
CICS icon of progress: http://www.ibm.com/ibm100/us/en/icons/cics/

Understand how the new features
in CICS improve Java workloads
and application lifecycle management

August 2011

Running Java
workloads with JVM
servers and OSGi

Fraser Bohm, Lead Developer, CICS Transaction Server
Paul Cooper, Developer, CICS Transaction Server
Ben Cox, Developer, CICS Transaction Server
Elisabetta Flamini, Developer, CICS Transaction Server
Ivan Hargreaves, Developer, CICS Transaction Server
Matthew Webster, Technical Strategist, CICS Transaction Server

http://www.ibm.com/ibm100/us/en/icons/cics/

Running Java workloads with JVM servers and OSGi

Executive Summary

This paper sets out the compelling enhancements to the Java support in CICS®
Transaction Server Version 4.2. Although it has been possible to run Java applications
in CICS Transaction Server (CICS TS) since Version 1.3, the significant strides made in
CICS TS 4.2 represent a game-changing shift in the technology.

This paper describes a number of areas where both significant evolutionary
enhancements, as well as fundamental architectural changes, have dramatically raised
the value proposition for having CICS applications written in Java and for reusing
existing Java components to the benefit of existing and new CICS applications. In
particular the paper explores the benefits of the JVM server hosting capabilities, the
new underlying 64-bit JVM, OSGi support for application development and
deployment, and the use of Axis2 for Java-based web services.

These capabilities provide the following key benefits:

• The JVMSERVER resource provides users with a single resource to manage a

complete JVM and related application hosting capabilities. It also radically
reduces the storage required to satisfy concurrent tasks. Each task will run on
a thread in the JVM, rather than requiring a whole JVM.

• Concurrency is vastly increased, with up to 256 transactions running
simultaneously in the same JVM server. The reduced overheads, along with
generous heap sizes available in 64-bit JVMs, offer significantly better Java
scalability than in previous versions.

• The JVM server represents a move to a more industry standard Java
experience in CICS. This results in a number of distinct benefits:

o The JVM server provides a more industry standard server-side
programming model. Applications can share an ‘engine’ as well as
sharing data between tasks. This greatly improves the potential for
reuse of existing Java components.

o Support for the OSGi standard means that applications written for the
JVM server (and migrated from pooled JVMs) will be packaged as OSGi
bundles. This allows dynamic deployment, replacement, and versioning
of applications within the JVM server. In other words, you can upgrade,
enhance, or patch applications without restarting the JVM.

o Standard tools can be used for debugging, problem determination, and
performance monitoring. This allows for skills reuse and knowledge
transfer.

• CICS Explorer™ provides development support, allowing applications to be
developed on the client PC in familiar tools such as Eclipse and Rational®
Application Developer for System z®. This allows significant reuse of
development skills and knowledge.

• Costs are reduced through the use of IBM® System z Application Assist
Processors (zAAP) and IBM System z Integrated Information Processors (zIIP).

• Rapid web service development is provided in Java through support for JAX-
WS applications.

2

Running Java workloads with JVM servers and OSGi

Introducing the JVM Server

CICS support for Java in CICS TS 4.2 has taken a huge leap forward. A new model for
Java has been introduced which provides a wealth of benefits over previous releases.
This new model offers vast storage savings, massively increased concurrency, greatly
increased scalability - and a familiar and standardized Java development environment.

While these are just some of the headline benefits, further benefits are realized by the
model’s stance as a first class CICS resource. The JVMSERVER resource acts as a focal
point for configuration, provides centralized control, and manages the interface
between CICS and the underlying JVM.

The JVM server

The JVM server model is essentially a single, long-running JVM placed under the
control of CICS. Its defining principle is the ability to run many CICS tasks
concurrently within the same JVM. As one might expect, compared with the pooled
JVM model which requires an exclusive JVM per task, the storage savings are vast.

In the new model, each CICS task that requires Java support is switched onto a
thread within the JVM. The thread is taken under the control of CICS dispatcher and
becomes a new CICS OTE TCB type called a T8.

Not only can multiple CICS transactions target the same JVM and run concurrently,
but every CICS task in this environment is capable of executing Java code, and
perhaps more importantly, of making CICS calls and accessing CICS resources and
data from Java.

