ICU User Guide

International Components For Unicode

Version 3.4

ICU v3.4 User Guide

Table of Contents

INtroduction t0 ICUL......ccouiiiiii ettt e e e e enseeeenseeenneas 4
Software InternationNaliZation..........cc.eeecuiieeiieeiiie et e e eree e saee e s 10
UNICOAE BASICS....eentieiiiieiie ettt et st e b ettt st ebe e st ees 16
TCU SOIVICES....utiieiiieeitiie ettt e ettt e ettt e e teeeeteeesteeesaeeessbeeessseeessseeessseeesseeensseeesseessseesssaenns 26
ICU Architectural DESIZN.......cccviiiiuiiieiiieeiieeeieeeeiee et e et eeiveeseaeesaeeesaaeesareeeseaeeenaeeas 37
C/POSIX MIZEAtION......eiuiiiiieiiiitieieeiteeitete ettt sttt ettt sttt sbe et sae et eaeesaeebeeanes 52
SHITINIZS ..ottt ettt ettt ettt et e sttt et e e et e e e st e e e st e eabeessteenbeeesteeabeennteenbeeenteenbeennaeennean 57
PrOPEITIES. ..ottt ettt et e et e et et e et esab e e bt e e abeenteeenbeenseennnas 70
CharacterTterator Class..........ccuieiiiiiieiie ettt ettt et e s eebeesabeebeesseeeseesanaans 77
UTEXE ettt ettt ettt ettt et e sb e et e bt st e bt e e et e bt e et e e bt e eateennee 81
UNICOAESEL. ...ttt ettt et b et ea e sae et e eatesbe et e eneenbeenee 90
RegUIAT EXPIESSIONS.uiiiiiiieieeiieeiieeiieeie et e ete et e etteeteeetaeebeesaaeessaesaseesseassseenseesnseenseennns 94
CONVETSION BASICS.....uiiiiiiieiiiieciie ettt ettt et e e e e st e e saseeeenseesnseeenseeennns 103
USING CONVETEETS. ... veieiiieeeiiieeieiteesiteeeseteeetreeesteeesteesseeessseeesseeessseesssseesssseesnsseesssseesnnns 106
CONVEISION DIAta.......iiiiiiiiiiii ettt 120
[010)1010) (ST 101 TSRS 134
| e 1o | (S O TSP 136
L0Cale EXAMPLES.....eiiuiieniiiiieiiie ettt sttt et st 148
Resource Management.........ccocuueiiiiiiiiiieiiieeriee ettt ettt s 150
Localizing With TCU.......cc.ciiiiiiiiiiieieceee ettt sttt s eaee e 167
DAte/TIME SETVICES....cuieeiieiieeiieriieeieerite et esiteeteestteebeesaaeebeessaeesseessseeseesaseenseassseeseens 177
Calendar CLaSS.....c..eeruieiieiieieee ettt sttt ettt 180
Calendar EXAmMPIES........c.oecvieiiiiiieiieeiieeie ettt ettt ete e ee e e ssbeeseesaaeenseessaeesaeenseenns 185
ICU TImMEZONE CLASSES....cuviieeiiieeeiiieeiiieeiieeertee et e et e e steesaeeesebeeeseaeessseesnsaeesnseeesnseens 187
Date and Time Zone EXampPles.......c.ceevviieiiiiiiiieeiieeieeeeeee et 190
Universal TIME SCAle.........eiiiiiiiiiieciie et sbee e enaeeea 191
Formatting and Parsing............cccveeiiiieeiiieiiie ettt e e e 196
Formatting NUMDETS.ccccuiiiiiiiiiiie ettt e et e e saraeessaeeesseeesseeenenas 200
RBNF Rules EXaMPIES.......coeeiuiiiiiiiiiiiiecie ettt ettt e e s 207
Formatting Dates and TimeSs.........c.eeriieiieriieiieiie ettt 209
Format Date and Time EXamples........c.cooveiiiiiiiiiiiiiieiieeieeeeeeee e 214
FOrmatting IMESSAZES.cvveruiieiieiieeiiesiie et et ettt et et e et eeaeesebeeteeenbeeseesnseeseeenseenne 216
Message Format EXamPIEs.........cocieiiiiiiiiiieiieeiieieece ettt 219
TTaNSTOTMATIONS.cuvieiiieiiieitie ettt ettt e et e s e ebeeetaeesbeessaeensaessseenseessseenseas 224
CaSE IMAPPINGS. ...evieneieeiiieiieeieesteeeteeteeeseeseessteeseessseesseessseesseessseasseenssessseesssesnseenseesnseens 225
The Bidi AIGOTTHRIML......coiiiiiiiieiiecie et et eeesbeesaeeaseens 227
NOTMAIZATION. ...eeiiieeiiie ettt et e e st e e s beeessaeeessbeeessseeensseeenneeas 230
Normalization EXampIes........ccc.eeeiiiiiiiiiiiiieeieece ettt seree e s 233

2 ICU v3.4 User Guide

TTANSTOIINIS et 234

Transform Rule TUtorial..........ccooeoiiiiiiiiieiii e s 261
Collation INtrOAUCTION.ccviiiiieiieeie ettt ettt et et e e ebeesabeebeeseaeensaeenseenne 275
APT DELAILS. ..ttt ettt et be s 278
COlIatioN CONCEPLS. ...eeeeuirieeiieeeiiieeieeeeiteeeeteeestreesteeeseseeessseeesaeeesseessseessseesseessseeensses 287
ICU Collation Service ATChItECTUIE.ccuvieriiieeiiieeiee e et e e eeaeeens 304
Collation EXAmMPLES........eeieiiieeiiieciie ettt eie e eee e s aee e saeeestaeeesaeesnaeeeneneeennneas 317
Collation CUSTOMIZATION.cccvvieeiieeeirreeiieeeireeereeesreeesreeessreeessseeessseesssseesssseesssseesnsees 322
ICU Search String SETVICE.ccuiiiuierieiiieeiieeieeete ettt ettt ettt st beesaeeeseeesaeean 338
Collation FAQ......uiiiiiieeiee ettt ettt e et e et e e s ta e e s aee e s sbaeesasee e aseeeaseeennaeeennes 344
Text Element Boundary ANalysis.........ccocieriieiiieiiieiiieiie et 346
LayOUtENGINe.....ccviiiiieiieie ettt ettt ettt et sttt eneas 361
Data ManagemeNnt...........cooouuieiuieiiiieeiiie ettt ettt et et e e e et esaneesareesneeas 364
Packaging ICU........ccooiiiiiieeiieieece et ettt ettt e e e e saesebeeseeenseesaesnsean 378
Java Native Interface (JNI)ccocviiiiiiiiiiiiieieeeeee e e e 383
How To Use ICU4C From COBOL........cccciiiiiiiieiieeeiee ettt 386
CodING GUIACIINES.cccuiiieiiieeiiie ettt et e st e e eessbeessbeeesseesnaeesnsseeennns 396
SyNChroniZation ISSUES........ccecviiiiiiieiiie ettt et e et e e e e e e aaeesaeeeennaee e 424
Editing the ICU USer GUIAEcccueeiiiiieiiieeiieeieeciee ettt e eaaeesvae e e 426
LCU FAQS ittt ettt ettt ettt et e st e st e e e st e teentesseenseensaeneenseensesseenseensens 432
GLOSSATY ...eeiiiieeiiee ettt ettt et e e et e e s ba e e e bt e e e abeeeesbee e sbeeesseeesseeenseeensaeeensaeeennes 439

3 ICU v3.4 User Guide

Introduction to ICU

As companies integrate e-commerce on a global scale into their fundamental business
processes, their prospective customers, established customers, and active partners can
take advantage of increased revenue and decreased expenses through software
internationalization. They also can improve customer communications and increase
savings.

