
Introduction
Monitoring can be defined as a process involving regular observation and recording of
ongoing activities in a system to detect and warn about changes that occur in the
system. Any business system needs to be monitored for better capacity planning and
for tracking resource usage.

Monitoring a system is an important and challenging task for anyone responsible for
administering a system. To effectively use, tune, and manage a system, it is
important that the system administrator understands the services provided by the
monitoring facilities available in the system. A good monitoring facility allows its
users to customize their systems to suit their requirements with minimal impact on
performance.

This paper describes four monitoring facilities available in IBM® TXSeries® for
Multiplatforms. The paper begins with a brief introduction of the monitoring facilities
available in TXSeries and the categories of resources that can be monitored using
these facilities. This is followed by a detailed explanation of each of these facilities
and how they can be used to monitor various resources. Wherever appropriate,
tuning examples are provided to facilitate better understanding of these facilities.
However, these examples are not meant for direct use.

This paper is intended for users and administrators of TXSeries for Multiplatforms
who are interested in understanding the features and methodology provided by the
product for monitoring and tuning systems. It is assumed that the reader has a
reasonable knowledge of TXSeries for Multiplatforms. Complete information about
TXSeries for Multiplatforms is available at:

http://www-306.ibm.com/software/htp/cics/txseries/library/

Conventions used: References to ‘TXSeries’ and ‘CICS®’ stand for ‘TXSeries for
Multiplatforms’.

Monitoring facilities available in TXSeries
TXSeries generates a lot of information about its resources, which can be used for
monitoring. It provides four monitoring facilities for the purpose. These are:

• CICS Monitoring Facility

CICS Monitoring Facility (CMF) is a comprehensive customizable facility provided
by TXSeries. It gives a complete view of the time spent by a transaction in the
system across its lifetime. CMF contains about 100 pre-defined fields, which
collect data. Each CMF record contains information from all of these fields for
each transaction. Because monitoring all these fields can result in the usage of a
large amount of disk space, CMF allows you to select specific fields for
monitoring.

Understanding monitoring facilities
in IBM TXSeries for Multiplatforms

TXSeries for Multiplatforms White Paper

 Vijayeendra Namasevi (nvijayee@in.ibm.com)

 Raghavendran Srinivasan (raghavs1@in.ibm.com)
 Janaki Sundar (janakisundar@in.ibm.com)

���®

• Statistics

Statistics are provided by CICS for monitoring. They provide an overall picture
of a CICS region, unlike CMF, which gives details about the individual
transactions in a region.

Statistics assist the user in monitoring memory growth and resources such as
transactions, programs, and files. Terminals and queues can also be
monitored with the help of statistics.

• TXSeries Administration Console

The TXSeries Administration Console is a Web-based tool for performing
various administration functions using a GUI. Monitoring through this console
was introduced in TXSeries V6.2. The console allows you to select the
parameters for monitoring for a specific duration. The results are displayed,
as and when required, on a Web browser. It can also display the collected
data in a graph for easier analysis.

• Automatic monitoring of heap memory

TXSeries provides a utility to detect heap memory leaks in application servers.
A separate thread runs in the application server to monitor the growth of the
heap memory. This utility is mainly for debugging purposes.

Categories of resources that can be monitored by these facilities
While TXSeries generates a lot of information that can be monitored by using these
facilities, this paper explains monitoring for the following categories of resources:

• Monitoring storage
• Monitoring CPU
• Monitoring CICS resources
• Monitoring 3270 terminals
• Monitoring intersystem communication (ISC)

All the above resources can be monitored online or offline:

Online monitoring

Refers to observing the system when it is in an active state. Statistics is an
example of an online monitoring facility.

Offline monitoring

Refers to collecting data over a period of time for future analysis. CMF is an
example of offline monitoring.

The following sections explain each of the monitoring facilities in detail.

CICS Monitoring Facility
TXSeries provides a detailed offline task monitoring facility through the CICS
Monitoring Facility (CMF). CMF helps a user to monitor the system at the transaction
level. In addition, it can be used to detect resource contention and other constraints.
It can therefore help in the studying and tuning the performance of a system.

CMF terminology
Event Monitoring Points: CMF collects information at certain points referred to as
Event Monitoring Points (EMPs). Event Monitoring Points can be either system-
defined or user-defined.

System-defined Event Monitoring Points: During the execution of a transaction,
the information related to its resource usage is collected internally by the CICS
system. When a transaction terminates, the collected information is dumped into the
Transient Data Queues (TDQ) specified in the Monitoring Definitions. CICS collects
this standard data automatically when monitoring is enabled. Such event monitoring
points are known as system-defined Event Monitoring Points.

System-defined EMPs include a wide range of fields, such as time taken on a
Structured File Server (SFS) operation, the time taken by the terminal manager, the
time spent on a CICS application, the total elapsed time for a transaction, the time
spent on the scheduler, and so on. Even though you cannot modify these EMPs, you
can choose the classes of data to be monitored.

User-defined Event Monitoring Points: TXSeries allows you to collect other
information in addition to the information that can be obtained through system-
defined EMPs. The CICS Monitoring Facility allows you to define the EMPs in an
application program. You can place special trace commands in your application
program to collect data. Such points are called user-defined Event Monitoring Points.
You can decide the actions to be performed at these points. CMF appends these
records to the system-defined records.

CMF fields: The user and system EMPs are configured using pre-defined numbers,
commonly known as CMF field IDs or just fields. A field ID is a number that
corresponds to a particular EMP. For example, Field ID 1 is used to indicate the
4-byte transaction identifier.

Note: The monitoring records are written only when the transaction completes
execution. It is not possible to retrieve the records when the transaction is hung.

User-defined EMPs

This section explains the use of user-defined EMPS. However, it does not explain the
programming details of user-defined EMPs. Rather it points out the different
scenarios where these EMPs can be useful. For details about programming, see the
topic that explains performance monitoring of a user program in the TXSeries
Information Center.

User-defined EMPs help you to time the interval between two events within an
application or within CICS. The number of times that an event has occurred can also
be tracked. In order to make use of these features, you must write an event
monitoring program. You must inform the CICS region about this program through
an attribute in MD.stanza, which is explained in a later section. CICS also supplies a
sample program cics_emp.c, which can be tailored to suit your requirements.

