enter text of this form:
 html image name: your-image-name.gif

Open Office Notes not beginning with the text “html image name:” are ignored during
the OO to html conversion.

An “html image name:” note is required even when the same image file has been inserted
into the Open Office document.

Open Office Template

Explain where the common ICU paragraph styles come from, and how they can be
updated.

TO DO.

Adding a Chapter to the User Guide

Here are the steps for adding a new chapter to the ICU user guide.

1. Save an existing userguide chapter file (.sxw file) as the new chapter file. Creating the
new chapter in this way will include all of the ICU specific styles and template in the
Open Office document.

2. Replace the original content with your new chapter content, and save.

3. Open the complete userguide (userguide.sxg). Answer “yes” to the “Update all Links
question that will pop up when opening.

4. Open the Open Office document navigator (F5, or the symbol in the toolbar.)

5. In the OO navigator, select the position to insert the new chapter in the list of user
guide chapter files. Select the chapter that should follow the new chapter, right-click
it, and choose insert -> file from the pop up menu. Choose the new chapter file from
the file open dialog that will appear.

To change a chapter's position within the userguide, select and drag it in the navigator
window.

6. Update the table of contents. Scroll to the top of the complete userguide, right click
anywhere in the table of contents area, and choose Update Index /Table.

429 ICU v3.4 User Guide

7. Save the userguide.sxg document.

8. Add the new chapter to the html navigation sidebar.

• In a plain text editor, open the file userguide/html-template/ugtemplate.html

• The html for the side bar is under <div class="sidebar">, and is fairly obvious –
it is the biggest part of the file. Copy and paste one of the existing chapter entries,
and edit it to refer to the new chapter. Keep the text for the link short, so that it
does not exceed the width of the navigation bar in the html page.

• Regenerate the user guide html, and test the new navigation bar entry.

9. Put the new and/or changed files back into cvs.

• New-chapter.sxw

• userguide.sxg

• ugtemplate.html

• any graphics files

ICU Version Number

To Do.

The ICU version number wants to appear on the title page, on the page header or footer
somewhere, and somewhere in the html version.

These need to come from a single common place.

Fonts

Do not override the default fonts for the ICU styles in Open Office unless they do not
support the characters needed.

Font choices made in Open Office are not propagated into the html files. The html
display font is controlled by a combination of the CSS style sheet and browser strategy
for locating fonts that will display the characters encountered

For program identifiers or code fragments that are embedded within user guide text,
choose the character style “icu-code.” This will result in a fixed width font in the html
output.

For Japanese, Chinese and Korean characters, and anything else that doesn't display in
Times New Roman, use the font Gulim if it works. This choice is subject to change, but
we need to be consistent throughout the userguide, both for stylistic reasons and to avoid
an explosion of embedded fonts in the PDF file.

430 ICU v3.4 User Guide

Bookmarks & Links

To link to an external html destination, like this,

• Select the text that will become the link.

• Insert Menu -> HyperLink

• Select “Internet” on the left side of the dialog

• Enter the destination URL.

To link to a location within the ICU userguide,

• Insert Menu -> HyperLink

• Select “Document” on the left side of the dialog.

• Document Path Field: If the target is in a different file, browse to it. If the target is in
the current file, leave the Document Path field empty.

• Target Field: Click the button to the right of the target field, then expand the
“Bookmarks” item in the window. Select the desired bookmark (anchor) from the list.

Note that bookmarks to other user guide chapters are relative, even though the display
shows a full path.

When converting the userguide to html, all links to Open Office documents are assumed
to be to some other part of the user guide, and are translated to normal html links.

To insert a bookmark (an anchor),
• Position the cursor at the desired location

• Insert Menu -> BookMarks

• Enter a name.

Diffing Open Office Documents

Open Office includes a document compare function. Changes are highlighted in red, with
change bars in the margin. Additions are underlined, deletions are lined out, and a list
summarizes the changes with an option to keep or discard each.

To compare a chapter with a different or conflicting version of the same file,

• Open the newer document

• Edit Menu -> Compare Document, choose the conflicting or older document.

431 ICU v3.4 User Guide

ICU FAQs
Introduction to ICU

What is ICU?

ICU is a cross-platform Unicode enablement type of API. It includes Unicode compliant
support for locale-sensitive string comparison, date/time/number/currency/message
formatting, text boundary detection, character set conversion and so on.

Where can I get ICU?

