
Data-transfer solutions
White paper

CICS Transaction Server for z/OS
—a robust platform for Java.

June 2007

By Scott Clee, Paul Cooper and Pete Seddon,
IBM Software Group

http://www.ibm.com/us/

CICS Transaction Server for z/OS—a robust platform for Java.
Page 2

2	 Introduction

3	 CICS	Transaction	Server	and	Java	

readiness	

6	 	Java	manageability,	serviceability	

and	usability	enhancements	to		

CICS	Transaction	Server

10	 Summary

11	 For	more	information

Contents
Introduction

This white paper discusses the additional new support IBM CICS® Transaction

Server for z/OS®, Version 3.2 provides for running Java™ applications in a

high-volume, high-availability transaction-processing environment. The new

Java support is part of the drive toward modernizing business applications and

using them in flexible, new, services-based IT infrastructures such as service

oriented architecture (SOA).

Figure 1 shows the IBM SOA reference architecture.

Figure 1. IBM SOA reference architecture

The new release of CICS Transaction Server includes enhancements that

deliver better manageability, serviceability and usability when running Java

technology-based workloads in CICS Transaction Server. These enhancements

are based on real use cases and have been made in direct response to IBM

clients who have requested greater control over how CICS Transaction Server

manages Java workloads.

This white paper is designed to address the needs of application developers,

operational support staff and anyone interested in the Java support provided by

the latest version of CICS Transaction Server.

Development services

Business innovation and optimization services

Connectivity services

IT services management

Interaction services Process services Information services

Partner services Business application services Application and
information assets

CICS Transaction Server for z/OS—a robust platform for Java.
Page �

CICS Transaction Server and Java readiness

Java has rapidly grown in popularity throughout the IT industry, and for

many organizations, it is now their programming language of choice. CICS

Transaction Server has extended the support for Java technology-based

workloads over a number of releases in response to the uptake of the Java

programming model. CICS Transaction Server, Version 3.2 adds further

support for Java, making this version essential for anyone already running

Java workloads in earlier-version CICS environments.

From a historical perspective, the expectations that users had for CICS

Transaction Server and Java have matured over time. When IBM first

introduced Java support in CICS Transaction Server, it was expected that Java

should behave as much like COBOL as possible from within the CICS runtime

environment. Today, the expectation is that Java in CICS Transaction Server

should be much like Java in other applications.

The unique characteristics of the persistent reusable Java Virtual Machine

(JVM) that has been traditionally supported in earlier versions of CICS

Transaction Server make it more difficult to write Java programs that run as

intended in CICS Transaction Server. As a result of this and other performance-

related issues, many users of Java in a CICS Transaction Server, Version 2.3

environment have elected to use the continuous JVM exclusively and have

abandoned the persistent reusable JVM altogether.

Recent versions of the JVM do not include the persistent reusable JVM

extensions. To make CICS Transaction Server consistent with this Java change,

CICS Transaction Server, Version 3.2 also does not support the persistent

reusable JVM (support is for the continuous JVM only). Support for the class

cache remains unaffected.

CICS Transaction Server for z/OS—a robust platform for Java.
Page �

The persistent reusable JVM was first made available for use in CICS

Transaction Server, Version 2.1. It offers the ability to reset the state of a JVM

between tasks to help ensure that subsequent users of the same JVM are fully

isolated from states left behind by previous users of the JVM. The time taken to

reset a JVM depends on there being no cross-heap references between the

middleware and the application heaps within the JVM. If these references

exist, the JVM scans the heap to determine if the references are in live objects.

The scan process is rather slow. If the attempt to reset the JVM fails, CICS

Transaction Server discards the JVM and creates a new one. These unresettable

events (UREs) have been a major performance problem for some users of

CICS Transaction Server and Java.

The continuous JVM was introduced in CICS Transaction Server, Version 2.3.

It offers the ability to omit resetting the JVM between CICS tasks, helping to

ensure that there are no performance problems due to cross-heap references.

It also offers the ability to cache states between transactions to help improve

performance. As a Java application-execution environment, it is more

consistent with Java in other environments and on other platforms (for

example, the class loading, threading, just-in-time [JIT] and garbage-collection

components are the standard ones). CICS Transaction Server is still designed to

ensure complete isolation between concurrently running tasks running in

different JVMs in both JVM modes, but isolation issues might exist between

serial tasks running in the same JVM. In practice, most CICS Java workloads

now use the continuous JVM to benefit from the considerable performance

advantages. With the 2007 announcement of CICS Transaction Server, Version

3.2, the focus is now firmly on continuous JVM and the operational advantages

this feature confers (see Figure 2).