Application of user-defined EMPs
You can use the user-defined EMPs in several ways:

• You can program the EMPs to clock individual SQL queries in your application.

• You can use the EMPs to monitor a remote transaction. Although different
programs are executed in the back end, CPMI is the only transaction recorded
by the CMF report. In such cases, you can program this module to record each
program name. These records are appended to the existing records.

• You can clock the time consumed by individual programs (for example,
programs invoked through External Call Interface (ECI)). To achieve this, you
can define the DPL user exit in the PD stanza and in the DPL user exit
program; start and end times of each program can be recorded separately.
You can employ StartClock and StopClock functions provided with TXSeries.

• You can use EMPs to monitor specific transactions of interest to you. For
example, in the initialization function of the user module, you can make your
program return CICS_EMP_RETURN_DISABLE for the task that does not
interest you.

Classification of fields as groups in CMF
Based on the data collected by them, the CMF fields are internally arranged into
groups by CICS. These groups are:

• CICSCICS: Comprises the group of fields that collects details pertaining to
CICS

• CICSCOMS: Comprises communication fields

• CICSFILE: Comprises fields that collect file-related information

• CICSPROG: Comprises fields that takes care of information corresponding to
programs

• CICSTASK: Comprises fields that collect task-related information

You can specify these groups as an alternative to specifying fields in Monitoring
Definitions. A few basic fields can be set up irrespective of the fields to be monitored.

Basic fields in CMF
The following are some of the basic information fields in CMF, which can be set in all
cases:

• CICS_EMP_FID_TRANS_ID (Field ID - 001): Gives the 4-byte transaction
identifier defined in TD.stanza. The transaction is the basic unit of monitoring
through CMF. This is a non-tunable information field. All the CMF data is based
on this ID.

• CICS_EMP_FID_START_TIME (Field ID- 005): Gives the system time at which
the transaction started.

• CICS_EMP_FID_STOP_TIME (Field ID – 006): Gives the system time at which
the transaction stopped.

Note: For the entire list of fields and groups available in CMF, see Appendix B.

Enabling CMF
To configure CMF, complete the following procedure:

1. Configure an extrapartition queue in Transient Data Definitions (TDD) stanza.

The following example defines an extrapartition TDQ, assuming a region with
the name CMFREG.

cicsadd –c tdd –r CMFREG MONQ DestType=extrapartition

ExtrapartitionFile=”MONQ.out” RecordType=variable_length

In this example, MONQ is the TDD entry name and the extrapartition file is
created in the data directory of the region.

Note: There is no direct option to limit the size of the TDQ file of CMF.
You can limit the size of the TDQ file of CMF programmatically, by first
disabling the CMF using EXEC CICS SET MONITOR OFF and then resetting
the file size of the CMF data file. You can take a backup of the CMF data
file before performing the reset.

2. Update the Monitoring Definitions (MD) stanza by issuing the following
command:

cicsupdate –c md –r CMFREG TDQ=”MONQ”

where MONQ refers to the TDD entry created in Step 1.

If you want to monitor specific fields, use the Include attribute or the
Exclude attribute of the MD stanza. You can use either field IDs or group
names for the Include and Exclude attributes.

 To monitor specific fields by using field IDs for the Include and
Exclude attributes, see the following example, which configures the
region to monitor only storage-related fields by using the appropriate
field IDs.

cicsupdate –c md –r CMFREG MonitorStatus=yes

TDQ=”MONQ”Include=”001,002,005,006,029,030,033,054,061,087,

008,095,108,202,203”

 To monitor specific fields by using group names for the Include and
Exclude attributes, see the following example, which monitors only
communication-related fields by using appropriate group names.

cicsupdate –c md –r CMFREG MonitorStatus=yes TDQ=”MONQ”

Include=”CICSCOMS”

If you want to create separate monitoring records for each input and output
operation for conversational transactions, set the value of the Conversational
parameter in the MD stanza to yes.

To update the path of the user-defined monitoring program, use the
UserMonitorModule attribute in MD.

3. Cold start the region.

cicscp –v start region CMFREG StartType=cold

After the region is started, the MONQ TDQ (MONQ.out file) is updated with the
monitoring data. When the region is active, monitoring can be enabled or
disabled dynamically by using CEMT:

 CEMT SET MONITOR ON: Enables monitoring at run time
 CEMT SET MONITOR OFF: Disables monitoring at run time

Any change made through CEMT updates only the runtime database and is
therefore valid only for the current session of CICS. Other MD attributes
cannot be defined through CEMT. However, if you want to monitor the startup
programs also, then the MonitorStatus attribute must be set to yes in the
Monitoring Definitions (MD.stanza) before starting the region.

Formatting CMF output
CICS supplies a basic formatter cicsmfmt (Monitoring data formatter), for
formatting the data collected by CMF, in the TDQ file. The formatted output consists
of only a few limited fields such as transaction name, terminal name, start and end
times of a transaction, time spent waiting for file I/O, program name, total number of
file requests issued, data segment memory occupancy, and first abend code. To
overcome this limitation, use any of the following methods:

• Use the sample formatter program (cicsmfmt) provided with CICS to write
your own formatter. The required fields can be obtained in the output by this
method.

• Download the formatter supplied by a vendor from http://www-
1.ibm.com/support/docview.wss?rs=175&context=SSAL2T&q1=monitoring&ui
d=swg24009305&loc=en_US&cs=utf-8&lang=en. This formatter supports
many options and formats all of the monitoring fields available in CMF.

This paper uses the above mentioned vendor-acquired formatter for all the examples
and references. A sample output is shown in Figure 1.

Figure 1: A sample output from cmfreport command

The output obtained from the formatter can be filtered based on your requirements,
using commands such as grep. For example, the following command filters the fields
for CEMT:

#. /cmfreport -f MONQ.out -s 001,002,003,004,005,006,007 | grep CEMT

This gives the following output:

[cmfreport] Selected: EMPs 7), Records 12 of 12), File Errors 0),

ABENDs (0) TaskFlags (0)

CEMT UDOT SUN T 11:28:14.256 11:28:23.510 9.254

Monitoring storage
TXSeries provides fields to monitor the memory usage for a given transaction. This
section describes the fields associated with memory usage and the inferences that
can be drawn from this data. Examples based on a few tests are also provided.