You can get ICU4C, ICU4J and ICU4JNI from
http://ibm.com/software/globalization/icu/downloads.jsp.

Where are the binary versions of ICU?

There are many versions of compilers on so many platforms that we cannot build them all
and guarantee compatibility between them all even on the same platform. Due to these
restrictions, we currently do not distribute binary versions of ICU, but you are welcome to
distribute them yourself.

What is the ICU binary compatiblty policy?

Since ICU is a constantly evolving library, we do not support binary compatibility
between different versions of ICU with different major or minor version numbers.
Versions of ICU with the same major and minor version are binary compatible.

What are the implications of the IBM public license on ICU?

The ICU projects are covered by the X open source license. The X open source license
allows ICU to be incorporated into a wide variety of software projects using the GPL
license. Because the X open source license is non-viral, ICU also can be incorporated into
non-open source products.

The X open source license is a free software license that is compatible with the GNU
GPL license. The text of the X open source license is available at
http://www.x.org/Downloads_terms.html.

The license change was effective beginning with release 1.8.1 of ICU4C and release 1.3.1
of ICU4J.

432 ICU v3.4 User Guide

Building and Testing ICU

How do I build ICU?

See the readme.html that is included with ICU.

How do I get 32-bit versions of the ICU libraries?

By default, the configure script will build 64-bit versions of all ICU libraries when the
platform can support those types of libraries. If you want 32-bit versions of the libraries
instead, you should use the --disable-64bit-libs configure option (e.g. runConfigureICU
LinuxRedHat --disable-64bit-libs.

How do I build an optimized, non debug ICU?

On Win32, choose the 'Release' configuration from the drop down menu. On other
platforms, use the runConfigureICU script, which uses the configure script. The
runConfigureICU script uses the safest level of optimization for the ICU libraries. If your
platform is not specified, set the following environment variables before running
configure or runConfigureICU: CFLAGS=-O CXXFLAGS=-O

Why am I getting so many test failures when I use "gmake check"?

Please view the readme that is included with ICU. It has all the details on how to build
and test ICU, and it usually answers most problems.

If you are using a compiler that hasn't been tested with ICU before, you may have
encountered an optimization bug with the compiler. On Unix platforms you can specify --
disable-release when you are using runConfigureICU (e.g. runConfigureICU --disable-
release LinuxRedHat). If this fixes your problem, it is recommended that you report the
optimization bug to the compiler manufacturer.

If neither of these fix your problem, please send an e-mail to the ICU4C Support List.

How can I reduce the size of the ICU data library?

Please view the ICU Data Management chapter of this User's Guide.

Can I add or remove a converter from ICU?

Yes. Please view the ICU Data Management chapter of this User's Guide. You can also
get extra converters from http://icu.sourceforge.net/charts/charset/.

Why don't the makefiles work?

433 ICU v3.4 User Guide

You need GNU's make program version 3.7 or later, and you need to run the
runConfigureICU script, which is located in the icu/source directory. You may be using a
platform that ICU does not support. If the first two answers do not apply to you, then you
should send an e-mail to the ICU4C Support List.

Here are some places you can find gmake

• Main Source: http://www.gnu.org/software/make/

• Sun® Source/Binaries: http://www.sunfreeware.com

• z/OS (OS/390) Source/Binaries:
http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty1.html#opensrc

• iSeries (OS/400) Source/Binaries:
http://www.ibm.com/servers/eserver/iseries/developer/factory/porting/gnu_utilities.ht
ml

Due to differences in every platform's make program, we will not support other versions
of our make files.

What version of the C iostream is used in ICU4C?

ICU4C uses the latest available version of the iostream on the target platform. ICU 2.0
does not use iostream in its core libraries. Only the unsupported ustdio library uses
iostream.

Features of ICU

What computer languages does ICU support?

ICU4C (ICU) is written in C and C++, and ICU4J is written in Java™.

How are the APIs documented for deprecation?

Please read the API lifecycle page in the ICU Design chapter.

What version of Unicode standard does ICU support?

ICU versions 3.0 and 3.2 support Unicode version 4.0.1.

The Unicode versions for older versions of ICU are listed on the ICU down load page,
http://ibm.com/software/globalization/icu/downloads.jsp.

Does ICU support UTF-16 surrogates and Unicode supplementary
characters?

434 ICU v3.4 User Guide

Yes.

Does Java support UTF-16 surrogates and Unicode supplementary
characters?

