
Data transfer solutions
White paper

Using containers and channels
to enhance CICS interprogram
data transfer.

September 2005

By Steve Wood, Chartered Engineer
IBM CICS product development, IBM Software Group

http://www.ibm.com/us/
http://www-306.ibm.com/software/websphere/

Data transfer solutions
Page 2

Data transfer solutions
Page 3

2 Introduction

3 Pushing the limits on data

exchange

4 Passing data with traditional

methods

5 The CICS solution

7 The benefits of the containers

and channels approach

9 Good practice for programming

containers and channels

12 A strategic approach to containers

and channels

13 Summary

14 For more information

Contents
Introduction

For many organizations that run IBM CICS® systems, their CICS applications

conduct their core business — and represent a significant intellectual asset,

developed over many years. However, new styles of programming have evolved

that enable Web-based business models. If organizations want to embrace these

new business models without sacrificing reliable, core business transactions,

CICS applications must be capable of cooperating with these new styles of

programming. New programming styles often require the exchange of large

amounts of data, rather than efficiently managed exchange of parameter data

between CICS programs.

Now, IBM CICS Transaction Server, Version 3.1 introduces a new approach,

called containers and channels, that is designed to provide a straightforward

and flexible mechanism to exchange large volumes of structured parameter

data between CICS programs. By using this approach, you can enable CICS

programs to easily exchange unlimited data with virtually any Web-based

program. The containers and channels approach removes the constraint of the

32KB communications area (COMMAREA) limit. It also promotes easy linkage

between the valuable and time-proven core business processes of your

enterprise and the new business models that can extend the core business

to help you achieve competitive advantage.

This paper examines the benefits of new interfaces introduced by CICS

Transaction Server for z/OS, Version 3.1. These interfaces are optimized to

exchange rich and varied structured data content among CICS application

components. This paper explains when these interfaces can be applied to

gain best-possible advantage.

http://www-306.ibm.com/e-business/ondemand/us/index.html?&ca=qapromo&me=W&met=promo

Data transfer solutions
Page 2

Data transfer solutions
Page 3

Pushing the limits on data exchange

For most organizations that run CICS systems, CICS applications are

fundamental to the core value proposition of the business. This means that

reuse and integration of your CICS applications with new solutions makes

sound business sense. However, new solutions are often required to use very

different data-exchange methods from the efficient, strongly typed methods

used by traditional CICS applications.

Modern enterprise solutions typically use a loosely coupled style by defining

clear component boundaries and minimizing dependency on shared resources

among the system elements. This style offers the advantage of increased

flexibility to accommodate future business requirements. Many newer

solutions are designed to exchange the entire information payload in the

form of XML documents. Parameter data described in XML has very different

characteristics from the optimized data formats familiar to CICS programmers.

By design, XML is extensible, so you can add further data elements when

application requirements change. XML structures can accommodate a varied

mix of data types, and it is common for an XML document to reference large

binary objects such as images, along with character and numeric payload data.

To help make the structure easier for programmers to understand and work

with, the XML tags that delimit the document structure elements typically

have meaningful names. As a result, XML is verbose; the tag description of

the structure format and bounds of the elements within it can often occupy a

significant proportion of the content of the document. When you add in these

lengthy tag descriptions, XML-based parameter data areas can require large

areas of memory when passed by value between program elements. Frequently,

the 32KB limit imposed on the traditional CICS COMMAREA is not enough

to accommodate modern applications.

Data transfer solutions
Page 4

Data transfer solutions
Page 5

Passing data with traditional methods

As Figure 1 shows, CICS applications have traditionally passed request

parameters and sent response parameters through the EXEC CICS LINK

application programming interface (API) that specifies a single area of memory

called the COMMAREA. The COMMAREA contains the typed parameter data

values in the structure defined by the applications, and is limited by the API

to no more than 32KB in length.

Figure 1. Passing data between applications using the COMMAREA

Applications using the COMMAREA can be written in COBOL, PL/I, C, C++,

Java™ and other languages. In a similar way to subroutines, CICS COMMAREA

programs are unaware of which application invoked them or how they were

invoked. They are often stateless — that is, they do not have any record of

previous interactions. CICS Transaction Server automatically manages the

transactional and security contexts that are typically inherited from the caller

and transaction definition.