Figure 2. History of JVM support in CICS Transaction Server

CICS Transaction Server,
Version 2.1

(persistent reusable JVM)

CICS Transaction Server,
Version 2.3

(persistent reusable
and continuous JVM)

CICS Transaction Server,
Version 3.2

(continuous JVM)

CICS Transaction Server for z/OS—a robust platform for Java.
Page �

From a migration viewpoint, IBM provides a tool for upgrading Java

applications so that they can be used in the continuous JVM environment.

The tool is called IBM CICS JVM Application Isolation Utility, and reports the

use of a static state within an application (the main cause of isolation issues

between serial users of a JVM). If the tool is used along with a JVM security-

policy file, it can help the administrator ensure that isolation breaches

(caches) occur in a planned way.

The tool scans all Java class files and Java archive (JAR) files for methods that

attempt to modify static variables for Java applications. If the tool discovers

these methods in the scanned files, it generates a report that contains the

class name, method and static variable name of each relevant method. This

information then enables the administrator to decide what to do with the

affected fields (bearing in mind that, when a JVM runs in continuous mode,

static initialization of fields does not happen on subsequent uses of that JVM).

However, the tool is not just about upgrading applications; it is also useful in

general deployment scenarios for determining whether Java applications are

suitable candidates for deployment in CICS Transaction Server. The tool helps

the system administrator audit compiled Java programs to see whether they are

likely to experience problems when deployed to a continuous JVM environment.

The Web user interface (WUI) for CICSPlex System Manager has also been

made consistent with the changes to JVM support. For example, the reset

option in the JVM profile has been removed and other options related to the

persistent reusable JVM are no longer available because it is no longer supported.

CICS Transaction Server for z/OS—a robust platform for Java.
Page �

Java manageability, serviceability and usability enhancements to

CICS Transaction Server

Several manageability, serviceability and usability enhancements have been

made in response to feedback from CICS and Java users.

Schedule garbage collection at specified heap usage

The garbage-collection process reclaims dereferenced storage so that it can

be reallocated and reused. Java applications tend to generate large amounts of

garbage that slowly consume storage that would otherwise be available for

allocation. In CICS systems, Java garbage collection can occur for the

following reasons:

•	 The JVM has run short on storage and schedules a garbage collection.

•	 CICS Transaction Server schedules a garbage collection.

CICS Transaction Server schedules a garbage collection to occur after a

specified number of JVM uses (a value that has been configurable since the

release of CICS Transaction Server, Version 2.3). Garbage collection occurs

after an application has finished with the JVM, but before the task ends. This

means that the cost of the garbage collection is included in the cost of the task,

and application-response time suffers as a result. To address this problem, the

garbage collections that are scheduled by CICS Transaction Server, Version 3.2

occur at a specified target heap utilization (the default value when this happens

is 85 percent of heap utilization) and in a separate CICS system task. A value of

zero implies that garbage collection is never scheduled by CICS Transaction

Server, in which case garbage collection occurs only when needed within the

application task. Keep in mind, though, that unscheduled garbage collections

within the JVM can still occur at any time, but fine-tuning can help minimize

the likelihood of this happening.

CICS Transaction Server for z/OS—a robust platform for Java.
Page 7

Specify a JVM timeout value

CICS users can now access a new JVM profile-idle-timeout option

that specifies how long a JVM remains in the JVM pool if it becomes

inactive. The range is zero to seven days (a value of zero is infinite and

means that the JVM is never terminated). The default idle timeout

value is 30 minutes. If the number of idle JVMs in the pool exceeds the

workload requirement, CICS Transaction Server terminates

them automatically. However, CICS Transaction Server does not

immediately terminate all JVMs that have timed out; instead, it

terminates them gradually. This capability helps ensure that a

balanced capacity is maintained in the JVM pool. Those JVMs that

have timed out but have not yet been terminated are still available for

reuse by applications if an increase in demand occurs. If a JVM is

reused, its timeout value is automatically reset. But it’s important to

remember that CICS Transaction Server never automatically

terminates the last JVM in the JVM pool.