Meeting the Challenge of Globalization

Internationalized software results in an increase in:

In today's business climate of globalization, companies must compete in a new Internet-
enabled business climate of constant change and compressed time frames. Their
customers expect reliable service and support.

Taking Advantage of Internationalized Software

Companies need to establish a better linkage between their global business processes and
the underlying supportive IT processes. If they want to deliver this new flexibility and
agility, they must depend on the software internationalization process.

The software internationalization development process uses libraries (such as the
International Components for Unicode (ICU) libraries), to enable one single program to
work with text in any language for any place in the world. For example, instead of having
separate software versions for ten different countries, the ICU services can create one
version that works seamlessly and transparently in all of them.

The ICU components are an integral part of software development because they hide the
cultural nuances and technical complexities of locale-specific software requirements.
These complexities provide critical functionality for applications, but the application
developer does not need to exert a huge effort or incur high costs to build them.

Justifying the Investment

The business case needed to justify the investment in software internationalization is
compelling when the investment is amortized over a number of projects. In the fast-paced
and rapidly-evolving world of traditional and evolving e-businesses, these international
components provide a firm ground on which companies, partners and suppliers can build
their business transactions. They can share competitive information to help gain a
significant economic advantage.

The ICU services deliver proven value by lowering the cost required to integrate with
disparate applications, systems and data sources on a regional and global scale. It
provides value to a company's IT investment by lowering IT complexity, risk,
maintenance costs and training costs. It also enhances organizational flexibility, leverages

4 ICU v3.4 User Guide

existing assets, and improves planning and decision-making. It enables organizational
learning, process-driven synchronization, event-driven evaluation and decision-making.

Background and History of ICU

ICU was originally developed by the Taligent company. The Taligent team later became
the Unicode group at the IBM® Globalization Center of Competency in Cupertino. The
team has received significant input from the open source community worldwide.

Java™ classes developed at Taligent were incorporated into the Java Development Kit
(JDK) 1.1 developed by Sun® Microsystems. The classes were then ported to C++ and
later some classes were also ported to C. The classes provide internationalization utilities
for writing global applications in C, C++, or Java programming languages.

ICU for Java (ICU4J) includes enhanced versions of some of these classes, plus
additional classes that complement the classes in the JDK. C and C++ versions of the
same international functionality are available in ICU for C (ICU4C). The APIs differ
slightly due to language differences and new functionality. For example, ICU4C includes
a character converter AP

ICU4J and ICUA4C keep the same development goals. They both track additions to the
Java internationalization APIs and implement the latest released Unicode standard. They
also maintain a single, portable source code base.

All of us in the ICU and open source group appreciate the time you are taking to
understand our technology. We have put our best collective effort into these open
components, and look forward to your questions, comments and suggestions.

Downloading ICU

Download the most recent version of ICU in one of the following ways:
1. From the compressed snapshot file
2. From CVS directly

When downloading from CVS, be sure that to checkout using the correct release tag.
Without the correct release tag, users might get the current development version of ICU
instead. However, this is not a problem for those individuals who are developing ICU or
who want to view the latest features and fixes. It is important to make certain that the
whole source tree was received by checking the directories. This is described in detail in
the readme.html document.

The ICU README changes as the code changes. However, these changes are not always
in parallel to code changes. README changes are in sync with formal releases.

To obtain the most recent information about the ICU documentation, use one of the
following methods:

5 ICU v3.4 User Guide

Permission to Reprint IBM Copyrighted Publications

INTERNATIONAL BUSINESS MACHINES CORPORATION ARMONK, NEW
YORK 10594

PERMISSION TO REPRINT IBM COPYRIGHTED PUBLICATIONS

IBM grants permission to reproduce the requested copyrighted publication owned by
INTERNATIONAL BUSINESS MACHINES CORPORATION under the conditions
specified.

Such reproduction must be accompanied by the following credit line: "Reprinted by
permission from International Business Machines Corporation copyright (year)" which
should include the years in the original copyright notice for publication named. The credit
line normally should appear on the page where the reproduction appears either under the
title or as a footnote.

When more than one IBM publication is excerpted in the same publication, a
consolidated credit paragraph may be used on the title page, or in a conveniently viewable
manner, listing the titles, corresponding copyright notices, and references to the points
where excerpts appear.

It is the understanding of INTERNATIONAL BUSINESS MACHINES CORPORATION
that the purpose for which its publications are being reproduced is accurate and true as
stated in your attached request.

Permission to quote from or reprint IBM publications is limited to the purpose and
quantities originally requested and must not be construed as a blanket license to use the
material for other purposes or to reprint other IBM copyrighted material.

IBM reserves the right to withdraw permission to reproduce copyrighted material
whenever, in its discretion, it feels that the privilege of reproducing its material is being
used in a way detrimental to its interest or the above instructions are not being followed
properly to protect its copyright.

No permission is granted to use trademarks of International Business Machines
Corporation and its affiliates apart from the incidental appearance of such trademarks in
the titles, text, and illustrations of the named publications. The appearance should not be
of a manner which might cause confusion of origin or appear to endorse non-IBM
products. Any proposed use of trademarks apart from such incidental appearance requires
separate approval in writing and ordinarily cannot be given.

THIS PERMISSION IS PROVIDED WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

6 ICU v3.4 User Guide

Notices

This information was developed for products and services offered in the U.S.A. IBM
might not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program, or
service is not intended to state or imply that only that IBM product, program, or service
may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country
where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS
MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states
do not allow disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply toyou.

This information could include technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these changes will be incorporated in
new editions of the information. IBM may make improvements and/or changes in the
product(s) and/or the program(s) described in this information at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience
only and do not in any manner serve as an endorsement of those Web sites. The materials
at those Web sites are not part of the materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

7 ICU v3.4 User Guide

appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Corporation
Department LZKS
11400 Burnet Road
Austin, TX 78758
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including
in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it
are provided by IBM under terms of the IBM Customer Agreement, IBM International
Program License Agreement, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary significantly.
Some measurements may have been made on development-level systems and there is no
guarantee that these measurements will be the same on generally available systems.
Furthermore, some measurement may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM has not
tested those products and cannot confirm the accuracy of performance, compatibility or
any other claims related to non-IBM products. Questions on the capabilities of non-IBM
products should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to
change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any
similarity to the names and addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM, for

8 ICU v3.4 User Guide

the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for which
the sample programs are written.

These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color illustrations may
not appear.

Trademarks

IBM is a trademark of International Business Machines Corporation in the United States,
other countries, or both.

Microsoft, Windows, Windows NT, and OpenType are registered trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks or logos are trademarks of Sun Microsystems, Inc.

Other company, product or service names may be the trademarks or service marks of
others.

