
MQSeries® Integrator Agent for CICS® Transaction
Server

Tutorial and Techniques
Version 1 Release 1 Modification 1

SC34-6087-00

���

MQSeries® Integrator Agent for CICS® Transaction
Server

Tutorial and Techniques
Version 1 Release 1 Modification 1

SC34-6087-00

���

Note: Before using this information and the product it supports, read the information in “Notices” on page 263.

First edition March 29th, 2002

This edition applies to version 1 release 1 modification 1 of MQSeries Integrator Agent for CICS Transaction Server
(product number 5655-F25) and to all subsequent releases and modifications until otherwise indicated in new
editions.

IBM welcomes your comments. You can make comments on this information via e-mail at idrcf@hursley.ibm.com.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

mailto:idrcf@hursley.ibm.com

Contents

Figures v

Tables ix

About MQSI Agent for CICS xi
The objectives of this tutorial xiv
Who should use this tutorial xiv
Related information xv

Chapter 1. Guidelines for building
adapters 1
Requirements analysis and design considerations . . 1

Requirements analysis 1
Design considerations 2
Application interface. 2
Determining the critical data structures in the
server application. 4

Building adapters. 6
Deploying adapters 6
High level control flow of a CICS business
transaction at run time 7

Chapter 2. Tutorial overview 9
About the business transaction that you will model . 9
Accessing the files to perform the tutorials 10
Assumptions 10
Tutorial directory structure 11

Accessing a completed workspace 12

Chapter 3. Build an adapter that
supports a DPL interface 15
Designing an adapter 15

Addressing a business need 16
Accessing the DPL tutorial files. 22
Configuring the Specification files for a DPL
interface 23
Creating an adapter that supports a DPL interface 26
Deploying an adapter 59
Check to see that the adapter compiled in CICS . . 62
Defining the adapter resources to CICS 62

Chapter 4. Build an adapter that
supports an MQ interface. 65
Designing an adapter 65

Addressing a business need 66
Identify the components of the run time
environment 67

Accessing the MQ tutorial files 72
Configuring the Specification files for an MQ
interface 73

Creating an adapter that supports an MQ interface 76
Deploying an adapter 107
Check to see that the adapter compiled in CICS 110
Defining the adapter resources to CICS 110

Chapter 5. Build an adapter that
supports a FEPI interface 111
Designing an adapter 111

Addressing a business need 112
About the adapter you will design 112
Identify the components of the run time
environment 114

Accessing the FEPI tutorial files 115
Configuring the Specification Files 116
Creating an adapter that supports a CICS FEPI
interface 120

Import Message Sets 120
Create the subflows for the FEPI adapter . . . 137
Create the Navigator microflow 197

Deploying an adapter 225
Check to see that the adapter compiled in CICS 228
Defining the adapter resources to CICS. 228

Chapter 6. Validating the adapters . . 231
How the Simulator works 231
Preparing to use the Simulator 232
Running the Simulator to validate the adapters . . 232

Appendix. Example procedure for
defining adapter resources to CICS . . 239
Defining DPL adapter resources to CICS 239

Check to see that the adapter compiled in CICS 239
Defining the adapter resources to CICS. . . . 242

Defining MQ adapter resources to CICS 246
Check to see that the adapter compiled in CICS 246
Defining the adapter resources to CICS. . . . 249

Defining FEPI adapter resources to CICS 254
Check to see that the adapter compiled in CICS 254

Defining the adapter resources to CICS. 257
Running the CEDA transaction 257

Notices 263
Trademarks 264

Glossary 267

Index 273

© Copyright IBM Corp. 2001 iii

iv MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Figures

1. Adapter Builder Components. xi
2. Process for using MQSI Agent for CICS xiii
3. Accessing the MQSI Agent for CICS

documentation xv
4. Analyze information before you begin modeling 1
5. Supported interface methods 3
6. Deploying the adapter from the builder to the

OS/390 server 7
7. Tutorial installation for default settings (part 1) 11
8. Tutorial installation for default settings (part 2) 12
9. Components that make up the DPL adapter

you will build. 17
10. Tutorial run time environment for DPL adapter 22
11. Directory structure for locating specification

files for the DPL interface 24
12. Initial panel of the MQSI Agent for CICS

Adapter Builder 27
13. Import a message set (source information) 28
14. Import a message set (group level) 29
15. Import a message set (group level) 30
16. Create a TU_D_TRX transaction. 32
17. Add messages to the TU_D_TRX transaction 33
18. Messages Sets view 33
19. Creating a Decision type for the DPL Adapter 35
20. Editing the In Terminal on the Decision type 36
21. Editing the Out Terminal on the Decision type 37
22. Code for the Good Terminal 38
23. Creating a TU_D_DCUST Command type 39
24. Creating a TU_D_CUST_CTX Data Context

type 40
25. Creating a TUDPL01 Microflow Type 41
26. Dragging an Input Terminal on to the

Microflow Definition pane 42
27. Configuring the TU_D_RAW Input Terminal

node properties 43
28. Configuring the OUT_OK Output Terminal

properties 45
29. Nodes for the DPL adapter 46
30. Connecting the TU_D_RAW Input Terminal

and TU_D_DCUST Command node 47
31. The TUDPL01 microflow 48
32. Mapping for Map1 node 50
33. Mapping for Map2 node 51
34. Mapping for Map2 node 52
35. Mapping for Map3 node (TU_D_CUST_CTX

and TU_D_RTN_OK messages to OUT_OK
message) 53

36. Mapping for Map4 node 54
37. Mapping for Map5 node 55
38. Mapping for Map6 node 56
39. Creating an CICS MQAdapter 57
40. Messages Sets folder showing checked out

message and newly created message 58
41. Specifying pathname for copybook generation

output 58

42. Specifying pathname for adapter code
generation output 59

43. Specifying the target host 60
44. Logon to the host 61
45. Sub-process dialog indicating status of the

deploy process 62
46. Tutorial run time environment for MQ adapter

(DFHMABP6). 67
47. Components that make up the MQ adapter

you will build. 68
48. Directory structure for locating specification

files for the MQ interface 74
49. Initial panel of the MQSI Agent for CICS

Adapter Builder 76
50. Import a message set (source information) 78
51. COBOL Language Message Importer — group

level panel 79
52. Import a message set (group level) 80
53. Create a TU_M_TRX transaction 82
54. Add messages to the TU_M_TRX transaction 83
55. Messages Sets view 83
56. Editing the In Terminal on the Decision type 85
57. Editing the Out Terminal on the Decision type 86
58. Code for the Good Terminal 87
59. Creating a TU_M_DCUST Command type 88
60. Creating a TU_M_CUST_CTX Data Context

type 89
61. Creating a TUMQ01 Microflow Type 90
62. Configuring the TU_M_RAW Input Terminal

node properties 92
63. Configuring the OUT_OK Output Terminal

properties 93
64. Nodes for the DPL adapter 94
65. Connecting the TU_M_RAW Input Terminal

and TU_M_DCUST Command node 95
66. The TUMQ01 microflow 96
67. Mapping for Map1 node 98
68. Mapping for Map2 node 99
69. Mapping for Map2 node 100
70. Mapping for Map3 node (TU_M_CUST_CTX

and TU_M_RTN_OK messages to OUT_OK
message) 101

71. Mapping for Map4 node 102
72. Mapping for Map5 node 103
73. Mapping for Map6 node 104
74. Creating a CICS MQAdapter 105
75. Messages Sets folder showing checked out

message and newly created message This
screen capture contains a Messages Sets
folder showing a checked out message,
indicating by an associated key symbol, and
newly created message, indicated by a yellow
star symbol. 106

76. Specifying pathname for copybook generation
output 106

© Copyright IBM Corp. 2001 v

77. Specifying pathname for adapter code
generation output 107

78. Specifying the target host 108
79. Logon to the host 109
80. Sub-process dialog indicating status of the

deploy process 109
81. Tutorial run time environment for FEPI

adapter 115
82. Directory structure for locating specification

files for the FEPI interface 117
83. Initial panel of the MQSI Agent for CICS

Adapter Builder. 121
84. Import a message set (source information) 122
85. Import a message set (group level) 123
86. Import a message set (group level) 124
87. Add the CICS_SAMPLES message set 125
88. Add messages to the CICS_SAMPLES

message set 126
89. Create the 3270 message set. 127
90. 3270 Screen Importer in emulation mode 128
91. CICS logon screen 129
92. Capturing the CICS logon screen 129
93. Element Qualifiers for the CICS logon screen 130
94. CICS Signon Complete screen 131
95. ’Screen recognition data cannot be

determined’ information message 131
96. Customizing the element qualifier 132
97. Customer Information screen 133
98. Requesting a customer record display on the

Customer Information screen 133
99. Customer record display 134

100. Add an existing transaction 135
101. Add messages to the

TU_F_SAMPLE_PARSER folder 136
102. Message Sets view 137
103. Creating a TU_F_PARSER Command type 139
104. Creating a TU_F_PARSER Microflow Type 140
105. Configuring the Input RAW Input Terminal

node properties 142
106. Connecting the Input RAW Input Terminal

node and the TU_F_PARSER Command node. 143
107. TU_F_PARSER 144
108. Mapping for Map1 node 145
109. Mapping for Map2 node 146
110. Creating an CICS MQAdapter 147
111. Messages Sets folder showing checked out

message and newly created message 148
112. Specifying pathname for copybook generation

output 149
113. Specifying pathname for adapter code

generation output 150
114. Creating a TU_F_SIGNON Command type 151
115. Creating a TU_F_ CMAV Command type 152
116. Creating a TU_F_SIGNON Microflow Type 153
117. Configuring the Input RAW Input Terminal

node properties 155
118. TU_F_SIGNON 157
119. Valid Values dialog 158
120. Mapping for Map1 node 159
121. Mapping for Map2 node 160
122. Mapping for Map3 node 161

123. Creating an CICS MQAdapter 162
124. Specifying pathname for adapter code

generation output 163
125. Creating a TU_F_CUST Command type 164
126. Editing the In Terminal on the Decision type 165
127. Editing the Out Terminal on the Decision

type. 166
128. Code for the REC_NOT_FND Terminal 167
129. Creating a TU_F_INQ Microflow Type 168
130. Configuring the Input RAW Input Terminal

node properties 169
131. TU_F_INQ 171
132. Mapping for Map1 node 173
133. Mapping for Map2 node 174
134. Mapping for Map3 node 175
135. Mapping for Map4 node 176
136. Creating an CICS MQAdapter 177
137. Specifying pathname for adapter code

generation output 178
138. Creating a TU_F_SGNOFF Microflow Type 179
139. Configuring the Input REPLY Input Terminal

node properties 180
140. TU_F_SGNOFF 182
141. Mapping for Map1 node 183
142. Mapping for Map2 node 185
143. Mapping for Map3 node 186
144. Mapping for Map4 node 187
145. Creating an CICS MQAdapter 188
146. Specifying pathname for adapter code

generation output 189
147. Creating a TU_F_RESET Microflow Type 190
148. Configuring the Input CUST SCR Input

Terminal node properties 191
149. TU_F_RESET Microflow 193
150. Mapping for Map1 node 194
151. Mapping for Map2 node 195
152. Creating an CICS MQAdapter 196
153. Specifying pathname for adapter code

generation output 197
154. Creating a TU_F_NAV Microflow Type 198
155. Editing the In Terminal on the Decision type 199
156. Editing the Out Terminal on the Decision

type. 200
157. Code for the SIGNON Terminal 201
158. Editing the In Terminal on the Decision type 202
159. Editing the Out Terminal on the

TU_F_GOOD_SIGNON Decision type . . . 203
160. Code for the GOOD_SIGNON Terminal 204
161. Editing the In Terminal on the

TU_F_SIGNOFF Decision type 205
162. Editing the Out Terminal on the

TU_F_SIGNOFF Decision type 206
163. Code for the SIGNOFF Terminal 207
164. Creating a TU_D_HOLD_REPLY Data

Context type 208
165. Configuring the Input RAW Input Terminal

node properties 209
166. TU_F_NAV 215
167. Mapping for Map1 node 216
168. Mapping for Map2 node 217
169. Mapping for Map2 node 218

vi MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

170. Mapping for Map3 node
(SYS_FEPI_OVERRIDES message). 219

171. Mapping for Map3 node (TU_F_REPLY
message to TU_F_REPLY message) 220

172. Mapping for Map4 node 221
173. Mapping for Map5 node 222
174. Mapping for Map6 node 223
175. Creating an CICS MQAdapter 224
176. Specifying pathname for adapter code

generation output 225
177. Specifying the target host 226
178. Logon to the host 227
179. Sub-process dialog indicating status of the

deploy process 227
180. Request processing using the simulator 232
181. Flow of an adapter being run from the

Simulator 233
182. Simulator transaction 234
183. Simulator request initiation screen — Initial

appearance 234
184. Simulator Symbolic Mapping Utility 236
185. Updated symbolic mapping utility screen 237
186. Simulator request initiation screen — Sending

the request 237
187. Simulator symbolic mapping utility screen 238
188. TSO/E logon screen 239
189. List of completed job notifications sent to

OS/390 server (for active user id) via the
deploy process 240

190. ISPF Primary Option Menu 240
191. Spool Display and Search Facility Held

Output Display screen 241
192. JES2 Job Log 241
193. Error Message Summary report section of the

JES2 JOB LOG 242
194. TSO/E logon screen 247
195. List of completed job notifications sent to

OS/390 server (for active user id) via the
deploy process 247

196. ISPF Primary Option Menu 248
197. Spool Display and Search Facility Held

Output Display screen 248
198. JES2 Job Log 249
199. Error Message Summary report section of the

JES2 JOB LOG 249
200. TSO/E logon screen 254
201. List of completed job notifications sent to the

OS/390 server (for active user id) via the
deploy process 255

202. ISPF Primary Option Menu 255
203. Spool Display and Search Facility Held

Output Display screen 256
204. JES2 Job Log 256
205. Error Message Summary report section of the

JES2 JOB LOG 257

Figures vii

viii MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Tables

1. DPL Adapter programs 17
2. Component roles in the adapter that supports

a DPL interface 18
3. Files to be used in the DPL tutorial 22
4. Files in the C:\<mqiac_base>\cics directory 23
5. Keyword values used for DPL Interaction

Specification file 24
6. Keyword values used for DPL Microflow

Connector Resource file 25
7. Messages to add to the workspace 30
8. Code for the Out Terminal actions for the

TU_D_RTN_OK Decision type 38
9. DCUST Command property values 39

10. TU_D_CUST_CTX Data Context property
values 40

11. Mapping fields for Map1 node (TU_D_RAW
message to TU_D_BE_C_IN message) 49

12. Mapping fields for Map2 node
(TU_D_BE_C_OUT message to
TU_D_CUST_REC message) 50

13. Mapping fields for Map2 node
(TU_D_BE_C_OUT message to TU_D_DEC
message) 51

14. Mapping fields for Map3 node
(TU_D_CUST_REC message to OUT_OK
message) 52

15. Mapping fields for Map3 node
(TU_D_RTN_OK message to OUT_OK
message) 52

16. Mapping fields for Map4 node (TU_D_DEC
message to TU_D_OUT_ERR message) . . . 53

17. Mapping fields for Map5 node (TU_D_DEC
message to TU_D_OUT_ERR message) . . . 54

18. Mapping fields for Map6 node (TU_D_DEC
message to TU_D_OUT_ERR message) . . . 55

19. Values for the Define Transactions screen 62
20. MQ Adapter programs 67
21. Component roles in the adapter that supports

an MQ interface 69
22. Files to be used in the MQ tutorial 72
23. Files in the C:\<mqiac_base>\cics directory 73
24. Keyword values used for MQ Interaction

Specification file 74
25. Keyword values used for MQ Microflow

Connector Resource file 75
26. Messages to add to the workspace 80
27. Code for the Out Terminal actions for the

TU_M_RTN_OK Decision type 87
28. DCUST Command property values 88
29. TU_M_CUST_CTX Data Context property

values 89
30. Mapping fields for Map1 node (TU_M_RAW

message to TU_M_BE_C_IN message). . . . 97
31. Mapping fields for Map2 node

(TU_M_BE_C_OUT message to
TU_M_CUST_REC message) 98

32. Mapping fields for Map2 node
(TU_M_BE_C_OUT message to TU_M_DEC
message) 98

33. Mapping fields for Map3 node
(TU_M_CUST_REC message to OUT_OK
message) 100

34. Mapping fields for Map3 node
(TU_M_RTN_OK message to OUT_OK
message) 100

35. Mapping fields for Map4 node (TU_M_DEC
message to TU_M_OUT_ERR message) . . . 101

36. Mapping fields for Map5 node (TU_M_DEC
message to TU_M_OUT_ERR message) . . . 102

37. Mapping fields for Map6 node (TU_M_DEC
message to TU_M_OUT_ERR message) . . . 103

38. Values for the Define Transactions screen 110
39. MQ Adapter programs 114
40. Files in the C:\<mqiac_base>\cics directory 115
41. Files in the C:\<mqiac_base>\cics directory 116
42. Keyword values used for base Navigator

Microflow Connector Resource file 118
43. Keyword values used for a FEPI Connector

Resource file 119
44. Program and transaction IDs values used for

the FEPI microflows 120
45. Messages to add to the workspace 124
46. TU_F_PARSER Command property values 139
47. Mapping fields for Map1 node (TU_F_RAW

message to CICSPARSER_request message) . 145
48. Mapping fields for Map2 node

(TU_F_SIGNON_SCR_screen message to
TU_F_DEC message) 145

49. Mapping fields for Map3 node
(TU_F_CUST_SCR_screen message to
TU_F_DEC message) 146

50. Mapping fields for Map4 node
(TU_F_COMP_SCR_screen message to
TU_F_DEC message) 146

51. Mapping fields for Map5 node (UNKNOWN
message to TU_F_DEC message) 146

52. TU_F_SIGNON Command property values 150
53. TU_F_CMAV Command property values 151
54. Mapping fields for Map1 node

(SYS_LU_LOGON message to
TU_F_SIGNON_SCR_request message) . . . 158

55. Mapping fields for Map2 node
(TU_F_COMP_SCR_screen message to
CICSMACRO_request message) 160

56. Mapping fields for Map3 node (Unknown
message to TU_F_REPLY message) 161

57. Mapping fields for Map4 node (TU_F_CMAV
message to Output REPLY message) 161

58. TU_F_CUST Command property values 164
59. Mapping fields for Map1 node (TU_F_RAW

message to TU_F_CUST_SCR_request
message) 172

© Copyright IBM Corp. 2001 ix

60. Mapping fields for Map2 node (Unknown
message to TU_F_REPLY message) 173

61. Mapping fields for Map3 node (TU_F_RAW
message to TU_F_REPLY message) 174

62. Mapping fields for Map4 node
(TU_F_CUST_SCR_screen message to
TU_F_REPLY message) 175

63. Mapping fields for Map1 node (TU_F_REPLY
message to TU_F_CUST_SCR_request
message) 183

64. Mapping fields for Map2 node (Unknown
message to CICSMACRO_request message) . 184

65. Mapping fields for Map3 node (TU_F_REPLY
message to TU_F_REPLY message) 185

66. Mapping fields for Map4 node (TU_F_REPLY
message to TU_F_REPLY message) 186

67. Mapping fields for Map1 node
(TU_F_CUST_SCR_screen message to
TU_F_CUST_SCR_request message) 194

68. Mapping fields for Map2 node (Unknown
message to TU_F_REPLY message) 195

69. Code for the Out Terminal actions for the
TU_F_SCR_ID Decision type 201

70. Summary of connections used in the
TU_F_NAV microflow 213

71. Mapping fields for Map6 node (Unknown
message to TU_F_REPLY message) 222

72. Values for the Define Transactions screen 228
73. Values for the Define Transactions screen 243
74. Values for the Define Transactions screen 251
75. Values for the Define Transactions screen 258

x MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

About MQSI Agent for CICS

Use of the MQSeries Integrator Agent for CICS Transaction Server (also know here
as MQSI Agent for CICS) can be separated into two phases: a build time phase and
a run time phase.

Build time is defined generically as the development period when a process or
object is defined, modeled or modified electronically. The MQSI Agent for CICS
component that is used at build time is called the Adapter Builder.

The Adapter Builder provides a graphical environment for modeling adapters. Its
intuitive visual interface enables users to model adapters to be used for host-based
transaction processing. In the MQSI Agent for CICS paradigm, an adapter is the
output of the Adapter Builder. Adapters are modeled, defined and generated using
the Adapter Builder. As output from the builder, an adapter consists of COBOL
(source and copybooks) and JCL.

After a user creates an adapter, it is moved from the builder in the Windows/NT
environment, to an OS/390 server, where it is compiled as a BTS application. A
BTS application is a CICS application that uses the CICS business transaction
services API.

Run time is defined generically as the time period in which the process or object
created at build time becomes operational. In the MQSeries Integrator Agent for
CICS Transaction Server paradigm, run time is when the adapter is invoked by a
controlling application, and as a result, performs the business transaction
processing that was modeled at build time.

�

�

�

MQSeries Integrator Agent for CICS

Transaction Server Adapter Builder

control center Import, modify
and create
messages.
Compose
adapter model.
Control import
and generation.

2

1

3

COBOL

Record

Descriptions

COBOL

Host on
Demand

3270

Screen

structured
data types

3270 Screens

importers

generator

COBOL

Source code

COBOL
copybooks

JCL
message

repository

4

Send to OS/390

server for compilation

Figure 1. Adapter Builder Components

© Copyright IBM Corp. 2001 xi

There is no user interface for the run time component. However, that is not to say
that user’s do not interact with MQSeries Integrator Agent for CICS Transaction
Server at run time. In order for the adapters to execute at run time, persons
familiar with CICS and BTS will need to prepare the run time environment, by
defining required resources. Run time users may also need to investigate errors
that may occur during run time processing.

See Figure 2 on page xiii for an illustration of the sequence of steps that a user
would go through to build, deploy and run an adapter using MQSI Agent for
CICS.

About MQSI Agent for CICS

xii MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Modeling, generating and deploying

1

Windows NT

builder

Modeling
microflows

flow components,
primitives and

predicates

modeling business
transactions

importers

Message
Repository

definitions

generator

read and
generate

3

via Builder

COBOL
source code
for adapter

3270 screens and
COBOL structured data type definitions

Legacy CICS/IMS applications
Existing CICS transactions

4 Controlling
application

request

interface

DPL stub reads
Props
File

Define and runBTS
process

PARENT

Navigation Manager

CHILD

Navigators

PARENT

Server
Adapter

Programs

DFHROOT

CHILD CHILD CHILD

CICS
(DPL)

MQSeries

Put
FEPI

MQSeries

GetEXEC
CICS LINK

Existing
CICS
Applications

PUT
FEPI

GET

QQ

Custom
Program

MQSeries-
enabled

application Legacy
system

3270
Data

5. The DPL MQSI Agent for CICS Stub program
uses information in the request message to:

a. Read the Properties file

b. Define the BTS process

c. Write containers and run the BTS process

d. Initiate the programmatic functions
(adapter request processing) that
enable the business transaction to be
processed.

4. Controlling application initiates model
execution (adapter request processing)
at run time.

Executing an adapter

1. Use builder to model a microflow
representing the required adapter behavior.

2. Generate COBOL source code for
microflow.

3. Transport the COBOL source code to
an OS/390 server for compilation.

Building an adapter

DFHROOT

CHILD

PARENT

PARENT

Navigators

Navigation Manager

Server
Adapter

Programs

CHILD

Deployed adapter

MQSeries

MQSeries

Put

Get

CHILD CHILD

FEPI

CICS for OS/390

send and compile
on server

CICS
(DPL)2

5 CICS for OS/390

Figure 2. Process for using MQSI Agent for CICS

About MQSI Agent for CICS

About MQSI Agent for CICS xiii

The objectives of this tutorial
The objective of this tutorial is to instruct users on the logic and steps of using
MQSeries Integrator Agent for CICS Transaction Server.

By modeling a business transaction and by generating and deploying the modeled
adapter to an OS/390 server, you will gain an understanding of how to use this
product in your environment to meet your business needs.

By following the information and instructions in the tutorials you should be able
to:
v Understand the general guidelines for using the MQSI Agent for CICS Adapter

Builder.
v Import application definitions with 3270 screens and COBOL structured data

type definitions.
The MQSI Agent for CICS Adapter Builder contains two importers that enable
you to import an application’s interface into the Adapter Builder in the form of
messages and associated components. These components become the building
blocks used in adapter modeling.

v Create workspaces to define adapter flow logic for the three types of adapters
that run on the OS/390 server.
MQSI Agent for CICS provides three specialized adapter types that can be used
in microflow modeling:
– FEPI Adapter - A composed component that describes the rules for

sequencing a 3270 screen dialog. It models screen navigation and corresponds
to the FEPI server adapter functionality in the server run time.

– DPL Adapter - A composed component that describes a micro-controlflow
with a CICS transaction via a Distributed Program Link. It corresponds to the
DPL server adapter functionality in the server run time.

– MQSeries Adapter - A composed component that describes a
micro-controlflow with an MQSeries enabled application. It corresponds to
the MQSeries server adapter functionality in the server run time.

v Create and generate the COBOL source code. This source code contains the
adapter flow logic as well as static server run time information.

v Understand the different mechanisms for deploying the adapter to the OS/390
server.

v Understand the run time processing involved in executing each of the three
adapters that you created and generated.

v Validate and test the adapters that you create in the tutorial.

See Chapter 2, “Tutorial overview” on page 9 for general information on the
adapters that you will build from this tutorial and for information on the exercises
that you will perform in this tutorial.

Who should use this tutorial
The information in this tutorial is primarily intended for people who want to
become familiar with the builder component of MQSeries Integrator Agent for
CICS Transaction Server. However, to gain the full benefits of the tutorial, which
includes deploying the adapters to CICS and using the Simulator program to
validate the adapters, the individual who participate in these tutorials should work
with their site’s CICS administrator and OS/390 specialist to make sure that the
adapters can be deployed, defined and tested in a run time environment.

About MQSI Agent for CICS

xiv MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

A CICS systems personnel and or OS/390 specialists that has access to CICS
regions at your site will need to define adapter resources to CICS and to customize
the build time templates.

An example of how adapter resources could be defined to CICS is included in
“Example procedure for defining adapter resources to CICS” on page 239. The
information in this appendix should only be used as a reference, as CICS
environments and the procedures used to define resources to CICS will vary from
site to site.

Related information
If you have not had any exposure to the Adapter Builder component of the
MQSeries Integrator Agent for CICS Transaction Server product, you should read
the MQSeries Integrator Agent for CICS Transaction Server Using the Control Center.
This book contains information on the concepts of the MQSeries Integrator Agent
for CICS Adapter Builder.

For reference information on the run time components, you should read the
MQSeries Integrator Agent for CICS Transaction Server Run Time User’s Guide.

See the MQSeries Integrator Agent for CICS website at
http://www.ibm.com/software/ts/cics/mqiac/ for information on the MQSI
Agent for CICS product, including a fact sheet, product overview and the latest
SupportPac information.

You can access these documents from the Start menu:

Figure 3. Accessing the MQSI Agent for CICS documentation

About MQSI Agent for CICS

About MQSI Agent for CICS xv

http://www.ibm.com/software/ts/cics/mqiac/

About MQSI Agent for CICS

xvi MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Chapter 1. Guidelines for building adapters

This chapter describes the guidelines for building adapters using the MQSI Agent
for CICS Adapter Builder. It contains information about the general steps that
should be undertaken to develop and build a CICS Adapter that integrates a server
application.

Detailed information and keystroke-by-keystroke instructions for most of these
steps can be found in tutorials in other chapters in this document.

Requirements analysis and design considerations
Before you begin to use the MQSI Agent for CICS Adapter Builder you should
spend some time analyzing the business objectives that the adapter will address
and then spend some time considering how you will design the adapter.

Requirements analysis
It is essential that you understand your objectives and the environment in which
you will be working. Therefore, before you begin to model an adapter using the
MQSI Agent for CICS Adapter Builder, you should spend some time analyzing the
requirements of the business transaction(s) that you will model. Requirements
analysis involves performing the following tasks:
v Obtaining an understanding of the business objective of the transaction
v Knowing the programming, environmental and system resources to be used by

the adapter

An understanding of the requirements and of the business objective will facilitate
your design efforts and will make more efficient use of the adapter builder.

Here are some points to consider in requirements analysis:
v What business transaction do you need to model and what resources will be

required?