Currently Sun's JDK 1.4 does not fully support surrogates.

How does ICU relate to Java's java.text.* package?

The International Components for Unicode is available both as a C/C++ library and a
Java class library. ICU provides internationalization utilities for writing global
applications in C, C++ or Java programming languages. ICU was originally developed by
the Unicode group at the IBM Globalization Center of Competency in Cupertino, and
ICU was contributed to Sun for inclusion into the JDK 1.1. ICU4J includes enhanced
versions of some of these contributed classes plus additional classes that complement the
classes in the JDK.

ICU4C started as a C++ port of the original Java Internationalization classes. These
classes are now partially implemented in C, with largely parallel C and C++ APIs. ICU4C
and ICU4J continue to leapfrog each other with features and bug fixes. Over time,
features from ICU4J get added to the JDK as well.

Both versions of ICU have a goal to implement the latest Unicode standard, maintain a
single portable source code base, and to make it easier for software developers to create
global applications.

Using ICU

Can I use any of the features of ICU without Unicode strings?

No. In order to use the collation, text boundary analysis, formatting or other ICU APIs,
you must use Unicode strings. In order to get Unicode strings from your native codepage,
you can use the conversion API.

How do I declare a Unicode string in ICU?

Use the U_STRING_DECL and U_STRING_INIT macros or use the UnicodeString class for
C++. Strings are represented as UChar * as the base string type.

Even though most platforms declare wide strings as wchar_t * or L"" as the base string
type, that declaration is not portable because the sizeof(wchar_t) can be 1, 2 or 4, and
the encoding may not even be Unicode. On the platforms where sizeof(wchar_t) is 2
bytes, UChar is defined as wchar_t. In that case you can use ICU's strings with 3rd party
legacy functions; however, we do not suggest using Unicode strings without the
U_STRING_DECL and U_STRING_INIT macros or UnicodeString class because they are
platform independent implementations.

435 ICU v3.4 User Guide

How is a Unicode string represented in ICU?

A Unicode string is currently represented as UTF-16 by default. The endianess of UTF-16
is platform dependent. You can guarantee the endianess of UTF-16 by using a converter.
UTF-16 strings can be converted to other Unicode forms by using a converter or with the
UTF conversion macros.

ICU does not use UCS-2. UCS-2 is a subset of UTF-16. UCS-2 does not support
surrogates, and UTF-16 does support surrogates. This means that UCS-2 only supports
UTF-16's Base Multilingual Plane (BMP). The notion of UCS-2 is deprecated and dead.
Unicode 2.0 in 1996 changed its default encoding to UTF-16.

If you need to do a quick and easy conversion between UTF-16 and UTF-8, UTF-32 or an
encoding in wchar_t, you should take a look at unicode/ustring.h. In that header file you
will find u_strToWCS, u_strFromWCS, u_strToUTF8, u_strFromUTF8, u_strToUTF32
and u_strFromUTF32 functions. These functions are provided for your convenience
instead of using the ucnv_* API.

You can also take a look at the UTF_*, UTF8_*, UTF16_* and UTF32_* macros, which
are defined in unicode/utf.h, unicode/utf8.h, unicode/utf16.h and unicode/utf32.h. These
macros are helpful for programmers that need to manipulate and process Unicode strings.

How do I index into a UTF-16 string?

Typically, indexes and offsets in strings always count string units, not characters
(although in c and java they have a char type).

For example, in old-fashioned MBCS strings, you would count indexes and offsets by
bytes, not by the variable-width character count. In UTF-16, you do the same, just count
16-bit units (in ICU: UChar).

What is the performance difference between UTF-8 and UTF-16?

Most of the time, the memory throughput of the hard drive and RAM is the main
performance constraint. UTF-8 is 50% smaller than UTF-16 for US-ASCII, but UTF-8 is
50% larger than UTF-16 for East and South Asian scripts. There is no memory difference
for Latin extensions, Greek, Cyrillic, Hebrew, and Arabic.

For processing Unicode data, UTF-16 is much easier to handle. You get a choice between
either one or two units per character, not a choice among four lengths. UTF-16 also does
not have illegal 16-bit unit values, while you might want to check for illegal bytes in
UTF-8. Incomplete character sequences in UTF-16 are less important and more benign. If
you want to quickly convert small strings between the different UTF encodings or get a
UChar32 value, you can use the macros provided in utf.h and its siblings utf8.h and
utf16.h. For larger or partial strings, please use the conversion API. Please see
http://www.ibm.com/software/developer/library/utfencodingforms/index.html for more
details on the UTF encodings.

