
CICS integration solutions
White paper

Options for integrating
CICS applications in an SOA.

September 2007

By Mark Cocker, CICS technical strategy and planning,
IBM Hursley Lab

http://www.ibm.com/us/

Options for integrating CICS applications in an SOA.
Page 2

2	 Executive	summary

3	 Technical	transformation	

4	 	CICS	applications	that	can		

be	transformed

7	 Web-based	access	to		

CICS	programs

9	 Use	the	right	architecture	to		

connect	to	CICS	Transaction	Server

13	 Strategic	access	options

22	 Summary

23	 For	more	information

Contents
Executive summary

Today, more and more companies are evolving to embrace business principles

that enable them to integrate business processes end to end across the company

and with key partners, so that they can respond flexibly and rapidly to

new circumstances. As an IBM CICS® software user, you probably have a huge

investment in CICS applications that play a critical role in your business

processes, and must play an equally vital role in your business initiatives.

In moving to an environment that allows this kind of agility, your business

must undergo both organizational transformation (moving from independent

departments to shared business resources) and technical transformation

(moving from discrete applications to connected and interdependent IT

components). By adopting open standards, you enable your client and server

components to be hosted in the environment most appropriate to their

requirements, while still being able to interact easily — independent of

hardware, runtime environment and programming language.

However, most IT systems — including CICS applications — were not designed

with these objectives in mind. These systems constitute tightly coupled and

highly optimized core assets, supporting critical processes that must be

protected from disruption. Such factors sometimes make it difficult to change

these applications; yet rewriting them is generally too costly, time-consuming

or risky to be a practical option.

This white paper shows how the robust CICS systems that you rely on today

can easily deliver your business applications to modern service oriented

architectures (SOAs), with first-class support for Web services, Java™ 2

Platform, Enterprise Edition (J2EE), IBM WebSphere® MQ and other access

options. IBM CICS Transaction Server enables you to use programs without

changing them, combining them into higher-level services using graphical

mapping and modeling tools. Over time, you can develop brand-new services

that meet your customers’ demanding needs. By using an SOA approach, you

can more-closely align your IT systems to the requirements of your business.

You can also reap the benefits that come with more-adaptable IT systems

together with cost savings and productivity improvements.

Options for integrating CICS applications in an SOA.
Page �

Technical transformation

A good starting point for this discussion is the IBM SOA reference architecture

(shown in Figure 1), a technical framework for enterprise transformation that

enables software to be delivered as reusable, shareable services. This architecture

provides the ability to bridge disparate systems spread across your entire

enterprise. And because its components are modular, you can start small and

grow your implementation to cover your evolving integration needs, both

internally and externally.

Figure 1. IBM SOA reference architecture

Within the reference architecture, there are three distinct styles

of transformation.

User-interface modernization

This style transforms the user experience through facilities in the interaction

services box. It aims to reach new customers while helping to improve

productivity and reduce costs. Using this style of transformation can also help

reduce training costs and increase overall user satisfaction. This method is the

most accessible because it requires the lowest level of investment. You can

achieve a rapid return on investment (ROI) through improved user interfaces

with a modern interface design, and enhanced productivity with optimized

interaction patterns.

Business innovation and optimization services
Business modeling Business monitoring Business dashboards

Infrastructure services
Workload management Virtualization High availability

Interaction service
Ad hoc composition

User integration
Device integration

ESB
Interoperability Mediation ESB Registry

Information services
Master data management
Information integration

Data management

Process services
Service choreography

Business rules
Staff

Partner services
Partner management

Protocol
Document handling

Access services
Service enablement

Object discovery
Event capture

Business application services
Component

Data
Edge

D
ev

el
op

m
en

t s
er

vi
ce

s
Im

pl
em

en
t

D
ep

lo
ym

en
t

 A

ss
et

 m
an

ag
em

en
t

IT
 s

er
vi

ce
 m

an
ag

em
en

t
Se

cu
rit

y

Po
lic

y

 I
T

m
on

ito
rin

g

Options for integrating CICS applications in an SOA.
Page �

Application integration

This style transforms application connectivity through facilities in business-

application services, access services and process services. It aims to extend

existing applications beyond their original designs to support integrated

business processes, helping to reduce errors and development costs. You can

turn existing applications into reusable services that can be accessed by a

new set of users or reused to create new front-end business functions. The

underlying principle — that you can reuse existing applications with little or no

change — offers a lower-risk approach than a replacement strategy, which

involves rewriting applications.

Service orientation

This style transforms the application architecture to provide greater

responsiveness to business partners and customers. It involves some

reengineering of the original application. Undoubtedly, this method requires

higher investment of resources and time, but gives you the capability to

create components from existing applications, which are more flexible and

configurable for use in new applications. This reuse of business logic is called

componentization and typically results in significant cost savings when

compared with developing new application code.