Figure 4. Analyze information before you begin modeling

© Copyright IBM Corp. 2001 1

v Identify back-end host information (system, method - DPL, MQ or FEPI, data
structures).

v Where are you getting data from (source) and where is the data going to
(destination)

Remember, the time that you spend in the requirements analysis phase will prove
invaluable later.

Design considerations
After you have a solid understanding of the adapter requirements, you enter the
design phase. You do not design an adapter using MQSI Agent for CICS Adapter
Builder. Designing an adapter takes place after requirements analysis and prior to
using the MQSI Agent for CICS Adapter Builder to build the adapter.

In your design phase:
v Determine the number of flows required to fulfill the transaction
v Determine how data moves through your run time environment, the flow of the

adapter
v Determine if there is any commonality that you may wish to reuse in other

adapters
v Determine data structures that are used as input and output interfaces for

application data.
v Determine or identify naming conventions, including host back-end, host user,

and client.
v Identify items you wish to make decisions on (for example, add, change or

delete actions).
v Identify COBOL copybooks you will be importing.

Note: The copybook generate removes underscores from the file namesF and
only uses the first eight characters of the filename to generate the new
copybook name. Therefore, you may need to rename some file structures
where naming conflicts can arise. See “Accessing a completed workspace”
on page 12.

Application interface
The server applications that are to be integrated using MQSI Agent for CICS need
to be analyzed to determine their available interfaces. MQSI Agent for CICS
supports three different interface methods. The three interface methods are:
v CICS Distributed Program Link (DPL)
v MQSeries messaging (MQ)
v 3270 datastreams using Front End Programming Interface (FEPI)

See Figure 5 on page 3 for an illustration of the interface methods supported by
MQSI Agent for CICS.

Guidelines for building adapters

2 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Multiple applications using differing interface methods can be incorporated in one
model. Consideration can be given to adding one of these interfaces to server
applications that currently do not support any of the three. However, subflows are
allowed only in the FEPI interface.

Run time environment variables
Before you begin to model an adapter, you need to find out some information
about your run time environment. This run time environment information is used
in the Integration Specification file (.ispec) and/or Connector Resource file (.rsc) to
provide mappings to the run time properties file (DFHMAMPF) and other
generated adapter programs.

The following text describes the required information for each adapter type and
indicates, in parentheses, the associated specification file symbolic. For detailed
discussion on how to use specification files, see the MQSeries Integrator Agent for
CICS Transaction Server Using the Control Center manual.

Specification file information for the DPL interface: For applications that are
accessed via DPL, determine the following information:
1. Name of the application program that is ″linked to″ (MAT_LINKNAME)
2. If required, the Transaction ID under which ″linked to″ program will execute

(MAT_LINKTRAN)
3. The CICS region where the ″linked to″ program is defined (MAT_SYSID)
4. Maximum length that can be sent or returned in the link (generally, the

commarea length) (MAT_MAXCALEN)
5. Whether resources should be committed (SyncOnReturn) when the DPL Link is

completed (MAT_SYNCONRETURN)

Specification file information for the MQ interface: For applications that are
accessed via MQ, determine the following information:

Figure 5. Supported interface methods

Guidelines for building adapters

Chapter 1. Guidelines for building adapters 3

1. Name of the queue that the server application monitors
(MAT_REQUEST_QNAME)

2. Name of the queue where the server application should put the reply
(MAT_REPLY_QUEUE)

3. Name of the MQManager that owns the queue for the reply
(MAT_REPLY_QMGR)

4. Maximum length of the reply that can be sent to or returned by the server
application (MAT_MAXOUTMSGLEN)

5. The amount of time in seconds the reply MQManager should wait for a reply
(MAT_WAIT_INTERVAL)

6. The MQ message Type (request, reply, or datagram) (MAT_MQMSGTYPE)

Specification file information for the FEPI interface: For applications that are
accessed via FEPI, determine the following information:
1. Name of the defined FEPI Pool from which the terminal session is to be

allocated (MAT_POOL)
2. Name of the defined FEPI Target that identifies the region where the

transaction will be run (MAT_TARGET)
3. The length of time, in seconds, to wait for a response screen after a screen has

been sent (MAT_TIMEOUT)
4. Whether a User ID and PassTicket will be generated for Logon by the server

(MAT_USELUPASS)

Determining the critical data structures in the server
application

As part of your preparation for creating an adapter, you will need to analyze the
server applications to determine their critical data structures. Critical data structures
provide the input and output interfaces, and intermediate holding areas for
important application data. In COBOL applications, these structures are often ″01
Levels″ in the program. Sometimes, however, they are lower level or subordinate
items. For applications that are accessed via FEPI, all screens should also be
considered critical data structures. Screens are handled via a special 3270 Importer
described later in this section.

Once you have identified the critical data structures (other than screens), you can
″import″ them into the builder using the COBOL Importer. The COBOL Importer
can only access code that resides on a workstation, so you will need to ftp the
critical data structures from the host to a workstation directory. Often the original,
unchanged COBOL source code and/or copybooks can be used as input to the
COBOL Importer. In some cases, the original code may need to be edited slightly
to comply with COBOL Importer requirements. While importing may require some
editing of existing COBOL code, it is nearly always less work than the alternative
method of manually entering data structures.

After it is imported, a data structure exists in the Control Center as a message. The
message name is the same as the 01 Level that was imported with the exception
that hyphens (-) have been replaced with underscores (_). Whether imported or
entered manually, all messages used in an adapter must be generated to a COBOL
copybook before it can be deployed to the runtime. The generated copybook will
look slightly different than the original import but will be syntactically equivalent.

Guidelines for building adapters

4 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

An import operation creates a name for the copybook by taking the first eight
letters or numbers (hyphens are discarded) of the 01 Level and adding a ″.cpy″
suffix.

For example, the following data structure,
01 EMP-DATA-RECORD.

05 EMP-DATA-OF-BIRTH PIC 9(8) VALUE ZERO.
etc.

creates a message name of EMP_DATA_RECORD and a copybook name
EMPDATAR.cpy. The need for more desirable message and copybook names is
another reason that you might want to edit the original COBOL code prior to
importing a data structure.

CAUTION:
Verify that the file name of the 8–character copybook is unique before you begin
to work on your adapter.

For all applications, one request data structure and potentially multiple reply data
structures are generally identified as critical data structures. The request data
structure is similar to the ″Start Data″ that is passed to the application when a
CICS transaction is started. It often contains file key information, such as account
number or customer name. Reply data structures contain the data retrieved by the
server application. Flow routing and decision making in the builder support the
use of multiple reply data formats. If the server application uses a separate data
structure to hold or return error information, then that structure should be
considered critical as well.

Intermediate data areas should also be considered for import in the builder. For
instance, areas that temporarily hold accessed data or are used to ″build up″ data
accumulated via multiple operations are likely to be critical data structures. If it
can not be determined whether a data structure is needed or not, it is best to delay
its import until the need is established.

For DPL applications, the data structure(s) that define the Commarea of the DPL
″linked to″ program is a critical data structure. Often different data structures are
used to map the ″passed″ data and the ″returned″ data to and from the link. At the
time of import, the data structure that maps the ″passed″ data should be
designated as a ″request″ message by selecting the appropriate radio button on the
import dialog. The data structure that maps the ″returned″ data should be
designated as a ″response″ message.

Sometimes the ″returned″ data can be moved to alternative data structures
depending on a field in the ″returned″ data. These alternative data structures can
be designated as ″undefined″ at import time. All data structures that are required
to map the data should be deemed critical data structures.

For MQ applications, all data structures that map the user data portion of the MQ
messages should be considered critical. Similar to DPL applications, data structures
that map ″PUT″ data should be imported as ″request″ messages. Structures that
map ″GET″ data should be imported as ″response″ messages.

For FEPI applications, screens constitute the critical data structures. Both screens
that contain data to be ″scraped″ and all preliminary screens in the dialog should

Guidelines for building adapters

Chapter 1. Guidelines for building adapters 5

be imported using the 3270 Importer in the Control Center. In addition to the
application screens, any screens that accomplish system functions such as Logon
should also be imported.

Similar to data structures imported with the COBOL Importer, screens imported
with the 3270 Importer exist in the builder as messages.

Building adapters
The general procedure for developing an adapter is as follows:
1. If you have not done so during the run time installation, customize the build

time JCL templates to reflect your local OS/390 server environment:
v DFHMAXCJ (Compile JCL)
v DFHMAXPU (DFHMAMPF properties file update)
v DFXMAX04 (OS/390 server account, IP address and DSN qualifier and

deploy information).

See the MQSeries Integrator Agent for CICS Transaction Server Run Time User’s
Guide for considerations on customizing the build time templates.

2. Setup the required Interaction Specification and Connector Resource
specification files.
See the MQSeries Integrator Agent for CICS Transaction Server Using the Control
Center manual for a discussion and examples of the use of the Specification
files.

3. Import or create messages (data definitions).
Messages can be imported via the:
v 3270 Screen Importer
v COBOL Importer

To create or modify messages manually:
v Create a new message set
v Create elements
v Create types
v Create messages
v Build transactions

4. Compose a microflow.
5. Perform data mapping (data transformations).
6. Associate the microflow with an adapter
7. Generate adapter code (COBOL source code, COBOL copybooks, and JCL).
8. Move adapter source files to an OS/390 system and compile and test. See

“Deploying adapters”. If you are satisfied with the adapter that you built, put
it into production.

Deploying adapters
After you generate an adapter and associated copybooks, you must deploy the
adapter code to test it before you put it into production. When the generated
adapter is deployed to the OS/390 server, the adapter code is compiled. You
should check that the adapter code compiled successfully.

Guidelines for building adapters

6 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

You will need to define resources to CICS each time a new adapter is deployed.
CICS needs to know which resources to use, what their properties are and how
they interact with other resources.

To define resources to CICS you must:
v Submit JCL to run the Properties File Update job.

Note: This is can be done automatically when you generate the adapter from
the MQSI Agent for CICS Adapter Builder, or you can submit the JCL
(DFHMAMPU) manually. DFHMAMPU run the Properties File Update
job (DFHMAMUP)

v Run the CEDA transaction to define the programs, transaction IDs and files used
by your adapter to CICS.

Figure 6 depicts how the adapter and associated files are deployed into the run
time environment.

See the section on deploying a new adapter to the run time environment in the
Run Time User’s Guide for information on how to define adapter resources to
CICS and for information on running the Properties File Update Job
(DFHMAMPU).

High level control flow of a CICS business transaction at run time
When the CICS adapter is moved to the run time environment, it exists as a
process (BTS application) that is organized hierarchically. Data exchange is done
through data-containers, named areas of storage, associated with a particular
process or activity, and maintained by BTS. See CICS Business Transaction Services
for information about CICS business transaction services (BTS)

The high level control flow of a typical CICS BTS business transaction is as
follows:
1. A CICS transaction makes an initial request to start a process.

Windows NT

builder

modeling business
transactionsModeling

microflows

flow components,
primitives and

predicates

Store

generator

Partitioned
data set

JES

Compiler

Server run time

OS/390 Server

Message
Repository

Definitions
in XML

Templates of
run time

server programs

generator
program

Visual Age
Generator

FTP

Send:

- Source code
- JCL (Compile / Properties File Update)
- Copybooksgenerateread

Figure 6. Deploying the adapter from the builder to the OS/390 server

Guidelines for building adapters

Chapter 1. Guidelines for building adapters 7

2. CICS BTS initiates a process instance - control activity. In MQSI Agent for CICS,
this control activity is the Navigator.

3. The top level program associated with the control activity, using the CICS BTS
API, creates a child activity or several child activities. In MQSI Agent for CICS,
these child activities are the FEPI subflows, DPL adapters or MQ adapters.
It provides the child activity with some input data (by placing the data in a
data-container associated with the child), and requests CICS to start the child
activity. If, as is often the case, the child activity is to run asynchronously with
the control activity, the control activity returns.

4. The control activity (Navigator) is re-invoked when one of its child activities
(FEPI subflow, DPL adapter or MQ adapter) completes. The control activity
(Navigator) determines which event caused it to be re-invoked, that is, the
completion of the activity that it started earlier. It retrieves, from the completed
activity’s output data-container, any return data that the completed activity has
placed there.

5. Steps 3 and 4 are repeated until all the child activities that make up the CICS
business transaction have completed.

6. The control activity then terminates.

Guidelines for building adapters

8 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Chapter 2. Tutorial overview

If you have not had any exposure to the Adapter Builder component of the
MQSeries Integrator Agent for CICS Transaction Server product, you should read
the MQSeries Integrator Agent for CICS Transaction Server Using the Control Center.
This book contains information on the concepts of the MQSeries Integrator Agent
for CICS Adapter Builder.

The MQSI Agent for CICS Tutorial and Techniques manual contains three separate
tutorials that provide you with hands-on experience in modeling business
transactions and with instructions on how to deploy the modeled transactions as
adapters to a run time environment. An adapter is the output of the MQSeries
Integrator Agent for CICS Adapter Builder. It consists of COBOL source code that
is compiled and run in a CICS environment on an OS/390 server. The adapter
implements a business transaction.

In order to deploy the adapters that you build from this tutorial, make sure that
the MQSI Agent for CICS run time is installed and that your site has completed
the installation verification procedure (IVP) as documented in the MQSeries
Integrator Agent for CICS Transaction Server Run Time User’s Guide.

The MQSI Agent for CICS Tutorial and Techniques manual also explains how to test
and validate the adapters by providing instructions on:
v Defining adapter resources to CICS
v Invoking the adapter so that it can perform the business transaction(s) that you

modeled. This is done through a supplied Simulator program.

The tutorials provide instructions on modeling adapters for each of the interface
methods (DPL, MQ and FEPI) supported by the MQSeries Integrator Agent for
CICS Transaction Server product.

About the business transaction that you will model
The business transaction to be modeled is the same in each tutorial. The
transaction is a request for information on a customer. The customer information
exists on a back-end system that can be accessed by any of the supported
interfaces.

A group of programs and jobs that were provided and used during the IVP
(Installation Verification Procedure) will simulate the back-end transactions in this
tutorial.
v DFHMABP4, the back-end DPL customer information maintenance program
v DFHMABP6, the back-end MQ customer information maintenance program
v DFHMABP1, the back-end 3270 customer information maintenance program

Note: Modeling the FEPI interface requires capturing screens from the back-end
system.

For instructions on modeling the adapter types supported by MQSI Agent for
CICS, see
v Chapter 3, “Build an adapter that supports a DPL interface” on page 15

© Copyright IBM Corp. 2001 9

v Chapter 4, “Build an adapter that supports an MQ interface” on page 65
v Chapter 5, “Build an adapter that supports a FEPI interface” on page 111

Accessing the files to perform the tutorials
The files that you need to perform the tutorials are packaged on the Adapter
Builder CD and were put on your system during the Adapter Builder installation
procedure.

At the beginning of each of the tutorials there is information on how to access the
tutorial files.
v See “Accessing the DPL tutorial files” on page 22 for information on how to get

to the files needed for the Building an adapter that supports a DPL interface
tutorial.

v See “Accessing the MQ tutorial files” on page 72 for information on how to get
to the files needed for the Building an adapter that supports a MQ interface
tutorial.

v See “Accessing the FEPI tutorial files” on page 115 for information on how to get
to the files needed for the Building an adapter that supports a FEPI interface
tutorial.

Assumptions
For each of the tutorials contained in MQSI Agent for CICS Tutorial And Techniques,
the following is assumed:
v Version 1, release 1, modification 1 of MQSeries Integrator Agent for CICS

Transaction Server has been installed. This includes both the builder component
and the run time component.

v Object Rexx installed for deployment.
v The MQSI Agent for CICS run time installation verification procedure (IVP) has

been completed.
v Users will have access (direct access, or indirect access through a CICS

administrator) to the CICS region to which adapters will be deployed.
v Users will have access (an account and password) to the OS/390 server on

which the adapters will run.
v Users will have access to CICS and OS/390 subject matter experts to help

customize JCL templates and to help define adapter resources to CICS.
v That one person at a time will be performing the steps to design, create and

deploy the adapter. If multiple persons will perform the tutorial at the same
time and if the adapters created will be deployed in the same CICS region, the
tutorial participants must make sure that the program names and transaction ids
assigned to the generated adapter programs are unique.

Please refer to the product installation sections contained in the MQSI Agent for
CICS builder and run time documentation for complete setup and configuration,
including information on the IVP programs that will be used for validating the
adapters built using these tutorials.

If there will be multiple tutorial participants deploying adapters to the same CICS
region, each participant is responsible for managing the tutorial prefixes and
specifications files so as to avoid transaction identifier and program name
collisions in CICS.

Tutorial overview

10 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Tutorial directory structure
The install wizard on the tutorial setup.exe allows you to pick the directory
structure to house the required tutorial files. At installation, you are also allowed
to pick and choose which of the three tutorials to install, the default indicating you
want to install all 3 tutorials.

Figure 7 and Figure 8 on page 12 illustrate the complete tutorial installation that
adheres to the default settings.

Figure 7. Tutorial installation for default settings (part 1)

Tutorial overview

Chapter 2. Tutorial overview 11

Accessing a completed workspace
For each of the tutorials there is a .zip file that contains a sample of a completed
workspace. This completed workspace is provided so that you can compare the

Figure 8. Tutorial installation for default settings (part 2)

Tutorial overview

12 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

workspace you build with one that has been proven valid. All the messages in the
sample workspace are prefixed with TC. If you intend to import the completed
workspace contained in .zip files for comparison with the tutorial workspace you
create, then please prefix the message sets and messages you create with a
different prefix (for example, TU) to avoid item duplication in your repository.

To view the provided workspace for any of the tutorials, you must first import the
completed workspace into the Builder tool by performing the following steps:
1. Go to File > Import Workspace in the builder tool to bring up the Select a File

to Import window
2. Find the <mqiac_tutorials>\ directory. Double-click on the zip file (for example

TC_DPL_WS.zip).
Next you will need to specify a name for the workspace you are importing.
Specify a name of your choice (preferably a related name). Notice that the File
Name has an .xml extension.

3. Choose Open Workspace, and select the .xml file you created on the previous
step.
Now, you will be able to view, and/or modify the workspace

4. To make modifications, once you open the newly renamed workspace, you
must check-out individual components. For example, if you want to make
changes to the microflow, right-click on the microflow name, and select
Check-Out).

5. You will have to modify the following:
v .ispec and .rsc files to point to your CICS environment.

Note: If you installed the tutorial to a location other than
C:\<mqiac_tutorials>, you must point to the location that you
installed to when you generate the messages and adapters.

Tutorial overview

Chapter 2. Tutorial overview 13

Tutorial overview

14 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Chapter 3. Build an adapter that supports a DPL interface

Before you begin this tutorial, read Chapter 2, “Tutorial overview” on page 9. The
Tutorial Overview section contains important information on the business
transaction to be modeled, as well as information on the tutorial’s file structure.
The Tutorial Overview also lists the assumed environment requirements that must
be adhered to in order to build and deploy the adapter.

From this tutorial, you will learn how to use the MQSI Agent for CICS Adapter Builder
tool to model and generate code for an adapter that supports a DPL interface.

You will model an adapter that has the functionality to access an existing CICS program
via a Distributed Program Link (DPL). See “About the adapter you will design” on
page 16 for a description of the adapter that you will model.

If you have not had any exposure to the Adapter Builder component of the
MQSeries Integrator Agent for CICS Transaction Server product, you should read
the MQSeries Integrator Agent for CICS Transaction Server Using the Control Center.
This book contains information on the concepts of the MQSeries Integrator Agent
for CICS Adapter Builder.

This tutorial provides instructions on:
v “Designing an adapter”
v “Creating an adapter that supports a DPL interface” on page 26
v “Deploying an adapter” on page 59

After completing this tutorial you should be able to:
v Identify required Host based information you need to gather and use.
v Import COBOL copybooks and create message sets.
v Create workspaces to define adapter flow logic.
v Create and generate a COBOL adapter.
v Deploy and test the generated COBOL adapter.

Before you begin this tutorial you should read Chapter 2, “Tutorial overview” on
page 9. The Tutorial overview provides important information on the tutorial files,
the tutorial directory structure and how to avoid naming conflicts when you create
message sets and messages.

Designing an adapter
As was discussed in “Requirements analysis and design considerations” on page 1,
before you start to use the MQSI Agent for CICS Adapter Builder, you would
spend some time analyzing the business need that the adapter will address and
then spend some time considering how you will design the adapter.

© Copyright IBM Corp. 2001 15

When you finish with requirements analysis and design considerations, you should
have a sound understanding of how your adapter will behave at run time in order
to manage and fulfill a business transaction.

To help you gain a frame of reference for what you will create in this tutorial, you
should understand the following:
v The business need to be addressed
v The messages in and out structure
v The CICS resources required

Addressing a business need
An adapter should address a particular business need. In this tutorial, the business
need is to provide a controlling application with an interface to a back-end
environment for the purpose of accessing an existing CICS application (named
DFHMABP4) that performs a customer inquiry.

In this tutorial, the adapter that you build will provide the interface to the
back-end environment by way of a Distributed Program Link (DPL).

Note: For the purpose of this tutorial, the back-end environment that you will be
accessing is the same back-end environment that was installed and used by
the run time installation verification procedure (IVP). For information on the
programs used by the IVP (including DFHMABP4), see the chapter on
performing post installation tasks in the MQSI Agent for CICS Run Time
User’s Guide.

About the adapter you will design
The adapters that you build using the MQSI Agent for CICS Adapter Builder are
visual models of business transactions. They are intended to map out the activities
that comprise the entire business transaction, from invocation to completion.

The adapter that you build contains the instructions, logic and code that enable it
to run on an OS/390 server, this includes an interface methodology for accessing
information on back-end systems. In this tutorial the business transaction on which
you will base your adapter is a customer inquiry request and the interface method
used is a distributed program link (DPL) interface.

In this tutorial you will learn how to design and build an adapter (as displayed in
Figure 9 on page 17) that when deployed will perform the following functions:
v Accept the structure TU_D_RAW from the Simulator (in this tutorial the

Simulator functions as the controlling application). TU_D_RAW is the input
record description from the controlling application. See Input Terminal in
Figure 9 on page 17.

v Map individual fields from TU_D_RAW to expected and required DPL program
Commarea format. See Map1 in Figure 9 on page 17.

v Execute the DPL link to the CICS application DFHMABP4 via the TU_D_DCUST
command node.

v After the completion of the DPL link function, map response message from DPL
program to store any customer demographic information that is supplied by the
backend CICS application (DFHMABP4) in the data context area named
TU_D_CUST_CTX. See Map2 in Figure 9 on page 17.

v Use a decision node to determine the success or failure of the DPL link to the
CICS application DFHMABP4. Map the output message (TU_D_OUT_OK or
TU_D_OUT_ERR) to be returned to the Simulator and exit.

Build an adapter that supports a DPL interface

16 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Before building the adapter, you will need to:
v Define the CICS transaction IDs for the adapter programs that are generated.

Note: As with any CICS application, the program names, transaction IDs, and
CICS region, must adhere to your local site standards and your local site’s
naming conventions.

For the purpose of this tutorial, the following programs will be generated.

Table 1. DPL Adapter programs

Program type Program name Transaction ID

Navigator TUDNAV1 TUDN

DPL adapter TUDPL1 TUD1

v Determine the DPL program that is invoked, as mentioned previously this is the
existing CICS application named DFHMABP4. The request and response
messages utilized are TU_BE_C_IN and TU_BE_C_OUT respectively.

v Determine the CICS region where the adapter programs will execute.
v Determine the CICS region where the DPL program will execute to access the

back-end system.

When completed, the flow of components that make up your model will look like
the following:

As stated previously, the business function that you will be modelling will enable a
controlling application to invoke an existing CICS Application to retrieve customer
data (from a back end application) on behalf of the controlling application.

To better understand the role that each component plays in your model of the
business transaction, see Table 2 on page 18.

Figure 9. Components that make up the DPL adapter you will build

Build an adapter that supports a DPL interface

Chapter 3. Build an adapter that supports a DPL interface 17

Use this table in conjunction with Figure 9 on page 17

Table 2. Component roles in the adapter that supports a DPL interface

Component Name Definition Role / implementation

Input
Terminal

TU_D_RAW A primitive component
that is used to represent
data types that are input
to a microflow.

The term primitive
indicates that inputs and
outputs are visible to the
user but their internals
are not visible.

TU_D_RAW contains the
record description from
the controlling
application.

The purpose of this component
within the context of modeling
the transaction is to provide an
entry point for the controlling
application to the Navigator

To implement this data
transformation in your model,
you will connect TU_D_RAW
to the command node
TU_D_DCUST by way of a
control connection. A control
connection provides the
sequence relationship between
two nodes in a microflow.

On the Map node that sits on
the control connection wire
between TU_D_RAW and
TU_D_DCUST, you will
program the data
transformation – in this case
this means you will move the
Customer Number provided
by the Controlling application
and specify the desired action
to be performed by the
existing CICS application
DFHMABP4.

By hard coding an I in the
CUST_ACTION field, you are
directing the CICS application
DFHMABP4 to perform an
inquiry on the customer record
that correlates to the customer
number.

Build an adapter that supports a DPL interface

18 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Table 2. Component roles in the adapter that supports a DPL interface (continued)

Component Name Definition Role / implementation

Command TU_D_DCUST A simple component that
is used to represent
application APIs that
you import into the
builder.

The term simple indicates
the component does not
consist of other
components.

The purpose within the context
of modeling the transaction is
to create a DPL Command
type, which will allow the
microflow to perform the DPL
Link to the server-side
DFHMABP4 program.

The adapter will generate a
COBOL program for every
DPL command node. The
program that is generated is
the vehicle that allows the
Navigator to interact with the
existing CICS application
DFHMABP4.

On the map node that sits on
the control connection wire
between TU_D_DCUST and
TU_D_RTN_OK, you will
provide code that moves the
output data (via a data control
connection) provided by
DFHMABP4 to a data context
node named
TU_D_CUST_CTX. The data
context node holds data for
future use.

You will also provide
instructions on the map node
that moves the DFHMABP4
return code information to the
decision node named
TU_D_RTN_OK. Based on the
return code provided, the
decision node makes
determination on the success
or failure of the existing CICS
application DFHMABP4.

Build an adapter that supports a DPL interface

Chapter 3. Build an adapter that supports a DPL interface 19

Table 2. Component roles in the adapter that supports a DPL interface (continued)

Component Name Definition Role / implementation

Decision TU_D_RTN_OK A composed component
that is used to test a
condition for true or
false, to resolve the
control flow path.

The term composed
indicates the component
consist of other
components that are
connected by control
flow connectors.

In your model of the business
transaction, the Decision node
will be used to evaluate the
message indicator (Good,
Warning or Error) upon return
from the existing CICS
application DFHMABP4.

The Decision node will test the
return code information that it
receives from DFHMABP4.
Based on the results of the test,
the flow of the transaction will
proceed in one of 4 ways
(good, warning, error or
default (unknown)) as
indicated in Figure 9 on
page 17.

On the 3 map nodes that sit on
the control connection wires
between TU_D_RTN_OK and
the OUT_ERR output terminal
node, you will provide
instructions that move the
appropriate error information
(depending on the error). This
error information will be
returned to the controlling
application via the Output
terminal.

On the map node that sits on
the control connection wire
between the TU_D_RTN_OK
decision node and the
OUT_OK output terminal
node, you will provide the
instructions that move the
customer demographic
information (stored in
TU_D_CUST_TRX data context
node) along with the
successful response
information. This information
will be returned to the
controlling application via the
Output terminal.

Build an adapter that supports a DPL interface

20 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Table 2. Component roles in the adapter that supports a DPL interface (continued)

Component Name Definition Role / implementation

Data
Context

TU_D_CUST_TRX A simple component that
is used to store data for
later access via a data
connection.

You will need to create a Data
Context type to store customer
information.

In the model, this Data
Context Node is used to store
the contents of the customer
demographic information
fields populated by the CICS
application DFHMABP4. This
data will then be provided to
the controlling application or
discarded once the Navigator
determines the success or
failure of the DPL link.

Output OUT_OK A primitive component
that is used to represent
data types that are
output from a microflow.

The purpose of this component
within the context of modeling
the business transaction is to
provide an exit point for the
controlling application from
the Navigator.

In this model, the controlling
application has been designed
to receive 2 different types of
reply messages. A successful
reply and an error reply.

Output OUT_ERR

After some analysis, we determine that the host environment for the deployed
adapter will look like Figure 10 on page 22. In this host environment, the generated
adapter programs, TUDNAV1 and TUDPL1 execute in CICS region QAS1. The
DPL Server Adapter accesses the back-end program DFHMABP4.

