
Deploy CICS data Atom feeds
into your mashups in minutes

By Peter Havercan, CICS Development, IBM Hursley

White Paper
September 2009

http://www.ibm.com

Deploy CICS data Atom feeds into your mashups in minutes
Page 2

Abstract
An enormous amount of business data is currently managed by CICS®

applications. One of the aims of IBM CICS Transaction Server for z/OS®

Version 4.1 is to unlock that data and to make it available in modern rich

Internet applications (RIAs) without requiring extensive CICS application pro-

gramming skills. CICS now makes some of its internal business assets avail-

able as Atom feeds, which can be consumed by standard Web client toolkits

and presented to end users, either alone or in combination with data from

other servers, to produce composite mashup applications. When the CICS

data is combined with data from other sources, it can easily be used to pro-

duce new and highly intuitive displays of that data, giving the viewer an

informed view of aspects of the business represented by the CICS data.

Because CICS uses the Atom Syndication Format to produce its output, the

data can also be simply consumed as a feed to which end users can subscribe

using most modern Web browsers or dedicated feed readers.

Rich Internet applications and mashups
The explosive availability of the Internet and the World Wide Web has led to a

new breed of applications that run within Web browsers, but provide many of

the performance and usability characters of traditional desktop applications.

These are known as rich Internet applications, or RIAs, which exploit the

dynamic document-handling capabilities of modern Web browsers. The

dynamic nature of these applications is achieved by executing scripts, typically

in the JavaScript™ programming language, which interact directly with the

layout engine of the browser. A mashup is a specific kind of RIA in which

inputs from multiple servers are merged together in a composite Web page to

produce a novel result.

Contents

2 Abstract
2 Rich Internet applications

and mashups
3 Situational applications
3 The Atom protocols
4 Atom and the REST archi-

tectural style
4 The CICS contribution
5 The Atomservice resource
7 CICS Atom support as a

REST service
7 Rapid deployment of busi-

ness applications
11 Defining and installing the

Atomservice resource
11 Checking that the

Atomservice behaves as
an Atom feed

12 Constructing the RIA or
mashup

13 Using CICS-supplied
samples

14 Using the IBM Mashup
Center

17 Using Enterprise
Generation
Language (EGL)

19 Summary
19 For more information

Deploy CICS data Atom feeds into your mashups in minutes
Page 3

Situational applications
Situational applications are rapidly deployed simple applications developed

by a small team or a single developer to meet a specific short-term need.

They are not necessarily RIAs, but the RIA toolkits are sufficiently mature

that developing an RIA or mashup is now often synonymous with a

situational application.

The Atom protocols
The ability to serve content as a list of frequently changing items is the princi-

ple behind a “feed,” also known as a syndication. The Internet Engineering

Task Force has introduced two new formal standards for feeds under the

generic name Atom—the Atom Syndication Format1 and the Atom Publishing

Protocol.2 The Atom Syndication Format is primarily about delivering read-

only feeds, but the Atom Publishing Protocol (informally known as AtomPub)

effectively describes how to edit or update the feed content. When a feed is

made editable by the AtomPub protocol, it is described as a collection.

An Atom feed or collection document is actually a composite structure of

multiple entry documents. Each feed or collection document is identified by a

URL, but each of the individual entries within it is also identified by its own

specific URL. Entry documents can therefore be referenced independently of

the feed document that contains them.

It is important to notice that, although the terminology talks of publishing

a feed, the feed protocols do not actually “push” data towards the feed client.

In fact, feed readers periodically send “pull” requests (actually HTTP GET

requests) to the feed server. Therefore, the responsiveness of a feed reader to

changes in the feed depends entirely on the frequency with which these

requests are sent.

The Internet Engineering Task

Force has introduced two new for-

mal standards for feeds under the

generic name Atom—the Atom

Syndication Format and the Atom

Publishing Protocol.

Highlights

Deploy CICS data Atom feeds into your mashups in minutes
Page 4

Atom and the REST architectural style
AtomPub collections can be manipulated over HTTP using the concepts of

Representational State Transfer (the REST architectural style). This means

that the four standard HTTP methods can be sent to an Atom collection, or

an entry within a collection, with the following results:

HTTP
method

Atom document type Action

GET Entry Entry document is returned.

PUT Entry Existing entry is modified.

DELETE Entry Specified entry is removed from the
collection.

GET Collection Collection document is returned
(wholly or partially).

POST Collection New entry is added to the collection.