Figure 1. Comparison of a JVM server and pooled JVM environment

3

Running Java workloads with JVM servers and OSGi

The JVMSERVER resource

The foundation of this new model is the JVMSERVER resource. The JVMSERVER
resource encapsulates the JVM and provides control over its life cycle. By keeping the
JVM lifecycle distinct from the run time, start-up costs and application bootstrap times
are no longer incurred on the critical path.

The JVMSERVER resource also provides a configurable thread limit. The thread limit
determines the number of threads that a JVM server can run concurrently (and

Figure 2. Life cycle of JVMSERVER resource and JVM server

4

Running Java workloads with JVM servers and OSGi

therefore the number of tasks it can serve concurrently). By varying this value the
customer can throttle the number of threads (T8 TCBs) available for concurrent
activity. Any request that arrives while all threads are in action will cause that task to
queue until a thread becomes available.

Additional fine tuning and low-level configuration of both the JVM and the underlying
Language Environment enclave can be achieved using the Language Environment
runtime options and JVM profile artifacts. Each time the JVMSERVER resource is
enabled, it rereads configuration from these files, allowing customers to change the
Language Environment enclave characteristics or the JVM settings. Typically
customers may want to generate Language Environment storage reports, or tune the
JVM heap size, garbage collection model, or JIT settings.

The resource also provides a convenient way to view the workload and other metrics.
Information is displayed for values such as the thread count, maximum and current
heap sizes, heap occupancy, cumulative thread count, and garbage collection.

Scalability, concurrency, and performance

The JVM server gives CICS the ability to handle many more Java tasks in one region
than ever before. Impressively, the JVM server also scales horizontally – this means
that multiple JVM servers can be deployed into a single CICS region. Theoretically you
could even choose to deploy hundreds of JVM servers into one CICS region.

The beauty of this horizontal scaling is two-fold. Firstly, application and workload

5

Figure 3. JVMSERVER resource provides configuration for JVM server on start up

Running Java workloads with JVM servers and OSGi

isolation can be achieved, and secondly, perhaps more importantly, each JVM server
can be configured with a different set of runtime components or even different sets of
middleware components. This flexibility keeps each server lightweight and specific to a
particular need.

Note that each JVM server has a maximum thread limit of 256, and each CICS region
has a limit of 1024 T8 TCBs over all JVM servers. Furthermore, the JVM server utilizes
a 64-bit JVM. Heap sizes are no longer constrained by 31-bit storage, and the number
of JVMs you can run in the same CICS address space is significantly increased.

Despite the added complexity of thread management, TCB dubbing, and the JNI
attach of native threads, the CPU path length of JVM server tasks compared to pooled
JVMs in CICS TS 4.2 are extremely closely matched. In effect, by using a JVM server
you can achieve big storage reductions and enhanced scalability for no extra CPU cost.

CICS TS 4.2 uses the IBM 6.0.1 64-bit JVM (Java Virtual Machine) instead of the 31-
bit JVM. In a 64-bit Java environment, the Java heap is moved above the bar,
alleviating 31-bit storage constraints. This allows for greater scalability of applications;
Java heap sizes can be increased to cope with increasingly complex applications and
to allow highly concurrent workloads to be run in a JVM server. It also allows for CICS
region consolidation, with the capability to run many more JVMs in a single CICS
address space. The IBM 6.0.1 JVM is additionally optimized for the zEnterprise®
hardware, offering significant performance improvements over previous IBM JVMs.

All of these improvements to the Java model lead to scalability way beyond that of
previous releases of CICS. The JVM server, with its reduced overheads and large
‘above the bar’ heap, has yielded significant advantages for CICS TS 4.2.

Server-side Java enablement
The benefits, however, don’t stop there. With the advent of JVM server comes a
significant increase in the types of Java workload that can run in CICS. Most notable is
the ability to run a ‘server’ application within a JVM server and handle multiple
requests for service. Due to its (now) more standard architecture, CICS TS 4.2 has
been opened up to countless Java frameworks – it gives CICS the potential to plug in
‘application servers’ as and when new capabilities become available. A further benefit
of using a single shared JVM, and particularly relevant to the ‘application server’
model, is the ability to share data and state.

Figure 4. Routing options for running work in a JVM server

6

Running Java workloads with JVM servers and OSGi

Application development and deployment

Traditionally it has been very difficult to develop and deploy mainframe applications
from a PC based environment. However, with strong tooling support from the CICS
Explorer SDK it is no longer an inhibitor; CICS now has a modern and flexible
development and deployment offering that enriches the end-to-end Java experience.