This white paper describes the technical options that you can use to transform

your CICS applications to deliver flexible reuse. It also explains the relative

advantages of each option. Using these techniques, CICS Transaction Server

enables you to progressively move your connectivity styles to suit different

business and solution requirements.

CICS applications that can be transformed

Over the past 37 years, developers have created two major interfaces to CICS

applications: CICS communications area (COMMAREA) programs and

CICS terminal-oriented programs.

Options for integrating CICS applications in an SOA.
Page �

CICS COMMAREA programs receive requests and send responses through an

area of memory called the communications area. CICS programs are primarily

written in the COBOL language, but PL/I, C, C++, Java and REXX are also

popular. CICS COMMAREA programs are similar to subroutines in that they

are largely unaware of how they were invoked. As a result, they are often

stateless, with CICS Transaction Server — on behalf of the program — managing

the transactional scope and security context, which are typically inherited

from the caller and a transaction definition. These programs typically

expect the data in the COMMAREA to be formatted in their native

language structures.

CICS Transaction Server for z/OS, Version 3 introduced the containers

and channels programming model, which is more flexible and does not have

the constraints of COMMAREAs.

CICS terminal-oriented programs are sometimes known as 3270 programs

because they are designed to be invoked indirectly from an IBM 3270 display

station or similar buffered terminal device. Invocation usually corresponds to a

single interaction in a user dialog, starting with receipt of a message from the

terminal and ending with transmission of a reply message to the same device.

Input data from the terminal device is carried in a data stream, which the

application acquires through a RECEIVE command. After processing, an

output data stream is transmitted back to the terminal device through a

SEND command. Terminal-oriented programs must be capable of analyzing

device-specific input data streams and building output data streams to be

transmitted to the terminal.

CICS also provides a facility known as basic mapping support (BMS), which

helps simplify application programming for terminal-oriented programs.

This facility enables the programmer to define a static layout for each window

to be displayed, with identified fields for dynamic content acquired through a

RECEIVE MAP command. BMS then analyzes the data stream and returns

record-formatted data to the application. Similarly, the application presents

output data in record format using a SEND MAP command, which causes

BMS to build an output data stream for the terminal. Application programmers

widely use BMS because it frees them from having to know device specifics and

as a result, enables applications to be device-independent to some degree.

Options for integrating CICS applications in an SOA.
Page �

Best practice in CICS application design for a number of years has been to

separate an application into the following key elements (see Figure 2):

•	 Client adapter or presentation logic

•	 Integration logic

•	 Business logic

•	 Data-access logic

Figure 2. Separating key application elements promotes reuse and flexibility.

This separation provides a framework that enables reuse of business logic and

data-access logic programs as subroutines within a larger application, as well as

reuse with alternative implementations of client and presentation logic (for

example, a Web service, Web browser or CICS terminal-oriented program).

It also allows each program to be developed and optimized for the best ROI.

Many CICS programs have already been written this way. However, you might

have a number of programs that do not have such a clear separation of

concerns, combining presentation logic (denoted as P in Figure 3) and

business logic (B) into a single program for which there is only a CICS

terminal-oriented-program interface. CICS Transaction Server provides a

Link3270 bridge function that neatly addresses this problem (see Figure 3).

The client uses the Link3270 bridge to run CICS terminal-oriented-program

transactions by linking to the program DFHL3270 and passing a COMMAREA

that includes the transaction identifier and the data to be passed to the

application. The response contains the CICS terminal-oriented-program

screen-data reply. If the target application used BMS, this information is

presented in the form of an application data structure (ADS), which is another

name for the symbolic map that is generated by the BMS macros used to define

the mapping of the CICS terminal-oriented-program window. No changes are

required for the existing application code, and knowledge of CICS terminal-

oriented-program data streams is usually not needed. As a result, the Link3270

bridge provides a programmatic interface for an important class of terminal-

oriented programs, enabling them to be reused without resorting to

less-efficient and more-fragile screen scraping.

Transaction

�270
presentation

logic

Integration
logic

Business
logic

Data-
access
logicClient

P

CICS Transaction Server

I B D

Options for integrating CICS applications in an SOA.
Page 7

Figure 3. Access options provided by CICS Transaction Server facilitate effective reuse of
existing terminal-oriented programs.

Historically, many CICS terminal-oriented-program transactions were

written as pseudo-conversations, consisting of a number of terminal-

oriented programs that run in a defined sequence. Each program in a

pseudo-conversation displays data to a user and then stops, leaving

only a small amount of state data to be picked up by the next program

in the sequence, which is initiated by the next input data received from

the user’s terminal. The Link3270 bridge is able to fully reuse these

pseudo-conversational transactions.