The CICS contribution
The contribution of CICS Transaction Server 4.1 to the new technologies is to

allow certain CICS assets to be published as feeds or manipulated as

AtomPub collections. This allows developers of RIAs and situational applica-

tions to incorporate CICS data into their applications.

CICS files and temporary storage queues can be published automatically

without additional programming. In addition, CICS application programs can

be nominated as the targets of the Atom requests. With some additional pro-

gramming, these programs can be used to deliver content from other types of

CICS-managed assets such as Web Services or databases. The support for

publishing temporary storage queues means that it is now extremely simple to

publish CICS data to an Atom feed—all the application needs to do is to write

the data to a queue.

CICS Transaction Server 4.1 allows

certain CICS assets to be published

as feeds or manipulated as

AtomPub collections, allowing

developers of RIAs and situational

applications to incorporate CICS

data into their applications.

Highlights

Deploy CICS data Atom feeds into your mashups in minutes
Page 5

CICS Transaction Server for z/OS V4.1 also contains support for systems

management over a REST-style interface. This allows the properties of a wide

variety of CICS resources to be manipulated, and is the basis for the new

IBM CICS Explorer™.

The Atomservice resource
In order to publish a CICS asset as an Atom feed, CICS uses a new resource

called an Atomservice. The Atomservice describes some of the Atom attributes

of the feed to be published, and also specifies the name and type of the CICS

asset whose content is to be published. The Atomservice is associated with an

inbound HTTP request by means of a URIMAP resource. The URIMAP has a

new USAGE attribute value of ATOM, and a new attribute of ATOMSERVICE.

The Atomservice configuration file

The Atom metadata that is used to construct an Atom response is quite com-

plex, and it is inappropriate to specify it with traditional CICS RDO attributes,

so an auxiliary file in the IBM z/OS UNIX® file system is used to specify

additional Atom characteristics. These characteristics are encoded in XML.

The Atomservice XML binding file

The raw data in a CICS file or temporary storage queue is just a sequence of

bytes, and it is normally a CICS application program that interprets those

bytes to give them meaning. When the contents of the resource are published

in a feed, the raw data bytes have to be transformed into meaningful text

strings that can be inserted into the XML feed documents. The binding file

describes the mapping between the raw data bytes and an equivalent repre-

sentation of those bytes in an XML structure.

Deploy CICS data Atom feeds into your mashups in minutes
Page 6

How CICS delivers an Atom feed

When CICS receives an inbound HTTP request whose request URL matches a

URIMAP with USAGE(ATOM), control is passed to an Atom request handler,

which uses information in the Atomservice resource to process the request.

The request handler uses Atomservice attributes from the configuration file to

decide what sort of Atom document is to be returned, and which CICS

resource is to be used to populate the response. If the CICS resource is a file

or a temporary storage queue, CICS uses the XML binding file to transform

the raw data bytes contained in the resource into the equivalent textual

form that is suitable for transmission in the Atom response document.

Figure 1 shows the interactions between the request URL and the CICS

resources to which it relates.

Figure 1: Mapping a URL request to a file record

Deploy CICS data Atom feeds into your mashups in minutes
Page 7

Security for Atom feeds

Because the CICS Atom feed processing is based on the existing CICS Web

Support, the underlying CICS security facilities are available. You nominate

the TCP/IP port for the feed with a TCPIPSERVICE definition. Here you can

also specify the security associated with that port. The SSL attribute specifies

whether to use Secure Sockets Layer to encrypt the feed data, and the

AUTHENTICATE attribute specifies whether the user should be prompted for

a username and password, or for an SSL client certificate.

When you use these authentication options, the feed request executes

under the nominated user identity, and access controls for that user identity

are applied. You can control whether the authenticated user has access to the

particular Atomservice, or to the CICS resource being published as the feed.

CICS Atom support as a REST service
When the Atomservice describes the Atom response document type as a feed,

only the HTTP GET method is supported for it. CICS returns an Atom feed

document or an Atom entry document, depending on the format of the

request URL. But when the Atomservice describes the Atom response docu-

ment type as a collection, a wider variety of HTTP methods are supported,

which give access to the CICS resource in a REST style, as described earlier.

Rapid deployment of business applications
To build a situational application or RIA using CICS data, we have to assume

that CICS already contains relevant business data that can be used in the

RIA. Assuming that the data is available in a CICS VSAM file, the first step is

to create an XML binding file that describes the layout of the business data

within the file records.