Note: In the following figure, DFHMABP4 resides in the same CICS region. It is
also plausible, that the back-end program could reside outside of the CICS
region, as illustrated by the dotted line.

Build an adapter that supports a DPL interface

Chapter 3. Build an adapter that supports a DPL interface 21

Accessing the DPL tutorial files
The files you will need in order to build and deploy an adapter that supports a
DPL interface are located in two directories as follows:
v C:\<mqiac_tutorials>\dpl
v C:\<mqiac_base>\cics

In the C:\<mqiac_tutorials>\dpl directory you will find the following files:

Table 3. Files to be used in the DPL tutorial

File name Description Use

TUDPL_RDS.cbl COBOL record
description.

Used as import for messages.
Contains the message structures.

TC_DPL_WS.zip Completed workspace for
DPL adapter.

A completed workspace that you
import and use as the basis for the
workspace used to create the DPL
adapter. See “Accessing a
completed workspace” on page 12
for information on using the
contents of this file

*.cpy files Generated copybooks The generated copybooks for the
DPL adapter.

Figure 10. Tutorial run time environment for DPL adapter

Build an adapter that supports a DPL interface

22 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

In the C:\<mqiac_base>\cics directory you will find the following files:

Table 4. Files in the C:\<mqiac_base>\cics directory

File name Description Use

tu_d_dpl1.ispec Interaction specification
file (tutorial version)

Assigns adapter name, DPL
command type, CICS TransID,
server side program, maximum
Commarea length and
SYNCONRETURN value.

tu_d_dpl1.rsc Connector resource file
(tutorial version)

Identifies CICS server region
where server side program resides.

tu_d_nav1.rsc Connector resource file
(tutorial version)

Specifies synchronous rollback,
Navigator type, COBOL program
name for the DPL adapter and the
CICS TransID.

Note: There is also a version of the Specification files prefixed with tc_d_ that are used for
the completed workspace supplied in the TC_DPL_WS.zip file.

Configuring the Specification files for a DPL interface

In this section you will learn how to configure the physical properties of the DPL
adapter. These properties represent the XML definitions that are sent to the Properties
file on the host at deployment time.

For information on the Properties file, see the MQSI Agent for CICS run time
documentation.

Specification files are XML-format files that provide specific values to certain
components created in MQSI Agent for CICS. An Interaction Specification file
provides unique values for the component to which it is assigned. A Connector
Resource file provides more general values for the component.

Some of the information in the Interaction Specification file and Connector
Resource file maps to a run time properties file, DFHMAMPF. Other information in
the Interaction Specification file is incorporated in generated Command and
Navigator programs. The DFHMAMPF file stores data that is needed to run the
generated adapter code programs on the host.

The DPL adapter requires specification files for its Command type and its
Microflow type. The specification files for this tutorial are located in the
<mqiac_base>/cics directory.

Build an adapter that supports a DPL interface

Chapter 3. Build an adapter that supports a DPL interface 23

You must configure the settings in the specification files used for the tutorial. The
DPL Command type uses a Connector Resource file and an Interaction
Specification file. In the Connector Resource file (tu_d_dpl1.rsc), the MAT_SYSID
variable is used to specify the name of the CICS server region where the server
side program resides. In the example, the MAT_SYSID variable has a value of
QAS1. You can modify this to correspond to the CICS server region you are using.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE AttributeGroup SYSTEM "mqsi.dtd">

<Attribute xmi.label="MAT_SYSID" type="" xmi.uuid="" valueMandatory="false"
value="QAS1" encoded="false"/>

</AttributeGroup>

The Interaction Specification file for the DPL Command type used in the tutorial is
tu_d_dpl1.ispec.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE AttributeGroup SYSTEM "mqsi.dtd">
<AttributeGroup xmi.label="Interaction Specification">

<Attribute xmi.label="MAT_CMDTYPE" type="MAT_DPL MAT_MQ MAT_FEPI" xmi.uuid=""
valueMandatory="true" value="MAT_DPL" encoded="false"/>

<Attribute xmi.label="MAT_PROGID" type="" xmi.uuid="" valueMandatory="false"
value="TUDPL1" encoded="false"/>

<Attribute xmi.label="MAT_TRANID" type="" xmi.uuid="" valueMandatory="false"
value="TUD1" encoded="false"/>

<Attribute xmi.label="MAT_LINKNAME" type="" xmi.uuid="" valueMandatory="false"
value="DFHMABP4" encoded="false"/>

<Attribute xmi.label="MAT_LINKTRAN" type="" xmi.uuid="" valueMandatory="false"
value="" encoded="false"/>

<Attribute xmi.label="MAT_MAXCALEN" type="" xmi.uuid="" valueMandatory="false"
value="401" encoded="false"/>

<Attribute xmi.label="MAT_SYNCONRETURN" type="" xmi.uuid="" valueMandatory="false"
value="N" encoded="false"/>

</AttributeGroup>

Table 5. Keyword values used for DPL Interaction Specification file

Keyword Symbolic Description / Use Example Value

MAT_CMDTYPE Identifies the type of command MAT_DPL

MAT_PROGID The name of the COBOL program
generated for the DPL command.

TUDPL1

MAT_TRANID The CICS TransID for the server
command program generated on the
server.

TUD1

MAT_LINKNAME The server side program to which a
DPL-type command will link.

DFHMABP4

Figure 11. Directory structure for locating specification files for the DPL interface

Build an adapter that supports a DPL interface

24 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Table 5. Keyword values used for DPL Interaction Specification file (continued)

Keyword Symbolic Description / Use Example Value

MAT_LINKTRAN The server side Transaction ID
parameter (TRANSID) to specify on
the DPL Link.

Blank (indicates
TRANSID will not be
used on the DPL Link)

MAT_MAXCALEN Specifies the maximum Commarea
length for the MAT_LINKNAME
program (maximum 24576).

401

MAT_SYNCONRETURN Specifies whether the
SYNCONRETURN parameter is
included on the DPL Link Y or N
(default).

N

The Resource Connection file for the DPL Microflow type used in the tutorial is
tu_d_nav1.rsc.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE AttributeGroup SYSTEM "mqsi.dtd">
<AttributeGroup xmi.label="Connector Resource">

<Attribute xmi.label="MAT_REQTYPE" type="" xmi.uuid="" valueMandatory="false"
value="0" encoded="false"/>

<Attribute xmi.label="MAT_NAVTYPE" type="" xmi.uuid="" valueMandatory="false"
value="R" encoded="false"/>

<Attribute xmi.label="MAT_PROGID" type="" xmi.uuid="" valueMandatory="false"
value="TUDNAV1" encoded="false"/>

<Attribute xmi.label="MAT_TRANID" type="" xmi.uuid="" valueMandatory="false"
value="TUDN" encoded="false"/>

</AttributeGroup>

Table 6. Keyword values used for DPL Microflow Connector Resource file

Keyword Symbolic Description / Use Example Value

MAT_REQTYPE Specifies whether the request is run
on the server in asynchronous,
synchronous or synchronous rollback
mode 0 (asynchronous) 1
(synchronous) 2 (synchronous
rollback)

0

MAT_NAVTYPE Specifies whether the Microflow Type
is a base Navigator (R) or a FEPI
Navigator (F)

R

MAT_PROGID The name of the COBOL program
generated for the DPL microflow.

TUDNAV1

MAT_TRANID The CICS TransID for the server
command program generated on the
server.

TUDN

Build an adapter that supports a DPL interface

Chapter 3. Build an adapter that supports a DPL interface 25

You have just configured the tu_d_dpl1.ispec file and the tu_d_nav1.rsc file. You are
ready to create the adapter that supports a DPL interface.

Creating an adapter that supports a DPL interface

In this section you will learn how to use the adapter builder to create the model of the
business transaction.

Specifically, you will learn how to import the necessary COBOL record descriptions and
system interfaces for the DPL adapter. These are stored in the logical message model in
the Adapter Builder for use in the DPL microflow.

Follow these instructions to begin the process of building an adapter that supports
a DPL interface:
__ Step 1. Start the builder and create a new workspace.

To start the builder, go to the Start > Programs > IBM MQSI Agent
for CICS >IBM MQSI Agent for CICS. This will launch the tool as
shown below, in Figure 12 on page 27.
You should begin the tutorial with a new workspace. A workspace is a
view of what you can work with at one time. A workspace is displayed
as the graphical space in the builder where you will build the adapter
to support the DPL interface.
From the File pull-down menu, select New Workspace.

Build an adapter that supports a DPL interface

26 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

__ Step 2. Name your tutorial workspace and save it to the repository.
From the File pull-down menu, select Save Workspace. Enter a name
for the workspace, such as TU_DPL_WS, and click Save.

Note: Be sure to use under_scores and not dashes ″-″ when naming the
workspace.

__ Step 3. Import a message set.
A message set is a collection of structured XML-based data types that
are stored in the message repository.
When you import a message set, what you are really doing is bringing
in the COBOL structured data type definitions from existing CICS
transactions on the host system, into the Adapter Builder’s control
center. The imported data type definitions contain the record
descriptions of the messages.
The control center utilizes the message set as an interface between the
adapter builder tool and the business transaction to be modelled.

Note: You cannot import the COBOL structured data type definitions
directly from CICS. You must first FTP the structured data type
definitions from the host to a workstation. You can then import
the message set from the workstation.

After importing a message, you can modify and store it.

Note: It is much easier to import a COBOL structured data type
definition than it is to build the message set. If there is no record
description, create one with a text editor and import it.

a. Right click on the Message Sets folder, select Import to New
Message Set > COBOL.

Figure 12. Initial panel of the MQSI Agent for CICS Adapter Builder

Build an adapter that supports a DPL interface

Chapter 3. Build an adapter that supports a DPL interface 27

On the COBOL Language Message Importer dialog (Source
Information Panel), enter the Message Set Name (in the tutorial,
TU_D_MESSAGE_SET) and the directory path where you installed
the tutorial (<mqiac_tutorials>\dpl) and the name and location of
the copybook from which you will be importing the message set
(<mqiac_tutorials>\dpl\tudpl_rd.cbl).

For the purposes of this tutorial, leave the Create Copybook
Compound Type Only box unchecked. This box is an option that
controls how copybooks can be imported.

Click Next.
b. On the COBOL Language Message Importer dialog (Group Level

Panel), select the message to import:

Figure 13. Import a message set (source information)

Build an adapter that supports a DPL interface

28 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

The radio button selections are as follows:

Request
Use if the message is going to be used as an input message
in a transaction.

Response
Use if the message is going to be used as an output
message in a transaction.

Undefined
Can be used for messages that are not used in a transaction.

For this tutorial, select TU_D_RAW and select the Undefined
message type radio button. Click Finish to complete the import.

c. Right click on the newly created TU_D_MESSAGE_SET folder and
select Import to Message Set > COBOL. On the COBOL Language
Message Importer dialog (Source Information Panel), enter the
directory path where the Source Files for the copybooks are located
(see Figure 13 on page 28). Click Next.

d. On the COBOL Language Message Importer dialog (Group Level
Panel), select the message to import (for the tutorial, select
TU_D_DEC) and select the Undefined message type radio button.
Click Finish to complete the import.

Figure 14. Import a message set (group level)

Build an adapter that supports a DPL interface

Chapter 3. Build an adapter that supports a DPL interface 29

e. Click Next to return to the COBOL Language Message Importer
dialog (Group Level Panel).

f. Repeat the procedure in step d until all of the following messages
(with the specified message types) are imported as follows:

Table 7. Messages to add to the workspace

Message Message Type Purpose

TU_D_RAW Undefined Input message used by the
navigator to receive
information from the
controlling application.

TU_D_DEC Undefined Decision node message
used by the navigator to
determine how to flow
logically within the flow.
This message provides a
series of fields, the context
of which are evaluated by
the Navigator to control
logical flow.

Figure 15. Import a message set (group level)

Build an adapter that supports a DPL interface

30 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Table 7. Messages to add to the workspace (continued)

Message Message Type Purpose

TU_D_OUT_OK Undefined The output message used
by the Navigator to
provide customer
demographic information
to the controlling
application in the event
that the customer inquiry
request was executed
successfully.

TU_D_OUT_ERR Undefined Error output message
used by the Navigator to
provide error information
to the controlling
application in the event
that the customer inquiry
request was not executed
successfully due to the
fact that the customer
inquiry failed.

TU_D_CUST_REC Undefined Customer record layout
utilized by the navigator
to store customer
demographic information
supplied by the existing
CICS application
DFHMABP4.

TU_D_BE_C_IN Request DPL Commarea Input
message used to supply
the existing CICS
application DFHMABP4
with the information that
it requires to execute
properly.

TU_D_BE_C_OUT Response DPL Commarea output
message used to receive
customer demographic
information as provided
by the existing CICS
application DFHMABP4.

g. When you have completed importing the COBOL structured data
type definitions listed in Table 7 on page 30, click Cancel to return
to the workspace.

Build an adapter that supports a DPL interface

Chapter 3. Build an adapter that supports a DPL interface 31

You just completed importing the COBOL structured data type definitions needed to
model the DPL adapter. These data type definitions now reside as messages in the
Control Center of the Adapter Builder.

__ Step 4. Create Transactions.
A transaction represents the message and data flowing to and from the
back-end DPL program to be accessed by the adapter. In order to create
a DPL command node, you need to associate the command node with
a transaction. The messages associated with the transaction are defined
as Input and Output representing the expected format of the input
message (and identified as input terminal in the node) and the
expected format of the output message (and identified as the output
terminal in the node).
a. Create a transaction for the customer information. Right click on the

Transaction folder. Select Create > Transaction. On the Create a new
Transaction dialog, enter TU_D_TRX in the Name field and
TU_D_TRX_ID in the Identifier field. Click Finish.

b. Add messages to the TU_D_TRX transaction. Right click on the
TU_D_TRX transaction and select Add > Message. On the Add an
Existing Message dialog (the messages exist in the message set,
from when you imported them) select the TU_D_BE_C_IN and
TU_D_BE_C_OUT messages (press the CTRL key and highlight
both messages) and click Finish.

Figure 16. Create a TU_D_TRX transaction

Build an adapter that supports a DPL interface

32 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

At this point, after adding messages to transactions the Message
Sets view will appear as shown in Figure 18.

Figure 17. Add messages to the TU_D_TRX transaction

Figure 18. Messages Sets view

Build an adapter that supports a DPL interface

Chapter 3. Build an adapter that supports a DPL interface 33

Save your workspace by selecting File > Save Workspace from the
menubar.

You just created the DPL transaction and associated the input and output messages to
the transaction.

You are now ready to create the component types. In this next step, you will associate
the command component type with the transaction that you just created.

__ Step 5. Create the component types for use in the microflow

A component type represents a template that can be used as a building
block in modeling the microflow.
When you complete the tasks in this step, you will have all the
necessary component types required to model the adapter’s
functionality. The component types will display in the Adapter Tree
View. From the Adapter Tree view you will be able to drag a
component type onto the Microflow Definition pane and begin the
process of constructing the flow.
This step is made up of the following tasks:
v Create a Decision Type
v Create a Command Type
v Create a Data Context Type
v Create a Microflow Type

See the section Composing microflows in the MQSI Agent for CICS Using
the Control Center documentation for descriptions of the component
types.
a. Create a Decision Type.

A decision type is necessary to test a condition for true or false, to
resolve the control flow path.
You will use this type to create a Decision node for the microflow.
The Decision node will be used to evaluate the message indicator
(Good, Warning or Error) upon return from the DPL program,
(DFHMABP4) and it will decide how processing will continue.
1) Click on the Adapters tab to switch to the Adapters view.
2) Create the TU_D_RTN_OK Decision type that will be used to

determine whether the data returned from the back-end host is
valid. Right click on the Decision Types folder and select Create
> Decision Type. Enter TU_D_RTN_OK in the Name field and
click Finish.

Build an adapter that supports a DPL interface

34 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

3) Associate a message set and message with the In Terminal on
the TU_D_RTN_OK Decision type.
Right click on the TU_D_RTN_OK Decision type under the
Decision Types folder and select Decision Branch.
Make sure the In Terminal tab is selected. Using the drop down
menus, select TU_D_MESSAGE_SET for the Message Sets field
and TU_D_DEC for the Message field.

Figure 19. Creating a Decision type for the DPL Adapter

Build an adapter that supports a DPL interface

Chapter 3. Build an adapter that supports a DPL interface 35

4) Create Out Terminals for the Good, Warning, and Error
decisions.
The TU_D_RTN_OK Decision type will determine which of
these actions to take based on the MSG_IND_D field in the
decision message (TU_D_DEC).
a) Make sure the Out Terminal tab is selected. Click Out

Terminal in the terminal list box and click Rename. Enter
Good in the New name field and click Finish.

b) Enter Warning in the Name field and click Add.
c) Enter Error in the Name field and click Add. Click OK.

Figure 20. Editing the In Terminal on the Decision type

Build an adapter that supports a DPL interface

36 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

5) Create conditional expressions in simple SQL
Right click on the TU_D_RTN_OK Decision type and select
Properties on the pop up menu. Make sure the
ConditionExpression tab is selected and the Good tab is
selected.
Click in the Good test condition input area and press
CTRL-SHIFT to display a list of available message fields (these
fields are from the TU_D_DEC message that we associated with
the TU_D_RTN_OK Decision type). Select the MSG_IND_D field
to add this to the Input area of the ConditionExpression tab.

Figure 21. Editing the Out Terminal on the Decision type

Build an adapter that supports a DPL interface

Chapter 3. Build an adapter that supports a DPL interface 37

You should add the code shown in Figure 22 for the Good
terminal test condition. The letter ’G’ for the MSG_IND_D field
is based on the message indicator action codes that are defined
for the decision message (TU_D_DEC).

6) In a similar manner, add the test condition code for the
remaining terminals: Warning and Error. When finished, click
OK.

Table 8. Code for the Out Terminal actions for the TU_D_RTN_OK Decision type

Terminal Code Description

Good MSG_IND_D = ’G’ G - Good - request processed

Warning MSG_IND_D = ’A’ A - Application warning (e.g. ’Record Not Found’)

Error MSG_IND_D = ’E’ E - System error (e.g. ’File Closed’)

b. Create a DPL Command Type.

A command type is a simple adapter component which, depending
on how its properties are set, can be used to represent a server
adapter program (DPL, MQ) or FEPI command (3270 screen
interaction).
In this step you need to create a DPL Command type which will
allow the microflow to perform the DPL Link to the server-side
DFHMABP4 program.
1) Create the TU_D_DCUST Command type for the DPL

Command.
a) Right click on the Command Types folder and select Create

> Command Type. Enter TU_D_DCUST in the Name field.

Figure 22. Code for the Good Terminal

Build an adapter that supports a DPL interface

38 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

b) Using the drop down menus, set the following field
property values:

Table 9. DCUST Command property values

Field Value

Message Set TU_D_MESSAGE_SET

Transaction TU_D_TRX_ID

Connector Resource tu_d_dpl1.rsc

Interaction Specification tu_d_dpl1.ispec

Click Finish to apply the property values.
c. Create a Data Context Type.

A data context type is a simple adapter component that is used to
store data for later access through a data flow.
In this step you will need to create a Data Context type to store
customer information. This data can be accessed later from a
connector data flow.
This Data Context Node is used to store the contents of the
customer demographic information fields populated by the CICS
application DFHMABP4. This data will then be provided to the
controlling application or discarded, once the Navigator (TUNAV1)
determines the success or failure of the DPL link.
1) Create the TU_D_CUST_CTX Data Context type.

Figure 23. Creating a TU_D_DCUST Command type

Build an adapter that supports a DPL interface

Chapter 3. Build an adapter that supports a DPL interface 39

a) Right click on the Data Context Types folder and select
Create > Data Context Type. Enter TU_D_CUST_CTX in the
Name field.

b) Using the drop down menus, set the following field
property values:

Table 10. TU_D_CUST_CTX Data Context property values

Field Value

Scope Local

Message Sets TU_D_MESSAGE_SET

Message TU_D_CUST_REC

Click Finish to apply the property values.
d. Create a microflow type.

A microflow type is a collection of adapter components that models
all or part of the message processing. In your adapter, this is the
Navigator that calls the transaction and is responsible for
controlling adapter request processing and managing states during
the microflow processing.
A navigator invokes server adapter programs.
In this step you will create a microflow that will model the
processing of the customer data request.
1) Right click on the Microflow Types folder and select Create >

Microflow Type.
2) Enter TUDPL01 in the Name field.

Figure 24. Creating a TU_D_CUST_CTX Data Context type

Build an adapter that supports a DPL interface

40 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

3) Use the drop down menu in the Connector Resource field to
select tu_d_nav1.rsc as the Connector Resource file and then
click Finish.

4) Save your workspace by selecting File > Save Workspace from
the menubar.

You just created all of the component types that you will need to model your adapter.

__ Step 6. Model the adapter

In this step you will perform a set of tasks to model the adapter.
When you model an adapter you are indicating how the adapter will
function at run time. Within the context of the business flow, the
adapter model is of the navigation of the server application with the
back end systems. The adapter represents the behavior you need to
access data from the existing back end applications.
Within the builder, the model of the adapter is represented as a
microflow, a sequence of nodes and connections. The microflow models
the processing of a message as it passes from the input of the adapter
to the output of the adapter.

Figure 25. Creating a TUDPL01 Microflow Type

Build an adapter that supports a DPL interface

Chapter 3. Build an adapter that supports a DPL interface 41

This step is made up of the following tasks:
v Adding microflow nodes
v Connecting the microflow nodes
v Defining the mappings
a. Add the microflow nodes .

In this task, you will drag all the component types that you created
in step 5 on page 34, onto the Microflow Definition pane. When you
drag a component type onto the Microflow Definition pane, it is
instantiated and referred to as a microflow node. A single component
type can be used to create one or more microflow nodes (instances)
as part of the same microflow.
1) Add the Input Terminal node

An Input Terminal serves as an entry point for the microflow.
The Input Terminal can make a connection to any terminal that
resides within the microflow.
a) Drag the node on to the Microflow Definition pane.

In the Microflow Types folder, select the TUDPL01
microflow you created.

Note: To model your adapter in the workspace (Microflow
Definition pane), you must make sure the microflow
is selected in the Microflow Types folder.

Drag an Input Terminal type from the Adapter Tree View to
the Microflow Definition pane.

Left click and hold on the Input Terminal to drag it to the
Microflow Definition pane:

b) Rename the node

Figure 26. Dragging an Input Terminal on to the Microflow Definition pane

Build an adapter that supports a DPL interface

42 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Right click on the Input Terminal located in the definition
pane and select Rename. Rename the Input Terminal node
to TU_D_RAW and click Finish.

c) Set the properties for the node
Right click on the Input Terminal and select Properties.
Make sure the TU_D_RAW tab is selected. From the drop
down menus, select TU_D_MESSAGE_SET in the Message
Set field and select TU_D_RAW in the Message field. Click
OK.

2) Add the Command node

a) Drag the node on to the Microflow Definition pane
From the Command Types folder in the Adapter Tree View,
select a TU_D_DCUST Command type.
Left click and hold on the TU_D_DCUST Command type to
drag it to the Microflow Definition pane. Place the node to
the right of the TU_D_RAW Input Terminal node.

b) Rename the node
Right click on the TU_D_DCUST1 Command node and
select Rename. Modify TU_D_DCUST1 in the New name
field to the name TU_D_DCUST and click Finish.

3) Add the Decision node

a) Drag the node on to the Microflow Definition pane
Drag a TU_D_RTN_OK Decision type from the Adapter Tree
View to the Microflow Definition pane. Place the node to the
right of the TU_D_DCUST Command node.

b) Rename the node

Figure 27. Configuring the TU_D_RAW Input Terminal node properties

Build an adapter that supports a DPL interface

Chapter 3. Build an adapter that supports a DPL interface 43

Right click on the TU_D_RTN_OK1 Decision node and select
Rename. Modify TU_D_RTN_OK1 in the New name field to
the name TU_D_RTN_OK and click Finish.

4) Add the Data context node

a) Drag the node on to the Microflow Definition pane
Drag a TU_D_CUST_CTX Data Context type from the
Adapter Tree View to the workspace. Place the node above
the TU_D_RTN_OK Decision node.

b) Rename the node
Right click on the TU_D_CUST_CTX1 Data Context node
and select Rename. Modify TU_D_CUST_CTX1 in the New
name field to the name TU_D_CUST_CTX and click Finish.

5) Add the Output terminal node

An Output Terminal serves as an exit point for the microflow.
The Output Terminal can receive connections only. It can never
start a connection. A microflow can have multiple Output
Terminals (as in the DPL example). A developer must design the
controlling application to recognize the possible reply messages
provided by multiple Output Terminals.
a) Drag the node on to the Microflow Definition pane

Drag an Output Terminal type from the Adapter Tree View
to the workspace and place the node to the right of the
TU_D_CUST_CTX Data Context node.

b) Rename the node
Rename the Output Terminal node to OUT_OK.

c) Flip the node
Right click on the OUT_OK and select Flip node

d) Set the properties for the node
Right click on the OUT_OK node and select Properties.
Make sure the OUT_OK tab is selected. From the drop down
menus, select TU_D_MESSAGE_SET in the Message Set field
and select TU_D_OUT_OK in the Message field. Click OK

Build an adapter that supports a DPL interface

44 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

6) Add the Error Output terminal node

a) Drag the node on to the Microflow Definition pane
Drag an Output Terminal type from the Adapter Tree View
to the workspace and place the node to the right of the
TU_D_RTN_OK node.

b) Rename the node
Rename the Output Terminal node to OUT_ERR.

c) Flip the node
Right click on the OUT_ERR and select Flip node

d) Set the properties for the node
Right click on the Output Terminal and select Properties.
Make sure the OUT_ERR tab is selected. From the drop
down menus, select TU_D_MESSAGE_SET in the Message
Sets field and select TU_D_OUT_ERR in the Messages field.
Click OK.

7) Save your workspace by selecting File > Save Workspace from
the menubar.

Your Microflow Definition panel should look something like this:

Figure 28. Configuring the OUT_OK Output Terminal properties

Build an adapter that supports a DPL interface

Chapter 3. Build an adapter that supports a DPL interface 45

b. Connect the microflow nodes.
In this task you will connect the microflow nodes that are on the
Microflow Definition pane so as to define the flow of processing.
You will do this by creating connections. A connection is a wire that
connects an output terminal of one microflow node to the input
terminal of another. There are two types of connections (control
connection and data connection). For a detailed description of the
different types of connections, see the section on composing
microflows in the MQSeries Integrator Agent for CICS Transaction
Server Using the Control Center book.
1) Right click on the TU_D_RAW Input Terminal node and select

Connect > Out. Move the connection line to the TU_D_DCUST
Command node and left click. This adds a control connection
and a map (Map1 node) between the two nodes.
A control connection provides a sequential relationship
between 2 nodes in a microflow.

Figure 29. Nodes for the DPL adapter

Build an adapter that supports a DPL interface

46 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

2) Add a control connection from the out terminal on the
TU_D_DCUST Command node to the TU_D_RTN_OK
Decision node. This auto-adds a Map2 node on the control
connection line.

3) Add a Map node (Map3) between the TU_D_RTN_OK
Decision node and the OUT_OK Output Terminal node. To
create a Map node, drag a Map type from the Adapters Tree
View (left panel) to the Microflow Definition panel (right
panel).

4) Add a control connection from the first out terminal (labeled
Good) on the TU_D_RTN_OK Decision node to the Map3 node
and from the Map3 node to the OUT_OK Output Terminal
node.

5) Add a series of three Map nodes (Map 4–Map 6) between the
TU_D_RTN_OK Decision node and the OUT_ERR node.

Note: See Figure 31 on page 48 to see the placement of the four
Map nodes (Map 3–Map 6). The Map node labels are for
annotation only and will not appear in your workspace.

6) Add control connections from the second out terminal (labeled
Warning) on the TU_D_RTN_OK Decision node to the Map4
node and from the Map4 node to the OUT_ERR Output
Terminal node.

7) Add control connections from the third out terminal (labeled
Error) on the TU_D_RTN_OK Decision node to the Map5 node
and from the Map5 node to the OUT_ERR Output Terminal
node.

8) Add control connections from the fourth out terminal (labeled
default) on the TU_D_RTN_OK node to the Map6 node and
from the Map6 node to the OUT_ERR Output Terminal node.

9) Add a data connection from the Map2 node to the
TU_D_CUST_CTX Data Context node and from the out
terminal of the TU_D_CUST_CTX node to the Map3 node.

Figure 30. Connecting the TU_D_RAW Input Terminal and TU_D_DCUST Command node .