Also, CICS programs are typically grouped into application suites,

or components, for performing a common set of business actions.

Identifying the CICS programs that provide flexible public interfaces

and understanding these interfaces is the first key step in reuse. The

next step is to choose the best access options to support your solution.

Web-based access to CICS programs

Today, CICS COMMAREA, and container and channel programs, can

be accessed in a variety of ways from clients running on a wide range of

platforms. Typical client types include:

• A Web service requester

•	 A Java servlet or Enterprise JavaBeans (EJB) running in a J2EE

application server

•	 A C++ application running in a Microsoft® .NET environment

•	 A Web browser

•	 IBM WebSphere MQ

Transaction

Client

P

CICS Transaction Server

Link �270 Bridge

I/B D�270 terminal

Options for integrating CICS applications in an SOA.
Page �

In most cases, connections from these clients use a combination of external

connectors, internal adapters and Internet Protocol (IP)-based communications.

For example, a terminal-oriented program and a Web service requester can

access the same integration logic (see Figure 4). An adapter is simply a program

that receives the request and converts the data from an external format to the

internal format used by CICS COMMAREA programs.

Figure 4. Access options provided by CICS facilitate effective reuse of existing business logic.

An external connector provides a remote call interface and implements a

private protocol to invoke an application running under CICS Transaction

Server. You must also use an external adapter to convert data from its external

format to the COMMAREA format used by your programs in CICS Transaction

Server. The most well-known example of an external connector is IBM CICS

Transaction Gateway, which implements the Common Connector Interface

(CCI) specified by the Java Connector Architecture (JCA), and is used with

adapters implemented as Java beans.

An internal adapter is runtime code, possibly generated by a tool such as

Rational Developer for System z™, that converts from one request format

to another, such as converting XML to a COMMAREA. You can implement

the adapter in any language supported by CICS and make it independent

of the specific protocol used.

Transaction

P

CICS Transaction Server

A

A

I B D

3270
terminal

Web-based
client

Options for integrating CICS applications in an SOA.
Page �

Along with these techniques, you can choose to create a standard IP-based

adapter that uses a specific transport, such as WebSphere MQ, HTTP and

TCP/IP sockets. This approach might be the only available option that

supports unique types of clients, and it can permit greater control. However,

this control must be balanced against additional development effort, and a loss

of generality and reuse, because you can use the adapter only with a specific

transport protocol.

Your preferred architectural approach is a key decision because of its

effect on the costs of developing the solution and its long-term ROI. However,

business factors such as existing development processes and the availability

of skills might be as significant as technical factors influencing this decision.

It is important to recognize that there is no one right answer suitable for

all solutions.

Use the right architecture to connect to CICS Transaction Server

In investigating the appropriate architecture to use to connect to CICS

Transaction Server, you must take into account business considerations,

as well as the technical requirements of the solution, and compare these to the

capabilities of the access options. Business considerations typically include:

•	 Your organization’s standards or reference frameworks

•	 Your organization’s preferred application-development environment and tools

•	 The availability of skills

•	 Time constraints and required development effort for a solution

•	 Service-level agreements

The technical requirements you should consider for the solution include:

•	 Security

•	 Transactional scope

•	 Performance

•	 Reliability, availability and scalability

•	 Granularity of the interface

•	 Synchronous or asynchronous invocation

•	 Client-server coupling

•	 Inbound and outbound capability

•	 Data conversion

•	 State management

Options for integrating CICS applications in an SOA.
Page 10

Security

The most common security requirements are to authenticate users and

middle-tier servers and to encrypt data flows. Simple user ID and password

authentication is still widely used, although x.501 client certificates, Kerberos

tickets and other schemes are becoming popular. Regardless of the technique

you adopt, the user’s credentials must eventually be mapped to an external

security manager (ESM) user ID to support the authorization and auditing

requirements that normally apply to CICS applications.

Transactional scope

This requirement refers to the capability of a given access option to support

local transactions (one-phase commit), enabling a number of updates

performed by CICS applications to be processed as a single unit of work;

or global transactions (two-phase commit), enabling a client to coordinate

updates performed by CICS Transaction Server with updates to resources

made elsewhere. If neither is supported, updates performed by the CICS

application are updated before returning the response to the client (referred

to as sync on return).

Performance

Response time and cost-per-transaction are important aspects of performance

in a production system. CICS Transaction Server helps minimize their effects

and is highly optimized for traditional styles of access, such as CICS

terminal-oriented-program access over a Systems Network Architecture (SNA)

network. However, most solutions require other elements (such as connectors,

adapters, encrypted data flows or new data-stream architectures), which

impose an overhead on the implementation of the target business program.