436 ICU v3.4 User Guide

How do the converters work?

The converters act like a data stream. This means that the state of the last character is
saved in the converter after each call to the ucnv_fromUnicode() and ucnv_toUnicode
() functions. So if the source buffer ends with part of a surrogate Unicode character pair,
the next call to ucnv_toUnicode() will write out the equivalent character to the
destination buffer. Please see the Conversion chapter of the User's Guide for details.

What does a locale look like in ICU?

ICU locales are lightweight, and they are represented by just a string. Lightweight means
that there is just a string to represent a locale and nothing more. Many platforms have
numbers and other data structures to represent a locale, but ICU has one simple platform
independent string to represent a locale.

ICU locales usually contain an ISO-639 language name (2-3 characters), an ISO-3166
country name (2-3 characters), and a variant name which is user specified. When a
language or country is not represented by these standards, ICU uses 3 characters to
represent that part of the locale. All three parts are separated by an underscore "_". For
example, US English is "en_US", and German in Germany with the Euro symbol is
represented as "de_DE_EURO". Traditionally the language part of the locale is
lowercase, the country is uppercase and the variant is uppercase. More details are
available from the Locale Chapter of this User's Guide.

How is ICU versioned?

Please read the ICU Design chapter of the User's Guide.

What is the relationship between ICU locale data and system locale data?

There is no relationship. ICU is not dependent on the operating system for the locale data.

This also means that uloc_setDefault() does not affect the operating system. The
function uloc_setDefault() only sets ICU's default locale. Normally the default locale
for ICU is whatever the operating system says is the default locale.

How are errors handled in ICU?

Since not all compilers can handle exceptions, we return an error from functions with a
UErrorCode parameter. The UErrorCode parameter of a function will return any errors
that occurred while it was executing. It's usually a good idea to check for errors after
calling a function by using the U_SUCCESS and U_FAILURE macros. U_SUCCESS returns
true when the function did run properly, and U_FAILURE returns true when the function
did NOT run properly. You may handle specific errors from a function by checking the
exact value of error. The possible values of UErrorCode are located in utypes.h of the

437 ICU v3.4 User Guide

common project. Before any function is called with a UErrorCode, it must be initialized
to U_ZERO_ERROR.

Here is an example of UErrorCode being used.

 UErrorCode err = U_ZERO_ERROR;
 callMyFunction(&err);
 if (U_FAILURE(err)) {
 puts("callMyFunction() Failed!");
 }

Please see the ICU Design chapter for details.

With calendar classes, why are months 0-based?

"I have been using ICU for its calendar classes, and have found it to be excellent. That
said, I am wondering why the decision was made to keep months 0-based while almost all
the other calendrical units (years, weeks of year, weeks of month, date, days of year, days
of week, days of week in month) are 1-based? This has been the source of several bugs
whenever the mind is slightly less than razor sharp." --Contributor

This was not our choice. We inherited it from the Java Calendar API, unfortunately.

Is there a guideline for COBOL programs that want to use ICU?

There is a COBOL/ICU guideline available since ICU 2.2. For more details, please refer
to the COBOL section of this User's Guide.

Where can I get more information about using ICU?

Please send an e-mail to the ICU4C Support List.

438 ICU v3.4 User Guide

Glossary
ICU-specific Words and Acronyms

For additional Unicode terms, please see the official Unicode Standard Glossary.

- A -

accent

A modifying mark on a character to indicate a change in
vocal tone for pronunciation. For example, the accent
marks in Latin script (acute, tilde, and ogonek) and the tone
marks in Thai. Synonymous with diacritic.

accented character A character that has a diacritic attached to it.

alphabetic
language

A written language in which symbols represent vowels and
consonants, and in which syllables and words are formed
by a phonetic combination of symbols. Examples of
alphabetic languages are English, Greek, and Russian.
Contrast with ideographic language.

Arabic numerals

Forms of decimal numerals used in most parts of the Arabic
world (for instance, U+0660, U+0661, U+0662, U+0663).
Although European digits (1, 2, 3...) derive historically
from these forms, they are visually distinct and are coded
separately. (Arabic digits are sometimes called Indic
numerals; however, this nomenclature leads to confusion
with the digits currently used with the scripts of India.)
Arabic digits are referred to as Arabic-Indic digits in the
Unicode Standard. Variant forms of Arabic digits used
chiefly in Iran and Pakistan are referred to as Eastern
Arabic-Indic digits.