Build an adapter that supports a DPL interface

Chapter 3. Build an adapter that supports a DPL interface 47

Refer to Figure 31 to see all of the node connections in the
microflow.

10) Save your workspace by selecting File > Save Workspace from
the menubar.

c. Map your adapter.
You are now ready to map your adapter. The act of mapping refers to
the modeling of data transformation via a Map node, between an
output terminal on one node and an input terminal on another
node. Data transformation can include a variety of functions:
v Associating a field in one message with a field in another

message.
v String mapping such as specifying pad characters.
v Date mapping, such as converting a date in one format to a date

in another format.
v Putting literal data into a message.
v Adding custom code to perform other data transformation

functions.
1) Perform the mapping for the Map1 node as listed in Table 11 on

page 49 and shown in Figure 32 on page 50. This map passes the
customer number and inquire action indicator ’I’ to the DPL
program DFHMABP4.

Figure 31. The TUDPL01 microflow

Build an adapter that supports a DPL interface

48 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

a) Right click on the Map1 node (the Map node that appears
between the TU_D_RAW and TU_D_DCUST nodes) and
select Properties. Click the DataMappingExpression tab.

b) Left click on the CUST_NO field under the TU_D_RAW
message (view input message on right of panel) and drag
the mouse cursor to the CUST_DATA_I field under the
TU_D_BE_C_IN message (view output message on left of
panel). This will create a mapping between the two fields
(see Table 11 and Figure 32 on page 50).

c) The second mapping (’I’ to CUST_ACTION_I) is a literal
mapping. To perform a literal mapping, display the Map
node’s properties and make sure the
DataMappingExpression tab is selected.
i. Right click on the destination field for the literal (the

CUST_ACTION_I field in the TU_D_DCUST Output
Message) and select Add element. This will create a
mapping that is labeled LITERAL on the input field.

ii. Double click on LITERAL field and rename it to ’I’
(quotes must be used). Click OK.

d) Click OK when the mappings are completed.

Table 11. Mapping fields for Map1 node (TU_D_RAW message to TU_D_BE_C_IN
message)

Input Field Output Field Description

CUST_DATA CUST_DATA_I Used to pass customer data through the flow

’I’ CUST_ACTION_I Type of action — Inquiry

Build an adapter that supports a DPL interface

Chapter 3. Build an adapter that supports a DPL interface 49

2) Perform the mapping for the Map2 node as listed in Table 12
and Table 13 on page 51. The mappings are shown in Figure 33
on page 51 an Figure 34 on page 52.

This map passes the customer data from the DPL program
DFHMABP4 (Back-end DPL Customer Information Maintenance
test transaction) to the TU_D_RTN_OK Decision node. Click OK
when the mappings are completed.

Table 12. Mapping fields for Map2 node (TU_D_BE_C_OUT message to TU_D_CUST_REC
message)

Input Field Output Field Description

CUST_DATA_R TU_D_CUST_REC Store customer data received from the
back-end system in a data context

Figure 32. Mapping for Map1 node

Build an adapter that supports a DPL interface

50 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Note: To perform the mapping in Table 13, you will have to
select the TU_D_RTN_OK tab in the Output Messages
section of the Map2 node. You may have to expand the
TU_D_BE_C_OUT and the TU_D_DEC records to access
the underlying fields for mapping.

Table 13. Mapping fields for Map2 node (TU_D_BE_C_OUT message to TU_D_DEC
message)

Input Field Output Field Description

CUST_MSG_TXT_R MSG_D Message ID number

CUST_MSG_IND_R MSG_IND_D Output message

CUST_ACTION_R ACTION_D Requested action

Figure 33. Mapping for Map2 node

Build an adapter that supports a DPL interface

Chapter 3. Build an adapter that supports a DPL interface 51

3) Perform the mapping for Map3 node as listed in Table 14 and
Table 15 and shown in Figure 35 on page 53. This map passes
customer data and good response messages to the DPL Good
response Output Terminal (OUT_OK). Click OK when the
mappings are completed.

Table 14. Mapping fields for Map3 node (TU_D_CUST_REC message to OUT_OK
message)

Input Field Output Field Description

CUST_NO_C CUST_NO_O Customer ID number

NAMEFULL_C CUST_NAME_O Customer name

PHONE_C CUST_PHONE_O Customer phone number

EMPLOYER_C CUST_EMPLOYER_O Customer employer

Table 15. Mapping fields for Map3 node (TU_D_RTN_OK message to OUT_OK message)

Input Field Output Field Description

MSG_D MSG_O Message ID number

MSG_IND_D IND_O Output OK message

’Cust Action OK’ FLOW_MSG_O Response message for customer action

Note: The MSG_O and IND_O output fields can be located by
expanding the MSG_GRP_O element. Click on the + sign.

Figure 34. Mapping for Map2 node

Build an adapter that supports a DPL interface

52 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

4) Perform the mapping for Map4 node as listed in Table 16 and
shown in Figure 36 on page 54. This map passes warning
response messages to the DPL Error response Output Terminal
(OUT_ERR). Click OK when the mappings are completed.

Table 16. Mapping fields for Map4 node (TU_D_DEC message to TU_D_OUT_ERR
message)

Input Field Output Field Description

MSG_D MSG_E Error indicator

MSG_IND_D IND_E Output Error Message

’Cust. Warning’ FLOW_MSG_E Warning message text

Figure 35. Mapping for Map3 node (TU_D_CUST_CTX and TU_D_RTN_OK messages to
OUT_OK message)

Build an adapter that supports a DPL interface

Chapter 3. Build an adapter that supports a DPL interface 53

5) Perform the mapping for Map5 node as listed in Table 17 and
shown in Figure 37 on page 55. This map passes error response
messages to the DPL Error response Output Terminal
(OUT_ERR). Click OK when the mappings are completed.

Table 17. Mapping fields for Map5 node (TU_D_DEC message to TU_D_OUT_ERR
message)

Input Field Output Field Description

MSG_D MSG_E Error indicator

MSG_IND_D IND_E Output Error Message

’Cust. Error’ FLOW_MSG_E Error message text

Figure 36. Mapping for Map4 node

Build an adapter that supports a DPL interface

54 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

6) Perform the mapping for Map6 node as listed in Table 18 and
shown in Figure 38 on page 56. This map passes error response
messages to the DPL Error response Output Terminal
(OUT_ERR).

Table 18. Mapping fields for Map6 node (TU_D_DEC message to TU_D_OUT_ERR
message)

Input Field Output Field Description

MSG_D MSG_E Error indicator

MSG_IND_D IND_E Output Error Message

’Cust. Action not defined’ FLOW_MSG_E Error message text

Figure 37. Mapping for Map5 node

Build an adapter that supports a DPL interface

Chapter 3. Build an adapter that supports a DPL interface 55

You just completed the modelling stage in the process of building your adapter.

In your model, you have coded the instructions on how the adapter is supposed to
behave at run time. You are now ready to create the adapter.

__ Step 7. Assign the model to a CICS MQAdapter.
In this step you will associate the microflow (the model that you just
completed), with a CICS MQAdapter.
The CICS MQAdapter provides the actual implementation of the
adapter request processing.
The adapter will enable the controlling application by invoking
TUDNAV1 and TUDPL1 to access the back-end DPL Program
(DFHMABP4) to retrieve customer information.
a. Right click on the CICS MQAdapter Collection folder and select

Create > CICS MQAdapter

b. On the Create a new CICS MQAdapter dialog, enter TUDPLAD for
the Name and use the drop down menu to select TUDPL01 for the

Figure 38. Mapping for Map6 node

Build an adapter that supports a DPL interface

56 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Microflow Type. Leave the Proxy Client Connector Resource and
Proxy Client Interaction Specification fields blank. Click Finish.

You have completed the microflow and setup your adapter.

Save your workspace by selecting File > Save Workspace from the
menubar.

__ Step 8. Generate the adapter

Now you are ready to generate your adapter. The adapter code files
will be generated in the output directory that you specify.
Adapter code generation is a two-step process:
a. Generate copybooks from message definitions (in Message Sets

view).
b. Generate the adapter run time code from the modeled microflow

(in Adapters view).
v Generate the Copybooks.

You will generate to COBOL copybooks for the following messages:
– TU_D_RAW
– TU_D_DEC
– TU_D_OUT_OK
– TU_D_OUT_ERR
– TU_D_CUST_REC
– TU_D_BE_C_IN
– TU_D_BE_C_OUT

Figure 39. Creating an CICS MQAdapter

Build an adapter that supports a DPL interface

Chapter 3. Build an adapter that supports a DPL interface 57

Note: All must be generated to the same directory.

Note: To generate a copybook for a message, the message must be
checked out or newly created.

To generate copybooks, make sure that you are in the Message Sets
view and then, follow this procedure:
a. Make sure the list of messages is visible under the Messages

folder for the TU_D_MESSAGE_SET. To view the messages, click
on the + sign in front of the Messages folder to display the list of
messages.

b. Right click on the message for which you want to generate a
copybook (for example, TU_D_RAW) and select Generate >
COBOL.

c. Enter the output destination in the Path field and click Finish.
CAUTION:
The copybook generate removes underscores from the message
names and only uses the first eight characters of the filename
to generate the new copybook name. Be aware of potential
naming conflicts.

Figure 40. Messages Sets folder showing checked out message and newly created message

Figure 41. Specifying pathname for copybook generation output

Build an adapter that supports a DPL interface

58 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

d. Repeat the process to generate copybooks for the remaining
messages in the list.

v Generate adapter Code.
To generate adapter code, make sure that you are in the Adapters
view and then, follow this procedure:

Note: You must generate the adapter code in the same directory
where you generated the copybooks.

a. Right click on TUDPLAD adapter (listed under the CICS
MQAdapters folder) and select Generate > Generate COBOL
Adapter. Enter the output destination in the PATH field (the
example uses C:\Mqiac\Tutorials\DPL). Click Finish.
The generated adapter code will be output to the destination
path directory.

Deploying an adapter

In the following section you will learn how to deploy the adapter that you created. The
deploy operation sends the copybooks, source code, JCL and the configuration
parameters for each microflow that you generated, to the host system, for source code
configuration, object code build and parameter update operations.

Figure 42. Specifying pathname for adapter code generation output

Build an adapter that supports a DPL interface

Chapter 3. Build an adapter that supports a DPL interface 59

You will need an account and password to the OS/390 environment that will host
the adapter you are deploying.

Make sure that you have customized the build time JCL templates to your site
standards. See “Building adapters” on page 6 for information on the JCL you need
to customize.

You must have Object REXX installed on the workstation for FTP deployment
processing.

To deploy an adapter, make sure that you are in the Adapters view and then,
follow this procedure:
1. Right click on TUDPLAD adapter (listed under the CICS MQAdapters folder)

and select Generate > Deploy COBOL Adapter. Click the Define Settings radio
button and enter the following information:
v IP Address — IP Address - The host system IP address (for example,

9.89.7.114)
v High Level Qualifier — The high level qualifier for the partition data set

(PDS)

Note: The tutorial uses QAS.MIAC as the high level qualifier.
v Account — The account under which JCL submits a job for compilation.

Note: If you wish to save these settings for reuse, then click Save. You will be
prompted to specify an output location and filename to store the setting
information. The next time you deploy adapter code you can click the
Use Pre-defined Settings radio button and enter the saved filename.

Click Next.

2. On the User Identification panel enter your user ID and password. Click
Finish.

Figure 43. Specifying the target host

Build an adapter that supports a DPL interface

60 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

The generated adapter code, copybooks, and JCL (Compile / Properties File
Update) files will be moved to the OS/390 server.

3. The Sub-process dialog appears and provides a status of the deploy process as it
happens. When the deploy is complete the generated adapter code, copybooks,
and JCL (Compile / Properties File Update) files will be moved to the OS/390
server.

Note: You should scroll through the output listing in the Sub-process dialog
window to see if any errors occurred.

Figure 44. Logon to the host

Build an adapter that supports a DPL interface

Chapter 3. Build an adapter that supports a DPL interface 61

4. Select OK to close the dialog.

The adapter now resides on the OS/390 server and is ready to be tested. See
Chapter 6, “Validating the adapters” on page 231 for instructions on how to test the
adapter.

Check to see that the adapter compiled in CICS
After you have deployed the adapter to the OS/390 server, you need to make sure
that it compiled with no errors. Consult with your CICS systems administrator for
assistance with this procedure.

Defining the adapter resources to CICS
If you do not have access to CICS at your site, you will need to ask your CICS
administrator to perform the necessary CEDA and CEMT functions. You will need
to provide the CICS administrator with the following information as it relates to
the adapter that you deployed:
v Program names
v Group name
v Transaction Identifiers

For the DPL adapter, the following values apply:

Table 19. Values for the Define Transactions screen

Program Group Transid

TUNAV1 MIACUSER TUDN

TUDPL1 MIACUSER TUD1

A CICS administrator needs to define the adapter resources to CICS each time a
new adapter is deployed. CICS needs to know which resources to use, what their
properties are and how they interact with other resources.

Figure 45. Sub-process dialog indicating status of the deploy process

Build an adapter that supports a DPL interface

62 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

To define resources to CICS, the CICS administrator must:
v Run the CEDA transaction to define programs and any files to CICS.
v Submit JCL to run the Properties File Update job.

This is necessary only if you did not automatically submit JCL using the
builder’s generator facility.
If you were not allowed to submit JCL automatically, you can manually submit
JCL (DFHMAMPU) to run the Properties File Update job (DFHMAMUP). See
the MQSI Agent for CICS Run Time User’s Guide for information on the
Properties file update JCL (DFHMAMPU).

The CICS administrator must NEWCOPY any server adapter programs that were
modified.

For an example of defining CICS resources to CICS, See “Example procedure for
defining adapter resources to CICS” on page 239.

Build an adapter that supports a DPL interface

Chapter 3. Build an adapter that supports a DPL interface 63

64 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Chapter 4. Build an adapter that supports an MQ interface

Before you begin this tutorial, read Chapter 2, “Tutorial overview” on page 9. The
Tutorial Overview section contains important information on the business
transaction to be modeled, as well as information on the tutorial’s file structure.
The Tutorial Overview also lists the assumed environment requirements that must
be adhered to in order to build and deploy the adapter.

From this tutorial, you will learn how to use the MQSI Agent for CICS Adapter Builder
tool to model and generate code for an adapter that supports an MQ interface.

You will model an adapter that has the functionality to access an existing CICS program
via an MQ Interface. See “About the adapter that you will design” on page 66for a
description of the adapter that you will model.

If you have not had any exposure to the Adapter Builder component of the
MQSeries Integrator Agent for CICS Transaction Server product, you should read
the MQSeries Integrator Agent for CICS Transaction Server Using the Control Center.
This book contains information on the concepts of the MQSeries Integrator Agent
for CICS Adapter Builder.

This tutorial consists of:
v “Designing an adapter”
v “Creating an adapter that supports an MQ interface” on page 76
v “Deploying an adapter” on page 107

After completing this tutorial you should be able to:
v Identify required Host based information you need to gather and use.
v Import COBOL copybooks into a workspace and create message sets.
v Create workspaces to define adapter flow logic.
v Create and generate a COBOL adapter.
v Deploy and test the generated COBOL adapter.

Before you begin this tutorial you should read Chapter 2, “Tutorial overview” on
page 9. The Tutorial overview provides important information on the tutorial files,
the tutorial directory structure and how to avoid naming conflicts when you create
message sets and messages.

Designing an adapter
As was discussed in “Requirements analysis and design considerations” on page 1,
before you start to use the MQSI Agent for CICS Adapter Builder, you would
spend some time analyzing the business need that the adapter will address and
then spend some time considering how you will design the adapter.

© Copyright IBM Corp. 2001 65

When you finish with requirements analysis and design considerations, you should
have a sound understanding of how your adapter will behave at run time in order
to manage and fulfill a business transaction.

To help you gain a frame of reference for what you will create in this tutorial, you
should understand the following:
v The business need to be addressed
v The messages in and out structure
v The CICS resources required

Addressing a business need
An adapter should address a particular business need. In this tutorial, the business
need is to provide a controlling application with an interface to a back-end
environment for the purpose of accessing an existing CICS application (named
DFHMABP6) that performs a customer inquiry.

In this tutorial you will be accessing the same back-end environment that was
installed and used by the run time installation verification procedure (IVP). For
information on the programs used by the IVP, see the chapter on performing post
installation tasks in the MQSI Agent for CICS Run Time User’s Guide.

Note: For the purpose of this tutorial, the back-end environment that you will be
accessing is the same back-end environment that was installed and used by
the run time installation verification procedure (IVP). For information on the
programs used by the IVP (including DFHMABP6), see the chapter on
performing post installation tasks in the MQSI Agent for CICS Run Time
User’s Guide.

About the adapter that you will design
The adapters that you build using the MQSI Agent for CICS Adapter Builder are
visual models of business transactions. They are intended to map out the activities
that comprise the entire business transaction, from invocation to completion.

The adapter that you build contains the instructions, logic and code that enable it
to run on an OS/390 server, this includes an interface methodology for accessing
information on back-end systems. In this tutorial the business transaction on which
you will base your adapter is a customer inquiry request and the interface method
used is an MQ interface.

Your adapter design will include instructions on accessing a back-end application
to retrieve customer information and will include instructions on where to put the
information so that it can be returned to the controlling application.

In this tutorial you will learn how to design and build an adapter that when
deployed will perform the following functions:
1. Accept the structure TU_M_RAW from the Simulator. TU_M_RAW is the input

record description from the controlling application.
2. Map individual fields from TU_M_RAW to the expected and required back-end

program commarea format.
3. After completion of the MQ Put function, map response message from MQ Get

program.
4. Determine success - map output message (OUT_OK or OUT_ERR) to be

returned to the Simulator and exit.

Build an adapter that supports an MQ interface

66 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Identify the components of the run time environment
Before building the adapter we need to:
v Define the CICS transaction IDs for the adapter programs that are generated.

Note: As with any CICS application, the program names, transaction IDs, and
CICS region must adhere to your local site standards and your local sites
naming conventions.

Table 20. MQ Adapter programs

Program type Program name Transaction ID

Navigator TUMNAV1 TUMN

MQ Adapter — Put TUMQ01P TUMP

MQAdapter — Get TUMQ01G TUMG

v Determine the program that is invoked, as mentioned previously this is the
existing CICS application named DFHMABP6. The request and response
messages utilized are TU_M_BE_C_IN and TU_M_BE_C_OUT respectively.

v Determine the CICS region where the adapter programs will execute.
v Determine the MQ request and reply queues utilized for access to the back-end

system.

After some analysis, we determine that adapter execution on the host environment
will involve the sequence documented in Figure 46. In this host environment, the
generated MQ Adapter programs, TUMNAV1, TUMQ01P and TUMQ01G execute
in CICS region QAS1. DFHMABP6 acts as the back-end program. In this scenario it
executes in the same CICS region (QAS1).

Figure 46. Tutorial run time environment for MQ adapter (DFHMABP6).

Build an adapter that supports an MQ interface

Chapter 4. Build an adapter that supports an MQ interface 67

1. A customer inquiry business request invokes TUMNAV1, which in turn invokes
the Put program (TUMQ01P) to put the request message in the Request Queue
on the host.

Note: The request queue’s characteristics (that is, whether it is a
first-in-first-out queue, and so on) and its message priority scheme are
controlled by the configuration of the MQSeries licensed software.

2. The MQSeries Queue Manager generates a trigger event, causing a trigger
message to be placed on the initiation queue associated with the Request
Queue. The trigger message contains information from the associated MQSeries
process definition object.

3. The trigger monitor application retrieves the trigger message from the initiation
queue.

4. The trigger monitor application starts the MQSeries Response Manager.

Note: It is also possible to start the MQSeries Response Manager as a long
running process instead of having it started by a trigger, but this may
result in slower performance.

5. The MQSeries Response Manager opens the Request Queue and retrieves the
message.

6. The MQSeries Response Manager starts the DFHMABP6 program, passing to it
the User Data from the message.

7. After successfully starting the DFHMABP6 program, the MQSeries Response
Manager issues a sync point, enabling the message to be deleted from the
request queue.

8. DFHMABP6 Puts to the reply queue, invoking the Get adapter program
(TUMQ01G) that gets the message from the reply queue.

9. TUMNAV1 sends the reply back.

When completed, the flow of components that make up your model will look like
the following:

Figure 47. Components that make up the MQ adapter you will build

Build an adapter that supports an MQ interface

68 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

To better understand the role that each component plays in your model of the
business transaction, see Table 21.

Use this table in conjunction with Figure 47 on page 68

Table 21. Component roles in the adapter that supports an MQ interface

Component Name Definition Role / implementation

Input
Terminal

TU_M_RAW A primitive component
that is used to represent
data types that are input
to a microflow.

The term primitive
indicates that inputs and
outputs are visible to the
user but their internals
are not visible.

TU_M_RAW contains
the record description
from the controlling
application.

The purpose of this component
within the context of modeling
the transaction is to provide an
entry point for the controlling
application to the Navigator

To implement this data
transformation in your model,
you will connect TU_M_RAW
to the command node
TU_M_DCUST by way of a
control connection. A control
connection provides the
sequence relationship between
two nodes in a microflow.

On the Map node that sits on
the control connection wire
between TU_M_RAW and
TU_M_DCUST, you will
program the data
transformation – in this case
this means you will move the
Customer Number provided
by the Controlling application
and specify the desired action
to be performed by the
existing CICS application
DFHMABP6.

By hard coding an I in the
CUST_ACTION field, you are
directing the CICS application
DFHMABP6 to perform an
inquiry on the customer record
that correlates to the customer
number.

Build an adapter that supports an MQ interface

Chapter 4. Build an adapter that supports an MQ interface 69

Table 21. Component roles in the adapter that supports an MQ interface (continued)

Component Name Definition Role / implementation

Command TU_M_DCUST A simple component that
is used to represent
application APIs that
you import into the
builder.

The term simple indicates
the component does not
consist of other
components.

The purpose within the context
of modeling the transaction is
to create an MQ Command
type, which will allow the
microflow to initiate the
execution of the server-side
DFHMABP6 program.

The adapter will generate 2
COBOL programs (a GET and
a PUT) for every MQ
command node. The programs
that are generated are the
vehicle that allows the
Navigator to interact with the
existing CICS application
DFHMABP6.

On the map node that sits on
the control connection wire
between TU_M_DCUST and
TU_M_RTN_OK, you will
provide code that moves the
output data (via a data control
connection) provided by
DFHMABP6 to a data context
node named
TU_M_CUST_CTX. The data
context node holds data for
future use.

You will also provide
instructions on the map node
that moves the DFHMABP6
return code information to the
decision node named
TU_M_RTN_OK. Based on the
return code provided, the
decision node makes
determination on the success
or failure of the existing CICS
application DFHMABP6.

Build an adapter that supports an MQ interface

70 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Table 21. Component roles in the adapter that supports an MQ interface (continued)

Component Name Definition Role / implementation

Decision TU_M_RTN_OK A composed component
that is used to test a
condition for true or
false, to resolve the
control flow path.

The term composed
indicates the component
consist of other
components that are
connected by control
flow connectors.

In your model of the business
transaction, the Decision node
will be used to evaluate the
message indicator (Good,
Warning or Error) upon return
from the existing CICS
application DFHMABP6.

The Decision node will test the
return code information that it
receives from DFHMABP6.
Based on the results of the test,
the flow of the transaction will
proceed in one of 4 ways
(good, warning, error or
default (unknown)) as
indicated in Figure 47 on
page 68.

On the 3 map nodes that sit on
the control connection wires
between TU_M_RTN_OK and
the OUT_ERR output terminal
node, you will provide
instructions that move the
appropriate error information
(depending on the error). This
error information will be
returned to the controlling
application via the Output
terminal.

On the map node that sits on
the control connection wire
between the TU_M_RTN_OK
decision node and the
OUT_OK output terminal
node, you will provide the
instructions that move the
customer demographic
information (stored in
TU_M_CUST_TRX data
context node) along with the
successful response
information. This information
will be returned to the
controlling application via the
Output terminal.

Build an adapter that supports an MQ interface

Chapter 4. Build an adapter that supports an MQ interface 71

Table 21. Component roles in the adapter that supports an MQ interface (continued)

Component Name Definition Role / implementation

Data
Context

TU_M_CUST_TRX A simple component that
is used to store data for
later access via a data
connection.

You will need to create a Data
Context type to store customer
information.

In the model, this Data
Context Node is used to store
the contents of the customer
demographic information
fields populated by the CICS
application DFHMABP6. This
data will then be provided to
the controlling application or
discarded once the Navigator
determines the success or
failure of the MQ Adapters.

Output OUT_OK A primitive component
that is used to represent
data types that are
output from a microflow.

The purpose of this component
within the context of modeling
the business transaction is to
provide an exit point for the
controlling application from
the Navigator.

In this model, the controlling
application has been designed
to receive 2 different types of
reply messages. A successful
reply and an error reply.

Output OUT_ERR

Accessing the MQ tutorial files
The files you will need in order to build and deploy an adapter that supports an
MQ interface are located in two directories as follows:
v C:\<mqiac_tutorials>\mq
v C:\<mqiac_base>\cics

In the C:\<mqiac_tutorials>mq directory you will find the following files:

Table 22. Files to be used in the MQ tutorial

File name Description Use

TU_M_RDS.cbl COBOL record
description.

Used as import for messages.
Contains message structures.

TC_MQ_WS.zip Completed workspace for
the MQ adapter.

A completed workspace that you
import and use as the basis for the
workspace used to create the MQ
adapter. See “Accessing a
completed workspace” on page 12
for information on using the
contents of this file

*.cpy Generated copybooks The generated copybooks for the
MQ adapter

Build an adapter that supports an MQ interface

72 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

In the C:\<mqiac_base>\cics directory you will find the following files:

Table 23. Files in the C:\<mqiac_base>\cics directory

File name Description Use

tu_m_mq1.ispec Interaction specification
file (tutorial version)

Assigns MQ command type,
COBOL generated program name,
and CICS TransID.

tu_m_mq1.rsc Connector resource file
(tutorial version)

Specifies the MQ message
maximum length, MQ message
type, Queue Manager name, MQ
Request Queue name, MQ Reply
Queue name and wait interval.

tu_m_nav1.rsc Connector resource file
(tutorial version)

Specifies synchronous rollback,
Navigator type, COBOL program
name for the MQ adapter and the
CICS TransID.

Note: There is also a version of the Specification files prefixed with tc_m_ that are used for
the completed workspace supplied in the TC_MQ_WS.zip file.

Configuring the Specification files for an MQ interface

In this section you will learn how to configure the physical properties of MQ adapter.
These properties represent the XML definitions that are sent to the Properties file on the
host at deployment time.

For information on the Properties file, see the MQSI Agent for CICS run time
documentation.

Specification files are XML-format files that provide specific values to certain
components created in MQSI Agent for CICS. An Interaction Specification file
provides unique values for the component to which it is assigned. A Connector
Resource file provides more general values for the component.

Some of the information in the Interaction Specification file and Connector
Resource file maps to a run time properties file, DFHMAMPF. Other information in
the Interaction Specification file is incorporated in generated Command and
Navigator programs. The DFHMAMPF file stores data that is needed to run the
generated adapter code programs on the host.

The MQ adapter requires specification files for its Command type and its
Microflow type. The specification files are located in the <mqiac_base>/cics
directory.

Build an adapter that supports an MQ interface

Chapter 4. Build an adapter that supports an MQ interface 73

You must configure the settings in the specification files used for the tutorial. The
MQ Command type uses a Connector Resource file and an Interaction Specification
file. In the Connector Resource file (tu_m_mq1.rsc), you need to define the
tu_m_nav1.rsc file.

The Interaction Specification file for the MQ Command type used in the tutorial is
tu_m_mq1.ispec.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE AttributeGroup SYSTEM "mqsi.dtd">
<AttributeGroup xmi.label="Interaction Specification">

<Attribute xmi.label="MAT_CMDTYPE" type="MAT_DPL MAT_MQ MAT_FEPI" xmi.uuid=""
valueMandatory="true" value="MAT_MQ" encoded="false"/>

<Attribute xmi.label="MAT_PROGID" type="" xmi.uuid="" valueMandatory="false"
value="TUMQ01" encoded="false"/>

<Attribute xmi.label="MAT_TRANID" type="" xmi.uuid="" valueMandatory="false"
value="TUM" encoded="false"/>

</AttributeGroup>

Table 24. Keyword values used for MQ Interaction Specification file

Keyword Symbolic Description / Use Example Value

MAT_CMDTYPE Identifies the type of command MAT_MQ

MAT_PROGID The name of the COBOL program
generated for the MQ command.