This overhead can be characterized by expressing it as a percentage of the base

implementation cost of the target program, which is typically 1- to 2-million

processor instructions million processor instructions for an average CICS

transaction that is written in COBOL and that updates Virtual Storage Access

Method (VSAM) records.

Options for integrating CICS applications in an SOA.
Page 11

Reliability, availability and scalability

The access option that you choose should support your business goals and

your organization’s service-level agreements. You should also take workload

management, monitoring, failover, automation and problem-analysis

capabilities into consideration. CICS Transaction Server, Version 3.2, introduces

supports for the new Enterprise Workload Manager (EWLM) for z/OS, which is

part of the IBM Virtualization Engine™ platform. It enables you to define

performance objectives and monitor and manage performance for workloads

that run across different platforms in the IBM eServer® family. Because it runs

on many types of servers, EWLM can be used for end-to-end workload

monitoring in distributed environments that contain multiple, interacting server

products. EWLM and z/OS Workload Manager (WLM) can run simultaneously;

EWLM monitoring does not affect IBM z/OS® management and monitoring.

Granularity of the interface

Some access options, such as Web services, lend themselves to handling high-

level, or coarse-grained, business requests. An example of this is a single request

for all outstanding customer orders where the result includes the status of 30

orders and the details of each order. Other access options, such as JCA, lend

themselves to handling fine-grained requests. An example of this kind of

request is where the first request is sent to obtain a list of the 30 outstanding

orders, then 30 additional requests are sent for the details of each order. Per

request, fine-grained access is typically more efficient. However, when you take

the end-to-end solution into consideration, processing a single coarse-grained

request is likely to be more efficient in resources and response times than many

fine-grained requests.

Specifically for CICS Transaction Server, IBM Rational Developer for

System z features a new, intuitive service-flow modeler tool that enables one or

more fine-grained COMMAREA programs and terminal-oriented programs to

be aggregated into a single coarse-grained program. The resulting service flow

can be deployed within CICS Transaction Server, Version 3 and exposed as a Web

service or as a callable COMMAREA program.

Options for integrating CICS applications in an SOA.
Page 12

Synchronous or asynchronous invocation

The majority of access options support synchronous invocation, meaning that a

client request receives a single reply from CICS Transaction Server and the cli-

ent waits for the reply. With asynchronous invocation, CICS Transaction Server

generates an immediate response confirming that the request has been

received, as well as one or more deferred responses containing replies to the

original request. Typically, the client system continues processing as soon as

the confirmation response is received and does not wait for the deferred

response.

Client-server coupling

Some access options are described as tightly coupled, whereas others are

described as loosely coupled. Tight coupling implies that the client and server

impose dependencies and assumptions on each other that need to be managed

and tested. For example, you must write requests for EJB components in CICS

Transaction Server in Java, and the method signature of each request must

exactly match that of the EJB public interface. Loose coupling implies that the

client and server are free to use dissimilar technology and have very little

dependency upon each other.

In general, access options that are loosely coupled are more robust. Outages,

software upgrades and other operational events have less impact on the ability

of applications to interoperate, whereas tightly coupled systems are optimized

for runtime performance and control.

Inbound and outbound capability

Although it might be sufficient for CICS applications to simply be invoked as

services by new applications that require access to existing and proven

capabilities, the more-general case is for CICS applications to make calls

to services hosted elsewhere, as well as being called themselves. This

method provides a much more flexible and cost-effective approach to new

business models.

Options for integrating CICS applications in an SOA.
Page 1�

Data conversion

Some access options require application data to be exchanged in specific

formats, while other options negotiate at run time or leave it up to developers to

enable the formats to interoperate. However, the IBM z/OS® operating system

has historically processed and stored text data in EBCDIC codepages and

numeric data in big-endian or packed-decimal format. As a result, most access

options involve some data conversion. In some cases, the client is expected to

convert data, for example using JCA, whereas other access options, such as

 Web services, can take advantage of CICS Transaction Server to efficiently to

perform this conversion. In addition, modern databases can store data in the

form of XML, and today’s compilers enable applications to easily process

XML documents.

State management

State management is the process by which you maintain information about

the state of an application between multiple invocations of that application.

Depending on the architecture or transport, CICS Transaction Server

provides a means to preserve the state between invocations if the system

design requires it.

Strategic access options

One of the great strengths of CICS Transaction Server is its flexibility to deliver

your applications to a range of client types in harmony. CICS Transaction

Server has a broad choice of access options that are based on TCP/IP and

support the needs of the majority of clients. For convenience, they are divided

here into standard architectures and standard transports.