Inappropriate usage of memory in application programs or lack of system resources
can result in performance degradation. Table 1 shows a few CMF fields related to
storage (CICSSTOR group). The CMF variables listed in the table will help you to spot
the memory constraints from a transaction perspective.

Table 1: CMF fields related to storage (CICSSTOR group)

Field name (Field ID) Description
CICS_EMP_FID_PAGE_COUNT (029) The number of page faults serviced

that did not require any physical I/O
activity.

CICS_EMP_FID_PAGE_IO_COUNT (030) The number of page faults serviced
that required physical I/O activity.

CICS_EMP_FID_DSEGMENT_SIZE (033) The maximum amount of memory
that a transaction uses in a data
segment.

CICS_EMP_FID_GETMAIN_COUNT (054) The total number of GETMAIN
requests that a task issued.

CICS_EMP_FID_SWAP_COUNT (061) The number of times that the task
was swapped out of main memory.

CICS_EMP_FID_TSEGMENT_SIZE (087) The maximum amount of memory
used by the transaction in text
segment.

CICS_EMP_FID_FREEMAIN_SIZE (088) The total amount of memory that is
freed using EXEC CICS FREEMAIN
requests.

CICS_EMP_FID_DSEG_OCCUPANCY (095) The data segment occupancy of the
user transaction. This field is updated
before GETMAIN and FREEMAIN
requests and at transaction exit.

CICS_EMP_FID_TSEG_OCCUPANCY (108) The text segment occupancy of the
user task. This field is updated before
a LINK, XCTL, or LOAD request and at
task exit.

CICS_EMP_FID_FREEMAIN_CNT (202) The total number of FREEMAIN
requests that the transaction issued.

CICS_EMP_FID_GETMAIN_SIZE (203) The total amount of memory that was
obtained from GETMAIN requests.

A large value for PAGE_COUNT, PAGE_IO_COUNT, and SWAP_COUNT fields (Field
IDs: 029, 030, 061) indicates a shortage of primary memory or a memory leak in the
system or application, leading to performance degradation.

The following tips provide guidance about the usage of GETMAIN and FREEMAIN in a
CICS application for proper utilization of memory.

• Memory pool leaks can be easily detected by observing the FREEMAIN and
GETMAIN counts. The FREEMAIN and GETMAIN counts are updated with every
EXEC CICS FREEMAIN and GETMAIN call.

• Use FREEMAIN calls explicitly to free the memory allocated by GETMAIN
SHARED, to avoid the leaks in task-shared pool.

• Large values reported for the fields related to PAGE COUNTS can mean
incorrect virtual memory settings in the OS, resulting in more page faults.

• DSEG_OCCUPANCY (Field ID: 095) signifies the amount of time that the
allocated memory is part of the task in the physical memory. The utilization of
main memory is inversely proportional to the value in the DSEG_OCCUPANCY
field.

• Because FREEMAIN calls are time-consuming, memory allocated through
GETMAIN can be reused instead of repeated GETMAIN and FREEMAIN calls.

• Consider enabling TransDump in TD stanza, if GETMAIN and FREEMAIN are
used frequently in the applications. CICS will automatically initiate transaction
dump on any storage violation.

The DSEGMENT_SIZE and TSEGMENT_SIZE fields (Field IDs: 033, 087) are related to
the program control interface of CICS and provide information about program
caching in memory. A large data segment for a program can result in performance
degradation, which can be monitored with the mentioned fields. Typically, initialized
and static local variables largely contribute to the size of the data segment.

Note:

1. The data segment memory of a program can be found on AIX using the size
–fv command.

2. The value of monitoring through CMF can be fully appreciated after the
bottlenecks are identified using statistics. For example, if you observe a
growth in the task-shared pool using statistics, enabling CMF will help you to
spot the task causing the memory leak.

Monitoring CPU
Table 2 lists the fields related to CPU usage provided by CMF and provides a
description of each of these fields. These fields are considered for performance
monitoring.

Table 2: Fields related to CPU usage provided by CMF

Field name (Field ID) Description
CICS_EMP_FID_TASK_ET (007) Time spent by a task during execution.

This does not include the time spent in
getting the task from the 3270
terminals to the scheduler, queuing in
the scheduler, or getting the task from
the scheduler to the application process.

CICS_EMP_FID_TASK_UT(008) The CPU time during which the task was
in user space when in execution.

CICS_EMP_FID_TASK_ST (211) The CPU time during which the task was
in kernel space while it was executing.

CICS_EMP_FID_SUT_CICSSPACE (216) The system or user time of the CPU that
is spent in the CICS space for the task.
CICS space means the processing of
EXEC CICS statements. System time is
the time spent in CPU kernel space for
the task. User time is that spent in the
CPU user space for the task.

CICS_EMP_FID_ULM_TIME(217) The elapsed time spent in monitoring
ULM.

If the TASK_ET (Field ID: 007) field reports an unexpectedly high value, other fields
described later, need to be investigated. The TASK_UT (ID: 008) field gives an idea
about the CPU usage by individual transactions. You can tune the Transaction
Definitions (TD) attribute MaxTaskCPU to prioritize the transactions as required.
The MaxTaskCPU and MaxTaskCPUAction attributes in the RD stanza are meant
to control the CPU time consumed by any transaction. For more details about
MaxTaskCPU and MaxTaskCPUAction attributes, see the TXSeries Information
Center.

Note: Setting MaxTaskCPU in the TD stanza overrides the value of MaxTaskCPU in
the RD stanza.

Monitoring CICS resources
Table 3 lists the field names related to monitoring CICS resources and provides a
description of each of these fields.

Table 3: Fields related to monitoring of CICS resources

Field name (Field ID) Description
CICS_EMP_FID_ET_TS_IO (011) Time spent waiting for Temporary

Storage I/O.
CICS_EMP_FID_ET_TRANS_SCH (024) The total elapsed time spent by the

transaction in the scheduler.
CICS_EMP_FID_ET_SUSPENDED (027) Elapsed time during which the task was

voluntarily suspended.
CICS_EMP_FID_ET_FILE_IO (063) Elapsed time spent waiting for file I/O.
CICS_EMP_FID_TASK_FLAGS(064) A field that is used to hold information

for signaling unusual conditions
detected during the execution of a task.