9 ICU v3.4 User Guide

Software Internationalization

Overview of Software Internationalization

Developing globalized software is a continuous balancing act as software developers and
project managers inadvertently underestimate the level of effort and detail required to
create foreign-language software releases.

Software developers must understand the ICU services to design and deploy successful
software releases. The services can save ICU users time in dealing with the kinds of
problems that typically arise during critical stages of the software life cycle.

In general, the standard process for creating globalized software includes
"internationalization," which covers generic coding and design issues, and "localization,"
which involves translating and customizing a product for a specific market.

Software developers must understand the intricacies of internationalization since they
write the actual underlying code. How well they use established services to achieve
mission objectives determines the overall success of the project. At a fundamental level,
code and feature design affect how a product is translated and customized. Therefore,
software developers need to understand key localization concepts.

From a geographic perspective, a locale is a place. From a software perspective, a locale
is an ID used to select information associated with a a language and/or a place. ICU
locale information includes the name and identifier of the spoken language, sorting and
collating requirements, currency usage, numeric display preferences, and text direction
(left-to-right or right-to-left, horizontal or vertical).

General locale-sensitive standards include keyboard layouts, default paper and envelope
sizes, common printers and monitor resolutions, character sets or encoding ranges, and
input methods.

ICU Services Overview

The ICU services support all major locales with language and sub-language pairs. The
sub-language generally corresponds to a country. One way to think of this is in terms of
the phrase "X language as spoken in Y country." The way people speak or write a
particular language might not change dramatically from one country to the next (for
example, German is spoken in Austria, Germany, and Switzerland). However, cultural
conventions and national standards often differ a great deal.

A key advantage to using the ICU services is the net result in reduced time to market. The
translation of the display strings is bundled in separate text files for translation. A
programmer team with translators no longer needs to search the source code in order to
rewrite the software for each country and language.

10 ICU v3.4 User Guide

Internationalization and Unicode

Unicode enables a program to use a standard encoding scheme for all textual data within
the program's environment. Conversion has to be done with incoming and outgoing data
only. Operations on the text (while it is in the environment) are simplified since you do
not have to keep track of the encoding of a particular text.

Unicode supports multilingual data since it encodes characters for all world languages.
You do not have to tag pieces of data with their encoding to enable the right characters,
and you can mix languages within a single piece of text.

Some of the advantages of using ICU to internationalize your program include the
following:

« It can handle text in any language or combination of languages.

« The source code can be written so that the program can work for many locales.
- Configurable, pluggable localization is enabled.

« Multiple locales are supported at the same time.

- Non-technical people can be given access to information and you don't have to open
the source code to them.

« Software can be developed so that the same code can be ported to various platforms.
Project Management Tips for Internationalizing Software

The following two processes are key when managing, developing and designing a
successful internationalization software deliverable:

1. Separate the program's executable code from its Ul elements.
2. Avoid making cultural assumptions.

Keep static information (such as pictures, window layouts) separate from the program
code. Also ensure that the text which the program generates on the fly (such as numbers
and dates) comes out in the right language. The text must be formatted correctly for the
targeted user community.

Make sure that the analysis and manipulation of both text and kinds of data (such as
dates), is done in a manner that can be easily adapted for different languages and user
communities. This includes tasks such as alphabetizing lists and looking for line-break
positions.

Characters must display on the screen correctly (the text's storage format must be
translated to the proper visual images). They must also be accepted as input (translated
from keystrokes, voice input or another kind of input into the text's storage format). These
processes are relatively easy for English, but quite challenging for other languages.

11 ICU v3.4 User Guide

Separating Executable Code from Ul Elements

Good software design requires that the programming code implementing the user
interface (UI) be kept separate from code implementing the underlying functionality. The
description of the UI must also be kept separate from the code implementing it.

The description of the Ul contains items that the user sees, including the various
messages, buttons, and menu commands. It also contains information about how dialog
boxes are to be laid out, and how icons, colors or other visual elements are to be used. For
example, German words tend to be longer since they contains grammatical suffixes that
English has lost in the last 800 years. The following table shows how word lengths can
differ among languages.

English German Cyrillic-Serbian
cut ausschneiden Uucenu
copy kopieren KOMHPaj
paste einfliigen 3ajenu

The description of the Ul, especially user-visible pieces of text, must be kept together and
not embedded in the program's executable code. ICU provides the ResourceBundle
services for this purpose.

Avoiding Cultural/Hidden Assumptions

Another difficulty encountered when designing and implementing code is to make it
flexible enough to handle different ways of doing things in other countries and cultures.
Most programmers make unconscious assumptions about their user's language and
customs when they design their programs. For example, in Thailand, the official calendar
is the Buddhist calendar and not the Gregorian calendar.

These assumptions make it difficult to translate the user interface portion of the code for
some user communities without rewriting the underlying program. The ICU libraries
provide flexible APIs that can be used to perform the most common and important tasks.
They contain pre-built supporting data that enables them to work correctly in 75
languages and more than 200 locales. The key is understanding when, where, why, or
how to use the APIs effectively.

The remainder of this section provides an overview of some cultural and hidden
assumptions components:

- Numbers and Dates
« Messages
- Measuring Units

- Alphabetical Order of Characters

12 ICU v3.4 User Guide

« Character Format

« Text Input and Layout

 Text Manipulation

- Date/Time Formatting

- Distributed Locale Support
- LayoutEngine

Numbers and Dates

Numbers and dates are represented in different languages. Do not implement routines for
converting numbers into strings, and do not call low-level system interfaces like sprintf
() that do not produce language-sensitive results. Instead, see how ICU's NumberFormat
and DateFormat services can be used more effectively.

Messages

Be careful when formulating assumptions about how individual pieces of text are used
together to create a complete sentence (for example, when error messages are generated) .
The elements might go together in a different order if the message is translated into a new
language. ICU provides MessageFormat and ChoiceFormat to help with these
occurrences.

@ There also might be situations where parts of the sentence change when other
parts of the sentence also change (selecting between singular and plural nouns
that go after a number is the most common example).

Measuring Units

Numerical representations can change with regard to measurement units and currency
values. Currency values can vary by country. A good example of this is the representation
of $1,000 dollars. This amount can represent either U.S. or Canadian dollar values. US
dollars can be displayed as USD while Canadian dollars can be displayed as CAD,
depending on the locale. In this case, the displayed numerical quantity might change, and
the number itself might also change. NumberFormat provides some support for this.

Alphabetical Order of Characters

13 ICU v3.4 User Guide

All languages (even those using the same alphabet) do not necessarily have the same
concept of alphabetical order. Do not assume that alphabetical order is the same as the
numerical order of the character's code-point values. In practice, 'a' is distinct from 'A" and
'b' is distinct from 'B'. Each has a different codepoint. This means that you can not use a
bit-wise lexical comparison (such as what strcmp () provides), to sort user-visible lists.

Not all languages interpret the same characters as equivalent. If a character's case is
changed it is not always a one-to-one mapping. Accent differences, the presence or
absence of certain characters, and even spelling differences might be insignificant when
determining whether two strings are equal. The_Collator services provide significant help
in this area.

Characters

A character does not necessarily correspond to a single code-point position in the backing
store. All languages might not have the same definition of a word, and might not find that
any group of characters separated by a white space is an acceptable approximation for the
definition of a word. ICU provides the Breaklterator services to help locate boundaries or
when counting units of text.