For historical reasons, CICS applications have been highly optimized

to be memory efficient, and have been easily able to pass the parameter data

required within the size constraints imposed by the CICS API on the

COMMAREA. When application components had to share more than 32KB of

data, programmers used managed shared-systems resources, such as Virtual

Storage Access Method (VSAM) files. The containers and channels approach

provided in CICS Transaction Server for z/OS, Version 3.1 provides an

alternative style of implementation for the exchange of large quantities of

parameter data.

Program B

EXEC CICS ADDRESS
 COMMAREA (structure-ptr)

Program A

EXEC CICS LINK PROGRAM (‘PROGRAMB’)
 COMMAREA (structure)

Data transfer solutions
Page 4

Data transfer solutions
Page 5

CICS programs are typically grouped into application suites, or components,

consisting of a number of programs designed to perform some business action

on data that is common to these programs. In most cases, some programs

within a component provide external access to clients or end users. These

programs use a public interface for the component that is distinct from the

private interfaces provided by each of the programs within a component.

Because both public and private interfaces are implemented as COMMAREAs,

many of the application assets that you have created over the years can be

reused as the building blocks for components. This capability is key to the

effective reuse of applications.

Today, implementing modern business solutions means that more and more

CICS applications are integrated with contemporary enterprise solution

components that exist outside the CICS environment. As a result, CICS

applications must increasingly process large quantities of structured parameter

data, in both XML and non-XML formats. The 32KB constraint imposed on

COMMAREA size compromises the ability to extend CICS applications to

new enterprise solutions, and limits the reuse of core CICS applications.

The CICS solution

CICS Transaction Server, Version 3.1 introduces a new approach that provides

an easy and more-flexible mechanism to exchange large volumes of structured

parameter data between CICS programs. This new approach is provided by

containers and channels.

Containers

A container is a uniquely named block of data that can be passed to a subsequent

program or transaction. It refers to a particular parameter data structure that

exists within a collection of virtually any form of application parameter data.

You can (and should) choose a container name that is a meaningful

representation of the data structure housed. For example, in a medical

application, the container name might be <prescription>. CICS

Transaction Server provides EXEC API verbs to create, delete, reference,

access and manipulate a container as well as to associate it with a channel.

• Applications must use a circumvention
technique, such as using external VSAM
files, or splitting the data into separate
parts. This method increases risk, as well
as programming time and effort.

• Passing XML documents by value
throughout the request process path
becomes inhibited because the size
constraint applies to calls between CICS
programs both within the local system
and between CICS systems, to parameter
data passed between CICS tasks, and to
external client programming interfaces
such as external CICS interface (EXCI)
and the CICS client external call
interface (ECI).

• Data structures used to define a
COMMAREA payload can become
overloaded. Redefining structures on
the same area of memory (dependent on
flags or whether the input, output or error
information is passed) increases the risk
of program errors. Similarly, confusion
about the validity of fields can result in
application-programming errors.

• An overloaded COMMAREA structure
increases transmission time between
CICS regions because the structure size
must account for the maximum size of
the data that could be returned by the called
program — and this parameter
size depends on the request logic invoked.
CICS Transaction Server must always
allocate memory to accommodate the
return of the maximum COMMAREA
structure size, even if the parameter
content has not changed during the
call processing, which compromises
memory management.

• A code-page conversion of COMMAREA
structure is complex because binary and
character data can’t be easily separated.

Some COMMAREA issues with
handling large data objects

Data transfer solutions
Page 6

Data transfer solutions
Page 7

A container can be any length, and container size is constrained only by

the available user storage in the CICS address space. It can include data in any

format required by an application. An application can create any number of

containers as required, and can use separate containers for different data types,

such as binary and character data. This capability helps ensure that each

container structure is based on a unique area of memory. It also minimizes

the potential for errors that commonly arise when parameter data for multiple

applications is overloaded on a single memory area by isolating different data

structures and making the association between data structure and purpose

clear. You can read more about discipline in program implementation in the

section of this paper entitled, “Good practice for programming containers

and channels.”

Channels

A channel is a uniquely named reference to a collection of application

parameter data held in containers. It’s analogous to a COMMAREA but it’s

free of its constraints. You can choose a channel name that is a meaningful

representation of the data structures that the channel is associated with.