Deploy CICS data Atom feeds into your mashups in minutes
Page 8

Creating the XML binding file

The most important artifact used in the transformation of the CICS applica-

tion data is the XML binding file described earlier. There are a number of

ways of creating this using the CICS-supplied XML Assistant, which is a pair

of offline batch utilities. The simplest technique is to use the DFHLS2SC pro-

gram to convert a language structure into an XML schema file, which also cre-

ates the relevant XML bind file. In this context, a language structure is just a

description of the layout of the file records in a high-level language such as

COBOL, PL/I, or C. If the file is already being used in a CICS application,

such a language structure almost certainly exists in the application develop-

ment environment.

Not all language structures are suitable for input to the XML Assistant. If

the file record structure is overly complex, it may not be possible to create an

XML binding file that represents it. The constraints are described in the

“High-level language and XML schema mapping” topic in the CICS

Transaction Server for z/OS V4.1 Information Center.3 In particular, the

COBOL clauses OCCURS DEPENDING ON, OCCURS INDEXED BY, and

REDEFINES are not supported. More complex structures may require the use

of IBM Rational® Developer for System z®—the CICS Web service integrated

development environment—to generate driver applications.4 If no language

structure is available, or one cannot be reconstructed, it may be possible to

construct an XML binding file using the DFHSC2LS program, which uses

an XML schema file or a WSDL file (Web Services Description Language)

as input.

Deploy CICS data Atom feeds into your mashups in minutes
Page 9

Creating the Atomservice configuration file

The next required input for creating the CICS Atom feed is the Atomservice

configuration file. Before you create this, you need to decide the following:

● What URL path will be used to access the entire feed? This is the URL
that will be used by your RIA to download multiple entries within the
feed using the GET method, or to add new entries to the feed using the
POST method. This is specified as /atom/cicsfile/feed in Figure 1. It is
referred to below as the feed URL path.

● What URL paths will be used to access individual members of the feed?
These are the URLs that will be used by your RIA to download single
entries within the feed using the GET method, or to update or delete sin-
gle entries within the feed using the PUT or DELETE methods. In the con-
figuration file, you specify a single generic prototype for these URLs. In
Figure 1, this is specified as /atom/cicsfile/entry. The URL path that you
specify here should be different from the one you specified for the entire
feed, but the initial parts of the paths should be the same so that you can
define a single URIMAP that references both forms.

● How will you identify the individual member elements within the feed?
This is how you qualify the URL defined in the previous bullet. The proto-
type URL you chose there will be extended by a “selector” value, which is
the string that actually identifies each instance of a record within the
CICS resource. You can choose whether the selector value is a decimal
number, a hexadecimal number, or a character string.

Deploy CICS data Atom feeds into your mashups in minutes
Page 10

The Atomservice configuration file is encoded in XML and contains three

major sections:

● A section that describes the CICS resource that will be used to populate
the feed.

● A section that contains the Atom metadata for the whole feed. This is
where you specify the path of the URL for the feed, in the href attribute
for the <link rel=“self”/> element.

● A section that contains the Atom metadata for the individual entries
within the feed.

You can write the configuration file from scratch using documentation in the

CICS Information Center, or use the sample /usr/lpp/cicsts/cicsts41/

samples/web2.0/atom/filea.xml as a prototype. Figure 2 is a copy of the

configuration file reduced to its minimal elements.

Figure 2: Writing the Atomservice configuration file

Deploy CICS data Atom feeds into your mashups in minutes
Page 11

Defining and installing the Atomservice resource
Once you have defined the configuration file and the XML binding file, you

can specify them in an Atomservice definition that also specifies the name and

type of the CICS file that you are publishing as an Atom Pub collection. You

should then also define a URIMAP in which the PATH attribute is the com-

mon part of the two URLs that you previously specified for the feed and the

entries. The URIMAP should specify USAGE(ATOM) and also specify the

name of the Atomservice you just defined in its ATOMSERVICE attribute.

Now install both the Atomservice and the URIMAP, together with a

TCPIPSERVICE, to define a port upon which CICS should listen for the

Atom feed requests.

Checking that the Atomservice behaves as an Atom feed
Once you have successfully installed the Atomservice, the URIMAP, and

the TCPIPSERVICE, you should already be able to view the CICS file as a

feed. In a Web browser, enter the URL host and port implied by the

TCPIPSERVICE with the feed URL path described above, for instance:

http://www.example.com/atom/cicsfile/feed

If everything is behaving correctly, your browser should show a page with a

feed display containing the first few entries from your file. However, the

actual content of your file records will probably not be displayed. This is

because the content is expressed in XML, and most browsers and feed readers

do not attempt to format this when it is delivered in a feed. The content

should nevertheless be present, and you should be able to see it through the

“View Source” option of your browser.