CICS_EMP_FID_ET_TD_IO (101) Elapsed time that the task spent waiting
for Transient Data I/O.

CICS_EMP_FID_ET_EXCEPTION (103) Elapsed time that the task waited for TS
space or memory.

CICS_EMP_FID_WT_TRANS_SCH (221) Elapsed waiting time in the transaction
scheduler for an application server to
become available.

CICS_EMP_FID_TT_TRANS_SCH (222) Elapsed waiting time in the transaction
scheduler for a TCLASS (TranClass) to
become available.

In the table, the fields 011, 063, and 101 are I/O related.

Note the following:

• When the elapsed time spent waiting for TS I/O (Field ID: 011) is high, you need
to tune the file manager. It is recommended that you use the main Temporary
Storage Queue (TSQ) instead of the auxiliary TSQ, if your application logic
permits. Using the main TSQ can considerably help reduce the TS_IO (11) time.

• Defining TSQs as non-recoverable reduces time and additional overheads
involved in TSQ operations.

• Incorrect positioning of EXEC CICS ENQ and DEQ in a program, while working
simultaneously on a queue, can also result in a higher TS I/O time.

• A high value for File I/O contention (Field ID: 063) calls for tuning the file
manager or application. Tuning OpThreadPoolSize and BufferPoolSize in the SSD
stanza can ease the read and write access to SFS files.

• The CICS_BROWSE_CACHE environment variable helps in faster file browsing.
For details of this variable, see the TXSeries Information Center.

• Faster access is achieved by splitting the data across the files. Also, read-only
files can be defined non-recoverable to reduce the File I/O time.

• A higher value for TD_IO (101) indicates an OS file system configuration issue or
a user program limitation.

All the transactions are queued before they are executed by the CICS application
server (cicsas). The field 024 gives the time spent by the transaction in the
scheduler. This time is a sum total of the values of the
CICS_EMP_FID_WT_TRANS_SCH (Field ID 221) and CICS_EMP_FID_TT_TRANS_SCH
(Field ID 222) fields.

Note the following:

• A higher value reported by CMF for the 024 field with the major contribution
from CICS_EMP_FID_WT_TRANS_SCH shows that the RD MaxServer might be
insufficient and CICS is not finding enough cicsas to run the transaction soon
after it is submitted. Increasing the MaxServer and MinServer values in the RD
stanza can help reduce this schedule time.

• A higher value reported by CMF for the 024 field with the major contribution by
CICS_EMP_FID_TT_TRANS_SCH signifies that the task has been waiting in
TCLASS queue before getting scheduled in the cicsas queue. Tuning the TCLASS
value in ClassMaxTasks of the RD stanza can improve the performance of this
queue.

Monitoring terminal usage of the system
Table 4 lists the field names related to monitoring terminal usage of the system and
provides a description of each of these fields.

Field 009 in table gives the amount of time spent by the transaction waiting on an
RPC Terminal I/O request. This variable is significant if the RPC client, RPC-EPI client,
or Telnet 3270 client is used to connect to the region. This value will always be 0 for
the CTG client. This field is applicable for transactions of type
CICS_EMP_FID_TRANS_TYPE=T.

Making the task pseudo-conversational for terminal-based I/O can largely help to
reduce the time reported in field 009.

Table 4: Fields related to terminal usage of the system

Field name (Field ID) Description
CICS_EMP_FID_TRANS_TYPE (004) Transaction type, which can be one of the

following:

• A, attached by Automatic Transaction
Initiation (ATI)

• C, second or subsequent part of a
conversational task

• D, attached by transient data trigger
level

• T, attached from a terminal
• Z, second or subsequent part of a

pseudo-conversational task
CICS_EMP_FID_ET_TERM_IO (009) Total time that the task spent waiting for

terminal I/O.

Field name (Field ID) Description
CICS_EMP_FID_ET_TERM_MGR
(015)

Total time spent by the task in the terminal
manager. This elapsed time for terminal
I/O processing in the application process
includes the time spent waiting for a user
response at a terminal. This is not the same
as field 009, because the region cannot
distinguish between times spent processing
and waiting in the cicsterm process.

Monitoring intersystem communication (ISC)
Table 5 lists the field names for monitoring intersystem communication and provides
a description of each of these fields.

In the table, field 208 refers to the amount of time spent waiting for the TCP/IP link.
Increasing TCPProcessCount in the LD stanza can reduce the time spent waiting for
the TCP/IP link. That is, the field gives the amount of time that the system took to
create and allocate a conversation to the remote region. This time is also affected by
the availability of resources in the remote region.

Table 5: Fields related to monitoring intersystem communication

Field name (Field ID) Description
CICS_EMP_FID_ET_PPC_SNA_LINK
(207)

Elapsed time that the task spent waiting
on an SNA link.

CICS_EMP_FID_ET_TCP_LINK (208) Time spent by the task waiting on a
TCP/IP link.

CICS_EMP_FID_ET_LOCAL_SNA_LINK
(218)

Time spent waiting on a local SNA link.

Performance impact of CMF
In general, a 10-15% overhead on performance is observed if all the fields of CMF
are enabled for monitoring. However, enabling only the required fields for monitoring
can substantially reduce the overhead. You can thus enable only the required
monitoring fields. On completion of each transaction, monitoring records for the list
of included fields are written to the disk. The frequency of writes to the disk would
increase if there are too many short-running transactions. You can also consider
creating a RAM disk or other alternatives for improved I/O performance.

CICS statistics
Statistics is an exhaustive and commonly used monitoring tool in TXSeries. Statistics
deal with a CICS region on the whole, unlike CMF, which gives micro-level details
pertaining to each transaction. This section explains some of the important
information available through online statistics and a few tuning recommendations
based on it.

Classification of statistics
Statistics can be online or offline, as shown in Table 6.