Arabic script

A cursive script used in Arabic countries. Other writing
systems such as Latin and Japanese also have a cursive
handwritten form, but usually are typeset or printed in
discrete letter form. Arabic script has only the cursive form.
Arabic script is also used for Urdu, (spoken in Pakistan,
Bangladesh, and India), Farsi and Persian (spoken in Iran,
Iraq, and Afghanistan).

ASCII

"American Standard Code for Information Interchange." A
standard 7-bit character set used for information
interchange. ASCII encodes the basic Latin alphabet and
punctuation used in American English, but does not encode
the accented characters used in many European languages.

439 ICU v3.4 User Guide

- B -

base character

A base character is a Unicode character that does not
graphically combine with any preceding character. This
does not include control or formatting characters. This is a
characteristic of most Unicode characters.

baseline A conceptual line with respect to which successive
characters are aligned.

Basic Multilingual
Plane

As defined by International Standard ISO/IEC 10646,
Unicode values 0000 through FFFF. This range covers all
of the major living languages around the world.

bidi See bidirectional.

bidirectional

Text which has a mixture of languages that read and write
either left-to-right or right-to-left. Languages such as
Arabic, Hebrew, and Yiddish have a general flow of text
that proceeds horizontally from right to left, but numbers
and Latin based languages like English are written from left
to right.

big-endian

A computer architecture that stores multiple-byte numerical
values with the most significant byte (MSB or big end)
values first in a computer's addressable memory. This is the
opposite from little-endian.

BMP See Basic Multilingual Plane.

boundary
A boundary is a location between user characters, words, or
at the start or end of a string. Boundaries break the string
into logical groups of characters.

boundary position
Each boundary has a boundary position in a string. The
boundary position is an integer that is the index of the
character that follows it.

- C -

canonical
decomposition

The decomposition of a character which results from
recursively applying the canonical mappings until no
characters can be further decomposed and then re-ordering
non-spacing marks according to the canonical behavior
rules. For instance, an acute accented A will decompose
into an A character followed by an acute accent combining
character. Canonical mappings do not remove formatting
information, which is the opposite of what happens during
a compatibility decomposition.

canonical
equivalent

Two character sequences are said to be canonical
equivalents if their full canonical decomposition are
identical.

440 ICU v3.4 User Guide

CCSID

Coded Character Set IDentifier. A number which IBM®
uses to refer to the combination of particular code page(s),
character set(s), and other information. This is defined
formally in the CDRA (Coded Character Representation
Architecture) documents from IBM.

character
boundary

A location between characters.

character
properties

The given properties of a character. These properties
include, but are not limited to, case, numeric meaning, and
direction to layout successive characters of the same type.

character set
The set of characters represented with reference to the
binary codes used for the characters. One character set can
be encoded into more than one code page.

Chinese numerals

Chinese characters that represent numbers. For example,
the Chinese characters for 1, 2, and 3 are written with one,
two, and three horizontal brush strokes, respectively.
Contrast with Arabic numerals, Hindi numerals, and
Roman numerals.

CJK Acronym for Chinese/Japanese/Korean characters.

code page The particular assignment of character shapes (glyphs) to
binary codes.

code set UNIX term equivalent to code page.

combining
character sequence

A combining character sequence consists of a Unicode base
character and zero or more Unicode combining characters.
The base and combining characters are dynamically
composed at printout time to a user character.

code page
An ordered set or characters in which a numeric index
(code point value) is associated with each character. This
term can also be called a "character set" or "charset."

code point value
The encoding value for a character in the specified
character set. For example the code point value of "A" in
Unicode 3.0 is 0x0041.

collation
Text comparison using language-sensitive rules as opposed
to bitwise comparison of numeric character codes. This is
usually done to sort a list of strings.

collation element A collation element consists of the primary, secondary and
tertiary weights of a user character.

combining
character

A combining character is a Unicode character that
graphically combines with any preceding base character. A
combining character does not stand alone unless it is being
described. Accents are examples of combining characters.