When checking characters for membership in a particular class, do not list the specific
characters you are interested in, and do not assume they come in any particular order in
the encoding scheme. For example, /A-Za-z/ does not mean all letters in most European
languages, and /0-9/ does not mean all digits in many writing systems. This also holds
true when using C interfaces such as isupper () and islower. ICU provides a large
group of utility functions for testing character properties, such as u_isupper and
u_islower ().

Text Input and Layout

Do not assume anything about how a piece of text might be drawn on the screen,
including how much room it takes up, the direction it flows, or where on the screen it
should start. All of these text elements vary according to language. As a result, there
might not be a one-to-one relationship between characters and keystrokes. One-to-many,
many-to-one, and many-to-many relationships between characters and keystrokes all
occur in real text in some languages.

Text Manipulation

Do not assume that all textual data, which the program stores and manipulates, is in any
particular language or writing system. ICU provides many methods that help with text

14 ICU v3.4 User Guide

storage. The UnicodeString class and u_strxxx functions are provided for Unicode-based
character manipulation. For example, when appending an existing Unicode character
buffer, characters can be removed or extracted out of the buffer.

A good example of text manipulation is the Rosetta stone. The same text is written on it
in Hieroglyphic, Greek and Demotic. ICU provides the services to correctly process
multi-lingual text such as this correctly.

Date/Time Formatting

Time can be determined in many units, such as the lengths of months or years, which day
is the first day of the week, or the allowable range of values like month and year (with
DateFormat). It can also determine the time zone you are in (with Timezone), or when
daylight-savings time starts. ICU provides the Calendar services needed to handle these
issues.

{\ * This example shows how a user interface element can be used to
: increment or decrement the time field value.

IEE=

Distributed Locale Support

In most server applications, do not assume that all clients connected to the server interact
with their users in the same language. Also do not assume that a session stops and restarts
whenever a user speaking one language replaces another user speaking a different
language. ICU provides sufficient flexibility for a program to handle multiple locales at
the same time.

For example, a Web server needs to serve pages to different users, languages, and date
formats at the same time.

LayoutEngine

The ICU LayoutEngine is an Open Source library that provides a uniform, easy to use
interface for preparing complex scripts or text for display. The Latin script, which is the
most commonly used script among software developers, is also the least complex script to
display especially when it is used to write English. Using the Latin script, characters can
be displayed from left to right in the order that they are stored in memory. Some scripts
require rendering behavior that is more complicated than the Latin script. We refer to
these scripts as "complex scripts" and to text written in these scripts as "complex text."

15 ICU v3.4 User Guide

Unicode Basics

Introduction to Unicode

Unicode is a standard that precisely defines a character set as well as a small number of
encodings for it. It enables you to handle text in any language efficiently. It allows a
single application executable to work for a global audience. ICU, like Java™, Microsoft®
Windows NT™, Windows™ 2000 and other modern systems, provides
Internationalization solutions based on Unicode.

This chapter is intended as an introduction to codepages in general and Unicode in
particular. For further information, see:

- The Web site of the Unicode consortium
- What is Unicode?
. IBM® Globalization

Go to the online ICU demos to see how a Unicode-based server application can handle
text in many languages and many encodings.

Traditional Character Sets and Unicode

Representing text-format data in computers is a matter of defining a set of characters and
assigning each of them a number and a bit representation. Underlying this basic idea are
three related concepts:

1. A character set or repertoire is an unordered collection of characters that can be
represented by numeric values.

2. A coded character set maps characters from a character set or repertoire to numeric
values.

3. A character encoding scheme defines the representation of numeric values from one or
more coded character sets in bits and bytes.

For simple encodings such as ASCII, the last two concepts are basically the same: ASCII
assigns 128 characters and control codes to consecutive numbers from 0 to 127. These
characters and control codes are encoded as simple, unsigned, binary integers. Therefore,
ASCII is both a coded character set and a character encoding scheme.

ASCII only encodes 128 characters, 33 of which are control codes rather than graphic,
displayable characters. It was designed to represent English-language text for an
American user base, and is therefore insufficient for representing text in almost any
language other than American English. In fact, most traditional encodings were limited to
one or few languages and scripts.

ASCII offered a natural way to extend it: Designed in the 1960's to work in systems with
7-bit bytes while most computers and Internet protocols since the 1970's use 8-bit bytes,

16 ICU v3.4 User Guide

the extra bit allowed another 128 byte values to represent more characters. Various
encodings were developed that supported different languages. Some of these were based
on ASCII, others were not.

Languages such as Japanese need to encode considerably more than 256 characters.
Various encoding schemes enable large character sets with thousands or tens of thousands
of characters to be represented. Most of those encodings are still byte-based, which means
that many characters require two or more bytes of storage space. A process must be
developed to interpret some byte values.

Various character sets and encoding schemes have been developed independently, cover
only one or few languages each, and are incompatible. This makes it very difficult for a
single system to handle text in more than one language at a time, and especially difficult
to do so in a way that is interoperable across different systems.

Generally, the minimum requirement for the interoperable exchange of text data is that
the encoding (character set & encoding scheme) must be properly specified in the
document and in the protocol. For example, email/SMTP and HTML/HTTP provide the
means to specify the "charset", as it is called in Internet standards. However, very often
the encoding is not specified, specified incorrectly, or the sender and receiver disagree on
its implementation.

The ISO 2022 encoding scheme was created to store text in many different languages. It
allows other encodings to be embedded by first announcing them and then switching
between them. Full support for all features and possible encodings with ISO 2022
requires complicated processing and the need to support many encodings. For East Asian
languages, subsets were developed that cover only one language or a few at a time, but
they are much more manageable. ISO 2022 is not well-suited for use in internal
processing. It is designed for data exchange.

Glyphs versus Characters

Programmers often need to distinguish between characters and glyphs. A character is the
smallest semantic unit in a writing system. It is an abstract concept such as the letter A or
the exclamation point. A glyph is the visual presentation of one or more characters, and is
often dependent on adjacent characters.

There is not always a one-to-one mapping between characters and glyphs. In many
languages (Arabic is a prime example), the way a character looks depends heavily on the
surrounding characters. Standard printed Arabic has as many as four different printed
representations (glyphs) for every letter of the alphabet. In many languages, two or more
letters may combine together into a single glyph (called a ligature), or a single character
might be displayed with more than one glyph.

Despite the different visual variants of a particular letter, it still retains its identity. For
example, the Arabic letter heh has four different visual representations in common use.
Whichever one is used, it still keeps its identity as the letter heh. It is this identity that
Unicode encodes, not the visual representation. This also cuts down on the number of

17 ICU v3.4 User Guide

independent character values required.
Overview of Unicode

Unicode was developed as a single-coded character set that contains support for all
languages in the world. The first version of unicode used 16-bit numbers, which allowed
for encoding 65,536 characters without complicated multibyte schemes. With the
inclusion of more characters, and following implementation needs of many different
platforms, Unicode was extended to allow more than one million characters. Several
other encoding schemes were added. This introduced more complexity into the Unicode
standard, but far less than managing a large number of different encodings.