Standard architectures provide comprehensive development tools and runtime

support in CICS Transaction Server, including:

•	 Web services

•	 JCA

•	 EJB

Options for integrating CICS applications in an SOA.
Page 1�

Standard transports are suitable for use by applications that require greater

control of the protocol and do not need the development tools or qualities of

service provided by the standard architectures. These applications assume

more responsibility for systems management, security and recovery. The

standard transports include:

•	 IBM WebSphere MQ

•	 HTTP

•	 TCP/IP sockets

Other options continue to be supported for their unique capabilities

and to maintain backward compatibility. Refer to CICS Transaction Server

documentation for details about these technologies:

•	 Advanced Program-to-Program Communication (APPC)

•	 External CICS interface (EXCI)

•	 Front-end programming interface (FEPI)

•	 External call interface (ECI)

•	 External presentation interface (EPI)

Web services

The Web services support in CICS Transaction Server, Version 3 enables your

programs to be Web service providers or requesters. This support provides a

number of standards including SOAP, Web-services distributed transactions

(WS-AtomicTransaction) and Web Services Security (WS-Security), and

conforms to the Web Services Interface (WS-I) basic profiles. CICS Transaction

Server provides tools to either produce a Web Services Description Language

(WSDL) file from a language structure used by an existing COMMAREA

program, or to produce a language structure from a WSDL file.

The SOAP request is received by the HTTP listener in CICS Transaction Server

or the WebSphere MQ trigger monitor (see Figure 5). In both cases, the request

is passed to a pipeline to process the SOAP headers and set up the transaction

and security environment. CICS Transaction Server can convert the incoming

XML request into a language structure (such as COBOL record format), or you

can use tools to generate a custom data mapping or have CICS Transaction

Server pass the XML data to the target CICS program. After the program has

completed the request, the response is passed back to the pipeline to be

wrapped in SOAP headers and returned to the client.

Options for integrating CICS applications in an SOA.
Page 1�

Figure 5. Web services capabilities are now fully integrated into CICS Transaction Server, Version 3.

Where advanced data mapping is required between XML data types and

COBOL language structures, Rational Developer for System z provides a visual

editor. It also provides the ability to generate WSDL files, CICS WSBIND

resources and programmatic XML converters.

You can use Web services to interact in a highly secure and reliable manner,

independent of platform, environment or application language. Developers

can rapidly build open-standards-based applications independent of the CICS

business-logic program they will interact with. This logical separation makes

Web services a loose-coupling architecture. In addition, IBM WebSphere

Service Registry and Repository can be used to host WSDL descriptions of

services and provides governance features to manage its access and life cycle.

JCA

JCA defines a standard for connecting from the J2EE specification to

heterogeneous enterprise information systems (EISs), such as CICS

Transaction Server. CICS Transaction Gateway provides a JCA connector for

CICS Transaction Server as a resource adapter (see Figure 6). The resource

adapter plugs into the J2EE application server, providing connectivity between

the J2EE application, the application server and CICS Transaction Server.

CICS Transaction Server

A

B D

Proxy

Web-based client

SOAP CICS Web support

WebSphere MQ trigger monitor

Pipeline

CICS or custom data mapping

Options for integrating CICS applications in an SOA.
Page 1�

Figure 6. CICS Transaction Gateway provides JCA access to CICS Transaction Server.

JCA defines the CCI that the client uses to drive interactions. It also supports

transactional coordination either by XA global transactions (two-phase

commit) or by resource manager local transactions (one-phase commit).

The CICS ECI resource adapter supports XA global transactions when used in

conjunction with CICS Transaction Gateway, Version 6.1 on z/OS or when used

with IBM WebSphere Application Server for z/OS. For further details about

JCA and transaction integration with CICS Transaction Server, refer to the

paper Integrating WebSphere Application Server and CICS using the JCA,
available at ibm.com//software/htp/cics/library/rmp/overviews/ibm_ rmp_

integrating_was_and_cics_using_jca.html.

The J2EE application can invoke the CICS business-logic program directly if

no message transformation is required. In this case, you can use IBM Rational®

Application Developer software to create a Java bean to represent and convert

data to the COMMAREA of the program, with Java methods for getting and

setting field values.

A message adapter in CICS Transaction Server is required only if the message is

to be transformed: for example, if the request is in XML and the CICS business

logic program requires a COBOL record format. The JCA connector provided

by CICS Transaction Gateway is an effective replacement for ECI Java classes,

and has a 32 KB limit on message size. JCA is considered a medium-coupling

architecture, because messages are normally flowed as COBOL types.