441 ICU v3.4 User Guide

compatibility
decomposition

The decomposition of a character which results from
recursively applying both compatibility mappings and
canonical mappings until no characters can be further
decomposed then re-ordering non-spacing marks according
to the canonical behavior rules. Compatibility
decomposition may remove formatting information, which
is the opposite of what happens during a canonical
decomposition.

compatibility
character

A character that has a compatibility decomposition.

compatibility
equivalent

Two characters sequences are said to be compatibility
equivalent if their full compatibility decompositions are
equivalent.

core product

The language independent portion of a software product (as
distinct from any particular localized version of that
product - including the English language version).
Sometimes, however, this term is used to refer to the
English product as opposed to other localizations.

cursive script A script whose adjacent characters touch or are connected
to each other. For example, Arabic script is cursive.

- D -

DBCS
(double-byte

character set)

A set of characters in which each character is represented
by 2 bytes. Scripts such as Japanese, Chinese, and Korean
contain more characters than can be represented by 256
code points, thus requiring two bytes to uniquely represent
each character. The term DBCS is often used to mean
MBCS (multi-byte character set). See multi-byte character
set.

decomposable
character

A character that is comparable to a sequence of one or more
other characters.

decomposition A sequence of one or more characters that is equivalent to a
decomposable character.

diacritic
A modifying mark on a character. For example, the accent
marks in Latin script (acute, tilde, and ogonek) and the tone
marks in Thai. Synonymous with accent.

digit A general term for a number character. A digit may or may
not be base ten.

display string

A display string is a string that may be shown to a user.
Normally a display string is visible in GUI. These strings
need to be translated for different countries.

442 ICU v3.4 User Guide

- E -

EBCDIC

Extended Binary-Coded Decimal Interchange Code. A
group of coded character sets that consists of eight-bit
coded characters. EBCDIC-coded character sets map
specified graphic and control characters onto code points,
each consisting of 8 bits. EBCDIC is an extension of BCD
(Binary-Coded Decimal), which uses only 7 bits for each
character.

ECMA

European Computer Manufacturers Association. A
nonprofit organization formed by European computer
vendors to announce standards applicable to the functional
design and use of data processing equipment.

encoding scheme

A set of specific definitions that describe the philosophy
used to represent character data. Examples of specifications
in such a definition are: the number of bits, the number of
bytes, the allowable ranges of bytes, maximum number of
characters, and meanings assigned to some generic and
specific bit patterns.

European
numerals

A number comprised of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8,
and/or 9.

expansion The process of sorting a character as if it were expanded to
two characters.

- F -

font

A set of graphic characters that have a characteristic design,
or a font designer's concept of how the graphic characters
should appear. The characteristic design specifies the
characteristics of its graphic characters. Examples of
characteristics are shape, graphic pattern, style, size,
weight, and increment.

- G -

globalization

The process of developing, manufacturing, and marketing
software products that are intended for worldwide
distribution. This term combines two aspects of the work:
internationalization (enabling the product to be used
without language or culture barriers) and localization
(translating and enabling the product for a specific locale).

glyph

The actual shape (bit pattern, outline) of a character image.
For example, an italic "A" and a roman "A" are two
different glyphs representing the same underlying character.
Strictly speaking, any two images that differ in shape
constitute different glyphs. In this usage, glyph is a
synonym for character image, or simply image.

443 ICU v3.4 User Guide

Graphical User
Interface

Graphical User Interface is normally written as the acronym
GUI. It is the display the end-user sees when running a
program. Strings that are visible in the GUI need to
localized to the end-user's language.

graphic character A character, other than a control function, that has a visual
representation normally handwritten, printed, or displayed.

global application

An application that can be completely translated for use in
different locales. All text shown to the user is in the native
language, and user expectations are met for dates, times,
and other locale conventions.

GMT

Greenwich mean time. In the 1840s the standard time kept
by the Royal Greenwich Observatory located at Greenwich,
England was established for all of England, Scotland, and
Wales, replacing many local times in use in those days.
Subsequently GMT became the official time reference for
the world until 1972 when it was subsumed by the atomic
clock-based coordinated universal time (UTC). GMT is
also known as universal time.

GUI Acronym for "Graphical User Interface"
- H -

Han Characters Ideographic characters of Chinese origin.

Hangul
The Korean alphabet that consists of fourteen consonants
and ten vowels. Hangul was created by a team of scholars
in the 15th century at the behest of King Sejong. See jamo.

Hanja The Korean term for characters derived from Chinese.

Hiragana A Japanese phonetic syllabary. The symbols are cursive or
curvilinear in style. See Kanji and Katakana.