Table 6: Types of statistics

Online statistics Offline statistics
CSTD: A CICS-supplied transaction,
which provides details about the
current state of a region.

• Interval statistics
• End-of-day statistics
• Requested statistics
• Unsolicited statistics

The different categories of offline statistics are briefly explained in Table 7.

Table 7: Categories of offline statistics

Type of statistics Description
Interval statistics

Collected at specified time intervals. CICS writes
the collected data over the specified interval and
resets the statistics values to 0. Interval statistics
are useful for analyzing activities during a
particular period of time. For example, this can be
very useful if you want to study the usage of
resources and load during peak and off-peak hours.
This type of statistics is user configurable.

End-of-day statistics Collected at end of day or shutdown of a CICS
system. End-of-day statistics are useful for
studying trends and trouble spots. These statistics
are dumped by CICS by default, irrespective of the
user’s settings.

Requested statistics Collected to track the state of the system
immediately when requested. These statistics are
useful for analyzing temporary problems. You can
control requested statistics.

Unsolicited statistics Collected automatically for dynamic allocation and
de-allocating the resources. These records are
written about resources that are about to be
deleted and with statistics that will otherwise be
lost. This type of statistics is controlled by CICS
and you have no control these statistics.

Note:

1. For more details about the categories of offline statistics, see the topic
explaining collecting monitoring statistics, in the TXSeries Information
Center.

2. For an explanation on the fields used in offline statistics, see the topic on
statistics in the TXSeries Information Center.

Enabling statistics
By default, statistics are enabled for a region. The CSTD transaction, supplied with
CICS, presents a snapshot of the current state of a region and its load. You can
choose the resources to monitor from the options provided by CSTD. Figure 2 gives a
snapshot of CSTD with options.

Figure 2: A sample CSTD screen showing a list of available options to monitor

Formatting statistics output
The output from statistics can be formatted using the sample formatter provided by
CICS, cicssfmt. This formatter can be customized to meet your requirements. It
formats all statistics records to the specified output file.

The following command is used to list interval statistics for intersystem
communication management from 6 a.m. on May 1, 2008 until 6 p.m. on May 31,
2008 from the statsfile file.

cicssfmt –c ISCM –s 080501060000 –e 080531180000 –i statsfile

For a detailed description of the formatter, see the topic explaining cicssfmt in the
TXSeries Information Center.

Monitoring storage
Statistics can be used to monitor the region pool and the task-shared pool. Online
storage information can be accessed using CSTD option 2 or CST2 transaction
directly.

Note the following:

• Region pool memory is extensively used for CICS internal purposes. For
example, the number of active CICS application server (cicsas) processes in the

region directly impacts the usage of the region pool. Sufficient region pool
memory needs to be allocated to handle the maximum number of cicsas
specified in the RD stanza. This memory is also used to cache the runtime
databases of a region. Hence, the usage of region pool can increase substantially
with an increase in the number of resources defined for a region.

• Task-shared pool is used when the application has an EXEC CICS GETMAIN call
with the SHARED option or it shares data through the COMMAREA. If the task-
shared pool is observed to be continuously increasing over a period of time
(which can be either observed through offline statistics or the Administration
Console with monitoring enabled), you can find the leaking tasks by enabling the
storage fields in CMF. Main memory temporary storage queues are also stored in
task-shared pool.

Monitoring CICS resources
Statistics can be used to monitor CICS resources, which include files, Transient Data
Queues (TDQ), Temporary Storage Queues (TSQ), programs, journals, and
transactions.

You can monitor queue-related resources by using option 1 of CSTD. CST1 can be
used as an alternative. This option provides details about the queue operations in the
region since the last interval of collected statistics. Because this data summarizes the
usage of queues in the region, it can provide very useful input for tuning.

The sample CSTD screen in Figure 3, which displays queue-related data, provides
some guidance on this.

Figure 3: Sample CSTD screen displaying queue-related data

The screen provides information on both the main and auxiliary TSQs. As mentioned
earlier, it is recommended that you use main TSQs rather than auxiliary TSQs,
wherever the business logic permits.

Note the following:

• If main memory queues are largely used, you need to consider increasing
MaxTaskSharedPool in the RD stanza. The ‘Peak Num’ field can help in tuning
MaxTaskSharedPool.

• Aborts gives the number of times the data in recoverable TSQ has been rolled
back. If this value is more than expected, you must analyze the region console
and symrecs.

• If the memory is frequently exhausted, the task-shared pool size can be
increased if the main TSQ is used. If SFS is used as the file manager, SFS data
and log volume sizes can be increased. You can set TSQAgeLimit in the RD
stanza to inform CICS to clean up unused TSQs.

• Remote gives the number of requests made for remote queues.

Option 5 in CSTD addresses file related statistical information. Figure 4 shows a
sample of data displaying reads/writes in a file.

Figure 4: Sample of data displaying reads/writes in a file

Note the following:

• File related statistics in CSTD deal with the file operations for each file in the file
system of the region. Higher values in these fields can affect performance
considerably because of disk access.

• Caching the most accessed files can improve performance. Enable the
CICS_BROWSE_CACHE environment variable to achieve faster browsing.

• Using the correct file type (KSDS, RRDS, or ESDS) can help to improve
performance. If a lot of writes are involved with SFS as file manager, tuning the
PrePages value in the FD stanza can adjust the allocation done on the disk for
the file.

• Read-only files can be made non-recoverable using the Recoverable attribute
of the FD stanza for better performance. You can switch on ErrorIsolation in the
FD stanza while tuning. When you switch on ErrorIsolation, all the SFS errors are
passed on to the application. Setting the parameter to off can improve the
performance.

• A simple way to enhance the performance in an SFS system is to maintain the
user files in a server which is different from the region FM and tune the value of
BufferPoolSize and OpThreadPoolSize in the SSD stanza.

Options 7 and 8 of CSTD direct the user to Program and Transaction Statistics
respectively:

• Program statistics tell you the number of runs of each program in the region.
Frequently accessed programs (except MF COBOL and Java™ programs) can be
made resident by setting the Resident flag in the PD stanza to yes, for enabling
the program to be cached in the memory. The cacheable program size is limited
by the ProgramCacheSize value in the RD stanza.