For example, again, in a medical application, a channel name might be

<patient history>. This collection of application parameter data serves

as a standard mechanism to exchange data between CICS programs. CICS

Transaction Server provides an EXEC API that associates a named channel

with a collection of one or more containers — offering an easy way to group

parameter data structures to pass to a called application. CICS Transaction

Server removes a channel when it can no longer be referenced (when it

becomes out of scope).

Data transfer solutions
Page 6

Data transfer solutions
Page 7

The benefits of the containers and channels approach

To simplify programming, the CICS system — rather than the application —

controls the life cycle and scope of containers and channels. CICS Transaction

Server helps ensure that data integrity is preserved and storage resources are

managed to meet the processing requirements of the workload.

Application programmers — and the applications that they write — benefit from:

• An unconstrained, CICS technology-supported method of passing parameter data.

• Segregation of parameter data structures, each part represented by a named

container structure.

• A loosely coupled approach, with very little dependency between components

involved in the interchange, so that each can be used freely with other components.

• The freedom to dynamically determine the nature of the passed data and to select

the appropriate processing required.

• A CICS standard API for optimized data exchange between CICS programs

implemented in any CICS technology-supported language.

• Ease of parameter passing by using unique named references.

• Ease of understanding by using named references for parameter payloads.

Along with these application programming benefits, the CICS implementation

of containers and channels is optimized for performance, by efficient memory

management and data transfer, and for data conversion between different code

pages, on a per-container basis so that only the required containers are moved

or translated.

Data transfer solutions
Page 8

Data transfer solutions
Page 9

Performance

The internal CICS implementation that supports the container and channel

APIs is optimized to enable efficient memory management and data transfer

between the calling applications, for both local and remote calling. The CICS

implementation recognizes and tracks both modifications that are made to

container content and the creation of new containers. CICS Transaction

Server helps ensure that only the necessary new and modified containers are

transferred between the calling applications. As a result, if one parameter

data structure resides in a single container, the calling applications can benefit

from complete access to the data content in all containers that are in scope.

Furthermore, the performance of the calling mechanism is optimal because

the path length necessary to move data is minimized.

Explicit code-page conversion

CICS Transaction Server for z/OS, Version 3.1 includes functionality

that enables data conversion of container content. This function can mean

converting between character and binary formats or between different

character-set encodings. You invoke the conversion by specifying a coded

character set identifier (CCSID) as a parameter when accessing a container.

For example, a CCSID can cause CICS Transaction Server to convert the data

content into Extended Binary Coded Decimal Interchange Code (EBCDIC).

This capability is useful when CICS Transaction Server must receive data

content from applications implemented in an environment that is not natively

EBCDIC, such as distributed systems or Java 2 Platform, Enterprise Edition

(J2EE) application servers. Associating conversion operations at the container

level helps simplify how applications handle code-page conversion for different

data structures because you can apply different code-page conversions to separate

containers even if these containers are associated with the same channel.

Data transfer solutions
Page 8

Data transfer solutions
Page 9

Good practice for programming containers and channels

The ability to segregate parameter data into different types is fundamental

to making containers and channels a best-practice approach for replacing the

traditional COMMAREA structure. Depending on the nature of the application

data structure, you might have to create separate containers for:

• Each parameter structure in the copybook

• Read-only and read-write parameter structures

• Input and output parameter structures

• Binary and character data structures

Separating data types for reliability

An application can create as many containers as required, and it can use

separate containers for different data types, such as binary or character data.

This practice helps ensure that each container structure is based on a unique

area of memory. By helping to ensure isolation between different data

structures and clear association between data structure and purpose, you are

less likely to experience the errors that can commonly arise when parameter

data for multiple applications is overloaded on a single memory area. These

characteristics of isolation and association with purpose promote more

rigorous discipline in program development, with improved reliability.

You can associate a set of purpose-related containers with a channel.

This approach provides an easy means to group parameter data structures.