- I -

i18n
Synonym for internationalization ("i" + 18 letters + "n";
lower case i is used to distinguish it from the numeral 1
(one)).

ideographic
language

A written language in which each character (ideogram)
represents a thing or an idea (but not necessarily a
particular word or phrase). An example of such a language
is written Chinese (Zhongen). Contrast with alphabetic
language.

Indic numerals

A set of numerals used in India and many Arabic countries
instead of, or in addition to, the Arabic numerals.
Indic numeral shapes correspond to the Arabic numeral
shapes. Contrast with Arabic numerals, Chinese numerals,
and Roman numerals. See numbers.

444 ICU v3.4 User Guide

internationalization

Designing and developing a software product to function in
multiple locales. This process involves identifying the
locales that must be supported, designing features which
support those locales, and writing code that functions
equally well in any of the supported locales.
Internationalized applications store their text in external
resources, and use locale-sensitive utilities for formatting
and collation.

ISO

International Organization for Standardization. Contrary to
popular belief, ISO does NOT stand for International
Standards Organization because it is not an acronym. The
ISO name is derived from the Greek word isos, which
means "equal." ISO is a non-governmental international
organization, and it promotes the development of standards
on goods and services.

- J -

jamo
A set of consonants and vowels used in Korean Hangul.
The word jamo is derived from ja, which means consonant,
and mo, which means vowel.

- K -

Kanji
Chinese characters or ideograms used in Japanese writing.
The characters may have different meanings from their
Chinese counterparts. See Hiragana and Katakana.

Katakana

A Japanese phonetic syllabary used primarily for foreign
names and place names and words of foreign origin. The
symbols are angular, while those of Hiragana are cursive.
Katakana is written left to right, or top to bottom. See
Kanji.

- L -

L10n Synonym for "localization" ("L" + 10 letters + "n"; upper
case L is used to distinguish it from the numeral 1 (one)).

L12y Acronym for "localizability" ("L" + 12 letters + "y"; upper
case L is used to distinguish it from the numeral 1 (one)).

language

A set of characters, phonemes, conventions, and rules used
for conveying information. The aspects of a language are
pragmatics, semantics, syntax, phonology, and
morphology.

legacy

An inherited obligation. For example, a legacy database
might contain strategic data that must be maintained for a
long time after the database has become technologically
obsolete.

445 ICU v3.4 User Guide

locale

A set of conventions affected or determined by human
language and customs, as defined within a particular geo-
political region. These conventions include (but are not
necessarily limited to) the written language, formats for
dates, numbers and currency, sorting orders, etc.

locale-sensitive Exhibiting different behavior or returning different data,
depending on the locale.

localizability

The degree to which a software product can be localized.
Localizable products separate data from code, correctly
display the target language and function properly after
being localized.

localization

Modifying or adapting a software product to fit the
requirements of a particular locale. This process includes
(but may not be limited to) translating the user interface,
documentation and packaging, changing dialog box
geometries, customizing features (if necessary), and testing
the translated product to ensure that it still works (at least
as well as the original).

lowercase

The small alphabetic characters, whether accented or not,
as distinguished from the capital alphabetic characters. The
concept of case applies to alphabets such as Latin, Cyrillic,
and Greek, but not to Arabic, Hebrew, Thai, Japanese,
Chinese, Korean, and many other scripts. Examples of
lowercase letters are a, b, and c. Contrast with uppercase.

- M -

MBCS
Multi-byte Character Set. A set of characters in which each
character is represented by 1 or more bytes. Contrast with
DBCS and SBCS.

modifier
characters

'@' (French secondary collation rule)

multilingual

An application that can simultaneously display and
manipulate text in multiple languages. For example, a word
processor that allows Japanese and English in the same
document is multilingual.

- N -

NLS

National Language Support. The features of a product that
accommodate a specific region, its language, script, local
conventions, and culture. See internationalization and
localization.

446 ICU v3.4 User Guide

National Standard

A linguistic rule, measurement, educational guideline, or
technology-related convention as defined by a government
or an industry standards organization. Examples include
character sets, keyboard layouts, and some cultural
conventions, such as punctuations.

non-display string
A non-display string is a string such as a URL that is used
programmatically and is not visible to an end-user. A non-
display string does not need to be translated.

normalization
The process of converting Unicode text into one of several
standardized forms in which precomposed and combining
characters are used consistently.

numbers

Numbers express either quantity (cardinal) or order
(ordinal). Many cultures have different forms for cardinal
and ordinal numbers. For example, in French the cardinal
number five is cinq, but the ordinal fifth is cinquième or
5eme or 5e. Numbers are written with symbols that are
usually referred to as numerals. See Arabic numerals,
Chinese numerals, Indic numerals, European numerals, and
Roman numerals.