TUMQ01

MAT_TRANID The CICS TransID for the server
command program generated on the
server.

TUM

TUM (generated as
TUMP and TUMG)

Note: Two sets of programs (Put and Get) and TransIDs are generated for the MQ
interface adapter. For MQ type commands, TransIDs are truncated to the first three
characters and a ″P″ or ″G″ is appended for the transaction id of the generated Put and Get
programs, respectively. For MQ type Commands, Program IDs are truncated to the first
seven characters and a ″P″ or ″G″ will be appended for the Program ID of the generated
Put and Get programs, respectively.

There are instances where only a Put program is generated, for example, when no reply is
required. This scenario is controlled by the MAT_MQMSGTYPE field in the Resource
Connection file. A value of 8 in MAT_MQMSGTYPE field indicates that the message does
not require a reply.

The Resource Connection file for the MQ Microflow type used in the tutorial is
tu_m_mq1.rsc.

Figure 48. Directory structure for locating specification files for the MQ interface

Build an adapter that supports an MQ interface

74 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE AttributeGroup SYSTEM "mqsi.dtd">
<AttributeGroup xmi.label="Connector Resource">

<Attribute xmi.label="MAT_REQUEST_QNAME" type="" xmi.uuid="" valueMandatory="false"
value="QAS1.SAMP.CMAY.REQUEST.QUEUE" encoded="false"/>

<Attribute xmi.label="MAT_REPLY_QNAME" type="" xmi.uuid="" valueMandatory="false"
value="QAS1.SAMP.CMAY.REPLY.QUEUE" encoded="false"/>

<Attribute xmi.label="MAT_REPLY_QMGR" type="" xmi.uuid="" valueMandatory="false"
value="""" encoded="false"/>

<Attribute xmi.label="MAT_MAXOUTMSGLEN" type="" xmi.uuid="" valueMandatory="false"
value="401" encoded="false"/>

<Attribute xmi.label="MAT_WAIT_INTERVAL" type="" xmi.uuid="" valueMandatory="false"
value=""030"" encoded="false"/>

<Attribute xmi.label="MAT_MQMSGTYPE" type="" xmi.uuid="" valueMandatory="false"
value=""1"" encoded="false"/>

</AttributeGroup>

Table 25. Keyword values used for MQ Microflow Connector Resource file

Keyword Symbolic Description / Use Example Value

MAT_REQUEST_QNAME The request queue definition identifies the
queue on which the server adapter will put
the request message for an MQ back-end
transaction.

QAS1.SAMP.CMAY.REQUEST.QUEUE

MAT_REPLY_QNAME The reply to queue definition identifies the
queue from which the server adapter will
get a reply message from the back-end
transaction.

QAS1.SAMP.CMAY.REPLY.QUEUE

MAT_REPLY_QMGR This is the name of the queue manager to
which the MQSI Agent for CICS run time
should send reply messages.

Blank value indicates the use of the
default Queue Manager.

MAT_MAXOUTMSGLEN Specifies the maximum length of the MQ
message placed on MAT_REPLY_QNAME.

401

MAT_WAIT_INTERVAL This is a 3 byte field that indicates the
approximate time, expressed in seconds,
that the MQGET call waits for a suitable
message to arrive.

030

MAT_MQMSGTYPE Indicates the MQ message type of the
defined request. The value is placed in the
MQMD Message Descriptor structure field
MsgType on the MQPUT1 call.

1 (Put followed by a waited Get)

You have just completed the steps necessary to configure the Properties file. You are
ready to create the adapter that supports an MQ interface.

Now that you have configured the specification files,

Build an adapter that supports an MQ interface

Chapter 4. Build an adapter that supports an MQ interface 75

Creating an adapter that supports an MQ interface

In this section you will learn how to use the adapter builder to create the model of the
business transaction.

Specifically, you will learn how to import the necessary COBOL record descriptions and
system interfaces for the MQ adapter. These are stored in the logical message model in
the Adapter Builder for use in the microflow.

Follow these instructions to begin the process of building an adapter that supports
an MQ interface:
__ Step 1. Start the builder and create a new workspace.

To start the builder, go to the Start > Programs > IBM MQSI Agent
for CICS >IBM MQSI Agent for CICS. This will launch the tool as
shown below, in Figure 49.
You should begin the tutorial with a new workspace. A workspace is a
view of what you can work with at one time. A workspace is displayed
as the graphical space in the builder where you will build the adapter
to support the MQ interface.
From the File pull-down menu, select New Workspace.

__ Step 2. Name your tutorial workspace and save it to the repository.

Figure 49. Initial panel of the MQSI Agent for CICS Adapter Builder

Build an adapter that supports an MQ interface

76 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

You should begin the tutorial with a new workspace. Select File > New
Workspace. From the File pull-down menu, select Save Workspace.
Enter a name for the workspace, such as TU_MQ_WS, and click Save.

Note: Be sure to use under_scores and not dashes ″-″ when naming the
workspace.

__ Step 3. Import a message set.
A message set is a collection of structured XML-based data types that
are stored in the message repository.
When you import a message set, what you are really doing is bringing
in the COBOL structured data type definitions from existing CICS
transactions on the host system, into the Adapter Builder’s control
center. The imported data type definitions contain the record
descriptions of the messages. The control center utilizes the message set
as an interface between the adapter builder tool and the business
transaction to be modelled.

Note: You cannot import the COBOL structured data type definitions
directly from CICS. You must first FTP the structured data type
definitions from the host to a workstation. You can then import
the message set from the workstation.

After importing a message, you can modify and store it.

Note: It is much easier to import a COBOL structured data type
definition than it is to build the message set. If there is no record
description, create one with a text editor and import it.

a. Right click on the Message Sets folder, select Import to New
Message Set > COBOL. .
On the COBOL Language Message Importer dialog (Source
Information Panel), enter the Message Set Name (in the tutorial,
TU_M_MESSAGE_SET) and the directory path where the Source
Files for the copybooks are located (<mqiac_tutorials>\mq).

Build an adapter that supports an MQ interface

Chapter 4. Build an adapter that supports an MQ interface 77

For the purposes of this tutorial, leave the Create Copybook
Compound Type Only box unchecked. This box is an option that
controls how copybooks can be imported.

Click Next to go to the Group Level Panel.

The radio button selections are as follows:

Request
Use if the message is going to be used as an input message
in a transaction.

Response
Use if the message is going to be used as an output
message in a transaction.

Undefined
Can be used for messages that are not used in a transaction.

b. On the COBOL Language Message Importer dialog (Group Level
Panel), select the message to import (for the tutorial, select
TU_M_RAW) and select the Undefined message type radio button.
Click Finish to complete the import.

Figure 50. Import a message set (source information)

Build an adapter that supports an MQ interface

78 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

c. Right click on the newly created TU_M_MESSAGE_SET folder and
select Import to Message Set > COBOL. On the COBOL Language
Message Importer dialog (Source Information Panel), enter the
directory path where the Source Files for the copybooks are located
(see Figure 50 on page 78). Click Next.

d. On the COBOL Language Message Importer dialog (Group Level
Panel), select the message to import (for the tutorial, select
TU_M_DEC) and select the Undefined message type radio button.

Figure 51. COBOL Language Message Importer — group level panel

Build an adapter that supports an MQ interface

Chapter 4. Build an adapter that supports an MQ interface 79

e. Click Finish to complete the import.
f. Click Next to go back to the Group level panel. Repeat the import

procedure until the remaining messages (with the specified message
types) are imported:

Table 26. Messages to add to the workspace

Message Message Type Purpose

TU_M_RAW Undefined Input message used by the
navigator to receive
information from the
controlling application.

TU_M_DEC Undefined Decision node message
used by the navigator to
determine how to flow
logically within the flow.
This message provides a
series of fields, the context
of which are evaluated by
the Navigator to control
logical flow.

Figure 52. Import a message set (group level)

Build an adapter that supports an MQ interface

80 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Table 26. Messages to add to the workspace (continued)

Message Message Type Purpose

TU_M_OUT_OK Undefined The output message used
by the Navigator to
provide customer
demographic information
to the controlling
application in the event
that the customer inquiry
request was executed
successfully.

TU_M_OUT_ERR Undefined Error output message
used by the Navigator to
provide error information
to the controlling
application in the event
that the customer inquiry
request was not executed
successfully, due to the
fact that the customer
inquiry failed.

TU_M_CUST_REC Undefined Customer record layout
utilized by the navigator
to store customer
demographic information
supplied by the existing
CICS application
DFHMABP6.

TU_M_BE_C_IN Request Commarea Input message
used to supply the
existing CICS application
DFHMABP6 with the
information that it
requires to execute
properly.

TU_M_BE_C_OUT Response Commarea output
message used to receive
customer demographic
information as provided
by the existing CICS
application DFHMABP6.

g. When you have completed importing the COBOL structured data
type definitions listed in Table 26 on page 80, click Cancel to return
to the workspace.

Build an adapter that supports an MQ interface

Chapter 4. Build an adapter that supports an MQ interface 81

You just completed importing the COBOL structured data type definitions needed to
model the MQ adapter. These data type definitions now reside as messages in the
Control Center of the Adapter Builder.

__ Step 4. Create Transactions.
A transaction represents the message and data flowing to and from the
back-end MQ program to be accessed by the adapter. In order to create
an MQ command node, you need to associate the command node with
a transaction. The messages associated with the transaction are defined
as Input and Output representing the expected format of the input
message (and identified as input terminal in the node) and the
expected format of the output message (and identified as the output
terminal in the node).
a. Create a transaction for the customer information. Right click on the

Transaction folder. Select Create > Transaction. On the Create a new
Transaction dialog, enter TU_M_TRX in the Name field and
TU_M_TRX_ID in the Identifier field. Click Finish.

b. Add messages to the TU_M_TRX transaction. Right click on the
TU_M_TRX transaction and select Add > Message. Messages allow
for input and output from the transaction. On the Add an Existing
Message dialog, select the TU_M_BE_C_IN and TU_M_BE_C_OUT
messages (press the CTRL key and highlight both messages) and
click Finish

Figure 53. Create a TU_M_TRX transaction

Build an adapter that supports an MQ interface

82 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

At this point, after adding messages to transactions the Message
Sets view will appear as shown in Figure 55. Save your workspace
by selecting File > Save Workspace from the menubar.

Figure 54. Add messages to the TU_M_TRX transaction

Figure 55. Messages Sets view

Build an adapter that supports an MQ interface

Chapter 4. Build an adapter that supports an MQ interface 83

You just created the MQ transaction and associated the input and output messages to
the transaction.

You are now ready to create the component types. In this next step, you will associate
the command component type with the transaction that you just created.

__ Step 5. Create the component types for use in the microflow

A component type represents a template that can be used as a building
block in modeling the microflow.
When you complete the tasks in this step, you will have all the
necessary component types required to model the adapter’s
functionality. The component types will display in the Adapter Tree
View. From the Adapter Tree view you will be able to drag a
component type onto the Microflow Definition pane and begin the
process of constructing the flow.
This step is made of the following tasks:
v Create a Decision Type
v Create a Command Type
v Create a Data Context Type
v Create a Microflow Type

See the section Composing microflows in the MQSI Agent for CICS
Using the Control Center documentation for descriptions of the
component types.
a. Create a Decision Type.

A decision type is necessary to test a condition for true or false, to
resolve the control flow path.
You will use this type to create a Decision node for the microflow.
The Decision node will be used to evaluate the message indicator
(Good, Warning or Error) upon return from the program,
DFHMABP6, and it will decide how processing will continue.
Click on the Adapters tab to switch to the Adapters view.
1) Create the TU_M_RTN_OK Decision type that will be used to

determine whether the data returned from the back-end host is
valid. Right click on the Decision Types folder and select Create
> Decision Type. Enter TU_M_RTN_OK in the Name field and
click Finish.

2) Associate a message set and message with the In Terminal on
the TU_M_RTN_OK Decision type. Right click on the
TU_M_RTN_OK Decision type under the Decision Types folder
and select Decision Branch. Make sure the In Terminal tab is
selected. Using the drop down menus, select
TU_M_MESSAGE_SET for the Message Sets field and
TU_M_DEC for the Messages field. Click OK.

Build an adapter that supports an MQ interface

84 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

3) Create Out Terminals for the Good, Warning, and Error
decisions. The TU_M_RTN_OK Decision type will determine
which of these actions to take based on the MSG_IND_D field
in the decision message (TU_M_DEC).
a) Right click on the TU_M_RTN_OK Decision type under the

Decision Types folder and select Decision Branch. Make
sure the Out Terminal tab is selected. Click Out Terminal in
the terminal list box and click Rename. Enter Good in the
New name field and click Finish.

b) Enter Warning in the Name field and click Add.
c) Enter Error in the Name field and click Add. Click OK.

Figure 56. Editing the In Terminal on the Decision type

Build an adapter that supports an MQ interface

Chapter 4. Build an adapter that supports an MQ interface 85

4) Right click on the TU_M_RTN_OK Decision type and select
Properties on the pop up menu. Make sure the
ConditionExpression tab is selected and the Good tab is
selected. Click in the Good test condition input area and press
CTRL-SHIFT to display a list of available message fields (these
fields are from the TU_M_DEC message that we associated with
the TU_M_RTN_OK Decision type). Select the MSG_IND_D
field to add this to the ConditionExpression area.
You should add the code shown in Figure 58 on page 87 for the
Good terminal test condition. The letter ’G’ for the MSG_IND_D
field is based on the message indicator action codes that are
defined for the decision message (TU_M_DEC). This screen
capture shows code entered in the Good Condition Expression
tab for the TU_M_RTN_OK Decision type.

Figure 57. Editing the Out Terminal on the Decision type

Build an adapter that supports an MQ interface

86 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

5) In a similar manner, add the test condition code for the
remaining terminals: Warning and Error. When finished, click
OK.

Table 27. Code for the Out Terminal actions for the TU_M_RTN_OK Decision type

Terminal Code Description

Good MSG_IND_D = ’G’ G - Good - request processed

Warning MSG_IND_D = ’A’ A - Application warning (e.g. ’Record Not Found’)

Error MSG_IND_D = ’E’ E - System error (e.g. ’File Closed’)

b. Create an MQ Command Type.

A command type is a simple adapter component which, depending
on how its properties are set, can be used to represent a server
adapter program (DPL, MQ) or FEPI command (3270 screen
interaction).
In this step, you will need to create an MQ Command type that
will allow the microflow to perform the ’PUT’ that will trigger the
server-side DFHMABP6 program.
1) Create the TU_M_DCUST Command type for the DPL

Command.

Figure 58. Code for the Good Terminal

Build an adapter that supports an MQ interface

Chapter 4. Build an adapter that supports an MQ interface 87

a) Right click on the Command Types folder and select Create
> Command Type. Enter TU_M_DCUST in the Name field.

b) Using the drop down menus, set the following field
property values:

Table 28. DCUST Command property values

Field Value

Message Set TU_M_MESSAGE_SET

Transaction TU_M_TRX_ID

Connector Resource tu_m_mq1.rsc

Interaction Specification tu_m_mq1.ispec

Click Finish to apply the property values.
c. Create a Data Context Type.

A data context type is a simple adapter component that is used to
store data for later access through a data flow.
In this step, you will need to create a Data Context type to store
customer information. This data can be accessed later from a
connector data flow.
1) Create the TU_M_CUST_CTX Data Context type.

a) Right click on the Data Context Types folder and select
Create > Data Context Type. Enter TU_M_CUST_CTX in the
Name field.

Figure 59. Creating a TU_M_DCUST Command type

Build an adapter that supports an MQ interface

88 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

b) Using the drop down menus, set the following field
property values:

Table 29. TU_M_CUST_CTX Data Context property values

Field Value

Scope Local

Message Sets TU_M_MESSAGE_SET

Messages TU_M_CUST_REC

Click Finish to apply the property values.
d. Create a microflow type

A microflow type is a collection of adapter components that models
all or part of the message processing. In your adapter, this is the
Navigator that calls the transaction and is responsible for
controlling adapter request processing and managing states during
the microflow processing.
A navigator invokes server adapter programs.
In this step you will create a microflow that will model the
processing of the customer data request.
1) Right click on the Microflow Types folder and select Create >

Microflow Type.
2) Enter TUMQ01 in the Name field.

Figure 60. Creating a TU_M_CUST_CTX Data Context type

Build an adapter that supports an MQ interface

Chapter 4. Build an adapter that supports an MQ interface 89

3) Use the drop down menu in the Connector Resource field to
select tu_m_nav1.rsc as the Connector Resource file and then
click Finish.

4) Save your workspace by selecting File > Save Workspace from
the menubar.

You just created all of the component types that you will need to model your adapter.

__ Step 6. Model the adapter.
In this step you will perform a set of tasks to model the adapter. When
you model an adapter you are specifying how the adapter will function
at run time. Within the context of the business flow, the adapter model
is of the navigation of the server application with the back end
systems. The adapter represents the behavior you need to access data
from the existing back end applications.
Within the builder, the model of the adapter is represented as a
microflow, a sequence of nodes and connections. The microflow models
the processing of a message as it passes from the input of the adapter
to the output of the adapter.

Figure 61. Creating a TUMQ01 Microflow Type

Build an adapter that supports an MQ interface

90 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

This step is made of the following tasks:
v Adding microflow nodes
v Connecting the microflow nodes
v Defining the mappings
a. Add the microflow nodes

In this task, you will drag the component types that you created in
step 5 on page 84, onto the Microflow Definition pane. When you
drag a component type onto the Microflow Definition pane, it is
instantiated and referred to as a microflow node. A single component
type can be used to create one or more microflow nodes (instances)
as part of the same microflow.
1) Add the Input Terminal node

An Input Terminal serves as an entry point for the microflow.
The Input Terminal can make a connection to any terminal that
resides within the microflow.
a) Drag the node on to the Microflow Definition pane.

In the Microflow Types folder, select the TUMQ01 microflow
you created.

Note: To model your adapter in the workspace (Microflow
Definition pane), you must make sure the microflow
is selected in the Microflow Types folder.

Drag an Input Terminal type from the Adapter Tree View to
the Microflow Definition pane

Left click and hold on the Input Terminal to drag it to the
Microflow Definition pane.

b) Rename the node
Right click on the Input Terminal and select Rename.
Rename the Input Terminal node to TU_M_RAW and click
Finish.

c) Set the properties for the node
Right click on the Input Terminal and select Properties.
From the drop down menus, select TU_M_MESSAGE_SET in
the Message Sets field and select TU_M_RAW in the
Messages field. Click OK.

Build an adapter that supports an MQ interface

Chapter 4. Build an adapter that supports an MQ interface 91

2) Add the Command node

a) Drag the node on to the Microflow Definition pane
From the Command Types folder in the Adapter Tree View,
select a TU_M_DCUST Command type.
Left click and hold on the TU_M_DCUST Command type to
drag it to the Microflow Definition pane. Place the node to
the right of the TU_M_RAW Input Terminal node.

b) Rename the node
Right click on the TU_M_DCUST1 Command node and
select Rename. Modify TU_M_DCUST1 in the New name
field to the name TU_M_DCUST and click Finish.

3) Add the Decision node

a) Drag the node on to the Microflow Definition pane
Drag a TU_M_RTN_OK Decision type from the Adapter
Tree View to the workspace. Place the node to the right of
the TU_M_DCUST Command node.

b) Rename the node
Right click on the TU_M_RTN_OK1 Decision node and
select Rename. Modify TU_M_RTN_OK1 in the New name
field to the name TU_M_RTN_OK and click Finish.

4) Add the Data context node

a) Drag the node on to the Microflow Definition pane
Drag a TU_M_CUST_CTX Data Context type from the
Adapter Tree View to the workspace. Place the node above
the TU_M_RTN_OK Decision node.

b) Rename the node
Right click on the TU_M_CUST_CTX1 Data Context node
and select Rename. Modify TU_M_CUST_CTX1 in the New
name field to the name TU_M_CUST_CTX and click Finish.

5) Add the Output terminal node

Figure 62. Configuring the TU_M_RAW Input Terminal node properties

Build an adapter that supports an MQ interface

92 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

An Output Terminal serves as an exit point for the microflow.
The Output Terminal can receive connections only. It can never
start a connection. A microflow can have multiple Output
Terminals (as in the MQ example). A developer must design the
controlling application to recognize the possible reply messages
provided by multiple Output Terminals.
a) Drag the node on to the Microflow Definition pane

Drag an Output Terminal type from the Adapter Tree View
to the workspace and place the node to the right of the
TU_M_CUST_CTX node

b) Rename the node
Rename the Output Terminal node to OUT_OK. Click Finish

c) Flip the node
Right click on the OUT_OK and select Flip node

d) Set the properties for the node
Right click on the OUT_OK node and select Properties.
From the drop down menus, select TU_M_MESSAGE_SET
in the Message Sets field and select TU_M_OUT_OK in the
Messages field. Click OK

6) Add the Error Output terminal node

a) Drag the node on to the Microflow Definition pane
Drag an Output Terminal type from the Adapter Tree View
to the workspace and place the node to the right of the
TU_M_RTN_OK node.

b) Rename the node
Rename the Output Terminal node to OUT_ERR.

c) Flip the node
Right click on the OUT_ERR and select Flip node

d) Set the properties for the node

Figure 63. Configuring the OUT_OK Output Terminal properties

Build an adapter that supports an MQ interface

Chapter 4. Build an adapter that supports an MQ interface 93

Right click on the OUT_ERR Output Terminal and select
Properties. From the drop down menus, select
TU_M_MESSAGE_SET in the Message Sets field and select
TU_M_OUT_ERR in the Messages field. Click OK

7) Save your workspace by selecting File > Save Workspace from
the menubar.

Your Microflow Definition panel should look something like this:

b. Connect the microflow nodes

In this task you will connect the microflow nodes that are on the
Microflow Definition pane. You will do this by creating connections.
A connection is a wire that connects an output terminal of one
microflow node to the input terminal of another. There are two
types of connections (control connection and data connection). For a
detailed description of the different types of connections, see the
section on composing microflows in the MQSeries Integrator Agent
for CICS Transaction Server Using the Control Center book.

1) Right click on the TU_M_RAW Input Terminal node and select
Connect > Out. Move the connection line to the
TU_M_DCUST Command node and left click. This adds a
control connection and a map (Map1 node) between the two
nodes.
A control connection provides a sequential relationship
between 2 nodes in a microflow.

Figure 64. Nodes for the DPL adapter

Build an adapter that supports an MQ interface

94 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

2) Add a control connection from the out terminal on the
TU_M_DCUST Command node to the TU_M_RTN_OK
Decision node. This auto-adds a Map node (Map2) on the
control connection line.

3) Add a Map node (Map3) between the TU_M_RTN_OK
Decision node and the OUT_OK Output Terminal node. To
create a Map node, drag a Map type from the Adapters Tree
View (left panel) to the Microflow Definition panel (right
panel).

4) Add a control connection from the first out terminal (labeled
Good) on the TU_M_RTN_OK Decision node to the Map3
node and from the Map3 node to the OUT_OK Output
Terminal node.

5) Add a series of three Map nodes (Map 4–Map 6) between the
TU_M_RTN_OK Decision node and the OUT_ERR Output
Terminal node.

Note: See Figure 66 on page 96 to see the placement of the four
Map nodes (Map 3–Map 6). The Map node labels are for
annotation only and will not appear in your workspace.

6) Add control connections from the second out terminal (labeled
Warning) on the TU_M_RTN_OK Decision node to the Map4
node and from the Map4 node to the OUT_ERR Output
Terminal node.

7) Add control connections from the third out terminal (labeled
Error) on the TU_M_RTN_OK Decision node to the Map5 node
and from the Map5 node to the OUT_ERR Output Terminal
node.

Figure 65. Connecting the TU_M_RAW Input Terminal and TU_M_DCUST Command node

Build an adapter that supports an MQ interface

Chapter 4. Build an adapter that supports an MQ interface 95

8) Add control connections from the fourth out terminal (labeled
default) on the TU_M_RTN_OK Decision node to the Map6
node and from the Map6 node to the OUT_ERR Output
Terminal node.

9) Add a data connection from the Map2 node to the
TU_M_CUST_CTX Data Context node and from the out
terminal of the TU_M_CUST_CTX Data Context node to the
Map3 node. Refer to Figure 66 to see all of the node
connections in the microflow.

10) Save your workspace by selecting File > Save Workspace from
the menubar.

c. Map your adapter

You are now ready to map your adapter. The act of mapping refers to
the modeling of data transformation via a Map node, between an
output terminal on one node and an input terminal on another
node. Data transformation can include a variety of functions:
v Associating a field in one message with a field in another

message.
v String mapping such as specifying pad characters.
v Date mapping, such as converting a date in one format to a date

in another format.

Figure 66. The TUMQ01 microflow

Build an adapter that supports an MQ interface

96 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

v Putting literal data into a message.
v Adding custom code to perform other data transformation

functions.
1) Perform the mapping for the Map1 node as listed in Table 30

and shown in Figure 67 on page 98. This map passes the
customer number and inquire action indicator ’I’ to the MQ
program DFHMABP6.
Right click on the Map1 node (the Map node that appears
between the TU_M_RAW and TU_M_DCUST nodes) and select
Properties. Click the DataMappingExpression tab.
Left click on the CUST_NO field under the TU_M_RAW
message (view input message on right of panel) and drag the
mouse cursor to the CUST_DATA_I field under the
TU_M_BE_C_IN message (view output message on left of
panel). This will create a mapping between the two fields (see
Table 30 and Figure 67 on page 98).
The second mapping (’I’ to CUST_ACTION_I) is a literal
mapping. To perform a literal mapping, display the Map node’s
properties and make sure the DataMappingExpression tab is
selected. Right click on the destination field for the literal (the
CUST_ACTION_I field in the TU_M_DCUST Output Message)
and select Add element. This will create a mapping that is
labeled LITERAL on the input field. Double click on LITERAL
field and rename it to ’I’ (quotes must be used). Click OK.

Table 30. Mapping fields for Map1 node (TU_M_RAW message to TU_M_BE_C_IN
message)

Input Field Output Field Description

CUST_DATA CUST_DATA_I Used to pass customer data through the flow

’I’ CUST_ACTION_I Type of action — Inquiry

Build an adapter that supports an MQ interface

Chapter 4. Build an adapter that supports an MQ interface 97

2) Perform the mapping for the Map2 nodes as listed in Table 31
and Table 32 and as shown in Figure 68 on page 99 and
Figure 69 on page 100. This map passes the customer data from
the MQ program DFHMABP6 to the TU_M_RTN_OK Decision
node.

Table 31. Mapping fields for Map2 node (TU_M_BE_C_OUT message to
TU_M_CUST_REC message)

Input Field Output Field Description

CUST_DATA_R TU_M_CUST_REC Store customer data received from the
back-end system in a data context

Table 32. Mapping fields for Map2 node (TU_M_BE_C_OUT message to TU_M_DEC
message)

Input Field Output Field Description

CUST_MSG_TXT_R MSG_D Message ID number

CUST_MSG_IND_R MSG_IND_D Output message

CUST_ACTION_R ACTION_D Requested action

Figure 67. Mapping for Map1 node

Build an adapter that supports an MQ interface

98 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Note: CUST_MSG_R can be located by expanding the
CUST_MSG_R_OVERLAY and the CUST_MSG_TXT_R
and CUST_MSG_IND_R fields can be located by
expanding CUST_MSG_GRP_R. Click on the + sign to
expand.

Figure 68. Mapping for Map2 node

Build an adapter that supports an MQ interface

Chapter 4. Build an adapter that supports an MQ interface 99

3) Perform the mapping for Map3 node as listed in Table 33 and
Table 34 and shown in Figure 70 on page 101. This map passes
customer data and good response messages to the MQ Good
response Output Terminal (OUT_OK).

Table 33. Mapping fields for Map3 node (TU_M_CUST_REC message to OUT_OK
message)

Input Field Output Field Description

CUST_NO_C CUST_NO_O Customer ID number

NAMEFULL_C CUST_NAME_O Customer name

PHONE_C CUST_PHONE_O Customer phone number

EMPLOYER_C CUST_EMPLOYER_O Customer employer

Table 34. Mapping fields for Map3 node (TU_M_RTN_OK message to OUT_OK message)

Input Field Output Field Description

MSG_D MSG_O Message ID number

MSG_IND_D IND_O Output OK message

’Cust Action OK’ FLOW_MSG_O Response message for customer action

Note: The MSG_O and IND_O output fields can be located by
expanding the MSG_GRP_O element. Click on the + sign.