The CICS Explorer SDK combines all the power of Eclipse and its Java development
kit, with a deployment model that allows you to create and upload application code
directly into the JVM server.

This ease of deployment can be achieved because the JVM server runs an OSGi
framework into which applications can be deployed. OSGi is a component model for
Java, offering very attractive benefits such as dynamic versioning of application code
and dependency checking. It also removes the reliance on error-prone class paths.
Essentially, you can upgrade, enhance, version, or patch applications without
restarting the JVM.

As you would expect, the Explorer SDK comes with all the CICS SM perspective
abilities of its lightweight ‘Explorer’ counterpart. You don’t need to leave the comfort
of Eclipse for all your resource definitions and installation work. Moreover, CICS
Explorer is the recommended way to view your OSGi bundles and OSGi services
(applications).

Finally, there is the added benefit of standard Java debugging. Eclipse can attach a
debugger straight to the JVM server. The single JVM makes it significantly easier to
debug than the pooled model because all workloads appear as threads in the JVM -
previously even determining which JVM you needed to attach to was challenging.

OSGi and CICS

OSGi in CICS complements CICS support for service-oriented architecture (SOA)
applications. Web services and Software Component Architecture (SCA) enables CICS
as a platform to run SOA enterprise applications and integrates CICS in a large SOA
enterprise.

OSGi support allows you to manage and run Java applications based on the main
principles that inspired SOA: service based, reusable, and loosely coupled.

OSGi places itself between the service-oriented architectures and the object-oriented
systems. While SOA enterprises are constituted of large integrated systems and
object-oriented systems are composed of collaborative objects, OSGi is based on
components (bundles) that are coarser than objects, but with all of them residing in
one system.

Modularity and use of services in OSGi allow Java applications to decouple data from
the business logic and to dynamically discover and bind new services registered at run
time in an OSGi service registry.

Services in OSGi also have the merit to solve one of the main limitations of object-

7

Running Java workloads with JVM servers and OSGi

oriented programming: decoupling instances of objects (otherwise bound at
instantiation time). Because OSGi is component oriented, services provided by
bundles can be reused and shared among different Java applications.

OSGi provides a set of Java Application Programming Interfaces (APIs) to handle the
life cycle and the versioning of bundles. Bundles can be dynamically installed and
uninstalled and their exposed services registered or made unavailable. Multiple bundle
versions can coexist in the same OSGi framework and bundles upgrade can be
transparent to the user applications, as continuity of services can be granted during
the upgrade.

How CICS exploits OSGi
CICS uses the Equinox version 3.6.1 implementation of the OSGi framework, which
supports version 4 of the OSGi Service Platform specification. Through OSGi, CICS
implements the dynamic deployment of Java applications into the JVM, as opposed to
the traditional class path method, which requires new application classes to be added
to the class path, and the JVM restarted to install or update Java applications.

BUNDLES are the resources used by CICS to control the life cycle
(install/uninstall/start/stop/register services/unregister services) of OSGi bundles.
The new CICS Explorer SDK allows you to specify CICS main classes into the OSGi
bundle manifest file. When an OSGi bundle is deployed into a JVM server, CICS
registers the specified main classes into the OSGi service registry, and the new
services become dynamically available to be used by other bundles in the framework
or by CICS when a CICS Java program is linked.

The following figure illustrates how CICS binds an OSGi service when a CICS Java
program is run.

Figure 5. When a Java program is called, the corresponding OSGi bundle is looked
up in the service registry and bound

8

Running Java workloads with JVM servers and OSGi

CICS relies on OSGi to provide a smooth and continuous Java application upgrading
path. Duplicate disabled services, installed by multiple versions of the same bundle,
automatically become active when the currently active service is unregistered.

The CICS Explorer SDK provides the ability to specify aliases for duplicate services, so
that multiple versions of the same bundle can be simultaneously operational on the
same JVM server.

OSGi support in CICS TS 4.2 makes the JVM server a flexible and maintainable
platform for the deployment and the execution of available and reliable Java
applications.

