
Transcript name: What is Hadoop?

English

Welcome to the unit of Hadoop Fundamentals on Hadoop architecture.
I will begin with a terminology review. Then I will cover the two major components
of Hadoop, the distributed file system component and the MapReduce component,
with an emphasis on a distributed filesystem called Hadoop Distributed File System
or HDFS. We will see what types of nodes can exist in a Hadoop cluster and I will
explain an important feature of Hadoop called "rack awareness" or "network
topology awareness". I will end with an example of how a file is written to HDFS to
illustrate replication.
Before we examine Hadoop components and architecture, let’s review some of the
terms that are used in this discussion.
A node is simply a computer, typically non-enterprise, commodity hardware for
nodes that contain data. So in this example, we have Node 1.
Then we can add more nodes, such as Node 2,
Node 3, and so on.
This would be called a rack. A rack is a collection of 30 or 40 nodes that are
physically stored close together and are all connected to the same network switch.
Network bandwidth between any two nodes in rack is greater than bandwidth
between two nodes on different racks.
You will see later how Hadoop takes advantage of this fact.
A Hadoop Cluster (or just ‘cluster’ from now on) is a collection of racks
Let us now examine Hadoop's architecture.
Hadoop has two major components:
- the distributed filesystem component, the main example of which is the Hadoop
Distributed File System, though other file systems are supported.
- the MapReduce component, which is a framework for performing calculations on
the data in the distributed file system. This unit will cover the Hadoop Distributed
File System and MapReduce will be covered separately.
we will now examine the most important distributed file system in Hadoop - HDFS
HDFS runs on top of the existing file systems on each node in a Hadoop cluster
Hadoop works best with very large files. The larger the file, the less time Hadoop
spends seeking for the next data location on disk and the more time Hadoop runs at
the limit of the bandwidth of your disks. Seeks are generally expensive operations
that are useful when you only need to analyze a small subset of your dataset. Since
Hadoop is designed to run over your entire dataset, it is best to minimize seeks by
using large files. Hadoop is designed for streaming or sequential data access rather
than random access. Sequential data access means fewer seeks, since Hadoop only
seeks to the beginning of each block and begins reading sequentially from there.
Hadoop uses blocks to store a file or parts of a file.
This is shown in the figure.
Let us now examine file blocks in more detail.
First of all, blocks are large. They default to 64 megabytes each and most systems
run with block sizes of 128 megabytes or larger.

A Hadoop block is a file on the underlying filesystem. Since the underlying
filesystem stores files as blocks, one Hadoop block may consist of many blocks in
the underlying file system as shown in the figure.
Blocks have several advantages:
First, they are fixed in size. This makes it easy to calculate how many can fit on a
disk.
Second, by being made up of blocks that can be spread over multiple nodes, a file
can be larger than any single disk in the cluster.
HDFS blocks also don't waste space. If a file is not an even multiple of the block
size, the block containing the remainder does not occupy the space of an entire
block.
As shown in the figure, a 420 megabyte file with a 128 megabyte block size
consumes four blocks, but the fourth block does not consume a full 128 megabytes.
Finally, blocks fit well with replication, which allows HDFS to be fault tolerant and
available on commodity hardware.
As shown in the figure:
Each block is replicated to multiple nodes. For example, block 1 is stored on node 1
and node 2.
This allows for node failure without data loss. If node 1 crashes, node 2 still runs
and has block 1's data. In this example, we are only replicating data across two
nodes, but you can set replication to be across many more nodes by changing
Hadoop's configuration or even setting the replication factor for each individual file.
The second major component of Hadoop, described in detail in another lecture, is
the MapReduce component.
HDFS was based on a paper Google published about their Google File System,
Hadoop's MapReduce is inspired by a paper Google published on the MapReduce
technology.
A MapReduce program consists of two types of transformations that can be applied
to data any number of times - a map transformation and a reduce transformation.
A MapReduce job is an executing MapReduce program that is divided into map
tasks that run in parallel with each other and reduce tasks that run in parallel with
each other.
Let us examine the main types of nodes in Hadoop. They are classified as HDFS or
MapReduce nodes. For HDFS nodes we have the NameNode, and the DataNodes.
For MapReduce nodes we have the JobTracker and the TaskTracker nodes. Each of
these is discussed in more detail later in this presentation. There are other HDFS
nodes such as the Secondary NameNode, Checkpoint node, and Backup node that
are not discussed in this course.
This diagram shows some of the communication paths between the different types of
nodes on the system. A client is shown as communicating with a JobTracker. It can
also communicate with the NameNode and with any DataNode.
There is only one NameNode in the cluster. While the data that makes up a file is
stored in blocks at the data nodes, the metadata for a file is stored at the NameNode.
The NameNode is also responsible for the filesystem namespace. To compensate for
the fact that there is only one NameNode, one should configure the NameNode to

write a copy of its state information to multiple locations, such as a local disk and an
NFS mount. If there is one node in the cluster to spend money on the best enterprise
hardware for maximum reliability it is the NameNode. The NameNode should also
have as much RAM as possible because it keeps the entire filesystem metadata in
memory.
An typical HDFS cluster has many DataNodes. They store the blocks of data and
when a client requests a file, it finds out from the NameNode which DataNodes store
the blocks that make up that file and the client directly reads the blocks from the
individual DataNodes. Each DataNode also reports to the NameNode periodically
with the list of blocks it stores. DataNodes do not require expensive enterprise
hardware or replication at the hardware layer. The DataNodes are designed to run on
commodity hardware and replication is provided at the software layer.
A JobTracker node manages MapReduce jobs. There is only one of these on the
cluster. It receives jobs submitted by clients. It schedules the Map tasks and Reduce
tasks on the appropriate TaskTrackers in a rack-aware manner and monitors for any
failing tasks that need to be rescheduled on a different TaskTracker.
To achieve the parallelism for your map and reduce tasks, there are many
TaskTrackers in a Hadoop cluster. Each TaskTracker spawns Java Virtual Machines
to run your map or reduce task.
This lesson continues in the next video.