Figure 69. Mapping for Map2 node

Build an adapter that supports an MQ interface

100 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

4) Perform the mapping for Map4 node as listed in Table 35 and
shown in Figure 71 on page 102. This map passes warning
response messages to the MQ Error response Output Terminal
(OUT_ERR).

Table 35. Mapping fields for Map4 node (TU_M_DEC message to TU_M_OUT_ERR
message)

Input Field Output Field Description

MSG_D MSG_E Error indicator

MSG_IND_D IND_E Output Error Message

’Cust. Warning’ FLOW_MSG_E Warning message text

Figure 70. Mapping for Map3 node (TU_M_CUST_CTX and TU_M_RTN_OK messages to
OUT_OK message)

Build an adapter that supports an MQ interface

Chapter 4. Build an adapter that supports an MQ interface 101

5) Perform the mapping for Map5 node as listed in Table 36 and
shown in Figure 72 on page 103. This map passes error response
messages to the MQ Error response Output Terminal
(OUT_ERR).

Table 36. Mapping fields for Map5 node (TU_M_DEC message to TU_M_OUT_ERR
message)

Input Field Output Field Description

MSG_D MSG_E Error indicator

MSG_IND_D IND_E Output Error Message

’Cust. Error’ FLOW_MSG_E Error message text

Figure 71. Mapping for Map4 node

Build an adapter that supports an MQ interface

102 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

6) Perform the mapping for Map6 node as listed in Table 37 and
shown in Figure 73 on page 104. This map passes error response
messages to the MQ Error response Output Terminal
(OUT_ERR).

Table 37. Mapping fields for Map6 node (TU_M_DEC message to TU_M_OUT_ERR
message)

Input Field Output Field Description

MSG_D MSG_E Error indicator

MSG_IND_D IND_E Output Error Message

’Cust. Action not defined’ FLOW_MSG_E Error message text

Figure 72. Mapping for Map5 node

Build an adapter that supports an MQ interface

Chapter 4. Build an adapter that supports an MQ interface 103

You just completed the modelling stage in the process of building your adapter.

In your model, you have coded the instructions on how the adapter is supposed to
behave at run time. You are now ready to create the adapter.

__ Step 7. Assign the model to a CICS MQAdapter

In this step you will associate the microflow (the model that you just
completed), with a CICS MQAdapter.
A CICS MQAdapter provides the actual implementation of the adapter
request processing.
a. Right click on the CICS MQAdapter Collection folder and select

Create > CICS MQAdapter

b. On the Create a new CICS MQAdapter dialog, enter TUMQAD for
the Name and use the drop down menu to select TUMQ01 for the

Figure 73. Mapping for Map6 node

Build an adapter that supports an MQ interface

104 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Microflow Type. Leave the Proxy Client Connector Resource and
Proxy Client Interaction Specification fields blank. Click Finish.

You have completed the microflow and setup your adapter.

Save your workspace by selecting File > Save Workspace from the
menubar.

Now you are ready to generate your adapter.
__ Step 8. Generate the adapter

The adapter code files will be generated in the output directory that
you specify.
Adapter code generation is a two step process:
a. Generate copybooks from message definitions (in Message Sets

view).
b. Generate the adapter run time code from the modeled microflow

(in Adapters view).
v Generate Copybooks.

You will generate copybooks for the following messages:
– TU_M_RAW
– TU_M_DEC
– TU_M_OUT_OK
– TU_M_OUT_ERR
– TU_M_CUST_REC
– TU_M_BE_C_IN

Figure 74. Creating a CICS MQAdapter

Build an adapter that supports an MQ interface

Chapter 4. Build an adapter that supports an MQ interface 105

– TU_M_BE_C_OUT

Note: To generate a copybook for a message, the message must be
checked out or newly created.

To generate copybooks, make sure that you are in the Message Sets
view and then, follow this procedure:
a. Make sure the list of messages are visible under the Messages

folder for the TU_M_MESSAGE_SET. To view the messages, click
on the + sign in front of the Messages folder to display the list of
messages.

b. Right click on the message for which you want to generate a
copybook (for example, TU_M_RAW) and select Generate >
COBOL.

c. Enter the output destination in the Path field and click Finish.

Note: The copybook generate removes underscores from the
message names and only uses the first eight characters of
the filename to generate the new copybook name.

d. Repeat the process to generate copybooks for the remaining
messages in the list.

v Generate adapter Code

Figure 75. Messages Sets folder showing checked out message and newly created message
This screen capture contains a Messages Sets folder showing a checked out message,
indicating by an associated key symbol, and newly created message, indicated by a yellow
star symbol.

Figure 76. Specifying pathname for copybook generation output

Build an adapter that supports an MQ interface

106 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

To generate adapter code, make sure that you are in the Adapters
view and then, follow this procedure:

Note: You must generate the adapter code in the same directory
where you generated the copybooks.

a. Right click on TUMQAD adapter (listed under the CICS
MQAdapters folder) and select Generate > Generate COBOL
Adapter. Enter the output destination in the PATH field (the
example uses C:\Mqiac\Tutorials\MQ). Click Finish.
The generated adapter code will be output to the destination
path directory.

Deploying an adapter

In the following section you will learn how to deploy the adapter that you created. The
deploy operation sends the copybooks, source code, JCL and the configuration
parameters for each microflow that you generated, to the host system, for source code
configuration, object code build and parameter update operations.

You will need an account and password to the OS/390 environment that will host
the adapter you are deploying.

Make sure that you have customized the build time JCL templates to your site
standards. See “Building adapters” on page 6 for information on the JCL you need
to customize.

Figure 77. Specifying pathname for adapter code generation output

Build an adapter that supports an MQ interface

Chapter 4. Build an adapter that supports an MQ interface 107

To deploy an adapter, make sure that you are in the Adapters view and then,
follow this procedure:
1. Right click on TUMQAD adapter (listed under the CICS MQAdapters folder)

and select Generate > Deploy COBOL Adapter. Click the Define Settings radio
button and enter the following information:
v IP Address — IP Address - The host system IP address (for example,

9.89.7.114)
v High Level Qualifier — The high level qualifier for the partition data set

(PDS)
v Account — The account under which JCL submits a job for compilation.

Note: If you wish to save these settings for reuse, then click Save. You will be
prompted to specify an output location and filename to store the setting
information. The next time you deploy adapter code you can click the
Use Pre-defined Settings radio button and enter the saved filename.

Click Next.

Note: The values displayed in Figure 78 are for example purposes only. The
values that you enter will depend on your site’s host system parameters.

2. On the User Identification panel enter your user ID and password.

Figure 78. Specifying the target host

Build an adapter that supports an MQ interface

108 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Click Finish.
3. The Sub-process dialog appears and provides a status of the deploy process as it

happens. When the deploy is complete the generated adapter code, copybooks,
and JCL (Compile / Properties File Update) files will be moved to the OS/390
server.

Note: You should scroll through the output listing in the Sub-process dialog
window to see if any errors occurred.

4. Select OK to close the dialog.

Figure 79. Logon to the host

Figure 80. Sub-process dialog indicating status of the deploy process

Build an adapter that supports an MQ interface

Chapter 4. Build an adapter that supports an MQ interface 109

The adapter now resides on the OS/390 server and is ready to be tested. See
Chapter 6, “Validating the adapters” on page 231 for instructions on how to test the
adapter.

Check to see that the adapter compiled in CICS
After you have deployed the adapter to the OS/390 server, you need to make sure
that it compiled with no errors. Consult with your CICS systems administrator for
assistance with this procedure.

Defining the adapter resources to CICS
If you do not have access to CICS at your site, you will need to ask your CICS
administrator to perform the necessary CEDA and CEMT functions. You will need
to provide the CICS administrator with the following information as it relates to
the adapter that you deployed:
v Program names
v Group name
v Transaction Identifiers

For the MQ adapter, the following values apply:

Table 38. Values for the Define Transactions screen

Program Group Transid

TUMNAV1 MIACUSER TUM1

TUMQ01P MIACUSER TUMP

TUMQ01G MIACUSER TUMG

To define resources to CICS, the CICS administrator must:
v Run the CEDA transaction to define programs and any files to CICS.
v Submit JCL to run the Properties File Update job.

This is necessary only if you did not automatically submit JCL using the
builder’s generator facility.
If you were not allowed to submit JCL automatically, you can manually submit
JCL (DFHMAMPU) to run the Properties File Update job (DFHMAMUP). See
the MQSI Agent for CICS Run Time User’s Guide for information on the
Properties file update JCL (DFHMAMPU).

The CICS administrator must NEWCOPY any server adapter programs that were
modified.

For an example of defining CICS resources to CICS, See “Example procedure for
defining adapter resources to CICS” on page 239.

Build an adapter that supports an MQ interface

110 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Chapter 5. Build an adapter that supports a FEPI interface

Before you begin this tutorial, read Chapter 2, “Tutorial overview” on page 9. The
Tutorial Overview section contains important information on the business
transaction to be modeled, as well as information on the tutorial’s file structure.
The Tutorial Overview also lists the assumed environment requirements that must
be adhered to in order to build and deploy the adapter. The Tutorial overview also
provides important information on the tutorial files, the tutorial directory structure
and how to avoid naming conflicts when you create message sets and messages.

From this tutorial, you will learn how to use the MQSI Agent for CICS Adapter Builder
tool to model and generate code for an adapter that supports a FEPI interface.

You will model an adapter that has the functionality to access an existing application
using a CICS / FEPI Interface. See “About the adapter you will design” on page 112 for a
description of the adapter that you will model.

If you have not had any exposure to the Adapter Builder component of the
MQSeries Integrator Agent for CICS Transaction Server product, you should read
the MQSeries Integrator Agent for CICS Transaction Server Using the Control Center.
This book contains information on the concepts of the MQSeries Integrator Agent
for CICS Adapter Builder.

This tutorial consists of:
v “Designing an adapter”
v “Creating an adapter that supports a CICS FEPI interface” on page 120
v “Deploying an adapter” on page 225

After completing this tutorial you should be able to:
v Identify required Host based information you need to gather and use.
v Import COBOL copybooks and create message sets.
v Import 3270 screens.
v Create workspaces to define adapter flow logic.
v Create and generate a COBOL adapter.
v Deploy and test the generated COBOL adapter.

Designing an adapter
As was discussed in “Requirements analysis and design considerations” on page 1,
before you start to use the MQSI Agent for CICS Adapter Builder, you would
spend some time analyzing the business need that the adapter will address and
then spend some time considering how you will design the adapter.

When you finish with requirements analysis and design considerations, you should
have a sound understanding of how your adapter will behave at run time in order
to manage and fulfill a business transaction.

© Copyright IBM Corp. 2001 111

To help you gain a frame of reference for what you will create in this tutorial, you
should understand the following:
v The business need to be addressed
v The messages in and out structure
v The CICS resources required

Addressing a business need
An adapter should address a particular business need. In this tutorial, the business
need is to provide a controlling application with an interface to a back-end
environment for the purpose of accessing an existing CICS application that
performs a customer inquiry.

In this tutorial you will be accessing the same back-end environment that was
installed and used by the run time installation verification procedure (IVP). For
information on the programs used by the IVP, see the chapter on performing post
installation tasks in the MQSI Agent for CICS Run Time User’s Guide.

About the adapter you will design
This section identifies some preliminary information that you would gather or
consider prior to invoking the builder. It is essential that you understand your
objectives and the environment you will be working in.

The adapters that you build using the MQSI Agent for CICS Adapter Builder are
visual models of business transactions. They are intended to map out the activities
that comprise the entire business transaction, from invocation to completion.

The adapter that you build contains the instructions, logic and code that enable it
to run on an OS/390 server, this includes an interface technology for accessing
information on the back-end system. In this tutorial the business transaction on
which you will base your adapter is a customer inquiry request and the interface
method used is a CICS / FEPI interface.

Your adapter design will include instructions on accessing a back-end application
to retrieve customer information and will include instructions on where to put the
information so that it can be returned to the controlling application.

The tutorial models a FEPI adapter that consists of a base navigator microflow and
five subflows A subflow is a microflow that is nested under the base navigator flow:
v The main flow or the base navigator microflow (TU_F_NAV) — represents the

adapter microflow that models the behavior of the Navigator in the run time
environment.

v Subflow (TU_F_PARSER) — identifies the current 3270 screen via FEPI
v Subflow (TU_F_SIGNON) — signs the user onto the Customer application via

FEPI
v Subflow (TU_F_INQ) — performs an inquiry on Customer information via FEPI
v Subflow (TU_F_SGNOFF) — signs off from the Customer application and

displays a blank CICS screen via FEPI
v Subflow (TU_F_RESET) — resets the Customer screen for inputting the next

customer number via FEPI.
v This tutorial describes how to design and construct an adapter that when

deployed will perform the following functions:

Build an adapter that supports a FEPI interface

112 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

1. Accept the message structure TU_F_RAW from the Simulator in the form of
a request.

2. Pass the information to the parser subflow (TU_F_PARSER):
– The parser command (TU_F_PARSER) will determine the 3270 screen

identity
– Map the screen identifier to the DOC_SCR indicator

3. Use a decision node (TU_F_SCR_ID) to determine the screen identity
passed from the TU_F_PARSER subflow. Based on the identity of the screen,
select one of the following flow paths:
– Signon to the application (TU_F_SIGNON subflow)
– Reset the customer screen (TU_F_RESET subflow)
– Unknown, which terminates the flow and outputs a reply message.

Note: To continue with the signon path go to step 4. To continue with the
reset the customer screen path go to step 12 on page 114.

4. The signon to the application subflow (TU_F_SIGNON subflow) performs
the following:
– Use the SYS_LU_LOGON data context to supply the values in

LU_OWNER and PASSTICKET so these values can be mapped to the
appropriate USERID and PASSWORD fields on a 3270 Signon Screen.

– The signon command (TU_F_SIGNON) uses the supplied LU_OWNER
and PASSTICKET values to display a blank native CICS screen.

– If signon is successful, the TU_F_CMAV command inputs the CMAV
transaction to display the Customer screen. Output a good customer
application screen reply.

– If signon is not successful or the screen returned is unknown, output an
error reply.

5. Check the reply message for either a good signon or error using a Decision
node (TU_F_GOOD_SIGNON).

6. For a successful signon, perform a Customer information inquiry using the
TU_F_INQ subflow.
– Map the Customer inquiry request information to the Customer

Information screen.
– Process the Customer inquiry command
– Use a Decision node (TU_F_REC_NOT_FND) to determine whether a

valid data record is returned for the Customer inquiry.
– If the data record exists, map the data in the record to the output reply

message, otherwise map an error reply message.
7. Store the data record information in a Data Context node

(TU_F_HOLD_REPLY). Map the input data (TU_F_RAW) to the message
supplied to a Decision node (TU_F_SIGNOFF).

8. Decide whether to signoff (release the LU connection) using a Decision
node (TU_F_SIGNOFF).

9. If signoff is selected. Map information from the Data Context node
(TU_F_HOLD_REPLY) and the FEPI Data Context node
(SYS_FEPI_OVERRIDES) to the input message supplied to the signoff
subflow (TU_F_SGNOFF). The FEPI Override feature is used to dynamically
set the FEPI LogoffType property.

10. The signoff subflow (TU_F_SGNOFF) performs the following:

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 113

– Maps a signoff key (PF3) to the Customer Information screen.
– If the signoff is valid, then map the required CESF LOGOFF transaction

information and process the transaction using the CESF LOGOFF
command. Output reply message indicating a valid logoff to be returned
to the Simulator and exit.

– If the signoff is not valid, then output a reply message indicating an
invalid logoff to be returned to the Simulator and exit.

11. If signoff is not selected, then in the main flow pass along the Reply record
to an output reply message to be returned to the Simulator and exit.

12. If you are already on the Customer screen because of a previously
processed inquiry, then reset the Customer screen to accept input for the
next customer number. The reset subflow (TU_F_RESET) performs the
following:
– Maps a PF12 key to reset the Customer screen for new input.
– Process the PF12 input using the Customer screen command

(TU_F_CUST).
– If an error occurs during the Customer screen reset, then output an error

message.

Identify the components of the run time environment
Before building the adapter we need to:
v Define the CICS programs and transaction IDs for the adapter programs that are

generated.
For the purpose of this tutorial the following will be generated:

Table 39. MQ Adapter programs

Program type Program name Transaction ID

Navigator TUFNAV TUF1

FEPI Adapters TUFPRSER TUF4

TUFSGON TUF2

TUFINQ TUF6

TUFSGOFF TUF3

TUFRESET TUF5

v Determine the FEPI screens that are invoked. For this tutorial the following
screens will be invoked:
– Signon screen (TUFSGON)
– Inquiry screen (TUFINQ)
– Sign off screen (TUFSGOFF)
– Reset screen (TUFRESET)

v Determine the CICS region where the adapter programs will execute.
v Determine the CICS region where the FEPI program will execute to access the

back-end system.

After some analysis, we determine that the host environment for the deployed
adapter will look like Figure 81 on page 115. In this host environment, the
generated adapter programs, TUFNAV and its associated subflow programs
TUFSGON, TUFSGOFF, TUFPRSER, TUFRESET, and TUFINQ execute in CICS
region QAS1. CMAV acts as the back-end system in the CICS region DEV2.

Build an adapter that supports a FEPI interface

114 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Accessing the FEPI tutorial files
The files you will need in order to build and deploy an adapter that supports a
FEPI interface are located in two directories as follows:
v C:\<mqiac_tutorials>\fepi
v C:\<mqiac_base>\cics

In the C:\<mqiac_tutorials>\fepi directory you will find the following files:

Table 40. Files in the C:\<mqiac_base>\cics directory

File name Description Use

TU_F_RDS.cbl COBOL record
description.

Used as import for messages.
Contains the message structure.

TC_FEPI_WS.zip Completed workspace for
FEPI adapter.

A completed workspace that you
import and use as the basis for the
workspace used to create the FEPI
adapter. See “Accessing a
completed workspace” on page 12
for information on using the
contents of this file

Figure 81. Tutorial run time environment for FEPI adapter

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 115

Table 40. Files in the C:\<mqiac_base>\cics directory (continued)

File name Description Use

*.cpy Generated copybooks. The generated copybooks for the
FEPI adapter

In the C:\<mqiac_base>\cics directory you will find the following files:

Table 41. Files in the C:\<mqiac_base>\cics directory

File name Description Use

tu_f_fepiinteraction.ispec Interaction specification
file

Identifies the use of the FEPI
command.

tu_f_nav.rsc Connector resource file Specifies synchronous rollback,
Navigator type, COBOL program
name for the FEPI adapter and
the CICS TransID.

tu_f_INQfepi.rsc Connector resource file Specifies synchronous rollback,
FEPI Navigator type, program
name for the FEPI adapter, CICS
TransID, logoff type, FEPI pool,
FEPI target, FEPI conversation
status, timeout value, maximum
Commarea length and FEPI
PassTicket status.

tu_f_PRSERfepi.rsc Connector resource file FEPI Navigator. See description
for tu_f_INQfepi.rsc

tu_f_RESETfepi.rsc Connector resource file FEPI Navigator. See description
for tu_f_INQfepi.rsc

tu_f_SGONfepi.rsc Connector resource file FEPI Navigator. See description
for tu_f_INQfepi.rsc

tu_f_SGOFFfepi.rsc Connector resource file FEPI Navigator. See description
for tu_f_INQfepi.rsc

Note: There is also a version of the Specification files prefixed with tc_f_ that are used for
the completed workspace supplied in the TC_FEPI_WS.zip file.

Configuring the Specification Files

In this section you will learn how to configure the physical properties of each FEPI
adapter component (the base microflow and the subflows). These properties represent
the XML definitions that are sent to the Properties file on the host at deployment time.

For information on the Properties file, see the MQSI Agent for CICS run time
documentation.

Specification files are XML-format files that provide specific values to certain
components created in MQSI Agent for CICS. An Interaction Specification file
provides unique values for the component to which it is assigned. A Connector
Resource file provides more general values for the component.

Build an adapter that supports a FEPI interface

116 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Some of the information in the Interaction Specification file and Connector
Resource file maps to a run time properties file, DFHMAMPF. Other information in
the Interaction Specification file is incorporated in generated Command and
Navigator programs. The DFHMAMPF stores data that is needed to run the
generated adapter code programs on the host. See the MQSI Agent for CICS run
time documentation for information on DFHMAMPF.

The FEPI adapter requires the following specification files:
v Interaction Specification file (TU_F_fepiinteraction.ispec) for the FEPI Command

type
v Connector Resource file (TU_F_NAV.rsc) for the Microflow type (adapter

Navigator)
v Connector Resource files for the FEPI Microflow Types

– Inquiry subflow (TU_F_INQfepi.rsc)
– Parser subflow (TU_F_PRSERfepi.rsc)
– Reset subflow (TU_F_RESETfepi.rsc)
– Signon subflow (TU_F_SGONfepi.rsc)
– Signoff subflow (TU_F_SGOFFfepi.rsc)

The specification files are located in the <mqiac_base>/cics directory. You must
configure the settings in the specification files used for the tutorial.

The FEPI Command type uses an Interaction Specification file. In the Interaction
Specification file (TU_F_fepiinteraction.ispec), the MAT_CMDTYPE identifies the
type of command. In the example, the MAT_CMDTYPE variable has a value of
MAT_FEPI.

Figure 82. Directory structure for locating specification files for the FEPI interface

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 117

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE AttributeGroup SYSTEM "mqsi.dtd">
<AttributeGroup xmi.label="Interaction Specification">

<Attribute xmi.label="MAT_CMDTYPE" type="MAT_DPL MAT_MQ MAT_FEPI"
xmi.uuid="" valueMandatory="true" value="MAT_FEPI" encoded="false"/>
</AttributeGroup>

The Connector Resource file for the base Navigator Microflow type used in the
tutorial is tu_f_nav.rsc.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE AttributeGroup SYSTEM "mqsi.dtd">
<AttributeGroup xmi.label="Connector Resource">

<Attribute xmi.label="MAT_REQTYPE" type="" xmi.uuid="" valueMandatory="false"
value="0" encoded="false"/>

<Attribute xmi.label="MAT_NAVTYPE" type="" xmi.uuid="" valueMandatory="false"
value="R" encoded="false"/>

<Attribute xmi.label="MAT_PROGID" type="" xmi.uuid="" valueMandatory="false"
value="TUFNAV" encoded="false"/>

<Attribute xmi.label="MAT_TRANID" type="" xmi.uuid="" valueMandatory="false"
value="TUF1" encoded="false"/>

</AttributeGroup>

Table 42. Keyword values used for base Navigator Microflow Connector Resource file

Keyword Symbolic Description / Use Example Value

MAT_REQTYPE Specifies whether the request is run
on the server in asynchronous,
synchronous or synchronous rollback
mode 0 (asynchronous) 1
(synchronous) 2 (synchronous
rollback)

0

MAT_NAVTYPE Specifies whether the Microflow Type
is a base Navigator (R) or a FEPI
Navigator (F)

R

MAT_PROGID The name of the COBOL program
generated for the FEPI Navigator
microflow.

TUFNAV

MAT_TRANID The CICS TransID for the server
command program generated on the
server.

TUF1

The Connector Resource file for the base FEPI Microflow type for the Inquiry
subflow used in the tutorial is TU_F_INQfepi.rsc.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE AttributeGroup SYSTEM "mqsi.dtd">
<AttributeGroup xmi.label="Connector Resource">

<Attribute xmi.label="MAT_REQTYPE" type="" xmi.uuid="" valueMandatory="false"
value="0" encoded="false"/>

<Attribute xmi.label="MAT_NAVTYPE" type="" xmi.uuid="" valueMandatory="false"
value="F" encoded="false"/>

<Attribute xmi.label="MAT_PROGID" type="" xmi.uuid="" valueMandatory="false"
value="TUFINQ" encoded="false"/>

<Attribute xmi.label="MAT_TRANID" type="" xmi.uuid="" valueMandatory="false"
value="TUF6" encoded="false"/>

<Attribute xmi.label="MAT_LOGOFFTYPE" type="" xmi.uuid="" valueMandatory="false"
value="A" encoded="false" />

<Attribute xmi.label="MAT_POOL" type="" xmi.uuid="" valueMandatory="false"
value="CICSDEV2" encoded="false" />

<Attribute xmi.label="MAT_TARGET" type="" xmi.uuid="" valueMandatory="false"
value="" encoded="false" />

<Attribute xmi.label="MAT_CONVERSE" type="" xmi.uuid="" valueMandatory="false"

Build an adapter that supports a FEPI interface

118 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

value="Y" encoded="false" />
<Attribute xmi.label="MAT_TIMEOUT" type="" xmi.uuid="" valueMandatory="false"

value="025" encoded="false" />
<Attribute xmi.label="MAT_MAXCALEN" type="" xmi.uuid="" valueMandatory="false"

value="400" encoded="false" />
<Attribute xmi.label="MAT_USELUPASS" type="" xmi.uuid="" valueMandatory="false"

value="Y" encoded="false" />
</AttributeGroup>

Table 43. Keyword values used for a FEPI Connector Resource file

Keyword Symbolic Description / Use Example Value

MAT_REQTYPE Specifies whether the request is run
on the server in asynchronous,
synchronous or synchronous rollback
mode 0 (asynchronous) 1
(synchronous) 2 (synchronous
rollback)

0

MAT_NAVTYPE Specifies whether the Microflow Type
is a base Navigator (R) or a FEPI
Navigator (F)

F

MAT_PROGID The name of the COBOL program
generated for the FEPI command.

TUFINQ

MAT_TRANID The CICS TransID for the server
command program generated on the
server.

TUF6

MAT_LOGOFFTYPE Used to set the state of the
conversation upon exit of a FEPI
microflow. Valid values are:
R = release
A = assign
P = pass
OVERRIDE

A

MAT_POOL Specifies the name of the FEPI Pool
from which connections will be
attached. Use OVERRIDE to
dynamically set the Pool property
during run time.

CICSDEV2

MAT_TARGET Specifies the FEPI Target, that is the
back-end region with which FEPI will
communicate. Use OVERRIDE to
dynamically set the Target property
during run time.

no value specified
(blank)

MAT_CONVERSE Indicates that the FEPI conversation
to the back-end region is
conversational.

Y

MAT_TIMEOUT Amount of time, in seconds, before a
FEPI Receive from the back-end will
terminate with a timeout condition.
Use OVERRIDE to dynamically set
the Timeout property during run
time.

025

MAT_MAXCALEN Specifies the maximum Commarea
length for the MAX_LINKNAME
program.

400

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 119

Table 43. Keyword values used for a FEPI Connector Resource file (continued)

Keyword Symbolic Description / Use Example Value

MAT_USELUPASS Switch to indicate whether a FEPI
microflow should generate a UserID
and PassTicket for signing on to the
back-end region.

Y

The other FEPI subflows use the same Connector Resource values with the
exception of the MAT_PROGID and the MAT_TRANID values.

Table 44. Program and transaction IDs values used for the FEPI microflows

FEPI Microflow
Type

Resource file MAT_PROGID MAT_TRANID MAT_LOGOFFTYPE

Signon TU_F_SGONfepi.rsc TUFSGON TUF2 A

Signoff TU_F_SGOFFfepi.rsc TUFSGOFF TUF3 OVERRIDE

Parser TU_F_PRSERfepi.rsc TUFPRSER TUF4 A

Reset TU_F_RESETfepi.rsc TUFRESET TUF5 A

Inquiry TU_F_INQfepi.rsc TUFINQ TUF6 A

You have just completed the steps necessary to configure the Properties file. You are
now ready to import the required screens and message sets into the adapter builder.

Creating an adapter that supports a CICS FEPI interface

In this section you will learn how to import the necessary COBOL record descriptions
and system interfaces for the FEPI adapter. These are stored in the logical message
model in the Adapter Builder for use in the FEPI adapter flow.

Import Message Sets
Follow these instructions to begin the process of building an adapter that supports
a FEPI interface:
__ Step 1. Start the builder and create a new workspace.

To start the builder, go to the Start > Programs > IBM MQSI Agent
for CICS >IBM MQSI Agent for CICS. This will launch the tool as
shown below, in Figure 83 on page 121.

Build an adapter that supports a FEPI interface

120 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

You should begin the tutorial with a new workspace. A workspace is a
view of what you can work with at one time. A workspace is displayed
as the graphical space in the builder where you will build the adapter
to support the FEPI interface.
From the File pull-down menu, select New Workspace.