Starting with Unicode 2.0 (published in 1996), the Unicode standard began assigning
numbers from 0 to 10ffff;s, which requires 21 bits but does not use them completely. This
gives more than enough room for all written languages in the world. The original
repertoire covered all major languages commonly used in computing. Unicode continues
to grow, and it includes more scripts.

The design of Unicode differs in several ways from traditional character sets and
encoding schemes:

- Its repertoire enables users to include text efficiently in almost all languages within a
single document.

- It can be encoded in a byte-based way with one or more bytes per character, but the
default encoding scheme uses 16-bit units that allow much simpler processing for all
common characters.

« Many characters, such as letters with accents and umlauts, can be combined from the
base character and accent or umlaut modifiers. This combining reduces the number of
different characters that need to be encoded separately. "Precomposed" variants for
characters that existed in common character sets at the time were included for
compatibility.

+ Characters and their usage are well-defined and described. While traditional character
sets typically only provide the name or a picture of a character and its number and byte
encoding, Unicode has a comprehensive database of properties available for download.
It also defines a number of processes and algorithms for dealing with many aspects of
text processing to make it more interoperable.

The early inclusion of all characters of commonly used character sets makes Unicode a
useful "pivot" point for converting between traditional character sets, and makes it
feasible to process non-Unicode text by first converting into Unicode, process the text,
and convert it back to the original encoding without loss of data.

18 ICU v3.4 User Guide

@ The first 128 Unicode code point values are assigned to the same characters as in
US-ASCII For example, the same number is assigned to the same character. The
same is true for the first 256 code point values of Unicode compared to ISO 8859-
I (Latin-1) which itself is a direct superset of US-ASCII. This makes it easy to
adapt many applications to Unicode because the numbers for many syntactically
important characters are the same.

Character Encoding Forms and Schemes for Unicode

Unicode assigns characters a number from 0 to 10FFFF ¢, giving enough elbow room to
allow for unambiguous encoding of every character in common use. Such a character
number is called a "code point".

@ Unicode code points are just non-negative integer numbers in a certain range.
They do not have an implicit binary representation or a width of 21 or 32 bits.
Binary representation and unit widths are defined for encoding forms.

For internal processing, the standard defines three encoding forms, and for file storage
and protocols, some of these encoding forms have encoding schemes that differ in their
byte ordering. The difference between an encoding form and an encoding scheme is that
an encoding form maps the character set codes to values that fit into internal data types
(like a short in C), while an encoding scheme maps to bits and bytes. For traditional
encodings, they are the same since the encoding forms already map to bytes

. The different Unicode encoding forms are optimized for a variety of different uses:

+ UTF-16, the default encoding form, maps a character code point to either one or two
16-bit integers.

- UTF-8 is a byte-based encoding that offers backwards compatibility with ASCII-
based, byte-oriented APIs and protocols. A character is stored with 1, 2, 3, or 4 bytes.

« UTF-32 is the simplest but most memory-intensive encoding form: It uses one 32-bit
integer per Unicode character.

« SCSU is an encoding scheme that provides a simple compression of Unicode text. It is
designed only for input and output, not for internal use.

ICU uses UTF-16 internally. ICU 2.0 fully supports supplementary characters (with code
points 10000,6..10FFFF 6. Older versions of ICU provided only partial support for
supplementary characters.

For input/output, character encoding schemes define a byte serialization of text. UTF-8 is
itself both an encoding form and an encoding scheme because it is byte-based. For each
of UTF-16 and UTF-32, there are two variants defined: one that serializes the code units
in big-endian byte order (most significant byte first), and one that serializes the code units
in little-endian byte order (least significant byte first). The corresponding encoding
schemes are called UTF-16BE, UTF-16LE, UTF-32BE, and UTF-32LE.

19 ICU v3.4 User Guide

@ The names "UTF-16" and "UTF-32" are ambiguous. Depending on context, they
refer either to character encoding forms where 16/32-bit words are processed
and are naturally stored in the platform endianness, or they refer to the [ANA-
registered charset names, i.e., to character encoding schemes or byte
serializations. In addition to simple byte serialization, the charsets with these
names also use optional Byte Order Marks (see Serialized Formats below).

Overview of UTF-16

The default encoding form of the Unicode Standard uses 16-bit code units. Code point
values for the most common characters are in the range of 0 to FFFF,s and are encoded
with just one 16-bit unit of the same value. Code points from 10000,s to 10FFFF¢ are
encoded with two code units that are often called "surrogates", and they are called a
"surrogate pair" when, together, they correctly encode one Unicode character. The first
surrogate in a pair must be in the range D800, to DBFF ¢, and the second one must be in
the range DCO00,s to DFFF,6. Every Unicode code point has only one possible UTF-16
encoding with either one code unit that is not a surrogate or with a correct pair of
surrogates. The code point values D800, to DFFF ¢ are set aside just for this mechanism
and will never, by themselves, be assigned any characters.

Most commonly used characters have code points below FFFF s, but Unicode 3.1 assigns
more than 40,000 supplementary characters that make use of surrogate pairs in UTF-16.

Note that comparing UTF-16 strings lexically based on their 16-bit code units does not
result in the same order as comparing the code points. This is not usually an issue since
only rarely-used characters are affected. Most processes do not rely on the same results in
such comparisons. Where necessary, a simple modification to a string comparison can be
performed that still allows efficient code unit-based comparisons and makes them
compatible with code point comparisons. ICU has C and C++ API functions for this.

Overview of UTF-8

To meet the requirements of byte-oriented, ASCII-based systems, the Unicode Standard
defines UTF-8. UTF-8 is a variable-length, byte-based encoding that preserves ASCII
transparency.

UTF-8 maintains transparency for all of the ASCII code values (0..127). These values do
not appear in any byte of a transformed result except as the direct representation of the
ASCII values. Thus, ASCII text is also UTF-8 text.

Characteristics of UTF-8 include:

Unicode code points 0 to 7F ;¢ are each encoded with a single byte of the same value.
Therefore, ASCII characters take up 50% less space with UTF-8 encoding than with
UTF-16.

All other code points are encoded with multibyte sequences, with the first byte (lead
byte) indicating the number of bytes that follow (trail bytes). This results in very

20 ICU v3.4 User Guide

efficient parsing. The lead bytes are in the range c0,¢ to fd;s, the trail bytes are in the
range 80,6 to bfic. The byte values fes and FF ;¢ are never used.

UTF-8 is relatively compact and resource conservative in its use of the bytes required
for encoding text in European scripts, but uses 50% more space than UTF-16 for East
Asian text. Code points up to 7FF;s take up two bytes, code points up to FFFF ¢ take
up three (50% more memory than UTF-16), and all others four.

Binary comparisons of UTF-8 strings based on their bytes result in the same order as
comparing code point values.

Overview of UTF-32

The UTF-32 encoding form always uses one single 32-bit integer per Unicode code point.
This results in a very simple encoding.

The drawback is its memory consumption: Since code point values use only 21 bits, one-
third of the memory is always unused, and since most commonly used characters have
code point values of up to FFFF,, they take up only one 16-bit unit in UTF-16 (50% less)
and up to three bytes in UTF-8 (25% less).

UTF-32 is mainly used in APIs that are defined with the same data type for both code
points and code units. Modern versions of the C standard library that support Unicode use
a 32-bit wchar t with UTF-32 semantics.