Being able to specify a JVM timeout value from within such a

wide range provides much greater flexibility in handling workload.

It also helps reduce the system-processing overhead and increase

performance because the JVM pool is more-effectively managed by

the system.

CICS Transaction Server for z/OS—a robust platform for Java.
Page �

Preinitialize JVMs

The same administrators who experience problems with JVMs being

discarded too soon typically require the ability to preinitialize JVMs so that the

first CICS Java application task does not incur the processing cost and delay of

starting a JVM. CICS Transaction Server, Version 3.2 includes a new system

programming interface (SPI) command for creating a specified number of

JVMs from the same JVM profile. It is also possible for users to write a program

that initializes the required number and type of JVMs ahead of time (for

example, at start-up) or at a specified time (for example, at midnight), or after

 a JVM pool has been phased out.

Selectively phase out JVMs by profile

CICS Transaction Server now offers users the ability to selectively phase out

JVMs in the pool that have a specific profile. As with previous versions of CICS

Transaction Server, it is still possible to phase out all JVMs in the JVM pool

regardless of profile. The ability to phase out by profile provides much greater

flexibility when managing the JVM pool. It also helps maintain workload

throughput because the user does not have to take down all JVMs in the pool to

implement changes to some, such as when adding new application classes and

when refreshing shared Java classes (those on the shareable application

class path).

CICS Transaction Server for z/OS—a robust platform for Java.
Page �

Offer an easier-to-use JVM profile

The JVM profile in CICS Transaction Server, Version 3.2 is simpler than

the JVM profiles used in earlier CICS versions. Some profile options (including

TMPREFIX and TMSUFFIX) have been deprecated. In addition, JVM

properties can be specified within the JVM profile itself, rather than in a

separate properties file, helping to reduce the number of files that have to

be maintained.

Additional validation checks have also been implemented to address common

user errors such as the accidental use of a CICS directory entry that is not at the

latest level. The JVM profile-configuration options in CICS Transaction Server,

Version 3.2 are also more consistent with Java configurations on other

platforms. It is now possible to use standard JVM configuration parameters

that are used on other platforms.

Identify JVM profiles by name

SJ trace messages issued by CICS Transaction Server, Version 3.2 now include

the JVM profile name associated with the JVM. This function helps users

make changes to the correct JVM profiles in response to messages. In previous

versions of CICS Transaction Server, it is not always obvious which JVM

profiles are used by tasks.

CICS Transaction Server for z/OS—a robust platform for Java.
Page 10

Summary

This white paper has discussed how the Java enhancements to CICS

Transaction Server, Version 3.2 enable businesses to run Java applications as

part of modern, flexible, services-based, business-oriented IT infrastructures.

These Java enhancements also help deliver better productivity and cost savings

through improved manageability, serviceability and usability when running

Java technology-based workloads in CICS systems. In addition, enhancements

in this release enable Java in CICS Transaction Server to behave in much the

same way as Java in other environments, resulting in shorter application-

development lead times, more-effective system management and better

user expectations.

Other enhancements include:

•	 Improved Java garbage collection that can lead to faster application-response

times, and ultimately, enables business processes to run more efficiently.

•	 The ability to balance JVM usage more effectively to handle Java technology-based

workloads more efficiently.

•	 The ability to preinitialize Java resources before they are needed, helping to reduce

processor usage and enabling organizations to manage their business systems more

cost-effectively.

•	 The ability to selectively remove Java resources while processing is occurring, so

that the system can continue to process valuable workload while administrative

changes are made.

•	 Simpler-to-understand Java resources that are easier to identify, helping to reduce

user error.

CICS Transaction Server for z/OS—a robust platform for Java.
Page 11

For more information

To learn more about CICS Transaction Server and Java, contact your

IBM representative or IBM Business Partner, or visit:

ibm.com/cics

WSW11333-USEN-00

© Copyright IBM Corporation 2007

IBM United Kingdom Limited
Hursley Park
Winchester
Hampshire
SO21 2JN
United Kingdom

Produced in the United States of America
06-07
All Rights Reserved

CICS, IBM, the IBM logo and z/OS are trademarks of
International Business Machines Corporation in the
United States, other countries or both.

Java and all Java-based trademarks are trademarks
of Sun Microsystems, Inc. in the United States, other
countries or both.

Other company, product and service names may be
trademarks or service marks of others.