CICS Explorer SDK

The CICS Explorer SDK plug-in delivers an end-to-end experience for developing,
deploying, and managing CICS Java applications. When the plug-in is installed into the
appropriate prerequisite Eclipse-based IDE, users can take advantage of the concise
documentation, built-in examples, and simple deployment to have a CICS application
running in minutes. Furthermore the full-function CICS Explorer perspectives allow
those with an administrator role to create and install the necessary JVM server or
pooled JVM environment and CICS resource definitions.

An application that runs in a JVM server is developed as one or more Eclipse plug-in
projects, each of which produces an OSGi bundle. An accompanying CICS bundle
project is used to package, deploy, and install the finished application into a particular

9

Figure 6. Screen capture of the CICS Explorer SDK

Running Java workloads with JVM servers and OSGi

CICS region or CICSplex, utilizing exactly the same wizards and process as event
processing and Atom feeds. This allows different combinations of code and
configuration, for example a JVM server name, to be used in certain environments. It
also allows platform independent code or libraries to be shared between CICS and
other OSGi-enabled server runtime environments such as WebSphere® Application
Server.

There are 5 easy steps to getting a CICS Java application running:

1. Define your target platform.

Select the CICS TS 4.2 Runtime target to use the latest Version 4.2 JCICS and
Java 6. This also ensures you don’t accidentally use an API that is not available
in the intended CICS runtime environment. Optionally customize the target by
adding any IBM, locally written, or third party library dependencies you need
such as WebSphere MQSeries®.

2. Create your Eclipse plug-in project.

Use the standard New Project wizard to create your own OSGi bundle, or
choose one of the samples provided. Add any required packages to the OSGi
bundle manifest. Your previous choice of target platform ensures only packages
in your CICS server environment are available.

10

Running Java workloads with JVM servers and OSGi

3. Write your CICS program.

Create a standard CICS main class POJO as with previous versions of CICS.
Direct access to Javadoc for all JCICS APIs is available from within the SDK.
Declare the new class in the OSGi manifest so that CICS can find it at run time.

4. Create your CICS bundle.

Use the existing New CICS Bundle Project wizard to deploy your Java
application. Use the New CICS OSGi Bundle wizard to decide which Eclipse plug-
in projects to include and which JVM server will be used at run time.

11

Running Java workloads with JVM servers and OSGi

5. Deploy your CICS application.

Select Export to z/OS UNIX File System… from the pop-up menu for your
CICS bundle project to send it over to CICS and install it with a CICS bundle
definition in your CSD or CICSPlex® System Manager BAS. Open the new OSGi
Bundles and OSGi Services views to see if the application is ready to run. If
there are any problems check the JVM trace file using the z/OS® UNIX Files
view for any error messages.

12

Running Java workloads with JVM servers and OSGi

If you make any changes just discard the CICS bundle and repeat step 5. If you want
to share your application with colleagues use the Eclipse team support to check the
relevant projects into Rational Team Concert, SVN, or any standard repository.

The Eclipse-based development environment offers a number of options for customers
migrating Java applications from earlier versions of CICS, for those wishing to
maintain co-existence with the pooled JVM run time or others simply taking advantage
of the improved experience of using OSGi. Applications destined for JVM server must
be deployed as OSGi bundles. Eclipse offers the following techniques to help:

• A few clicks can convert your existing Java project into a plug-in project. The
Eclipse Plug-in Development Environment (PDE) checks for unsupported
dependencies. You can still run the deployed code in a pooled JVM by adding
the OSGi bundle JAR files to the class path in your JVM profile.

• Use the new project wizard to take an existing JAR file and automatically
“inject” the required OSGi manifest file. The code does not need to be
recompiled, reducing the need for extensive retesting. Use this technique if
you want to redeploy to both pooled JVMs and JVM servers.

• Use the new project wizard to “wrapper” an existing JAR file and automatically
add the required OSGi manifest file. Use this approach if licensing or other
restrictions prevent artifact modification.

Included with the SDK is an Eclipse target platform template for every supported

13

Running Java workloads with JVM servers and OSGi

version of CICS TS, defining the correct level of JCICS and JRE. This ensures that
application developers only use those Java APIs that are supported in the intended
CICS server. Most importantly, whether your plans to move to JVM server are long-
term or short-term, you can start taking advantage of OSGi today.

The Explorer SDK is aimed at both experienced Java application developers who are
new to CICS and those with a CICS application development background. The plug-in
extends the familiar Java developer UI with the documentation and tools necessary to
target a CICS environment.