Overview of SCSU

SCSU (Standard Compression Scheme for Unicode) is designed to reduce the size of
Unicode text for both input and output. It is a simple compression that transforms the text
into a byte stream. It typically uses one byte per character in small scripts, and two bytes
per character in large, East Asian scripts.

It is usually shorter than any of the UTFs. However, SCSU is stateful, which makes it
unsuitable for internal processing. It also uses all possible byte values, which might
require additional processing for protocols such as SMTP (email).

See also http://www.unicode.org/unicode/reports/tré/.

Other Unicode Encodings

Other Unicode encodings have been developed over time for various purposes. Most of
them are implemented in ICU, see source/data/mappings/convrtrs.txt

BOCU-1: Binary-Ordered Compression of Unicode
An encoding of Unicode that is about as compact as SCSU but has a much smaller
amount of state. Unlike SCSU, it preserves code point order and can be used in 8bit

emails without a transfer encoding. BOCU-1 does not preserve ASCII characters in
ASClI-readable form. See Unicode Technical Note #6.

21 ICU v3.4 User Guide

UTF-7: Designed for 7bit emails; simple and not very compact. Since email systems
have been 8-bit safe for several years, UTF-7 is not necessary any more and not
recommended. Most ASCII characters are readable, others are base64-encoded. See
RFEC 2152.

IMAP-mailbox-name: A variant of UTF-7 that is suitable for expressing Unicode
strings as ASCII characters for Unix filenames.

The name "IMAP-mailbox-name" is specific to ICU!

See REC 2060 INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4revl
section 5.1.3. Mailbox International Naming Convention.

UTF-EBCDIC: An EBCDIC-friendly encoding that is similar to UTF-8. See Unicode
Technical Report #16. As of ICU 2.6, UTF-EBCDIC is not implemented in ICU.

CESU-8: Compatibility Encoding Scheme for UTF-16: 8-Bit
An incompatible variant of UTF-8 that preserves 16-bit-Unicode (UTF-16) string
order instead of code point order. Not for open interchange. See Unicode Technical

Report #26.

Programming using UTFs

Programming using any of the UTFs is much more straightforward than with traditional
multi-byte character encodings, even though UTF-8 and UTF-16 are also variable-width
encodings.

Within each Unicode encoding form, the code unit values for singletons (code units that
alone encode characters), lead units, and for trailing units are all disjointed. This has
crucial implications for implementations. The following lists these implications:

Determines the number of units for one code point using the lead unit. This is
especially important for UTF-8, where there can be up to 4 bytes per character.

Determines boundaries. If ICU users randomly access text, you can always determine
the nearest code-point boundaries with a small number of machine instructions.

Does not have any overlap. If ICU users search for string A in string B, you never get a
false match on code points. Users do not need to convert to code points for string
searching. False matches never occurs since the end of one sequence is never the same
as the start of another sequence. Overlap is one of the biggest problems with common
multi-byte encodings like Shift-JIS. All of the UTFs avoid this problem.

Uses simple iteration. Getting the next or previous code point is straightforward, and
only takes a small number of machine instructions.

Can use UTF-16 encoding, which is actually fully symmetric. ICU users can determine
from any single code unit whether it is the first, last, or only one for a code point.
Moving (iterating) in either direction through UTF-16 text is equally fast and efficient.

Uses slow indexing by code points. This indexing procedure is a disadvantage of all
variable-width encodings. Except in UTF-32, it is inefficient to find code unit

22 ICU v3.4 User Guide

boundaries corresponding to the nth code point or to find the code point offset
containing the nth code unit. Both involve scanning from the start of the text or from a
last known boundary. ICU, like most common APIs, always indexes by code units. It
counts code units and not code points.

Conversion between different UTFs is very fast. Unlike converting to and from legacy
encodings like Latin-2, conversion between UTFs does not require table look-ups.

ICU provides two basic data type definitions for Unicode. UChar32 is a 32-bit type for
code points, and used for single Unicode characters. It may be signed or unsigned. It is
the same as wchar tif it is 32 bits wide. UChar is an unsigned 16-bit integer for UTF-16
code units. It is the base type for strings (UChar *), and it is the same as wchar tifitis 16
bits wide.

Some higher-level APIs, used especially for formatting, use characters closer to a
representation for a glyph. Such "user characters" are also called "graphemes" or
"grapheme clusters" and require strings so that combining sequences can be included.

Serialized Formats

In files, input, output, and network protocols, text must be accompanied by the
specification of its character encoding scheme for a client to be able to interpret it
correctly. (This is called a "charset" in Internet protocols.) However, an encoding scheme
specification is not necessary if the text is only used within a single platform, protocol, or
application where it is otherwise clear what the encoding is. (The language and text
directionality should usually be specified to enable spell checking, text-to-speech
transformation, etc.)

@ The discussion of encoding specifications in this section applies to standard
Internet protocols where charset name strings are used. Other protocols may use
numeric encoding identifiers and assign different semantics to those identifiers
than Internet protocols.

Typically, the encoding specification is done in a protocol- and document format-
dependent way. However, the Unicode standard offers a mechanism for tagging text files
with a "signature" for cases where protocols do not identify character encoding schemes.

The character ZERO WIDTH NO-BREAK SPACE (FEFF,s) can be used as a signature
by prepending it to a file or stream. The alternative function of U+FEFF as a format
control character has been copied to U+2060 WORD JOINER, and U+FEFF should only
be used for Unicode signatures.

The different character encoding schemes generate different, distinct byte sequences for
U+FEFF:

- UTF-8: EF BB BF
- UTF-16BE: FE FF

23 ICU v3.4 User Guide

UTF-16LE: FF FE

UTF-32BE: 00 00 FE FF
UTF-32LE: FF FE 00 00

SCSU: OE FE FF

BOCU-1: FB EE 28

UTF-7: 2B 2F 76 (38|39 | 2B | 2F)
UTF-EBCDIC: DD 73 66 73

ICU provides the function ucnv_detectUnicodeSignature () for Unicode signature
detection.

@ There is no signature for CESU-8 separate from the one for UTF-8. UTF-8 and
CESU-8 encode U+FEFF and in fact all BMP code points with the same bytes.
The opportunity for misidentification of one as the other is one of the reasons why
CESU-8 should only be used in limited, closed, specific environments.

In UTF-16 and UTF-32, where the signature also distinguishes between big-endian and
little-endian byte orders, it is also called a byte order mark (BOM). The signature works
for UTF-16 since the code point that has the byte-swapped encoding, FFFE s, will never
be a valid Unicode character. (It is a "non-character" code point.) In Internet protocols, if
an encoding specification of "UTF-16" or "UTF-32" is used, it is expected that there is a
signature byte sequence (BOM) that identifies the byte ordering, which is not the case for
the encoding scheme/charset names with "BE" or "LE".

@ If text is specified to be encoded in the UTF-16 or UTF-32 charset and does not
begin with a BOM, then it must be interpreted as UTF-16BE or UTF-32BE,
respectively.

A signature is not part of the content, and must be stripped when processing. For
example, blindly concatenating two files will give an incorrect result.

If a signature was detected, then the signature "character" U+FEFF should be removed
from the Unicode stream after conversion. Removing the signature bytes before
conversion could cause the conversion to fail for stateful encodings like BOCU-1 and
UTEF-7.