Separating parameter data structures into discrete containers allows functional

loose coupling between the components of an application suite. You can see

the advantage of this approach when you introduce new capabilities to an

application suite, because it enables progressive implementation of the new

capability. If you upgrade a service provider with new logic, the parameter data

related to new function can be separated in a new container. The additional

logic can then test for the existence of the new container, and if it’s present,

perform the new action. Because existing functionality and data is unaffected,

and the change is self-contained, the potential for error is reduced.

Data transfer solutions
Page 10

Data transfer solutions
Page 11

You can immediately deploy the change, and the existing behavior stays

the same, because the service provider could not be invoked using the new

container and new parameter data. This approach promotes flexible solution

implementations because you can progressively introduce service requestors

that pass the new parameter data to exploit the new function. As a result,

you can avoid a single wholesale functional change throughout the system —

reducing implementation risk and introducing the opportunity to stage

the introduction of a new capability.

Programming actions with containers and channels

CICS Transaction Server provides EXEC APIs for containers and channels in

all supported CICS programming languages. CICS also provides Java CICS

(JCICS) classes that enable you to use containers and channels to exchange

data between CICS J2EE applications and traditional CICS procedural

applications. API verbs enable you to PUT and GET containers (see Figure 2)

and, in the process, to associate a container with a channel and to delete

containers. Another EXEC CICS API verb makes it possible for you to MOVE

containers from one channel association to another. A channel can be passed

on LINK, START, XCTL and RETURN commands, and is supported on a

distributed program link (DPL) system. You can use the START CHANNEL

command to initiate transactions remotely. The INQUIRE API verb enables

applications to discover and process the appropriate containers and channels,

including ASSIGN CHANNEL and STARTBROWSE, GETNEXT and

ENDBROWSE CONTAINER.

Program B

EXEC CICS GET
 CONTAINER (structure-name)
 INTO (structure)
EXEC CICS PUT
 CONTAINER (structure-name)
 FROM (structure)

Figure 2. Passing data between applications using containers and channels

Program A

EXEC CICS PUT CONTAINER (structure name)
 CHANNEL (channel-name)
 FROM (structure)
EXEC CICS LINK PROGRAM (‘PROGRAMB’)
 CHANNEL (channel-name)
EXEC CICS GET CONTAINER (structure-name)
 INTO (structure)

Data transfer solutions
Page 10

Data transfer solutions
Page 11

The programming verbs provided by CICS Transaction Server to support

containers enable you to specify whether to put binary (bit) or character (char)

data into a container. This capability helps CICS Transaction Server to

optimize data-processing conversion because it can recognize binary content

and avoid any code-page conversion. If an application needs to convert any

character data between different code-page representations, you can specify a

CCSID as a command option. Simply specify an optional CCSID parameter on

the PUT container and GET container verbs supported by CICS Transaction

Server and the required code-page conversion is applied as the data is moved

to or from the container. You can apply different code-page conversions to

different structures based on criteria such as data type or intended usage.

To find the full set of EXEC CICS API verbs and options for containers

and channels in the “CICS Application Programming Reference”

topic of the CICS Transaction Server for z/OS Information Center, visit

http://publib.boulder.ibm.com/infocenter/cicsts31/index.jsp.

Data-separation example

CICS application-error information is only optionally returned when an error

occurs, by definition. Separating this information into a discrete container

can simplify application logic. The GET CONTAINER command for the error

container returns a NOTFOUND condition. You can use this condition as a clear

logic switch for the main or error-processing path. Using this condition also

reduces the potential for the application to misinterpret the returned data. By

creating this condition, you can also improve the clarity of the documentation

of the error handling within the program implementation. And the application

benefits from improved transmission efficiency between CICS regions because

the error container only needs to be sent when an error occurs.

• Offers a more flexible and intuitive
alternative to the COMMAREA.
By using separate containers
for logically different data, the
containers and channels approach
helps simplify language structures
and minimize the impact of changes
to the interface.

• Enables large amounts of data
to be passed between CICS
applications because they aren’t
subject to the 32KB restriction.
You are only limited by the amount
of storage you have available.

• Requires minimal application
changes.

Benefits of the containers
and channels approach

http://publib.boulder.ibm.com/infocenter/cicsts31/index.jsp

Data transfer solutions
Page 12

Data transfer solutions
Page 13

A strategic approach to containers and channels

The containers and channels approach complements other CICS technologies

for On Demand Business solutions, such as Web services support, and presents

a new opportunity to implement new, well-constructed business logic that

can exchange and process large volumes of rich, structured data in CICS

applications. You can best use this new capability where:

• New function is required for XML processing in Web services solutions.