CICS Transaction Server

A

B D

JCA

Web-based client

Message adapter

CICS Transaction
Gateway

CCI

http://ibm.com//software/htp/cics/library/rmp/overviews/ibm_ rmp_integrating_was_and_cics_using_jca.html
http://ibm.com//software/htp/cics/library/rmp/overviews/ibm_ rmp_integrating_was_and_cics_using_jca.html

Options for integrating CICS applications in an SOA.
Page 17

CICS Transaction Gateway is a high-performing, highly secure and scalable

access option with tight integration to existing CICS applications. Because

CICS Transaction Gateway is easy to install, has flexible configuration options

and requires minimal changes to CICS Transaction Server and in most cases,

no changes to existing CICS applications, it provides an attractive option for

integrating existing CICS applications into your Web-based architecture. Also,

CICS Transaction Gateway supports a range of non-Java clients, including C,

C++, COBOL and COM.

EJB components

EJB components are able to invoke methods on remote EJB objects across a

network. The EJB client can call a remote object after it has obtained a

reference to it, either by looking it up in a naming service, such as Lightweight

Directory Access Protocol (LDAP), or by receiving the reference as an

argument, a return value or from a cache. The Java Object Request Broker

(ORB) uses object serialization to transparently marshal and unmarshal

parameters supporting true object-oriented polymorphism. EJB support

in CICS Transaction Server can include Secure Sockets Layer (SSL)

encryption, full transaction coordination (two-phase-commit protocol)

and the flowing of a user’s J2EE security role.

When an EJB request is received, a Java virtual machine (JVM) is started in

CICS Transaction Server, and the ORB built into the JVM decodes the Remote

Method Invocation (RMI). The ORB, in turn, calls the appropriate methods of

the EJB session bean to process the request (see Figure 7). If the session bean is

to call a business-logic program, the CCI application programming interface

(API) can be used. It is the same CCI API as provided by CICS Transaction

Gateway, but in this case, the JCA resource adapter is provided by CICS

Transaction Server and does not involve network flows. If the message needs

to be transformed, a message adapter can be called before calling the

business logic.

Options for integrating CICS applications in an SOA.
Page 1�

Figure 7. EJB support in CICS Transaction Server allows Java programs on any platform to easily
invoke EJB components in CICS Transaction Server.

You can choose to have the session bean in CICS Transaction Server be

stateless between invocations, or stateful, in which case CICS Transaction

Server saves the session bean data (passivate) into a VSAM file and restores

the state (activate) automatically. EJB components provide a tightly coupled

connection because both ends must be implemented by compatible J2EE

technologies and EJB interfaces.

WebSphere MQ

WebSphere MQ software enables you to easily exchange information across

different platforms, integrating existing business applications in the process.

WebSphere MQ provides the assured delivery of messages, dynamically

distributes workload across available resources and helps make programs

portable (see Figure 8). CICS Transaction Server for z/OS, Version 3.2 now

makes it easier to install and more efficient to run WebSphere MQ workloads.

CICS Transaction Server

A

B D

Java ORB

Web-based client

RMI
over
IIOP

Java ORB

EJB

JCA

Message adapter

EJB client

Options for integrating CICS applications in an SOA.
Page 1�

Figure 8. WebSphere MQ provides assured delivery of messages from many platforms to enable
efficient, asynchronous access to CICS Transaction Server.

WebSphere MQ provides Java Message Service (JMS) APIs and native

WebSphere MQ APIs that can be used by clients on a wide variety of

platforms, with many options for routing and encrypting messages prior

to arriving on IBM WebSphere MQ for z/OS. The WebSphere MQ trigger-

monitor program runs in CICS Transaction Server, and according to the

queue definitions, as messages arrive, it starts the appropriate message-

adapter program in a new transaction. The message adapter uses WebSphere

MQ native APIs to receive the message, transform it if required and call

the business-logic program. A reply message can be sent using the reply-to

queue defined in the message. For efficiency, the message-adapter program

usually continues to process messages on the inbound queue until it is

empty. You can also use WebSphere MQ for pseudo-synchronous messaging,

but you might need to consider how to handle error and compensation

situations.

The WebSphere MQ DPL bridge for CICS Transaction Server provides a

second option (see Figure 9). This generic adapter passes a message from a

named input queue to a business-logic program through the COMMAREA.

This is ideal in the situation where the client can format the message into a

form acceptable by the business-logic program.

CICS Transaction Server

A

B D

WebSphere MQ

e-business client

WebSphere MQ trigger monitor

JMS

Message adapter

MQAPI

J2EE component

Options for integrating CICS applications in an SOA.
Page 20

Figure 9. The WebSphere MQ DPL bridge can link to existing CICS programs without the need for a
WebSphere MQ trigger-monitor program.