__ Step 2. Name your tutorial workspace and save it to the repository.
From the File pull-down menu, select Save Workspace. Enter a name
for the workspace, such as TU_FEPI_WS, and click Save

Note: Be sure to use under_scores and not dashes ″-″ when naming the
workspace.

.
__ Step 3. Import message sets.

A message set is a collection of structured XML-based data types that
are stored in the message repository.
When you import a message set, what you are really doing is bringing
in the COBOL structured data type definitions from existing CICS
transactions and the 3270 screen interactions with the host system, into
the Adapter Builder’s control center. The control center utilizes the
message set as an interface between the adapter builder tool and the
business transaction to be modelled.
After importing a message, you can modify and store it.

Note: It is much easier to import a COBOL structured data type
definition than it is to build the message set. If there is no record
description, create one with a text editor and import it.

This tutorial uses the following message sets:

Figure 83. Initial panel of the MQSI Agent for CICS Adapter Builder

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 121

v TU_F_MSG_SET — Basic adapter messages. These include the
following:
– TU_F_RAW — The input record description from the controlling

application.
– TU_F_DEC — The Decision node message.
– TU_F_REPLY — The Response message.

v CICS_SAMPLES — Standard CICS sample messages. These include:
– CICS Request and Response
– System FEPI overrides
– System LU LOGON

v TU_F_3270_MSG_SET — CICS captured screen messages and screen
layouts.

a. Right click on the Message Sets folder, select Import to New
Message Set > COBOL.

On the COBOL Language Message Importer dialog (Source
Information Panel), enter the Message Set Name (in the tutorial,
TU_F_MSG_SET) and the directory path where the Source Files for
the copybooks are located (<mqiac_tutorials>\fepi\tu_f_rds.cbl).

For the purposes of this tutorial, leave theCreate Copybook
Compound Type Only box unchecked. This box is an option that
controls how copybooks can be imported.

b. Click Next.

Figure 84. Import a message set (source information)

Build an adapter that supports a FEPI interface

122 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

c. On the COBOL Language Message Importer dialog (Group Level
Panel), select the message to import (for the tutorial, select
TU_F_RAW) and select the Request message type radio button.

The radio button selections are as follows:

Request
Use if the message is going to be used as an input message
in a transaction.

Response
Use if the message is going to be used as an output
message in a transaction.

Undefined
Can be used for messages that are not used in a transaction.

Click Finish to complete the import.
d. Right click on the newly created TU_F_MSG_SET folder and select

Import to Message Set > COBOL. On the COBOL Language
Message Importer dialog (Source Information Panel), enter the
directory path where the Source Files for the copybooks are located
(<mqiac_tutorials>\fepi\tu_f_rds.cbl). See Figure 84 on page 122).
Click Next.

e. On the COBOL Language Message Importer dialog (Group Level
Panel), select the message to import (for the tutorial, select
TU_F_DEC) and select the Undefined message type radio button.

Figure 85. Import a message set (group level)

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 123

Click Finish to complete the import.
f. Repeat the procedure in steps c and d until all of the following

messages (with the specified message types) are imported:

Table 45. Messages to add to the workspace

Message Message Type Purpose

TU_F_RAW Request Input message used by the
navigator to receive
information from the
controlling application.

TU_F_DEC Undefined Decision node message used
by the navigator to
determine how to flow
logically within the flow.
This message provides a
series of fields, the context of
which are evaluated by the
Navigator to control logical
flow.

TU_F_REPLY Response Message used to receive
customer demographic
information as provided by
the back end application.

g. Next, you need to add the CICS_SAMPLES message set to your
workspace. Right click on the Message Sets folder and select Add to
Workspace > Message Set.

Figure 86. Import a message set (group level)

Build an adapter that supports a FEPI interface

124 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

The CICS_SAMPLES message set will be utilized later on in this
tutorial to assist with screen recognition and transaction
implementation issues in overrides and passticket processing.

h. Select the CICS_SAMPLES message set in the Add an Existing
Message Set window and click Finish.

i. Right click on the CICS_SAMPLES message set folder and select
Add to Workspace > Message. Select all the messages in the Add an
Existing Message window (click on each message while you press
the CTRL key) and click Finish.

Figure 87. Add the CICS_SAMPLES message set

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 125

j. Finally, you need to create a message set to hold imported 3270
messages. Right click on the Message Sets folder, select Import to
New Message Set > 3270. On the Create 3270 Message Set dialog,
enter the Message Set Name (in the tutorial, TU_F_3270_MSG_SET)
and the Host IP Address. The Host IP Address you enter should
correspond to the host system you are accessing. Click Finish.

Figure 88. Add messages to the CICS_SAMPLES message set

Build an adapter that supports a FEPI interface

126 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

You have just completed importing the required message sets using the COBOL
importer.

You are now ready to import the 3270 screens to the message sets.

Importing Screens

a. Right click on the TU_F_3270_MSG_SET message set folder and
select Import to Message Set > 3270.

b. On the 3270 Screen Importer dialog, click Connect to connect to the
Host. This will put you in 3270 emulation mode.

Figure 89. Create the 3270 message set

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 127

c. Logon to the CICS region where the installation verification
back-end programs were installed.

Note: You should use the Userid and Password that you have been
assigned to access your host system.

Figure 90. 3270 Screen Importer in emulation mode

Build an adapter that supports a FEPI interface

128 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

d. Perform a screen capture for the CICS logon screen. Enter
TU_F_SIGNON_SCR in the Name field and click the Import button.

Note: No Userid or Password values are entered in the screen
before the screen capture because these values will be
supplied using the FEPI PassTicket feature in the tutorial.

When you import a screen, the builder uses an algorithm to select
the best elements to represent the screen layout. Each field on a
screen is imported as an element. In addition, an element qualifier
is created for each field that was chosen by the algorithm to use for
screen identification.

You can view the element qualifiers that were created for the CICS
Login screen (TU_F_SIGNON_SCR) by clicking the Next button (see

Figure 91. CICS logon screen

Figure 92. Capturing the CICS logon screen

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 129

Figure 93). Notice that there are 6 Screen Qualifiers specified. Select
the TU_F_SIGNON_SCR_Row1Col66 qualifier which indicates the
screen position (row 1 and column 66). The text for the element
qualifier is ’APPLID’ and notice that the Use as Qualifier checkbox
is now selected.

You can customize element qualifiers, but for now just click the
Back button to continue with the 3270 screen import process.

e. On the CICS Login screen, click in the Userid field and enter your
Userid. Enter your Password in the Password field. Click the Enter
button to logon. This will display the Signon Complete screen.

f. Make sure that the Qualify Screen check box is checked.
g. Capture the Signon Complete screen. Enter TU_F_COMP_SCR in

the Name field and click the Import button.

Figure 93. Element Qualifiers for the CICS logon screen

Build an adapter that supports a FEPI interface

130 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

The information message shown in Figure 95 displays. This message
indicates that you need to customize element qualifiers to identify
the CICS Signon Complete screen. Click OK to close the
information message and click the Next button.

h. Create an element qualifier for the CICS Signon Complete screen.
1) Select the TU_F_COMP_SCR_Row24Col2 element qualifier.
2) Highlight the substring ″Sign-on is complete″ within the Text

field. This will be the substring that will be used to identify the
CICS Signon Complete screen.

3) Check the Use as Qualifier check box. Notice when the
substring is selected the Text Offset field is 11 and Text Length
19.

Figure 94. CICS Signon Complete screen

Figure 95. ’Screen recognition data cannot be determined’ information message

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 131

4) Click Finish. The Continue Importing 3270 Screen message box
will display.

5) Click Yes to continue importing screens.
i. Input the following CICS transaction to continue to the Customer

Information screen:
1) Put the cursor focus on the CICS Signon Complete screen.
2) Click the Clear button (located below the screen).

a) Put the cursor focus on the CICS Signon Complete screen.
3) Type CMAV in the CICS Signon Complete screen.
4) Click the Enter button (located below the screen).
5) Check the Qualify Screen check box.

j. Enter TU_F_CUST_SCR in the Name field and click the Import
button.

Figure 96. Customizing the element qualifier

Build an adapter that supports a FEPI interface

132 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

k. View a customer record. Enter 10000 in the Account # field, enter 1
in the Select an option field:

Click Enter.

Figure 97. Customer Information screen

Figure 98. Requesting a customer record display on the Customer Information screen

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 133

The following record should display.

Before moving on to the next step, you should sign off the host
session and disconnect from the 3270 Importer.

From the Customer Identification screen:
v Click PF3 to get to a CICS blank screen
v Type the transaction that signs you off of your host system
v Click Disconnect and then click Finish.

You just completed importing both the COBOL structured data type definitions required
to model the FEPI microflow and the 3270 screens that will be used to scrape data from
the target back-end system.

__ Step 4. Add transactions to the workspace.

a.

A transaction represents the screen recognition, message and data
flowing to and from the back-end FEPI screens to be accessed by
the adapter. In order to create a FEPI command node, you need to
associate the command node with a transaction. The messages
associated with the transaction are defined as Input and Output
representing the expected format of the input message (and
identified as input terminal in the node) and the expected format of
the output screen (and identified as the output terminal in the

Figure 99. Customer record display

Build an adapter that supports a FEPI interface

134 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

node). Select the Transactions folder under the
TU_F_3270_MSG_SET message set. Right click on the Transaction
folder. Select Add to Workspace > Transaction. Select the
TU_F_CUST_SCR and TU_F_SIGNON_SCR transactions and click
Finish.
A FEPI microflow transaction is a relationship between the content
of all the captured back-end application screens. These transactions
are then incorporated into the appropriate command nodes.

b. Customize the system-supplied transactions for use in the
microflows. Expand the CICS_SAMPLES message set folder. Right
click on the Transaction folder. Select Add to Workspace >
Transaction. Select the SAMPLE_PARSER and
SAMPLE_TRANSACTION transactions and click Finish.
1) Expand the Transactions folder under the CICS_SAMPLES

message set. Right click on the SAMPLE_PARSER transaction
and click Copy.

2) Right click on the Transactions folder in your
TU_F_3270_MSG_SET message set and click Paste.

Note: A warning message stating that ″Any existing elements in
this message set will not be overwritten. Are you sure
you want to paste this message?″ will appear. Click the
Yes button.

You should rename the transaction that you copied to
TU_F_SAMPLE_PARSER. Also rename the Identifier field to

Figure 100. Add an existing transaction

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 135

TU_F_SAMPLE_PARSER in the Properties pane. Click the
Apply bar at the bottom of the Properties pane to apply the
change.

3) Add the messages representing the imported 3270 screens to the
TU_F_SAMPLE_PARSER. These are the screens the parser will
attempt to recognize during the adapter processing in order to
identify the current user screen.
Right click on the TU_F_SAMPLE_PARSER transaction and
select Add > Message. Select the TU_F_SIGNON_SCR_screen,
TU_F_CUST_SCR_screen, and TU_F_COMP_SCR_screen
messages as depicted in the following figure and click Finish.

When you import a screen, the following items are created:
v screen
v request
v response

The screens identify where you are in the application. The
request and response are the commands that are used as input
and output for traversing the application and capturing the
screens.

4) Under the CICS_SAMPLES message set, right click on the
SAMPLE_TRANSACTION transaction and click Copy.

5) Right click on the Transactions folder in your
TU_F_3270_MSG_SET message set and click Paste. You should
rename the transaction to TU_F_SMPLE_TRANSACTION. Also
rename the Identifier field to TU_F_SMPLE_TRANSACTION in

Figure 101. Add messages to the TU_F_SAMPLE_PARSER folder

Build an adapter that supports a FEPI interface

136 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

the Properties pane. Click the Apply bar at the bottom of the
Properties pane to apply the change.

6) Add the messages representing Customer screen to the
TU_F_SMPLE_TRANSACTION. This is needed to add data to a
blank CICS screen. This is the screen that will display after the
CMAV transaction is processed.
Right click on the TU_F_SMPLE_TRANSACTION folder and
select Add > Message. Select the TU_F_CUST_SCR_screen and
click Finish.

c. The Message Sets view is shown in Figure 102. Save your
workspace by selecting File > Save Workspace.
Tip: The SAMPLE_PARSER is renamed TU_F_SAMPLE_PARSER,
but the SAMPLE_TRANSACTION is renamed
TU_F_SMPLE_TRANSACTION because when the COBOL source
code for each of these transactions is generated, the first 8
characters (excluding the underscores ″_″) are used to create the
name. This same 8–character name would be created for the
TU_F_SAMPLE_TRANSACTION. By renaming the
SAMPLE_TRANSACTION to TU_F_SMPLE_TRANSACTION, you
avoided the name collision.

Create the subflows for the FEPI adapter

In the following sections you will create the subflows for the FEPI adapter.

Figure 102. Message Sets view

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 137

The following sections contain instructions that will allow you to create the FEPI
adapter subflows identified inFigure 81 on page 115.

Each subflow that you create contains the instructions regarding its functional role
at run time, as described in “About the adapter you will design” on page 112.

For each subflow, you will perform the following tasks:
1. Create component types

A component type represents a template that can be used as a building block in
modeling the subflow. The component types used by the subflow will depend
on what the subflow is intended to do. For example, if at run time the subflow
is required to test a condition for true or false to resolve a control flow path,
you would create a Decision component type. For a list of the component types
that are supplied with the adapter builder and for a description of their
purpose, see the section on Microflow components in the MQSeries Integrator
Agent for CICS Transaction Server Using the Control Center book.
When you are finished with creating component types for a subflow, you will
have all the necessary building blocks required to model the subflow’s
functionality. The component types will display in the Adapter Tree View. From
the Adapter Tree view you will be able to drag a component type onto the
Microflow Definition pane and begin the process of constructing the subflow.

2. Model the subflow

In this step you will perform a set of tasks to model the subflow. When you
model a subflow you are specifying how it will function at run time. Within the
context of the business flow, the model is of the navigation of the server
application with the back end systems.
Within the builder, the model of each subflow is represented as a separate and
distinct microflow, a sequence of nodes and connections. The microflow models
the processing of a message as it passes from the input of the adapter to the
output of the adapter.
The modelling step is made up of the following tasks:
v Adding microflow nodes
v Connecting the microflow nodes
v Defining the mappings

3. Assign the model of the subflow to a CICS MQAdapter

By associating the model of the subflow with a CICS MQAdapter, you create
the adapter that provides the actual implementation of the adapter request
processing at run time.

4. Generate the adapter

In this step you generate the copybooks and the run time code for the subflow.

Create the Parser subflow
Many production implementations of FEPI allow the FEPI application to leave the
connection active or hot when the application has completed. The next time the
connection is used, any screen could be received from the back-end system.
Because of this, we recommend that you use a parser subflow to perform screen
recognition.

The Parser subflow is used to identify which screen the user is on and then set a
switch to determine the processing path.

Build an adapter that supports a FEPI interface

138 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Follow these steps to create the Parser subflow:
1. Create the component types for use in the Parser subflow

This step is made of the following tasks:
v Create a Command Type
v Create a Microflow Type
a. Create a command type .

The TU_F_PARSER Command type will allow the microflow to identify the
current screen (Complete screen, Signon screen or Customer screen). Make
sure you are in the Adapters view.
1) Right click on the Command Types folder and select Create >

Command Type. Enter TU_F_PARSER in the Name field.
2) Using the drop down menus, set the following field property values:

Table 46. TU_F_PARSER Command property values

Field Value

Message Set TU_F_3270_MSG_SET

Transaction TU_F_SAMPLE_PARSER

Interaction Specification TU_F_fepiinteraction.ispec

Note: The Connector Resource for FEPI command types is not used and
is left blank.

Click Finish to apply the property values.
b. Create a microflow type.

Create a microflow that will model the Parser subflow processing.

Figure 103. Creating a TU_F_PARSER Command type

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 139

1) Right click on the Microflow Types folder and select Create > Microflow
Type.

2) Enter TU_F_PARSER in the Name field.
3) Use the drop down menu in the Connector Resource field to select

TU_F_PRSERfepi.rsc as the Connector Resource file and then click
Finish.

4) Save your workspace by selecting File > Save Workspace from the
menubar.

You just created all of the component types that you will need to model the Parser
subflow.

2. Model the Parser subflow

In this step you will perform a set of tasks to define and model the Parser
subflow’s functionality. The model represents the behavior of this subflow at
run time.
This step is made of the following tasks:
v Adding subflow nodes

Figure 104. Creating a TU_F_PARSER Microflow Type

Build an adapter that supports a FEPI interface

140 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

v Connecting the subflow nodes
v Defining the mappings
a. Add nodes to the Parser subflow.

The subflow processing identifies which screen the user is on and sets a
switch. Construct the Parser subflow by adding the nodes as shown in
Figure 107 on page 144.
In this task, you will drag the component types that you created in step 1
on page 139, onto the Microflow Definition pane. When you drag a

component type onto the Microflow Definition pane, it is instantiated and
referred to as a microflow node. A single component type can be used to
create one or more microflow nodes (instances) as part of the same
microflow.
1) Add the Input Terminal node

An Input Terminal serves as an entry point for the microflow. The Input
Terminal can make a connection to any terminal that resides within the
microflow.
a) Drag the node on to the Microflow Definition pane.

In the Microflow Types folder, select the TU_F_PARSER microflow
you created.

Note: To model your adapter in the workspace (Microflow
Definition pane), you must make sure the microflow is
selected in the Microflow Types folder.

Drag an Input Terminal type from the Adapter Tree View to the
workspace (Left click and hold on the Input Terminal to drag it to
the workspace).

b) Rename the node
Right click on the Input Terminal and select Rename. Rename the
Input Terminal node to Input RAW and click Finish.

c) Set the properties for the node
Right click on the Input Terminal and select Properties. From the
drop down menus, select TU_F_MSG_SET in the Message Sets field
and select TU_F_RAW in the Messages field. Click OK.

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 141

2) Add the Command node

In this step you will create a Parser command type that will be used to
determine which screen you are on (Complete screen, Signon screen, or
Customer screen).
a) Drag the node on to the Microflow Definition pane

Drag a TU_F_PARSER Command type from the Adapter Tree View
to the workspace. Place the node to the right of the Input RAW
node.

b) Rename the node
Right click on the TU_F_PARSER1 Command node and select
Rename. Modify TU_F_PARSER1 in the New name field to the name
TU_F_PARSER and click Finish.

3) Add the Output Terminal node

An Output Terminal serves as an exit point for the microflow. The
Output Terminal can receive connections only. It can never start a
connection. A microflow can have multiple Output Terminals (as in the
DPL and MQ tutorial exercises). A developer must design the
controlling application to recognize the possible reply messages
provided by multiple Output Terminals.
a) Drag the node on to the Microflow Definition pane

Drag an Output Terminal type from the Adapter Tree View to the
workspace and place the node to the right of the TU_F_PARSER
node.

b) Rename the node
Rename the Output Terminal node to Output DEC and click Finish.

c) Flip the node

Figure 105. Configuring the Input RAW Input Terminal node properties

Build an adapter that supports a FEPI interface

142 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Right click on the Output DEC node and select Flip node.
d) Set the properties for the node

Right click on the Output Terminal and select Properties. From the
drop down menus, select TU_F_MSG_SET in the Message Sets field
and select TU_F_DEC in the Messages field. Click OK.

4) Save your workspace by selecting File > Save Workspace from the
menubar.

b. Connect the microflow nodes

In this task you will connect the microflow nodes that are on the Microflow
Definition pane. You will do this by creating connections. A connection is a
wire that connects an output terminal of one microflow node to the input
terminal of another. There are two types of connections (control connection
and data connection). For a detailed description of the different types of
connections, see the section on composing microflows in the MQSeries
Integrator Agent for CICS Transaction Server Using the Control Center book.
1) Right click on the Input RAW node and select Connect > Out. Move the

connection line to the TU_F_PARSER node and left click. This adds a
control connection and a map (Map1 node) between the two nodes.
A control connection provides a sequential relationship between 2 nodes
in a microflow.

2) Add a control connection from the first out terminal
(TU_F_SIGNON_SCR_screen) on the TU_F_PARSER node to the Output
DEC node. This auto-adds a Map2 node on the control connection line.
Refer to Figure 107 on page 144 (the Map node labeling has been added
to the figure).

3) Add a control connection from the second out terminal
(TU_F_CUST_SCR_screen) on the TU_F_PARSER node to the Output
DEC node. This auto-adds a Map3 node on the control connection line.

4) Add a control connection from the third out terminal
(TU_F_COMP_SCR_screen) on the TU_F_PARSER node to the Output
DEC node. This auto-adds a Map4 node on the control connection line.

5) Add a Map node (Map5) between the TU_F_PARSER node and the
Output DEC node. To create a Map node, drag a Map type from the
Adapters Tree View (left panel) to the Microflow Definition panel (right
panel).

6) Add a control connection from the fourth out terminal (labeled
Unknown) on the TU_F_PARSER node to the Map5 node and from the
Map5 node to the Output DEC node.

Figure 106. Connecting the Input RAW Input Terminal node and the TU_F_PARSER
Command node

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 143

7) Save your workspace by selecting File > Save Workspace from the
menubar.

c. Map your subflow

You are now ready to perform the data mappings for the TU_F_PARSER
subflow. The act of mapping refers to the modeling of data transformation
via a Map node, between an output terminal on one node and an input
terminal on another node.
Data transformation can include a variety of functions:
v Associating a field in one message with a field in another message.
v String mapping such as specifying pad characters.
v Date mapping, such as converting a date in one format to a date in

another format.
v Putting literal data into a message.
v Adding custom code to perform other data transformation functions.
1) Perform the mapping for the Map1 node as listed in Table 47 on

page 145 and shown in Figure 108 on page 145. This map sets the
CICSPARSER request to a blank character. The blank character is needed
because there must be some character mapped in a mapper node.
Right click on the Map1 node (the Map node that appears between the
Input RAW and TU_F_PARSER nodes) and select Properties. Click the
DataMappingExpression tab.

Figure 107. TU_F_PARSER

Build an adapter that supports a FEPI interface

144 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Perform a literal mapping. Right click on the CICSPARSER_request field
in the CICSPARSER_request Output Message and select Add element.
This will create a mapping that is labeled LITERAL on the input field.
Double click on LITERAL field and rename it to ’ ’ (quotes must be used
around the space).

Table 47. Mapping fields for Map1 node (TU_F_RAW message to CICSPARSER_request
message)

Input Field Output Field Description

’ ’ CICSPARSER_request Blank character to provide mapping
content

2) Perform the mapping for the Map2 node as listed in Table 48 and shown
in Figure 109 on page 146. This map passes information about the screen
identity when a Signon screen is identified.

Table 48. Mapping fields for Map2 node (TU_F_SIGNON_SCR_screen message to
TU_F_DEC message)

Input Field Output Field Description

’S’ DOC_SCR Sets DOC_SCR to ’S’ when on the Signon
screen

Figure 108. Mapping for Map1 node

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 145

3) Perform the mapping for the Map3 node as listed in Table 49. This map
passes information about the screen identity when a Customer screen is
identified.

Table 49. Mapping fields for Map3 node (TU_F_CUST_SCR_screen message to
TU_F_DEC message)

Input Field Output Field Description

’C’ DOC_SCR Sets DOC_SCR to ’C’ when on the
Customer screen

4) Perform the mapping for the Map4 node as listed in Table 50. This map
passes information about the screen identity when an Unknown screen
is identified.

Table 50. Mapping fields for Map4 node (TU_F_COMP_SCR_screen message to
TU_F_DEC message)

Input Field Output Field Description

’U’ DOC_SCR Sets DOC_SCR to ’U’ when on the
Complete screen

Note: For the purposes of this tutorial, the TU_F_COMP_SCR_screen is
mapped as ’U’ (Unknown).

5) Perform the mapping for the Map5 node as listed in Table 51 on
page 147. This map passes information about the screen identity when a
screen is unknown.

Figure 109. Mapping for Map2 node

Build an adapter that supports a FEPI interface

146 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Table 51. Mapping fields for Map5 node (UNKNOWN message to TU_F_DEC message)

Input Field Output Field Description

’U’ DOC_SCR Sets DOC_SCR to ’U’ when on the
Unknown screen

You just modelled the Parser subflow.

In your model, you have coded the instructions on how the subflow is supposed to
behave at run time. You are now ready to assign this subflow to an CICS MQAdapter.

3. Assign the model of the subflow to a CICS MQAdapter

In this step you will associate the subflow (the model that you just completed),
with a CICS MQAdapter.
A CICS MQAdapter provides the actual implementation of the adapter request
processing.
a. Right click on the CICS MQAdapter Collection folder and select Create >

CICS MQAdapter

b. On the Create a new CICS MQAdapter dialog, enter TU_F_PARSER for the
Name and use the drop down menu to select TU_F_PARSER for the
Microflow Type. Leave the Proxy Client Connector Resource and Proxy
Client Interaction Specification fields blank. Click Finish.

Figure 110. Creating an CICS MQAdapter

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 147

You have completed the parser subflow and setup of this segment of your
adapter.

Save your workspace by selecting File > Save Workspace from the
menubar.

Now you are ready to generate your adapter.
4. Generate the adapter

The adapter code files will be generated in the output directory that you
specify.
Adapter code generation is a two step process:
a. Generate copybooks from message definitions (in Message Sets view).
b. Generate the adapter run time code from the modeled microflow (in

Adapters view).
a. Generate Copybooks

You will generate copybooks for the following messages:
v TU_F_DEC
v TU_F_RAW
v TU_F_REPLY
v TU_F_COMP_SCR_request
v TU_F_CUST_SCR_request
v TU_F_SIGNON_SCR_request

Note: To generate a copybook for a message, the message must be checked
out or newly created.

To generate copybooks, make sure that you are in the Message Sets view
and then, follow this procedure:
1) Make sure the list of messages is visible under the Messages folder for

the TU_F_3270_MSG_SET. To view the messages, click on the + sign in
front of the Messages folder to display the list of messages.

2) Right click on the message for which you want to generate a copybook
(for example, TU_F_COMP_SCR_request) and select Generate >
COBOL.

3) Enter the output destination <mqiac_tutorials>\fepi in the Path field
and click Finish.

Note: The copybook generate removes underscores from the message
names and only uses the first eight characters of the filename to
generate the new copybook name.

Figure 111. Messages Sets folder showing checked out message and newly created
message

Build an adapter that supports a FEPI interface

148 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

4) To complete generating copybooks, repeat steps 2 and 3 for each of the
messages listed in step 2a on page 148.

b. Generate adapter code

To generate adapter code, make sure that you are in the Adapters view and
then, follow this procedure:

Note: You must generate the adapter code in the same directory where you
generated the copybooks.

1) Right click on the TU_F_PARSER adapter (listed under the CICS
MQAdapters folder) and select Generate > Generate COBOL Adapter.
Enter the output destination <mqiac_tutorials>\fepi in the PATH field
(the example uses C:\Mqiac\Tutorials\FEPI). Click Finish.
The generated adapter code will be output to the destination path
directory.

Figure 112. Specifying pathname for copybook generation output

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 149

Create the Signon subflow
The Signon subflow is used to sign a user onto a Customer application. Follow
these steps to create the Signon subflow:
1. Create the component types for use in the Signon subflow

This step is made of the following tasks:
v Create 2 Command Types
v Create a Data Context Type
v Create a Microflow Type
a. Create Command Types.

You will need to create two Command types:
v TU_F_SIGNON — Signs the user onto the system using FEPI PassTicket

information.
v TU_F_CMAV — Processes the CMAV transaction to bring up the

Customer screen.
1) Create the TU_F_SIGNON Command type.

a) Right click on the Command Types folder and select Create >
Command Type. Enter TU_F_SIGNON in the Name field.

b) Using the drop down menus, set the following field property values:

Table 52. TU_F_SIGNON Command property values

Field Value

Message Set TU_F_3270_MSG_SET

Transaction TU_F_SIGNON_SCR

Interaction Specification TU_F_fepiinteraction.ispec

Figure 113. Specifying pathname for adapter code generation output

Build an adapter that supports a FEPI interface

150 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Click Finish to apply the property values.
2) Create the TU_F_CMAV Command type.

a) Right click on the Command Types folder and select Create >
Command Type. Enter TU_F_CMAV in the Name field.

b) Using the drop down menus, set the following field property values:

Table 53. TU_F_CMAV Command property values

Field Value

Message Set TU_F_3270_MSG_SET

Transaction TU_F_SMPLE_TRANSACTION

Interaction Specification TU_F_fepiinteraction.ispec

Figure 114. Creating a TU_F_SIGNON Command type

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 151

Click Finish to apply the property values.
b. Create the Data Context type

A data context type is a simple adapter component that is used to store data
for later access through a data flow.
Add a SYS_LU_LOGON Data Context. The SYS_LU_LOGON is the name of
a system-supplied Message as well as a system-supplied Data Context type.
It can be used in conjunction with the MAT_USELUPASS field defined in
the Connector Resource associated with a FEPI microflow.
When the MAT_USELUPASS field is set to Y, the FEPI microflow will use
the Userid from the MQ Message as the LU_OWNER and retrieve a
PASSTICKET value from CICS. These values will be stored in the fields in
the SYS_LU_LOGON Message. To use this FEPI PassTicket feature, you
need to add a SYS_LU_LOGON Data Context to your workspace.
1) Right click on the Data Context Types folder and select Add to

Workspace > Data Context Type.
2) In the Add an existing Data Context Type dialog list, select

SYS_LU_LOGON and click Finish.
c. Create a microflow type

Create a microflow that will model the processing of the Signon.
1) Right click on the Microflow Types folder and select Create > Microflow

Type.
2) Enter TU_F_SIGNON in the Name field.
3) Use the drop down menu in the Connector Resource field to select

TU_F_SGONfepi.rsc as the Connector Resource file and then click
Finish.