Deploy CICS data Atom feeds into your mashups in minutes
Page 12

Constructing the RIA or mashup
Once you have confirmed that the CICS Atom support is behaving as it

should by publishing your data as a feed, you can begin to construct the RIA

that will consume or edit the feed. The RIA is a JavaScript application that

can send Ajax requests to perform GET, POST, PUT, and DELETE requests to

the Atom URLs that you defined in your Atomservice. The script must extract

the XML content element from the Atom documents it receives, using appro-

priate XML parsing functions, and apply it to the business application in the

RIA. When using the POST and PUT methods, the RIA must construct a

complete Atom entry document, which is sent in the body of the request.

Developing the JavaScript application is mostly a non-CICS activity, with

one caveat. The RIA will execute as a JavaScript application in your browser,

and will use Ajax to send HTTP messages to CICS to perform the RESTful

interactions. But for security reasons, a script that uses Ajax to communicate

with a server must also originate from that same server. This is known as the

Same Origin Policy control. There are two ways of achieving this—either the

JavaScript files that contain the Ajax programming can be downloaded

directly from CICS as static content, or a reverse proxy server can be used to

hide the different origins of the JavaScript and the CICS feed data. If you

deliver the JavaScript files from CICS, you need to define URIMAPs to deliver

JavaScript files, with media type application/javascript, from a specific

z/OS UNIX file system directory that is established for this purpose.

Once you have confirmed that the

CICS Atom support is publishing

your data as a feed, you can begin

to construct the RIA that will con-

sume or edit the feed.

Highlights

Deploy CICS data Atom feeds into your mashups in minutes
Page 13

Using CICS-supplied samples
CICS Transaction Server for z/OS V4.1 includes a very simple Ajax

application that demonstrates the concepts you need. To see this in

operation, simply install the DFH$WEB2 RDO group using CEDA.

Figure 3 shows typical output from this sample, which can be accessed as

http://samplehost/web2.0/html/dfh$w2q1.html, where samplehost is the host

name (and port, if necessary) of the CICS Transaction Server for z/OS V4.1

system. This sample uses RESTful HTTP messages to write personnel data to

a CICS temporary storage queue, which can then be consumed as an

Atom feed.

Figure 3: Personnel data sample

Deploy CICS data Atom feeds into your mashups in minutes
Page 14

The sample is described in full detail in the CICS Transaction Server

for z/OS V4.1 Information Center. It uses a JavaScript file dfh$w2w2.js to

perform the Ajax communication between the HTML and CICS. Because this

script is delivered as static content from CICS, it meets the requirements of

the Same Origin Policy.

Using the IBM Mashup Center
The IBM Mashup Center is a collection of tools to construct business

mashups with little or no programming effort. Its two major components are

the IBM InfoSphere™ MashupHub and IBM Lotus® Mashups.5 These com-

ponents can both be used to consume the feeds produced by CICS, and dis-

play their contents in a variety of representations using only graphical drag

and drop interfaces. The InfoSphere MashupHub can be used to transform

the contents of a feed into a different structure. It also provides the ability

to save widgets developed across your enterprise into a catalog, which can

then be used as a source for developing further mashups and RIAs in

Lotus Mashups.

The InfoSphere MashupHub also acts as an Ajax proxy, which hides the

fact that different feeds are sourced from different servers. This avoids prob-

lems introduced by the Same Origin Policy since—as far as the client applica-

tion is concerned—all the mashup data originates from the same server.

Because CICS provides fully functional Atom feeds which are primary

input components for the Mashup Center, it is very easy to deploy the

CICS feed into a mashup in a matter of minutes.

The IBM Mashup Center provides a

collection of tools to construct

business mashups with little or no

programming effort.

Highlights

Deploy CICS data Atom feeds into your mashups in minutes
Page 15

Accessing a CICS feed from the IBM Mashup Center

You can access the content of a CICS Atom feed directly from Lotus Mashups

by using the Data Viewer widget. Unlike most feed readers, this widget under-

stands XML content within a feed and displays it as a table under headings

that are the same as the XML element names. So if you have installed the

DFH$WEB2 group and also set up the FILEA sample file, you can immedi-

ately display the contents of the file by entering the URL http://samplehost/

atom/f/filea/feed in the “Edit Settings” for the Data Viewer. The results

should be similar to Figure 4, which is the same data that you would see

using the AMNU transaction from a 3270 transaction in CICS, but in a much

more visually appealing style.