HTTP

The adapter component is made up of the HTTP listener in CICS Transaction

Server (called CICS Web support) and a message adapter. CICS Transaction

Server supports HTTP basic authentication for user identification, or the

more-secure SSL encryption and authentication with client and server

certificates

CICS Transaction Server, Version 3 introduces Uniform Resource Identifier

Map (URIMAP) resource definitions to decide how to process the request,

including which message adapter to call, and what transaction and security

environment is required. The message adapter uses CICS Web APIs to extract

the HTTP user data, which is usually formatted as XML or HTML form data.

The message adapter has access to the HTTP and TCP/IP headers if required.

The message adapter transforms this information into a COMMAREA and calls

the business-logic program.

CICS Transaction Server

A

B DMessage adapter

e-business client

WebSphere MQ DPL bridge

WebSphere MQ

J2EE components

JMS

Options for integrating CICS applications in an SOA.
Page 21

The response message is also normally formatted as HTML or XML, and the

message adapter can use the CICS document APIs to easily merge static HTML

or XML with dynamic data from the business-logic program. The response is

returned to the client for display or processing. To support Web browsers, the

solution should include Web servers to support static content such as pictures

and cascading style sheets (CSSs).

HTTP is synchronous and stateless. However, if state management is required,

CICS Transaction Server provides a utility for storing state data indexed by a

state-management token that the HTTP client can return on subsequent calls

to retrieve the state.

CICS Transaction Server

A

B D

e-business client

CICS Web support
HTTP

Message adapter

CICS WEB API

Figure 10. CICS Transaction Server supports HTTP clients and Web browsers with user-friendly
Web and TCP/IP APIs, and it can construct HTML and XML responses with the document API.

TCP/IP sockets

The TCP/IP socket interface for CICS Transaction Server (referred to as

CICS sockets) is provided by IBM z/OS Communications Server and supports

peer-to-peer applications in which both ends of the connection are

programmable. CICS sockets provide a variant of the Berkeley Software

Distribution 4.3 Sockets interface, which is a low-level API with built-in

support for SSL and Transport Layer Security (TLS), but it does not support

distributed transactions or systems management.

Options for integrating CICS applications in an SOA.
Page 22

CICS sockets provide a concurrent listener, EZACIC02, or you can write your

own concurrent or iterative listener to meet your needs. The listener and the

child server use the CICS sockets APIs to receive and send data, and perform

general communications-control functions (see Figure 11). You can write the

programs in COBOL, PL/I, assembler language or C. You can also write client

adapters to create new outbound connections.

CICS Transaction Server

A

B D

Web-based client

CICS socket listener
TCP/IP

Child server

Message adapter

Figure 11. CICS sockets provide a completely programmable solution where other access options are
not suitable.

Summary

To achieve the best reuse of your CICS programs and to support multiple

access options, build clear and concise business-logic interfaces of the right

granularity for your solution. CICS Transaction Server and other tools help

transform and aggregate your programs to achieve this goal. CICS Transaction

Server provides a broad choice of access options based on TCP/IP,

open-standards-based connectivity architectures and transport mechanisms.

These capabilities enable applications in CICS Transaction Server to be full

participants in your SOA environment.

Options for integrating CICS applications in an SOA.
Page 2�

You should consider business and technical requirements for an end-to-end

solution when selecting the most appropriate connectivity option. CICS

developers and system programmers are likely to find it easy to take advantage

of new access options and make existing applications available for reuse.

CICS and WebSphere products are strategic middleware products that:

•	 Interoperate through Web services, JCA, EJB and WebSphere MQ.

•	 Use and complement z/OS qualities of service.

•	 Provide high quality of service, low cost per transaction and top-notch security.

To help with your CICS integration projects, consider the following two

tables which are designed to encapsulate the options available to you, and

recommendations for each one. Table 1 summarizes the capabilities of each

integration option. Compare your business environment and technical

end-to-end solution requirements with the information about each access

option to select the most appropriate one for your business. Table 2 presents

general recommendations for each access option.

Options for integrating CICS applications in an SOA.
Page 2�

Standard
architecture Capabilities Security to IBM

eServer® zSeries®
Transactional
scope Interface Coupling

Web services •	Inbound and outbound
•	Synchronous (HTTP)
•	Asynchronous (WebSphere MQ)
•	EWLM