Whether a signature is to be recognized or not depends on the protocol or application.

If a protocol specifies a charset name, then the byte stream must be interpreted
according to how that name is defined. Only the "UTF-16" and "UTF-32" names
include recognition of the byte order marks that are specific to them (and the ICU
converters for these names do this automatically). None of the other Unicode charsets
are defined to include any signature/BOM handling.

If no charset name is provided, for example for text files in most filesystems, then
applications must usually rely on heuristics to determine the file encoding. Many
document formats contain an embedded or implicit encoding declaration, but for plain

24 ICU v3.4 User Guide

text files it is reasonable to use Unicode signatures as simple and reliable heuristics.
This is especially common on Windows systems. However, some tools for plain text
file handling (e.g., many Unix command line tools) are not prepared for Unicode
signatures.

The Unicode Standard Is An Industry Standard

The Unicode standard is an industry standard and parallels ISO 10646-1. Around 1993,
these two standards were effectively merged into the same character set standard. Both
standards have the same character repertoire and the same encoding forms and schemes.

One difference used to be that the ISO standard defined code point values to be from 0 to
TFFFFFFF 6, not just up to 10FFFFc. The ISO work group decided to add an amendment
to the standard. The amendment removes this difference by declaring that no characters
will ever be assigned code points above 10FFFF¢. The main reason for the ISO work
group's decision is interoperability between the UTFs. UTF-16 can not encode any code
points above this limit.

This means that the code point space for both Unicode and ISO 10646 is now the same!
These changes to ISO 10646 have been made recently and should be complete in the
edition ISO 10646:2003 which also combines all parts of the standard into one.

The former, larger code space is the reason why the ISO definition of UTF-8 specifies
sequences of five and six bytes to cover that whole range.

Another difference is that the ISO standard defines encoding forms "UCS-4" and "UCS-
2". UCS-4 is essentially UTF-32 with a theoretical upper limit of 7FFFFFFF ¢, using 31
out of the 32 bits. However, in practice, the ISO committee has accepted that the
characters above 10FFFF will not be encoded, so there is essentially no difference
between the forms. The "4" stands for "four-byte form".

UCS-2 is a subset of UTF-16 that is limited to code points from 0 to FFFF, excluding the
surrogate code points. Thus, it cannot represent the characters with code points above
FFFF (called supplementary characters).

There is no conversion necessary between UCS-2 and UTF-16. The difference is
only in the interpretation of surrogates.

The standards differ in what kind of information they provide: The Unicode standard
provides more character properties and describes algorithms etc., while the ISO standard
defines collections, subsets and similar.

The standards are synchronized and the respective committees work together to add new
characters and assign code point values.

25 ICU v3.4 User Guide

ICU Services

Overview of the ICU Services

ICU enables you to write language-independent C and C++ code that is used on separate,
localized resources to get language-specific results. ICU supports many features,
including language-sensitive text, dates, time, numbers, currency, message sorting, and
searching. ICU provides language-specific results for a broad range of languages. The set
of services provided by ICU includes:

. Strings, Properties and Characterlterator

. Conversion Basics

- Locale and Resource Management Support
- Date and Time Support

. Format and Parse

- Formatting Numbers

- Transformations

« Searching and Sorting
 Text Analysis

- Text Layout
 Search String

Strings, Properties and Characterlterator

ICU provides basic Unicode support for the following:

« Unicode string
ICU includes type definitions for UTF-16 strings and code points. It also contains

many C u_string functions and the C++ UnicodeString class with many additional
string functions.

- Unicode properties
ICU includes the C definitions and functions found in uchar.h as well as some macros
found in utf h. It also includes the C++ Unicode class.

+ Unicode string iteration
In C, ICU uses the macros in utf.h for the iteration of strings. In C++, ICU uses the
characterlterator and its subclasses.

26 ICU v3.4 User Guide

Conversion Basics

A converter is used to transform text from one encoding type to another. In the case of
Unicode, ICU transforms text from one encoding codepage to Unicode and back. An
encoding is a mapping from a given character set definition to the actual bits used to
represent the data.

Locale and Resources

The ICU package contains the locale and resource bundles as well as the classes that
implement them. Also, the ICU package contains the locale data (plain text resource
bundles) and provides APIs to access and make use of that data in various services. Users
need to understand these terms and the relationship between them.

A locale identifies a group of users who have similar cultural and linguistic expectations
for how their computers interact with them and process data. This is an abstract concept
that is typically expressed by one of the following:

A locale ID specifies a language and region enabling the software to support culturally
and linguistically appropriate information for each user. A locale object represents a
specific geographical, political, or cultural region. As a programmatic expression of
locale IDs, ICU provides the C++ locale class. In C, Application Programming Interfaces
(APIs) use simple C strings for locale IDs.

ICU stores locale-specific data in resource bundles, which provide a general mechanism
to access strings and other objects for ICU services to perform according to locale
conventions. ICU contains data for its services to support many locales. Resource bundles
contain the locale data of applications that use ICU. In C++, the ResourceBundle
implements the locale data. In C, this feature is provided by the ures_ interface.

In addition to storing system-level data in ICU's resource bundles, applications typically
also need to use resource bundles of their own to store locale-dependent application data.
ICU provides the generic resource bundle APIs to access these bundles and also provides
the tools to build them.

Display strings, which are displayed to a user of a program, are bundled in a
separate file instead of being imbedded in the lines of the program.

Locales and Services

The interaction between locales and services is fundamental to ICU. Please refer to the
Locales and Services section of the Locale chapter.

27 ICU v3.4 User Guide

Transliteration

Transliteration was originally designed to convert characters from one script to another
(for example, from Greek to Latin, or Japanese Katakana to Latin). Now, transliteration is
a more flexible mechanism that has pre-built transformations for case conversions,
normalization conversions, the removal of given characters, and also for a variety of
language and script transliterations. Transliterations can be chained together to perform a
series of operations and each step of the process can use a UnicodeSet to restrict the
characters that are affected. There are two basic types of transliterators:

Most natural language transliterators (such as Greek-Latin) are written a rule-based
transliterators. Transliterators can be written as text files using a simple language that is
similar to regular expression syntax.

Date and Time Classes

Date and time routines manage independent date and time functions in milliseconds since
January 1, 1970 (0:00:00.000 UTC). Points in time before then are represented as
negative numbers.

ICU provides the following classes to support calendars and time zones:

- Calendar
The abstract superclass for extracting calendar-related attributes from a pate value.

« Gregorian Calendar
A concrete class for representing a Gregorian calendar.

-+ TimeZone
An abstract superclass for representing a time zone.

 SimpleTimeZone
A concrete class for representing a time zone for use with a Gregorian calendar.

@ C classes provide the same functionality as the C++ classes with the exception of
subclassing.

Format and Parse

Formatters translate between non-text data values and textual representations of those
values. The result is a string of text that represents the internal value. A formatter can
parse a string and convert a textual representation of some value (if it finds one it
understands) back into its internal representation. For example, when the formatter reads
the characters 1, 0, and 3 followed by something other than a digit, it produces the value
103 in its internal binary representation.