Figure 4: View FILEA in the Lotus Mashups Data Viewer

Deploy CICS data Atom feeds into your mashups in minutes
Page 16

Using MashupHub to transform CICS feed data

Unless you designed the contents of your CICS feed very carefully, it is quite

likely that the data in the feed is not in a format that is suitable for consump-

tion by other widgets. For example, the CICS Personnel Data sample feed is

designed to deliver the latitude and longitude of each person’s residence, but

the OpenStreetMap widget that is provided with Lotus Mashups cannot accept

these as two separate values. But the InfoSphere MashupHub provides serv-

ices to transform the contents of one feed and output them as another feed

after applying some transformations to the data. So the latitude and longitude

emitted by CICS can be transformed into a comma-separated pair of values

(which must be specified with longitude before latitude), which can then be

accepted by the OpenStreetMap widget of LotusMashups. As shown in

Figure 5, InfoSphere MashupHub uses a graphical “wiring” representation for

connecting widgets together.

Figure 5: Transforming a CICS feed in IBM InfoSphere MashupHub

InfoSphere MashupHub provides

services to transform the contents

of one feed and output them as

another feed after applying trans-

formations to the data.

Highlights

Deploy CICS data Atom feeds into your mashups in minutes
Page 17

Once the transformation widget above has been saved in the InfoSphere

MashupHub catalog, it can then be used in Lotus Mashups (rather than the

raw CICS feed). The resultant mashup takes the personnel data from CICS,

transforms the person’s residence location information, and displays it on the

map, as shown in Figure 6.

Figure 6: Transformed CICS feed data linked to OpenStreetMap

Using Enterprise Generation Language (EGL)
While some mashup applications may be easy to assemble with a tool such as

IBM Mashup Center, others may require more extensive logic and processing

to be created in JavaScript. EGL is a source-code language and RIA develop-

ment technology featured in IBM Rational Business Developer and in three

other products, including Rational Developer for System z and EGL

Community Edition, a free RIA development environment.6

Deploy CICS data Atom feeds into your mashups in minutes
Page 18

EGL facilitates taking corporate data or syndication feeds like Atom—as

processed by long-standing, non-EGL applications—and making that

data available to Web browsers as traditional Web-based or Web 2.0-style

RIA applications. EGL provides two significant benefits for source-

code development:

● An easy-to-use visual development environment that provides many con-
veniences, especially at development time

● A business-focused development language to help the developer
think about business issues instead of the details of relatively
low-level technologies

The EGL Rich UI provides an interactive source-code editor that can help the

EGL developer visually assemble or quickly write a client-side RIA that is

conceptually simple and is ultimately deployed as JavaScript.7 Developers can

follow a wizard-driven four-step process to access any service from the EGL

Rich UI application. The service can be RESTful (such as an Atom feed from

CICS) or SOAP-based (as is traditional for Web services), or services can be

created for resources such as relational databases, programs (including CICS

transactions and z/OS batch programs), files (including z/OS-based VSAM

files), IBM WebSphere® MQ message queues, and more.

Services accessed by the EGL Rich UI can be displayed, acted upon, or

manipulated using a set of included RIA widgets, similar to those in the

IBM Mashup Center. Rational Business Developer also helps create unique

EGL programs and widgets to process and refine the data from the services in

customized ways, creating functionally complete applications which provide

the responsiveness and feel of a full-fledged desktop application.

EGL facilitates taking corporate

data or syndication feeds like Atom

and making that data available to

Web browsers as traditional

Web-based or Web 2.0-style

RIA applications.

Highlights

Deploy CICS data Atom feeds into your mashups in minutes
Page 19

Summary
With CICS Transaction Server for z/OS V4.1 you can now rapidly expose

legacy CICS data into the modern arena of RIAs and mashups, simply by

installing an Atomservice resource and its associated configuration files. Once

the data is published as a feed, it can be consumed by a number of browser-

based processes and desktop widgets.

Without any further transformation by the client, the data can be viewed as

a simple feed. But with little programming effort in the browser, using the

services of widely available JavaScript program libraries, the business data

derived from CICS can ultimately be absorbed into modern graphical display

formats. It can also be composed with data from other servers to produce

novel views of the data that would be impossible within CICS itself.