•	Web services*
•	WS-TRUST
•	WS-Security
•	SSL
•	User ID and password

•	Web services
•	Sync on return

•	COMMAREA
•	CONTAINER

Low

JCA •	Inbound only
•	Synchronous
•	Asynchronous
•	�2 KB maximum message size

•	SSL
•	User ID and password
•	Thread identity

•	Local
•	Global
•	Sync on return

COMMAREA Medium

EJB •	Inbound and outbound
•	Synchronous
•	EJB state management
•	EWLM

•	EJB security roles
•	SSL

•	Sync on return
•	Global

EJB session bean High

Standard transport

WebSphere MQ •	Inbound and outbound
•	Asynchronous
•	Assured delivery

•	SSL
•	User ID and password

Sync on return •	COMMAREA
•	WebSphere
 MQ API

Medium

HTTP •	Inbound and outbound
•	Synchronous
•	EWLM

•	SSL
•	User ID and password

Sync on return CICS Web API Medium

TCP/IP sockets •	Inbound and outbound
•	Synchronous and
 asynchronous

•	SSL
•	User ID and password

Sync on return CICS sockets API High

Table 1. Comparison of capabilities for access options

Options for integrating CICS applications in an SOA.
Page 2�

Standard architecture Description Positioning Recommendation

Web services Comprehensive World Wide Web Consortium
(W�C) standards for messaging over the
Web, supporting SOA to and from CICS
Transaction Server

Industry-wide, open-standards-based
integration technology that includes CICS
connectivity; designed to improve quality of
service, features and performance

Establish plans to transform CICS
applications so they can participate in an
SOA pattern with Web services

JCA Lightweight J2EE standard for calling CICS
and other EISs

Widely adopted CICS connectivity option
with high qualities of service

Continue to use JCA and CICS Transaction
Gateway within an SOA and ESB where
fine-grained access and high qualities of
service are required

EJB Comprehensive J2EE standard for J2EE
components, including EJB in CICS
Transaction Server

Niche technology that provides highly
functional, standards-based connectivity to
CICS Transaction Server

Limit to applications that can benefit from
consistent J2EE connectivity; continue to
use Java as an application language

Standard transport

WebSphere MQ Comprehensive industry standard for
assured messaging

Widely adopted business-to-business
integration technology that includes
CICS connectivity

Continue to use WebSphere MQ for basic
messaging and flowing Web services

HTTP Lightweight W�C standard for
communications over the Web

Industry-wide, open-standards-based
technology; ubiquitous for direct Web-
browser connection and the basis for
Web services

Use for Web services and to support
browsers for niche applications

TCP/IP sockets Lowest common denominator for
CICS connectivity

Mature technology that provides
basic and flexible connectivity to
CICS Transaction Server

Limit to specialized applications; plan to
adopt Web services

Table 2. Recommendations for integrating CICS applications into your business

Options for integrating CICS applications in an SOA.
Page 2�

For more information

To learn more about IBM CICS Transaction Server, contact your

IBM representative or IBM Business Partner, or visit:

ibm.com/cics

To learn more about the topics raised in this paper, please refer to the IBM

Redbooks® publication Architecting Access to CICS within an SOA,

available at:

ibm.com/redbooks/abstracts/sg245466.html?Open

To learn more about IBM WebSphere Application Server, contact your

IBM representative or IBM Business Partner, or visit:

ibm.com/software/webservers/appserv/was/

To learn more about IBM WebSphere MQ, contact your IBM representative

or IBM Business Partner, or visit:

ibm.com/software/integration/wmq/

http://www.ibm.com/software/htp/cics/
http://ibm.com/redbooks/abstracts/sg245466.html?Open
http://ibm.com/software/webservers/appserv/was/
http://ibm.com/software/integration/wmq/

Options for integrating CICS applications in an SOA.
Page 27

To learn more about IBM Rational Developer for System z, contact your

IBM representative or IBM Business Partner, or visit:

ibm.com/software/awdtools/devzseries

For a detailed description of integrating WebSphere Application Server and

CICS Transaction Server using the JCA, visit:

ibm.com/software/htp/cics/ctg/library/#wpapers

http://ibm.com/software/awdtools/devzseries
http://ibm.com/software/htp/cics/ctg/library/#wpapers

WSW11339-USEN-00

© Copyright IBM Corporation 2007

IBM United Kingdom Limited
Hursley Park
Winchester
Hampshire
SO21 2JN
United Kingdom

Produced in the United States of America
09-07
All Rights Reserved

CICS, eServer, IBM, the IBM logo, Language
Environment, Rational, Redbooks, System z,
WebSphere, z/OS and zSeries are trademarks of
International Business Machines Corporation in the
United States, other countries or both.

Microsoft is a trademark of Microsoft Corporation in
the United States, other countries or both.

Java and all Java-based trademarks are trademarks
of Sun Microsystems, Inc. in the United States, other
countries or both.

Other company, product and service names may be
trademarks or service marks of others.

All statements regarding IBM future direction or intent
are subject to change or withdrawal without notice
and represent goals and objectives only.