• Transaction statistics also display the number of runs for each transaction.
Additionally, the number of abends related to task-private storage is also
available, which might suggest that you look at the task-private pool allocated
for the user application.

Monitoring intersystem communication (ISC)
Figure 5 shows a sample of data displaying ISC details. As will be seen from the
figure, CSTD option 4 provides detailed information about the ISC load in a region.
All the ISC facilities supported by TXSeries are dealt with. For example, the
maximum number of requests, the number of requests transmitted, and the number
of requests purged for outbound function shipping.

Figure 5: Sample of data displaying ISC details

Note the following:

• If in CSTD, Curr Queued reports a continuously high value, the
TCPProcessCount value in the LD stanza can be increased for CICS_TCP
communication.

• If the protocol is ppc_tcp, tune the RPCListenerCount value in the RD stanza to
increase the RPC processing count.

However, remote resource contention cannot be handled by tuning the parameters
mentioned above. Enabling CMF can assist you in spotting the bottlenecks.

Monitoring through TXSeries Administration Console
The TXSeries Administration Console is a Web-based utility that helps you to manage
a CICS system. Monitoring through the TXSeries Administration Console was
introduced in TXSeries V6.2 for monitoring a CICS region through the browser. The
console also presents a graphical representation of the collected data.

Terminology
Monitoring session. The Administration Console defines a monitoring session as a
duration for which a region is being monitored. This session is divided into equal

intervals called sampling intervals specified in minutes with a minimum value of 1
minute.

Monitoring profile. A monitoring profile must be in place for a region that requires
monitoring. A monitoring profile is a specification of resources and the associated
attributes to be monitored. It must be ready when a monitoring session is started.

Note: There can be only one active monitoring session, and hence, only one
region can be monitored at a time through the Administration Console.

Enabling monitoring through TXSeries Administration Console
To enable monitoring for a region through the Administration Console, you must
define the following attributes in Monitoring Definitions (the MD stanza):

• Set administration console monitoring on? Set this attribute to yes
• TCP Port number for administration console monitoring Set this attribute

to a unique port number in the range 1025–65535

You must define the monitoring profile for the region by selecting the required
resources and attributes, and also the sampling interval.

When the Administration Console monitoring is set to yes, a CICS-defined
transaction CMBT starts with the region and continues to run in a dedicated
application server until the region stops, or the transaction is explicitly forcepurged.
The CMBT transaction collects the data configured in the profile and supplies the data
to a Web listener.

GUI-based monitoring
The Administration Console presents several options for monitoring:

• System statistics such as region pool, task-shared pool, and task-private pool.

• Transaction and program statistics such as the number of transactions started,
the number of programs run, the number of exceptions raised and similar
information for selected transactions and programs.

• Various attributes of the transaction and the program.

At any point of time, the monitoring data can be viewed by using the current view
option. With this option, you can track the current state of the region. You can stop
the monitoring session at any time.

By enabling monitoring through the Web Administration Console, the data received
from the monitoring region is automatically collected and saved at the intervals you
specify for offline analysis. You can later view this data in either the data format or
the graphical format.

One of the main advantages of monitoring using the Administration Console is that
you can view the statistics data collected at regular intervals in the form of a graph.
This pictorial view aids your understanding of the system.

Note: For complete information on monitoring through the Administration
Console, see the TXSeries Information Center.

Figure 6 shows a sample graphical output from the Administration Console showing
the number of transactions started.

Figure 6: A sample graphical output showing the number of transactions started

Figure 7 shows the output from the Administration Console showing task-shared pool
storage.

Figure 7: Output showing task-shared pool storage

Automatic monitoring of heap memory
TXSeries provides an autonomic feature to monitor the growth of heap memory in
the cicsas process. The automatic monitoring of heap memory feature was
introduced in TXSeries V5.1 and has been available since then. This monitoring
facility can be a useful aid in warning about possible memory leaks in the cicsas
process.

The main features of this facility are:

• When enabled, this feature constantly monitors the data segment in the cicsas
process at regular intervals. This process of monitoring memory does not affect
the normal run time, because it is done through a separate thread.

• This monitoring feature can be configured using the ServerMemCheckInterval
and ServerMemCheckLimit variables in the RD stanza. ServerMemCheckInterval
defines the time in seconds in which the cicsas process can record its data
segment size. ServerMemCheckLimit defines the number of times that the check
must be done before CICS evaluates and warns about the increase in memory. It
is suggested that you make these checks as a minimum requirement when a
cicsas process reports growth in heap memory. You can also check if there are
any missing FREEMAIN calls in the application. In other words, scenarios in the
application where memory is allocated but not released need to be found.

• Because cicsas is a hosting environment, all runtime libraries, such as compiler
runtime and database client libraries, for example, reside in the cicsas process.
Thus, when a cicsas process reports growth in memory, it might be because of
the application, or because of the vendor-supplied software loaded into the
cicsas process or CICS code. You can try to isolate the cause by reducing
variables such as a database or a certain application. The heap memory can then
be monitored for growth.

• The CICS_LEAKDEBUG feature can be enabled and reports can be generated,
which can be useful in analyzing memory leaks.

INQUIRE APIs
INQUIRE APIs allow user-written programs to retrieve information about a single
named resource. You can use these APIs to browse all the runtime definitions that
the programs are authorized to access for a particular resource. The browsing
command has a format with start and end operations enclosing the browse
operation. The start operation indicates the start of the browse operation. The end
operation ends the browse and frees any held resources. The following API is used to
get information about a file that has a specified index name:

EXEC CICS INQUIRE FILE(“FIL1”) INDEXNAME(index);

INQUIRE can be used to obtain information in a wide range of categories. A few
examples are:

• INQUIRE PROGRAM Gathers information about a program, map set, or a table
• INQUIRE STATISTICS Retrieves information about the accumulation and

recording of CICS.
• INQUIRE SYSTEM Provides details about the local CICS region
• INQUIRE TRANSACTION Helps to understand the transaction details

CEMT INQUIRE is equivalent to the INQUIRE APIs that can be used in a program. It
also provides the same set of options as the APIs to get information about resources.