CICS system programmers who are evaluating Java support or working with
application developers to get their applications running will find a full function CICS
Explorer in the SDK. While the included samples are intended to show developers how
to write CICS Java applications, no experience or understanding is required to create,
deploy, and install them. Full access to the sample definitions and JVM server profiles
is also available using the SDK.

Web services connectivity using Axis2

CICS TS 4.2 offers significant new options for hosting web services workloads. These
improvements encompass three main areas:

• Reduction of costs through the use of z/OS Application Assist Processors
(zAAP).

• Rapid web service development in Java through support for JAX-WS
applications.

• Hosting of WSDL documents within CICS.

CICS TS 4.2 also extends the Web 2.0 Atom feeds capability from CICS TS 4.1 to offer
a simplified approach for exposing CICS data sources to external users.

Reduction of costs through the use of zAAP

CICS TS 4.2 exploits an open technology called Axis2 in order to reduce the cost of
hosting web services in CICS. Axis2 is a Java based project from the Apache
Foundation, and is widely used for implementing SOAP support in Java based
environments. CICS TS 4.2 implements a new deployment option for SOAP PIPELINE
resources which allows much of the infrastructure processing to be performed in Java
within a CICS JVM server. This new option uses Axis2, and is eligible to run on zAAP
processors.

Switching an existing CICS pipeline to use the zAAP enabled Axis2 mode in CICS TS
4.2 involves a simple configuration change. For some workloads this can result in
>10% of the workload being zAAP eligible. However, this potential cost saving comes
at a cost of additional path length, so response times could suffer slightly. Not all
applications will experience the same cost reduction results when switched to run
under Axis2. The types of applications that will see the best results are those where
the XML parsing and processing costs are especially high; for example, where there is
a significant quantity of XML parsing, and where the XML contains a high degree of
complexity. For simple applications the cost of switching into the Java environment

14

Running Java workloads with JVM servers and OSGi

can outweigh the benefit.

The use of Axis2 is optional. It is both simple to enable, and simple to disable. It is
supported in both provider and requester modes, and requires no application changes.
It uses the same web service bindings that are familiar from the existing web service
support in CICS. If you have spare zAAP capacity and complex web services in CICS,
then this could offer a significant cost reduction.

Rapid web service development in Java with JAX-WS

CICS TS 4.2 introduces a significant new application development option for
developers who are comfortable working in Java. JAX-WS is a Java-based technology
for writing web services in the Java programming language. It supports both bottom-
up and top-down development styles, and is a regular part of Java 6.0. Provider mode
JAX-WS applications can be hosted in the Axis2 environment within CICS. They run in
the same JVM server as used by the Axis2 pipeline within CICS.

This close integration between the application and Axis2 environments ensures the
most efficient use of the Axis2 environment, the most effective use of the zAAP
processors, and the closest possible fidelity to application development styles used in
other Java based hosting environments.

JAX-WS applications are a new programming model for CICS, and should not be
confused with existing CICS web services concepts. JAX-WS applications can be
hosted alongside web service binding based web services, but they are not the same
thing. A JAX-WS application is always written in Java, it has a different deployment
mechanism, and does not have a WEBSERVICE resource in CICS. This new concept
provides a new option when considering web services for CICS; it does not interfere
with any of the existing options.

JAX-WS can assist in scenarios where the CICS web services assistants are unable to
support a complex WSDL document. Some WSDL documents use constructs that
DFHWS2LS does not support; constructs such as recursion, or recurring model
groups. In such scenarios the use of a JAX-WS based Java application could be
considered as an alternative mechanism for implementing the web service. The JAX-
WS generator is used to generate a Java template from the WSDL document. An
application developer must then implement the appropriate business logic. The
resultant Java program can interact with existing CICS assets through use of the
JCICS API.

JAX-WS is an ideal technology for any organisation with Java programming skills and a
requirement to host a web service in CICS.

Hosting of WSDL documents in CICS

A common concern for organisations deploying web services is the issue of WSDL
proliferation and deployment. Each web service has an associated WSDL document to
describe its programming interface. The problem of how to share that WSDL with
client-side developers is something that each organisation addresses differently, as is
the issue of how to ensure that the document is up-to-date with respect to any

15

Running Java workloads with JVM servers and OSGi

subsequent changes.