• New structured data styles expose constraints in existing CICS applications.

• Existing CICS application suites must be optimized to process large data volumes.

The simplest approach to converting existing CICS applications to take

advantage of containers and channels might seem to be to replace an existing

COMMAREA implementation by creating a new channel with a single

container that holds the existing COMMAREA structure. However, this

approach does not enable you to separate a monolithic parameter block into its

separate component parts. Consequently, the application suite can’t fully take

advantage of the benefits of the containers and channels approach — including

the ability to separate data structures and optimize data passing, described

previously in this white paper.

In many cases, it is effective to maintain existing CICS programs using the

original COMMAREA techniques. IBM recommends that, if you’re evaluating

the containers and channels approach, you carefully select new or existing

applications to help ensure manageable risk and high returned value as you

adopt new capabilities.

Data transfer solutions
Page 12

Data transfer solutions
Page 13

With the right interfaces to business-logic programs in CICS Transaction

Server, your existing CICS assets can be reused in many On Demand Business

solutions. They exploit and complement IBM z/OS® operating system qualities

of service, such as high availability and scalability at a low cost per transaction,

with excellent security. The new containers and channels capability in CICS

Transaction Server for z/OS, Version 3.1 demonstrates how CICS Transaction

Server continues to lead the way in delivering maximum return on investment

(ROI) while minimizing risk.

Summary

Traditionally, CICS programs have used COMMAREAs to exchange data.

To overcome limitations in the size of data passed, CICS Transaction Server for

z/OS, Version 3.1 provides an improved method of exchanging data involving

two new concepts: containers and channels. Containers are essentially named

parameter data structures that, when grouped together into sets called

channels, are analogous to a COMMAREA.

The containers and channels approach has several advantages over

COMMAREAs:

• Containers can be any size and, as a result, can extend beyond the maximum

32KB size of a COMMAREA. There is no limit to the number of containers that can

be added to a channel, and the size of individual containers is limited only by the

amount of storage available.

• A channel consists of multiple containers, enabling it to be used to pass data in a

more structured way. In contrast, a COMMAREA is monolithic block of data.

• Unlike COMMAREAs, channels don’t require the programs that use them to know

the exact size of data returned, making programming easier.

Data transfer solutions
Page 14

Channels can be used by CICS application programs written in any of the CICS

technology-supported languages. For example, a Java client program on one

CICS region can use a channel to exchange data with a COBOL server program

on a different region.

The ability to use multiple containers reduces the complexity of designing

programs, because now programs don’t have to reformat data into a single

COMMAREA. And multiple containers also allow greater independence when

maintaining programs. In the past, every program that called a utility with a

large COMMAREA had to be recompiled when data elements were added to the

COMMAREA. Now, when multiple containers are used, only programs affected

by the addition of data elements need to be recompiled.

Through the loose coupling with other applications, the new containers and

channels approach is the last element needed to enable CICS programs to take

part freely in the composable processes that are such an important part of On

Demand Business. With Web services capabilities, the new unlimited data

exchange capabilities in CICS Transaction Server mean that CICS applications

can be quickly integrated with any other application, fully aligning your core

business transactions with the new business models that are defining today’s

enterprise.

For more information

To learn more about the containers and channels approach and IBM CICS

Transaction Server for z/OS, Version 3.1, contact your IBM representative or

IBM Business Partner, or visit:

ibm.com/cics

www.ibm.com/cics
www.ibm.com/cics

Data transfer solutions
Page 14

© Copyright IBM Corporation 2005

IBM United Kingdom Limited
Hursley Park
Winchester
Hampshire
SO21 2JN
United Kingdom

Produced in the United States of America
09-05
All Rights Reserved

CICS, IBM, the IBM logo, the On Demand Business
logo and z/OS are trademarks of International Business
Machines Corporation in the United States, other
countries or both.

Java and all Java-based trademarks are trademarks
of Sun Microsystems, Inc. in the United States, other
countries or both.

Other company, product and service names may be
trademarks or service marks of others.

G224-7535-00