For example, to determine if a transaction is in the in-doubt condition, CEMT
INQUIRE TASK INDOUBT can be used. Figure 8 shows the output from CEMT
INQUIRE TASK.

Figure 8: Output from CEMT INQUIRE TASK

In case of transaction routing, a transaction can have a different name on the remote
system. As a result the output of CEMT INQUIRE TRANSACTION on the local system
might be different from that obtained on the remote system.

INQUIRE TERMINAL can be used to find out about an Advanced Peer-to-Peer
Communication (APPC) session in SNA communication. The full connection details
can be obtained using the INQUIRE CONNECTION command

Note: For a complete reference on the INQUIRE API, see the section on CICS
API command reference in the TXSeries Information Center.

Conclusion
This paper is an attempt to provide a handy guide to understanding the various
monitoring facilities available in TXSeries. The applicability of the different monitoring
facilities available in TXSeries differs depending on the circumstances. The specific
monitoring facility applicable to your system, therefore, depends on the
circumstances facing you. For instance, if you want information about the overall
usage of a region in your system, you can use the statistics facility or the TXSeries
Administration Console. If you want to view data in a graphical format, you can use
the TXSeries Administration Console, but at the cost of a dedicated application
server. If you need specific details for tuning your system at the transaction level,
you can use CMF, which provides the necessary data that you might require. Hence,
the use of a specific facility is entirely dependent on the system that is being tuned.
It is therefore important that you have a clear understanding of all the facilities
before deciding on which facility best suits your system.

Appendix A. Precautions to observe before tuning your system
Take the following precautions before tuning your system:

• Back up your configuration files before starting the tuning process. This helps
you to recover the original configuration, in case of any problem caused by the
changes made.

• Make one tuning change at a time and measure its effect.

• Identify and prioritize the major constraints in the system and then proceed with
the tuning accordingly.

• Tuning is a continuous process, because the constraints vary with time.

• Tune to relieve only identified constraints. Tuning resources, which are not the
primary cause of performance problems, has little or no effect on response time.
Also, a system that is tuned beyond requirements can deliver the best
performance. But such a system might require more maintenance than a mildly
tuned or standard system.

Appendix B. Monitoring field descriptions

The following table lists the monitoring fields, identifies the group to which they
belong, and provides a description of each field.

Field
ID

Group Description

001 CICSTASK The name by which the system knows the transaction.
002 CICSTERM The name by which the system knows the terminal.
003 CICSCICS The name by which the system knows the operator.
004 CICSTASK The transaction type, which can be one of the following:

• A (Attached by automatic transaction initiation (ATI)
• C (Second or subsequent part of a conversational task)
• D (Attached by transient data trigger level)
• T (Attached from a terminal)
• Z (Second or subsequent part of a pseudo

conversational task)
005 CICSCICS The recording start time. This is the time when the task was

attached or when the data recording was reset after a
conversational or User Load Module (ULM) record was
written.

006 CICSCICS The recording stop time. This is the time when the task was
detached or data recording was complete in support of a
conversational or ULM record written.

007 CICSTASK The elapsed time for which the task was running in the
system. It is measured between monitoring points, and
contains the time between the application server starting
and stopping work on the task. This time does not include
the time that is spent in getting from the CICS 3270
Terminal Emulator to the scheduler, queuing in the
scheduler, or getting from the scheduler to the application
process. This field contains times that are also accounted for
in other fields, such as fields 027, 063, and 101.

008 CICSTASK The CPU time during which the task was in user space while

Field
ID

Group Description

it was running.
009 CICSTERM The total time that the task spent waiting for terminal I/O.
010 CICSJOUR The elapsed time that the task spent waiting for journal I/O.
011 CICSTevent

monitoring point
The elapsed time that the task spent waiting for TS I/O.

015 CICSTERM The total time that the task spent in the terminal manager.
It is the elapsed time that is taken by terminal I/O
processing in the application process. It includes time that is
spent waiting for a user to respond at a terminal. This is not
the same as field 009, because the region cannot distinguish
between the time that is spent processing and the time that
is spent waiting in the cicsterm process.

016 CICSTERM The system time that the task spent in the terminal
manager. System time is the time that is spent processing
terminal requests in the CICS region. It does not include
time that is spent processing in the cicsterm process.

024 CICSTASK The total elapsed time that the transaction spent in the
scheduler.

027 CICSTASK The elapsed time during which the task was voluntarily
suspended.

029 CICSSTOR The number of page faults that occurred during the lifetime
of the task that did not require I/O activity.

030 CICSSTOR The number of page faults that occurred during the lifetime
of the task that did require I/O activity.

031 CICSTASK The TCA sequence number for the task.
033 CICSSTOR The maximum amount of data memory that a task uses.

This field is updated as a result of an EXEC CICS GETMAIN
request.

034 CICSTERM The number of messages that the task receives from the
primary terminal facility.

035 CICSTERM The number of messages that the task sends to the primary
terminal facility.

036 CICSFILE The number of file GETs that a task issued.
037 CICSFILE The number of file PUTs that a task issued.
038 CICSFILE The number of file BROWSEs that a task issued.
039 CICSFILE The number of file ADDs that a task issued.
040 CICSFILE The number of file DELETES that a task issued.
041 CICSDEST The number of transient data GETs that a task issued.
042 CICSDEST The number of transient data PUTs that a task issued.
043 CICSDEST The number of transient data PURGEs that a task issued.
044 CICSTevent

monitoring point
The number of temporary storage GETs that a task issued.

046 CICSTevent
monitoring point

The number of auxiliary TS PUTs that a task issued.

047 CICSTevent
monitoring point

The number of main TS PUTs that a task issued.