Use of a web services registry such as the WebSphere Service Registry and Repository
(WSRR) can significantly assist with these scenarios, but there still remains a
requirement to load the repository with the WSDL.

An informal protocol exists which allows a WSDL document to be hosted alongside the
associated service. This allows a simple web browser to recover the WSDL using the
URI at which the service itself is deployed. This protocol is implemented in, for
example, WebSphere Application Server, and is something that customers have
requested from CICS.

If the WSDL document is deployed to CICS along with the associated web service,
then under CICS TS 4.2 an additional URIMAP resource is installed which will allow the
associated WSDL document (or family of documents in a ZIP archive file) to be
returned as a response to an HTTP GET request that targets the URI of the service,
suffixed with “?wsdl”.

For example, if there is a service hosted in CICS at the following relative URI:

/services/exampleService/sales

Then CICS will return the associated WSDL document if it receives an HTTP GET
request for the following relative URI:

/services/exampleService/sales?wsdl

This allows a simple method to query CICS for an up-to-date copy of the WSDL.

16

Running Java workloads with JVM servers and OSGi

Summary – Conclusion

This paper has described how both significant evolutionary enhancements and
fundamental architectural changes have dramatically raised the value proposition for
developing CICS applications in Java. Not only does CICS provide the development
environment and runtime support to reuse existing Java components to the benefit of
existing and new CICS applications, but the reduction of costs through using the IBM
System z Application Assist Processors (zAAP) and the IBM System z Integrated
Information Processors (zIIP) make this an attractive workload to run in CICS.

The JVM server represents a move to a more industry standard Java experience in
CICS to provide a server-side programming model where applications can share an
‘engine’ as well as sharing data between tasks. This greatly improves the potential for
reuse of existing Java components.

Support for the OSGi standard means that applications written for the JVM server or
migrated from pooled JVMs can be packaged as OSGi bundles to enable dynamic
deployment, replacement, and versioning of applications within the JVM server
without needing to restart the JVM.

The skills required to develop, debug, and monitor Java applications are based around
familiar tools, such as Eclipse, CICS Explorer, and Rational Application Developer for
System z. The availability of standard tools for debugging, problem determination,
and performance monitoring enhances skills reuse and knowledge transfer.

The advantages of the JVM server also extend to web services, through the support
for JAX-WS applications.

The dramatic enhancements to the Java support in CICS TS 4.2 represent a game-
changing shift in the technology used to run Java applications in CICS. There has
never been a better time to consider using Java applications in CICS TS.

Further reading

1. Java support in CICS:
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.java.do
c/JVMserver/JVMsupport.html

2. CICS Explorer downloads, including the SDK:
http://www.ibm.com/software/htp/cics/explorer/download/

17

http://www-01.ibm.com/software/htp/cics/explorer/download/
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.java.doc/JVMserver/JVMsupport.html
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.java.doc/JVMserver/JVMsupport.html

Running Java workloads with JVM servers and OSGi

© Copyright IBM Corporation 2011

US Government Users Restricted
Rights – Use, duplication or
disclosure restricted by GSA ADP
Schedule Contract wit IBM Corp.
IBM, the IBM logo, ibm.com,
CICS, CICS Explorer, CICSPlex,
MQSeries, Rational, System z,
WebSphere, zEnterprise, and
z/OS are trademarks or
registered trademarks of
International Business Machines
Corp., registered in many
jurisdictions worldwide. Java and
all Java-based trademarks and
logos are trademarks or
registered trademarks of Oracle
and/or its affiliates. UNIX is a
registered trademark of The
Open Group in the United States
and other countries. Other
product and service names might
be trademarks of IBM or other
companies. A current list of IBM
trademarks is available on the
Web at Copyright and trademark
information at
www.ibm.com/legal/copytrade.sh
tml. All statements regarding IBM
plans, directions, and intent are
subject to change or withdrawal
without notice.

18

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

	Executive Summary
	Introducing the JVM Server
	The JVM server
	The JVMSERVER resource
	Scalability, concurrency, and performance
	Server-side Java enablement

	Application development and deployment
	OSGi and CICS
	How CICS exploits OSGi

	CICS Explorer SDK
	Web services connectivity using Axis2
	Reduction of costs through the use of zAAP
	Rapid web service development in Java with JAX-WS
	Hosting of WSDL documents in CICS

	Summary – Conclusion
	Further reading