Furthermore, when the CICS data is integrated into the graphical tools

provided with the IBM Mashup Center or a development environment such as

Rational Business Developer and EGL, the production of complex mashup

visual representations can be performed swiftly, with confidence, and with lit-

tle to no programming.

For more information
To learn more about enriching your rich Internet applications with CICS data

Atom feeds, or to upgrade to IBM CICS Transaction Server for z/OS V4.1,

please contact your IBM sales representative or IBM Business Partner, or

visit: ibm.com/cics

The business data derived from

CICS can ultimately be absorbed

into modern graphical display for-

mats swiftly, with confidence, and

with little to no programming.

Highlights

http://www.ibm.com/cics

© Copyright IBM Corporation 2009

IBM Corporation
IBM Systems and Technology Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
September 2009
All Rights Reserved

IBM, the IBM logo, ibm.com and CICS are
trademarks or registered trademarks of
International Business Machines Corporation in
the United States, other countries, or both. If
these and other IBM trademarked terms are
marked on their first occurrence in this
information with a trademark symbol (® or ™),
these symbols indicate U.S. registered or
common law trademarks owned by IBM at the
time this information was published. Such
trademarks may also be registered or common
law trademarks in other countries. A current list
of IBM trademarks is available on the Web at
“Copyright and trademark information” at
ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks and logos
are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

UNIX is a registered trademark of The Open
Group in the United States and other countries.

Other company, product, or service names may
be trademarks or service marks of others.

References in this publication to IBM products
or services do not imply that IBM intends to
make them available in all countries in which
IBM operates.

The information contained in this documentation
is provided for informational purposes only.
While efforts were made to verify the
completeness and accuracy of the information
contained in this documentation, it is provided
“as is” without warranty of any kind, express or
implied. In addition, this information is based on
IBM’s current product plans and strategy, which
are subject to change by IBM without notice.
IBM shall not be responsible for any damages
arising out of the use of, or otherwise related to,
this documentation or any other documentation.
Nothing contained in this documentation is
intended to, nor shall have the effect of,
creating any warranties or representations from
IBM (or its suppliers or licensors), or altering the
terms and conditions of the applicable license
agreement governing the use of IBM software.

IBM customers are responsible for ensuring
their own compliance with legal requirements. It
is the customer’s sole responsibility to obtain
advice of competent legal counsel as to the
identification and interpretation of any relevant
laws and regulatory requirements that may
affect the customer’s business and any actions
the customer may need to take to comply with
such laws.

1 The Atom Syndication Format.
www.ietf.org/rfc/rfc4287.txt

2 The Atom Publishing Protocol.
www.ietf.org/rfc/rfc5023.txt

3 IBM CICS Transaction Server for z/OS,
Version 4 Release 1 Information Center.
http://publib.boulder.ibm.com/
infocenter/cicsts/v4r1/index.jsp?topic=
/com.ibm.cics.ts.home.doc/welcomePage/
WelcomePage.html

4 For more information on Rational Developer for
System z, please refer to the IBM white paper
entitled “Achieving business resilience
through integrated systems management,”
September 2009, or visit
http://www-01.ibm.com/software/awdtools/rdz

5 IBM Mashup Center.
www.ibm.com/software/info/mashup-center

6 EGL Community Edition.
http://www-01.ibm.com/software/rational/
products/eglce

7 For tutorials, case studies, and additional
information on EGL, visit the EGL Café at
www.ibm.com/rational/eglcafe, or refer
to Enterprise Web 2.0 with EGL
(www.mc-store.com/5107.html)

ZSW03133-USEN-00

http://www.ibm.com
http://www.ibm.com/legal/copytrade.shtml
http://www.ietf.org/rfc/rfc4287.txt
http://www.ietf.org/rfc/rfc5023.txt
http://www.publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=/com.ibm.cics.ts.home.doc/welcomePage/WelcomePage.html
http://www.publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=/com.ibm.cics.ts.home.doc/welcomePage/WelcomePage.html
http://www.publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=/com.ibm.cics.ts.home.doc/welcomePage/WelcomePage.html
http://www.publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=/com.ibm.cics.ts.home.doc/welcomePage/WelcomePage.html
http://www-01.ibm.com/software/awdtools/rdz
http://www.ibm.com/software/info/mashup-center
http://www-01.ibm.com/software/rational/products/eglce
http://www-01.ibm.com/software/rational/products/eglce
http://www.ibm.com/rational/eglcafe
http://www.mc-store.com/5107.html