Field
ID

Group Description

050 CICSMAPP The number of BMS map requests that a task issued.
051 CICSMAPP The number of BMS IN requests that a task issued.
052 CICSMAPP The number of BMS OUT requests that a task issued.
054 CICSSTOR The total number of GETMAIN requests that a task issued.
055 CICSPROG The number of LINK requests that a task issued.
056 CICSPROG The number of XCTL requests that a task issued.
057 CICSPROG The number of LOAD requests that a task issued.
058 CICSJOUR The total number of journal output requests that a task

issued.
059 CICSTASK The number of START or INITIATE requests that a task

issued.
060 CICSSYNC The number of SYNCPOINT requests that a task issued.
061 CICSSTOR The number of times that the task was swapped out of main

memory.
063 CICSFILE The elapsed time that was spent waiting for file I/O.
064 CICSTASK A field that is used to hold information for signaling unusual

conditions that are detected during the execution of a task.
These bit flags are defined as follows:
Bit 1: Out-of-phase clock start/stop detected:
 C (Conversational); D (ULM write request)
Bit 5: Corrupt data storage area detected
Bit 22: Maximum task condition detected
Bit 23: Storage shortage condition detected

067 CICSTERM The number of messages that the task received from the
alternate terminal facility.

068 CICSTERM The number of messages that the task sent to the alternate
terminal facility.

071 CICSPROG The name of the first program that was invoked at attach
time.

083 CICSTERM The number of characters that the task received from the
primary terminal facility.

084 CICSTERM The number of characters that the task sent to the primary
terminal facility.

085 CICSTERM The number of characters that the task received from the
alternate terminal facility.

086 CICSTERM The number of characters that the task sent to the alternate
terminal facility.

087 CICSSTOR The maximum amount of text memory that is used. This
field is updated as a result of a LINK or XCTL API command.

088 CICSSTOR The total amount of memory that is obtained from EXEC
CICS FREEMAIN requests.

089 CICSCICS The name by which the system knows the user.
090 CICSMAPP The total number of BMS requests that the task issued.
091 CICSDEST The total number of TD requests that a task issued.
092 CICSTevent

monitoring point
The total number of TS requests that a task issued.

Field
ID

Group Description

093 CICSFILE The total number of file requests that a task issued.
094 CICSSTOR The total time that the task spent in program compression.
095 CICSSTOR The data segment occupancy of the user task. This field is

updated before GETMAIN and FREEMAIN requests and at
task exit.

096 CICSTASK Total elapsed time that is taken to execute the EXEC CICS
statements in the task.

097 CICSCOMS The fully qualified name by which the originating system or
local terminal is known at attach time. This name is
generated by the autoinstall user exit for a terminal that is
attached to a CICS region. For terminals that are attached
through Systems Network Architecture (SNA) links, this is
the LUNAME of the remote system. So, for a transaction-
routed terminal, where CICS is the application-owning
region, this is the LUNAME of the terminal-owning region.

098 CICSTASK Unique representation of the ID for the LUW for the current
task.

101 CICSDEST The elapsed time that the task spent waiting for TD I/O.
103 CICSCICS The elapsed time that the task waited for TS space or

memory.
108 CICSSTOR The text segment occupancy of the user task. This field is

updated before a LINK, XCTL, or LOAD request and at task
exit.

109 CICSTASK The priority of the transaction. The priority of a transaction
determines which transactions get first use of resources
when they become available, and how quickly the
transaction is executed.

112 CICSCICS One of the following conditions that is causing the
monitoring record to be written:

• C (Conversational)
• D (ULM write request)
• T (Task termination)

113 CICSPROG The first abend code that the task recorded.
114 CICSPROG The most recent abend code that the task recorded that is

different from the first abend code that the task recorded.
115 CICSPROG The elapsed time that was spent waiting for the program to

be loaded.
200 CICSFILE The elapsed time that was spent in the file manager (SFS).
202 CICSSTOR The total number of FREEMAIN requests that the task

issued.
203 CICSSTOR The total amount of memory that was obtained from

GETMAIN requests.
207 CICSCOMS The elapsed time that the task spent waiting on an SNA link.
208 CICSCOMS The elapsed time that the task spent waiting on a TCP/IP

link.
209 CICSCOMS The number of ISC messages that the task received.

Field
ID

Group Description

210 CICSCOMS The number of ISC messages that the task sent.
211 CICSTASK The CPU time during which the task was in kernel space

while it was executing.
212 CICSTASK The number of times that a context switch occurred because

this process voluntarily gave up system resources before its
time period was completely used.

213 CICSTASK The number of times that a context switch occurred because
a higher priority process thread was able to run or because
the current process exceeded its allotted time.

214 CICSTASK The number of signals that the task received.
215 CICSTASK The number of file system I/O actions that occurred while

the task was active. This number accounts only for real I/O;
data that is supplied by the caching mechanism is charged
only to the first process to read or write the data.

216 CICSTASK The system or user time of the CPU that is spent in the
CICS space for the task. CICS space means the processing
of EXEC CICS statements. User time is the time that is
spent in the user space of the CPU for the task. System time
is the time that is spent in kernel space of the CPU for the
task.

217 CICSUSER The elapsed time that was spent in monitoring ULM.
218 CICSCOMS The elapsed time that the task spent waiting on a local SNA

link.
219 CICSTASK The operating system Process ID (PID) of the process that is

running the task.
220 CICSTASK The elapsed time that the task was delayed because of

EXEC CICS DELAY.
221 CICSTASK The elapsed waiting time in the transaction scheduler for an

application server to become available.
222 CICSTASK The elapsed waiting time in the transaction scheduler for a

TCLASS (TranClass) to become available.

Appendix C. Integration with Tivoli
The IBM Tivoli® Monitoring solution can be integrated with TXSeries. Tivoli scripts can
be written to monitor a TXSeries region, SFS availability, and SFS page space
utilization. A sample implementation is available for downloading.

The sample Tivoli solution for TXSeries is available at:

http://www-
01.ibm.com/software/brandcatalog/portal/opal/details?catalog.label=1TW10TM5C

The sample SCRIPT data provider offers information such as indication of dump files,
CICS region availability, SFS availability, SFS page space utilization, region
transaction statistics, and region transaction performance data.

Users can alternatively develop their scripts and customize them to suit their
requirements.

GC34-7115-00

© Copyright International Business Machines Corporation, 2009. Licensed Materials - Property of IBM. IBM, the IBM logo, CICS, TXSeries, and Tivoli are trademarks or
registered trademarks of International Business Machine Corporation in the United States, other countries or both. Other company, product and service names may be
trademarks or service marks of others.
* All statements regarding IBM plans, directions, and intent are subject to change or withdrawal without notice.