28 ICU v3.4 User Guide

A formatter takes a value and produces a user-readable string that represents that value or
takes a string and parses it to produce a value.

ICU provides the following areas and classes for general formatting, formatting numbers,
formatting dates and times, and formatting messages:

General Formatting

- Format
Format is the abstract superclass of all format classes. It provides the basic methods
for formatting and parsing numbers, dates, strings, and other objects.

- FieldPosition
FieldPosition is a concrete class for holding the field constant and the beginning and
ending indices for the number and date fields.

- ParsePosition
ParsePosition is a concrete class for holding the parse position in a string during
parsing.

- Formattable
Objects that must be formatted can be passed to the Format class or its subclasses for
formatting. The class encapsulates a polymorphic piece of data to be formatted and
uses the MessageFormat class. Some formatting operations use the Formattable class
to produce a single "type" that encompasses all formattable values such as a number,
date, string, and so on.

Formatting Numbers

« NumberFormat
NumberFormat provides the basic fields and methods to format number objects and
number primitives into localized strings and parse localized strings to number objects.

+ DecimalFormat
DecimalFormat provides the methods used to format number objects and number
primitives into localized strings and parse localized strings into number objects in base
10.

+ DecimalFormatSymbols
DecimalFormatSymbols is a concrete class used by DecimalFormat to access localized
number strings such as the grouping separators, the decimal separator, and the percent
sign.

Formatting Dates and Times

« DateFormat

29 ICU v3.4 User Guide

DateFormat provides the basic fields and methods for formatting date objects to
localized strings and parsing date and time strings to date objects.

« SimpleDateFormat
SimpleDateFormat is a concrete class used to format date objects to localized strings
and to parse date and time strings to date objects using a GregorianCalendar.

- DateFormatSymbols
DateFormatSymbols is a concrete class used to access localized date and time
formatting strings, such as names of the months, days of the week, and the time zone.

Formatting Messages

« MessageFormat
MessageFormat is a concrete class used to produce a language-specific user message
that contains numbers, currency, percentages, date, time, and string variables.

+ ChoiceFormat
ChoiceFormat is a concrete class used to map strings to ranges of numbers and to
handle plural words and name series in user messages.

@ C classes provide the same functionality as the C++ classes with the exception of
subclassing.

Searching and Sorting

Sorting and searching non-English text presents a number of challenges that many
English speakers are unaware of. The primary source of difficulty is accents, which have
very different meanings in different languages, and sometimes even within the same
language:

- Many accented letters, such as the ¢ in café, are treated as minor variants on the letter
that is accented.

- Sometimes the accented form of a letter is treated as a distinct letter for the purposes of
comparison. For example, A in Danish is treated as a separate letter that sorts just after
Z.

- In some cases, an accented letter is treated as if it were two letters. In traditional
German, for example, 4 is compared as if it were ae.

Searching and sorting is done through collation using the Collator class and its sub-
classes RuleBasedCollator and CollationElementlterator as well as the CollationKey
object. Collation determines the proper sort sequence for two or more natural language
strings. It also can determine if two strings are equivalent for the purpose of searching.

30 ICU v3.4 User Guide

The Collator class and its sub-class RuleBasedCollator perform locale-sensitive string
comparisons to create sorting and searching routines for natural language text. Collator
and RuleBasedCollator can distinguish between characters associated with base
characters (such as 'a' and 'b"), accent marks (such as '0', '¢'), and uppercase or lowercase
properties (such as 'a' and 'A").

ICU provides the following collation classes for sorting and searching natural language
text according to locale-specific rules:

- Collator
Collator is the abstract base class of all classes that compare strings.

- CollationElementlterator
CollationElementlterator is a concrete iterator class that provides an iterator for
stepping through each character of a locale-specific string according to the rules of a
specific collator object.

- RuleBasedCollator
RuleBasedCollator is the only built-in implementation of the collator. It provides a
sophisticated mechanism for comparing strings in a language-specific manner, and an
interface that allows the user to specifically customize the sorting order.

-+ CollationKey
CollationKey is an object that enables the fast sorting of strings by representing a

string as a sort key under the rules of a specific collator object.

@ C classes provide the same functionality as the C++ classes with the exception of
subclassing.

Text Analysis

The BreakIterator services can be used for formatting and handling text; locating the
beginning and ending points of a word; counting words, sentences, and paragraphs; and
listing unique words. Specifically, text operations can be done to locate the following
linguistic boundaries:

- Display text on the screen and locate places in the text where the BreakIterator can
perform word-wrapping to fit the text within the margins

+ Locate the beginning and end of a word that the user has selected
« Count graphemes (or characters), words, sentences, or paragraphs

+ Determine how far to move in the text store when the user hits an arrow key to move
forward or backward one grapheme

« Make a list of all the unique words in a document

- Figure out whether or not a range of text contains only whole words

31 ICU v3.4 User Guide

- Capitalize the first letter of each word

- Extract a particular unit from the text such as "find me the third grapheme in this
document"

The BreakIterator services were designed and developed around an "iterator" or
"cursor" style of interface. The object points to a particular place in the text. You can
move the pointer forward or backward to search the text for boundaries.

The BreakIterator class makes it possible to iterate over user characters. A
BreakIterator can find the location of a character, word, sentence or potential line-
break boundary. This makes it possible for a software program to properly select
characters for text operations such as highlighting a character, cutting a word, moving to
the next sentence, or wrapping words at a line ending. BreakIterator performs these
operations in a locale-sensitive manner, meaning that it recognizes text boundaries
according to the particular locale ID.

ICU provides the following classes for iterating over locale-specific text:

« Breaklterator
The abstract base class that defines the operations for finding and getting the positions
of logical breaks in a string of text: characters, words, sentences, and potential line
breaks.

+ Characterlterator
The abstract base class for forward and backward iteration over a string of Unicode
characters.

- StringCharacterlterator
A concrete class for forward and backward iteration over a string of Unicode
characters. stringCharacterIterator inherits from CharacterIterator.

Text Layout

Some scripts require rendering behavior that is more complicated than the Latin script.
These scripts are called as "complex scripts" and while their text is called "complex text."
Examples of complex scripts are the Indic scripts (Devanagari, Tamil, Telugu, and
Gujarati), Thai scripts, and Arabic scripts.

Complex text has the following main characteristics:

In most cases, the contextual and ligature forms of characters have not been assigned
Unicode codepoints and thus cannot be displayed directly using codepoints.

The ICU LayoutEngine provides a uniform interface for preparing complex text for
display. The LayoutEngine code is independent of the font and rendering architecture of
the underlying platform. All access to the LayoutEngine code is through an abstract base
class. A concrete instance of this base class must be implemented for each platform.

32 ICU v3.4 User Guide

The ICU LayoutEngine prepares complex text using the following procedures:

Locale-Dependent Operations

Many of the ICU classes are locale-sensitive, meaning that you have to create a different
one for each locale.

C API

ubrk

ucal

umsg.h

ucol

C++ Class

Breaklterator

Calendar

ChoiceFormat

CollationElementlterator

Description

The Breaklterator class implements methods to
find the location of boundaries in the text.

The Calendar class is an abstract base class that
converts between a UDate object and a set of
integer fields such as YEAR, MONTH, DAY,
HOUR, and so on.

A ChoiceFormat class enables you to attach a
format to a ran