- P -

pinyin A system to phonetically render Chinese ideograms in a
Latin alphabet.

- R -

relation characters
'<' (primary difference collation rule), ';' (secondary
difference collation rule), ',' (tertiary difference collation
rule), '=' (identical difference collation rule)

reset character '&'. (reset the collation rules)

resource
1. Any part of a program which can appear to the user or be
changed or configured by the user.
2. Any piece of the program's data, as opposed to its code.

resource bundle
A set of culturally dependent data used by locale-sensitive
classes in an internationalized software program to provide
Locale specific responses to the end-user.

Roman numerals

A system of writing numbers in which the characters I, V,
X, L, C, D, and M have the value of 1, 5, 10, 50, 100, 500,
and 1000, respectively. Lesser numbers in prefix positions
indicate subtraction. For example MCMLXIV is 1964 in
decimal, because CM is 900, LX is 60, and IV is 4.
Contrast with Arabic numerals, European numerals,
Chinese numerals, and Indic numerals.

447 ICU v3.4 User Guide

- S -
SBCS (Single-byte

character set)
A set of characters in which each character is represented
by 1 byte.

script

A set of characters used to write a particular set of
languages. For example, the Latin (or Roman) script is used
to write English, French, Spanish, and most other European
languages; the Cyrillic script is used to write Russian and
Serbian.

separator

The thousands separator (or digit grouping separator) is the
local symbol used to separate every third digit in large
numbers or lengthy decimal fractions. The decimal
separator is the local symbol used to indicate the decimal
position in a number. It may be a comma, period or some
other language specific symbol.

string A set of consecutive characters treated by a computer as a
single item.

- T -

titlecase

A set of words that usually have the first character of each
word in uppercase characters. The rules for titlecase are
specific to each locale. Titlecase words usually go on titles
of literature and other publications.

transcoding Conversion of character data from one character set to
another.

translation
The conversion of text from one human language to
another. This includes properly converting the grammar,
spelling and meaning of the text into the target language.

transliteration

Transformation of text from one script to another, usually
based on phonetic equivalences and not word meanings.
For example, Greek text might be transliterated into the
Latin script so that it can be pronounced by English
speakers.

- U -

UCS

Universal Multiple-Octet Coded Character Set. The
Unicode standard is based upon this ISO/IEC 10646
standard. UCS characters look the same Unicode
characters, but they do not have any character properties.
Synonymous with UTF.

Unicode
A character set that encompasses all of the world's living
scripts. Unicode is the basis of most modern software
internationalization.

448 ICU v3.4 User Guide

Unicode character

A Unicode character enables a computer to store,
manipulate, and transfer to other computers multilingual
text. A Unicode character has the binary range of
0..10FFFF.

uppercase

The larger alphabetic characters, whether accented or not,
as distinguished from the lowercase alphabetic characters.
The concept of case applies to alphabets such as Latin,
Cyrillic, and Greek, but not to Arabic, Hebrew, Thai,
Japanese, Chinese, Korean, and many other scripts.
Examples of uppercase letters are A, B, and C. Contrast
with lowercase.

user character

A character made up of two or more Unicode characters
that are combined to form a more complex character that
has its own semantic value. A user character is the smallest
component of written language that has a semantic value to
a native language user.

UTC time

UTC stands for Coordinated Universal Time. This was
formerly known as Greenwich Mean Time (GMT). It is
used as a time constant that can be transformed to display
an accurate date and time in any world calendar and time
zone. This is a time scale based on a cesium atomic clocks.

UTF

Unicode Transformation Format. A binary format of
representing a Unicode character. There are several
encoding forms for a Unicode character, which include
UTF-8, UTF-16BE, UTF-16LE, UTF-32BE and UTF-
32LE. The numbers in these encoding form names refer to
the bit size of each number, and the BE and LE stands for
big endian or little endian respectively. The UTF-8 and
UTF-16 formats can take multiple units of binary numbers
to represent a Unicode character.

449 ICU v3.4 User Guide