Figure 115. Creating a TU_F_ CMAV Command type

Build an adapter that supports a FEPI interface

152 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

4) Save your workspace by selecting File > Save Workspace from the
menubar.

You just created all of the component types that you will need to model the Signon
subflow.

2. Model the Signon subflow

In this step you will perform a set of tasks to define and model the Signon
subflow’s functionality. The model represents the behavior of this subflow at
run time.
This step is made of the following tasks:
v Adding subflow nodes
v Connecting the subflow nodes
v Defining the mappings
a. Add nodes to the Signon subflow

In this task, you will drag the component types that you created in 1 on
page 150. When you drag a component type onto the Microflow Definition
pane, it is instantiated and referred to as a microflow node. A single

Figure 116. Creating a TU_F_SIGNON Microflow Type

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 153

component type can be used to create one or more microflow nodes
(instances) as part of the same microflow.
The Signon subflow processing uses the FEPI Override feature to supply a
Userid and PassTicket that allows the user to signon to the host system. You
will add the nodes shown in Figure 118 on page 157.
1) Add the Input Terminal node

An Input Terminal serves as an entry point for the microflow. The Input
Terminal can make a connection to any terminal that resides within the
microflow.
a) Drag the node on to the Microflow Definition pane

In the Microflow Types folder, select the TU_F_SIGNON microflow
you created.

Note: To model your adapter in the workspace (Microflow
Definition pane), you must make sure the microflow is
selected in the Microflow Types folder.

Drag an Input Terminal type from the Adapter Tree View to the
workspace (Left click and hold on the Input Terminal to drag it to
the workspace).

b) Rename the node
Right click on the Input Terminal and select Rename. Rename the
Input Terminal node to Input RAW and click Finish.

c) Set the properties for the node
Right click on the Input Terminal and select Properties. From the
drop down menus, select TU_F_MSG_SET in the Message Sets field
and select TU_F_RAW in the Messages field. Click OK.

Build an adapter that supports a FEPI interface

154 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

2) Add the Signon Command node

In this step you will add a TU_F_SIGNON Command node which will
be used to sign the user onto the host system.
a) Drag the node on to the Microflow Definition pane

Drag a TU_F_SIGNON Command type from the Adapter Tree View
to the workspace. Place the node to the right of the Input RAW
Input Terminal node

b) Rename the node
Right click on the TU_F_SIGNON1 Command node and select
Rename.
Modify TU_F_SIGNON1 in the New name field to the name
TU_F_SIGNON and click Finish.

3) Add the Data Context node

In this step you will add the SYS_LU_LOGON Data Context which will
provide the data context for the USERID and PASSTICKET fields.
a) Drag the node on to the Microflow Definition pane

Drag a SYS_LU_LOGON Data Context type from the Adapter Tree
View to the workspace. Place the node between the Input RAW node
and TU_F_SIGNON node but above the nodes.

b) Rename the node
Right click on the SYS_LU_LOGON1 Command node and select
Rename.
Modify SYS_LU_LOGON1 in the New name field to the name
SYS_LU_LOGON and click Finish

4) Add the CMAV Command node

Figure 117. Configuring the Input RAW Input Terminal node properties

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 155

In this step you will add a TU_F_CMAV Command which will be used
to process the CMAV transaction and display the Customer screen.
a) Drag the node on to the Microflow Definition pane

Drag a TU_F_CMAV Command type from the Adapter Tree View to
the workspace. Place the node to the right of the TU_F_SIGNON
node and slightly above.

b) Rename the node
Right click on the TU_F_CMAV1 Command node and select
Rename.
Modify TU_F_CMAV1 in the New name field to the name
TU_F_CMAV and click Finish

5) Add the Output terminal node

a) Drag the node on to the Microflow Definition pane
Drag an Output Terminal type from the Adapter Tree View to the
workspace and place the node to the right of the TU_F_CMAV node.

b) Rename the node
Right mouse click and rename the Output Terminal node to Output
REPLY.

c) Flip the node
Right click on the Output REPLY node and select Flip node.

d) Set the properties for the node
Right click on the Output Terminal and select Properties. From the
drop down menus, select TU_F_MSG_SET in the Message Sets field
and select TU_F_REPLY in the Messages field. Click OK.

6) Save your workspace by selecting File > Save Workspace from the
menubar.

b. Connect the microflow nodes

In this task you will connect the microflow nodes that are on the Microflow
Definition pane. You will do this by creating connections. A connection is a
wire that connects an output terminal of one microflow node to the input
terminal of another. There are two types of connections (control connection
and data connection). For a detailed description of the different types of
connections, see the section on composing microflows in the MQSeries
Integrator Agent for CICS Transaction Server Using the Control Center book.
1) Right click on the Input RAW node and select Connect > Out. Move the

connection line to the TU_F_SIGNON node and left click. This adds a
control connection and a map (Map1 node) between the two nodes.
Refer to Figure 118 on page 157.

2) Add a data connection from the out terminal on the SYS_LU_LOGON
node to the Map1 node.

3) Add a control connection from the first out terminal
(TU_F_COMP_SCR_screen) on the TU_F_SIGNON node to the
TU_F_CMAV node. This auto-adds a Map2 node on the control
connection line.

4) Add a Map node (Map3) between the TU_F_SIGNON node and the
Output REPLY node. To create a Map node, drag a Map type from the
Adapters Tree View (left panel) to the Microflow Definition panel (right
panel). Position the cursor between the nodes and release the mouse
button.

Build an adapter that supports a FEPI interface

156 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

5) Add a control connection from the second out terminal (Unknown) on
the TU_F_SIGNON node to Map3 node and then add a control
connection from the Map3 node to the Output REPLY node.

6) Add a control connection from the first out terminal
(TU_F_CUST_SCR_screen) on the TU_F_CMAV node to the Output
REPLY node. This auto-adds a Map4 node on the control connection
line.

7) Add a control connection from the second out terminal (labeled
Unknown) on the TU_F_CMAV node to the Map3 node.

8) Save your workspace by selecting File > Save Workspace from the
menubar.

c. Map your subflow

You are now ready to perform the data mappings for the TU_F_SIGNON
subflow. Mapping models data transformation via a Map node between an
output terminal on one node and an input terminal on another node. Data
transformation can include a variety of functions:
v Associating a field in one message with a field in another message.
v String mapping such as specifying pad characters.
v Date mapping, such as converting a date in one format to a date in

another format.
v Putting literal data into a message.
v Adding custom code to perform other data transformation functions.

Figure 118. TU_F_SIGNON

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 157

Note: Valid values will assign the appropriate PF key ″value″ to the Aid
key.

1) Perform the mapping for the Map1 node as listed in Table 54 and shown
in Figure 120 on page 159. Map1 maps the LU_OWNER, PASSTICKET,
and ENTERKEY for the CICS Signon screen.
Right click on the Map1 node (the Map node that appears between the
Input RAW and TU_F_SIGNON nodes) and select Properties. Click the
DataMappingExpression tab.
a) Perform a valid value mapping. Right click on the AIDKEY field in

the TU_F_SIGNON_SCR_request Output Message and select Add
element. This will create a mapping that is labeled LITERAL on the
input field. Right click on the LITERAL field and select Valid Values
from the pop up menu. Use the pull down menu to select
ENTERKEY in the Valid Value field. Click OK.

Note: Do not type the word ENTERKEY, but rather make sure you
select it from the drop down menu for the Valid Value field.

Table 54. Mapping fields for Map1 node (SYS_LU_LOGON message to TU_F_SIGNON_SCR_request message)

Input Field Output Field Description

ENTERKEY AIDKEY Maps the enter key for signon

LU_OWNER TC_F_SIGNON_SCR_Row10Col26 Maps screen position that corresponds to the
LU_OWNER field.

PASSTICKET TC_F_SIGNON_SCR_Row11Col26 Maps screen position that corresponds to the
PASSTICKET field.

Figure 119. Valid Values dialog

Build an adapter that supports a FEPI interface

158 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

b) Perform the LU_OWNER mapping. Click in the LU_OWNER field
under the SYS_LU_LOGON message and drag to the
TU_F_SIGNON_SCR_Row10Col26 field under the
TU_F_SIGNON_SCR_request message.

c) Perform the PASSTICKET mapping. Click in the PASSTICKET field
under the SYS_LU_LOGON message and drag to the
TU_F_SIGNON_SCR_Row11Col26 field under the
TU_F_SIGNON_SCR_request message. Click OK.

2) Perform the mapping for the Map2 node as listed in Table 55 on
page 160 and shown in Figure 121 on page 160. Map2 maps the
CLEARKEY for initially clearing the screen, the ’CMAV’ transaction ID
for bringing up the Customer screen, and the ENTERKEY.
Right click on the Map2 node (the Map node that appears between the
TU_F_SIGNON and TU_F_CMAV nodes) and select Properties. Click
the DataMappingExpression tab.
a) Perform a valid value mapping. Right click on the destination field

for the literal (the INITIAL_AIDKEY field in the
CICSMACRO_request Output Message) and select Add element.
This will create a mapping that is labeled LITERAL on the input
field. Right click on the LITERAL field and select Valid Values from
the pop up menu. Use the pull down menu to select CLEARKEY in
the Valid Value field.

b) Perform a literal mapping. Right click on the destination field for the
literal (the CICSMACRO_DATA field in the CICSMACRO_request
Output Message) and select Add element. This will create a

Figure 120. Mapping for Map1 node

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 159

mapping that is labeled LITERAL on the input field. Double click on
LITERAL field and rename it to ’CMAV’ (quotes must be used
around the CMAV string).

c) Perform a valid value mapping. Right click on the AIDKEY field in
the CICSMACRO_request Output Message and select Add element.
This will create a mapping that is labeled LITERAL on the input
field. Right click on the LITERAL field and select Valid Values from
the pop up menu. Use the pull down menu to select ENTERKEY in
the Valid Value field. Click OK.

Table 55. Mapping fields for Map2 node (TU_F_COMP_SCR_screen message to
CICSMACRO_request message)

Input Field Output Field Description

CLEARKEY INITIAL_AIDKEY Maps the key to initial clear the screen

’CMAV’ CICSMACRO_DATA Maps the ’CMAV’ transaction that
displays the Customer screen

ENTERKEY AIDKEY Maps the enter key

3) Perform the mapping for the Map3 node as listed in Table 56 on
page 161 and shown in Figure 122 on page 161. This map sets the
REPLY_IND to ’E’ to indicate a bad signon.
Perform a literal mapping. Right click on the REPLY_IND field in the
TU_F_REPLY Message and select Add element. This will create a
mapping that is labeled LITERAL on the input field.

Figure 121. Mapping for Map2 node

Build an adapter that supports a FEPI interface

160 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Double click on LITERAL field and rename it to ’E’ (quotes must be
used around the string). Click OK.

Table 56. Mapping fields for Map3 node (Unknown message to TU_F_REPLY message)

Input Field Output Field Description

’E’ REPLY_IND Sets REPLY_IND to ’E’ to indicate a bad
signon

4) Perform the mapping for the Map4 node as listed in Table 57. This map
sets the REPLY_IND to ’G’ to indicate a good signon.
Perform a literal mapping. Right click on the REPLY_IND field in the
Output REPLY Message and select Add element. This will create a
mapping that is labeled LITERAL on the input field.
Double click on LITERAL field and rename it to ’G’ (quotes must be
used around the string). Click OK.

Table 57. Mapping fields for Map4 node (TU_F_CMAV message to Output REPLY
message)

Input Field Output Field Description

’G’ REPLY_IND Sets REPLY_IND to ’G’ to indicate a
good signon

Figure 122. Mapping for Map3 node

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 161

You just modelled the Signon subflow.

In your model, you have coded the instructions on how the subflow is supposed to
behave at run time. You are now ready to assign this subflow to an CICS MQAdapter.

3. Assign the model of the subflow to a CICS MQAdapter.
In this step you will associate the TU_F_SIGNON subflow (the model that you
just completed), with a CICS MQAdapter.
A CICS MQAdapter provides the actual implementation of the adapter request
processing.
a. Right click on the CICS MQAdapter Collection folder and select Create >

CICS MQAdapter.
b. On the Create a new CICS MQAdapter dialog, enter TU_F_SIGNON for the

Name and use the drop down menu to select TU_F_SIGNON for the
Microflow Type. Leave the Proxy Client Connector Resource and Proxy
Client Interaction Specification fields blank. Click Finish.

You have completed the TU_F_SIGNON subflow and setup your adapter.

Save your workspace by selecting File > Save Workspace from the
menubar.

Figure 123. Creating an CICS MQAdapter

Build an adapter that supports a FEPI interface

162 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Now you are ready to generate your adapter.

Note: The copybooks were previously generated during the parser subflow
(TU_F_PARSER) adapter modeling section (see step2a on page 148).

4. Generate adapter Code.
To generate adapter code, make sure that you are in the Adapters view and
then, follow this procedure:

Note: You must generate the adapter code in the same directory where you
generated the copybooks.

a. Right click on the TU_F_SIGNON adapter (listed under the CICS
MQAdapters folder) and select Generate > Generate COBOL Adapter.
Enter the output destination <mqiac_tutorials>\fepi in the PATH field (the
example uses C:\Mqiac\Tutorials\FEPI). Click Finish.
The generated adapter code will be output to the destination path directory.

Create the Inquiry subflow
The Inquiry subflow is used to perform an inquiry on Customer information.

Follow these steps to create the Inquiry subflow:
1. Create the component types for use in the Parser subflow

This step is made of the following tasks:
v Create a Command Type
v Create a Decision Type
v Create a Microflow Type
a. Create the TU_F_CUST Command type.

You will need to create a Command type which processes the Customer
information screen.

Figure 124. Specifying pathname for adapter code generation output

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 163

Click on the Adapters tab to switch to the Adapters view.
1) Right click on the Command Types folder and select Create >

Command Type. Enter TU_F_CUST in the Name field.
2) Using the drop down menus, set the following field property values:

Table 58. TU_F_CUST Command property values

Field Value

Message Set TU_F_3270_MSG_SET

Transaction TU_F_CUST_SCR

Interaction Specification TU_F_fepiinteraction.ispec

Click Finish to apply the property values.
b. Create a Decision Type

You will need to create a Decision type which will test to see if the selected
record specified in the input message is in the file.
1) Right click on the Decision Types folder and select Create > Decision

Type. Enter TU_F_REC_NOT_FND in the Name field and click Finish.
2) Associate a message set and message with the In Terminal on the

TU_F_REC_NOT_FND Decision type.
a) Right click on the TU_F_REC_NOT_FND Decision type under the

Decision Types folder and select Decision Branch. Make sure the In
Terminal tab is selected.

b) Using the drop down menus, select TU_F_3270_MSG_SET for the
Message Sets field and TU_F_CUST_SCR_screen for the Messages
field.

Figure 125. Creating a TU_F_CUST Command type

Build an adapter that supports a FEPI interface

164 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

3) Create an Out Terminal for the Record Not Found decision. On the Edit
TU_F_REC_NOT_FND Decision Branches, select the Out Terminal tab.
Click Out Terminal in the terminal list box. and click Rename. Enter
REC_NOT_FND in the New name field and click Finish. Click OK.

Figure 126. Editing the In Terminal on the Decision type

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 165

4) Right click on the TU_F_REC_NOT_FND Decision type and select
Properties on the pop up menu. Make sure the ConditionExpression tab
is selected. Click in the REC_NOT_FND test condition input area and
press CTRL-SHIFT to display a list of available message fields (these
fields are from the TU_F_CUST_SCR_screen message that we associated
with the TU_F_REC_NOT_FND Decision type). Select the
TU_F_CUST_SCR_Row24Col3 field to add this to the
ConditionExpression area.
You should add the code shown in Figure 128 on page 167 for the
REC_NOT_FND terminal test condition.
Click OK.

Figure 127. Editing the Out Terminal on the Decision type

Build an adapter that supports a FEPI interface

166 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

c. Create a microflow type

Create a microflow that will model the processing of the customer data
request.
1) Right click on the Microflow Types folder and select Create > Microflow

Type.
2) Enter TU_F_INQ in the Name field.
3) Use the drop down menu in the Connector Resource field to select

TU_F_INQfepi.rsc as the Connector Resource file and then click Finish.

Figure 128. Code for the REC_NOT_FND Terminal

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 167

4) Save your workspace by selecting File > Save Workspace from the
menubar.

You just created all of the component types that you will need to model the Inquiry
subflow.

2. Model the Inquiry subflow.
In this step you will perform a set of tasks to define and model the Inquiry
subflow’s functionality. The model represents the behavior of this subflow at
run time.
The subflow processing determines whether or not the requested customer
record is found. You will add the nodes shown in Figure 131 on page 171.
This step is made of the following tasks:
v Adding subflow nodes
v Connecting the subflow nodes
v Defining the mappings
a. Add nodes to the subflow

In this task, you will drag the component types that you created in 1 on
page 163. When you drag a component type onto the Microflow Definition
pane, it is instantiated and referred to as a microflow node. A single

Figure 129. Creating a TU_F_INQ Microflow Type

Build an adapter that supports a FEPI interface

168 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

component type can be used to create one or more microflow nodes
(instances) as part of the same microflow.
1) Add the Input Terminal node

An Input Terminal serves as an entry point for the microflow. The Input
Terminal can make a connection to any terminal that resides within the
microflow.
a) Drag the node on to the Microflow Definition pane.

In the Microflow Types folder, select the TU_F_INQ microflow you
created.

Note: To model your adapter in the workspace (Microflow
Definition pane), you must make sure the microflow is
selected in the Microflow Types folder.

Drag an Input Terminal type from the Adapter Tree View to the
workspace (Left click and hold on the Input Terminal to drag it to
the workspace).

b) Rename the node
Right click on the Input Terminal and select Rename. Rename the
Input Terminal node to Input RAW and click Finish.

c) Set the properties for the node
Right click on the Input Terminal and select Properties. From the
drop down menus, select TU_F_MSG_SET in the Message Sets field
and select TU_F_RAW in the Messages field. Click OK.

2) Add the Command node

a) Drag the node on to the Microflow Definition pane

Figure 130. Configuring the Input RAW Input Terminal node properties

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 169

Drag a TU_F_CUST Command type from the Adapter Tree View to
the workspace. Place the node to the right on the Input RAW node.
This command processes the Customer information screen.

b) Rename the node
Right click on the TU_F_CUST1 Command node and select Rename.
Modify TU_F_CUST1 in the New name field to the name
TU_F_CUST and click Finish.

3) Add the Decision node

The TU_F_REC_NOT_FND Decision Node tests to see if the requested
data record is found.
a) Drag the node on to the Microflow Definition pane

Drag a TU_F_REC_NOT_FND Decision type from the Adapter Tree
View to the workspace. Place the node to the right on the
TU_F_CUST node.

b) Rename the node
Right click on the TU_F_REC_NOT_FND1 Command node and
select Rename.
Modify TU_F_REC_NOT_FND1 in the New name field to the name
TU_F_REC_NOT_FND and click Finish.

4) Add the Output terminal node

a) Drag the node on to the Microflow Definition pane
Drag an Output Terminal type from the Adapter Tree View to the
workspace and place the node to the right of the
TU_F_REC_NOT_FND node.

b) Rename the node
Rename the Output Terminal node to Output REPLY. Click Finish

c) Flip the node
Right click on the Output REPLY node and select Flip node.

d) Set the properties for the node
Right click on the Output Terminal and select Properties. From the
drop down menus, select TU_F_MSG_SET in the Message Sets field
and select TU_F_REPLY in the Messages field. Click OK.

5) Save your workspace by selecting File > Save Workspace from the
menubar.

b. Connect the microflow nodes

In this task you will connect the microflow nodes that are on the Microflow
Definition pane. You will do this by creating connections. A connection is a
wire that connects an output terminal of one microflow node to the input
terminal of another. There are two types of connections (control connection
and data connection). For a detailed description of the different types of
connections, see the section on composing microflows in the MQSeries
Integrator Agent for CICS Transaction Server Using the Control Center book.
1) Right click on the Input RAW node and select Connect > Out. Move

the connection line to the TU_F_CUST node and left click. This adds a
control connection and a map (Map1 node) between the two nodes.
Refer to Figure 131 on page 171.

2) Add a control connection from the second out terminal (Unknown) on
the TU_F_CUST node to the Output REPLY node.

3) Add a Map node (Map2) to the control connection between the
TU_F_CUST node and the Output REPLY node. To create a Map node,

Build an adapter that supports a FEPI interface

170 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

drag a Map type from the Adapters Tree View (left panel) to the
Microflow Definition panel (right panel) and position the cursor
between the nodes before you release the mouse button.

4) Add a control connection from the first out terminal
(TU_F_CUST_SCR_screen) on the TU_F_CUST node to the
TU_F_REC_NOT_FND node.

5) Add a control connection from the first out terminal (REC_NOT_FND)
on the TU_F_REC_NOT_FND node to the Output REPLY node.

6) Add a Map node (Map3) to the control connection between the
TU_F_REC_NOT_FND node and the Output REPLY node.

7) Add a control connection from the second out terminal (default) on the
TU_F_REC_NOT_FND node to the Output REPLY node.

8) Add a Map node (Map4) to the control connection between the
TU_F_REC_NOT_FND node and the Output REPLY node.

9) Add a data connection from the Input RAW node to the Map3 node.
10) Save your workspace by selecting File > Save Workspace from the

menubar.

c. Map your subflow

You are now ready to perform the data mappings for the TU_F_INQ
subflow. Mapping models data transformation via a Map node between an
output terminal on one node and an input terminal on another node. Data
transformation can include a variety of functions:
v Associating a field in one message with a field in another message.

Figure 131. TU_F_INQ

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 171

v String mapping such as specifying pad characters.
v Date mapping, such as converting a date in one format to a date in

another format.
v Putting literal data into a message.
v Adding custom code to perform other data transformation functions.
1) Perform the mapping for the Map1 node as listed in Table 59 and shown

in Figure 132 on page 173. This map sets the customer number field from
the Customer screen to the customer number from the Input RAW
record, hard codes a ’1’ for an Inquiry transaction and passes along the
ENTERKEY.
Right click on the Map1 node (the Map node that appears between the
Input RAW and TU_F_CUST nodes) and select Properties. Click the
DataMappingExpression tab.
a) Left click on the CUST_NUM field under the TU_F_RAW message

(view input message on right of panel) and drag the mouse cursor to
the TU_F_CUST_SCR_Row3Col19 field under the
TU_F_CUST_SCR_request message (view output message on left of
panel). This will create a mapping between the two fields.

b) Perform a literal mapping. Right click on the
TU_F_CUST_SCR_Row22Col71 field in the TU_F_CUST_SCR_request
Output Message and select Add element. This will create a mapping
that is labeled LITERAL on the input field. Double click on LITERAL
field and rename it to ’1’ (quotes must be used).

c) Perform a valid value mapping. Right click on the AIDKEY field in
the TU_F_CUST_SCR_request Output Message and select Add
element. This will create a mapping that is labeled LITERAL on the
input field. Right click on the LITERAL field and select Valid Values
from the pop up menu. Use the pull down menu to select
ENTERKEY in the Valid Value field.

Table 59. Mapping fields for Map1 node (TU_F_RAW message to TU_F_CUST_SCR_request message)

Input Field Output Field Description

CUST_NUM TU_F_CUST_SCR_Row3Col19 Customer number for input record

’1’ TU_F_CUST_SCR_Row22Col71 Inquiry transaction

ENTERKEY AIDKEY Maps the enter key

d) Click OK on the Map 1 dialog box.

Build an adapter that supports a FEPI interface

172 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

2) Perform the mapping for the Map2 node as listed in Table 60 and shown
in Figure 133 on page 174. This mapping occurs in the case where an
Unknown screen is received from the TU_F_CUST command. These
mappings set the REPLY_IND to ’E’ and creates an error message. Use
literal mappings to perform these field mappings, as was done in step
2c1c on page 172 of the Define the Mappings task.

Table 60. Mapping fields for Map2 node (Unknown message to TU_F_REPLY message)

Input Field Output Field Description

’E’ REPLY_IND Sets REPLY_IND to ’E’ to indicate an
error

’UNKNOWN SCREEN IN
INQ’

REPLY_E_MSG Error message

Figure 132. Mapping for Map1 node

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 173

3) Click OK on the Map2 dialog box.
4) Perform the mapping for the Map3 node as listed in Table 61 and shown

in Figure 134 on page 175. On a REC_NOT_FND condition, the mapper
sets an error message and passes along the customer number to the
REPLY record. Use literal mappings to perform these field mappings.

Table 61. Mapping fields for Map3 node (TU_F_RAW message to TU_F_REPLY message)

Input Field Output Field Description

CUST_NUM REPLY_NUM Passes the customer number to the reply

’RECORD NOT ON FILE’ REPLY_E_MSG Error message

Figure 133. Mapping for Map2 node

Build an adapter that supports a FEPI interface

174 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

5) Click OK on the Map3 dialog box.
6) Perform the mapping for the Map4 node as listed in Table 62 and shown

in Figure 135 on page 176. When a record is present, this mapper sets all
the customer data to the REPLY record.

Table 62. Mapping fields for Map4 node (TU_F_CUST_SCR_screen message to TU_F_REPLY message)

Input Field Output Field Description

TU_F_CUST_SCR_Row3Col19 REPLY_NUM Customer number

TU_F_CUST_SCR_Row4Col19 REPLY_NAME Customer name

TU_F_CUST_SCR_Row5Col19 REPLY_ADDRESS Customer address

TU_F_CUST_SCR_Row6Col19 REPLY_CITY Customer city

TU_F_CUST_SCR_Row6Col49 REPLY_STATE Customer state

TU_F_CUST_SCR_Row6Col64 REPLY_ZIP Customer zip

TU_F_CUST_SCR_Row7Col21 REPLY_PHONE* Telephone area code

TU_F_CUST_SCR_Row7Col28 REPLY_PHONE* Telephone local exchange

TU_F_CUST_SCR_Row7Col34 REPLY_PHONE* Telephone number (last 4 digits)

* This field is a concatenation of three input fields.

The REPLY_PHONE output field is a concatenation of three input fields.
To perform this mapping:
a) In the Input section, left click the TU_F_CUST_SCR_Row7Col21 field

and drag to the REPLY_PHONE field in the Output section.

Figure 134. Mapping for Map3 node

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 175

b) In the Input section, drag a second input data field
(TU_F_CUST_SCR_Row7Col28) and drop it on the previously
mapped input data field (TU_F_CUST_SCR_Row7Col21) in the
Inputs section. The mapping arrow will change to a drop down
menu after the second field is mapped.

c) Select Concatenate from the drop down menu.
d) In the Input section, drag a third input data field

(TU_F_CUST_SCR_Row7Col34) and drop it on the previously
mapped input data field (TU_F_CUST_SCR_Row7Col28) in the
Inputs section. This is done to concatenate the fields in the proper
sequence.

e) Click OK.

Figure 135. Mapping for Map4 node

Build an adapter that supports a FEPI interface

176 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

You just modelled the Inquiry subflow.

In your model, you have coded the instructions on how the subflow is supposed to
behave at run time. You are now ready to assign this subflow to an CICS MQAdapter.

3. Assign the model of the subflow to a CICS MQAdapter.
In this step you will associate the Inquiry subflow (the model that you just
completed), with a CICS MQAdapter.
A CICS MQAdapter provides the actual generation of the adapter request
processing.
a. Right click on the CICS MQAdapter Collection folder and select Create >

CICS MQAdapter

b. On the Create a new CICS MQAdapter dialog, enter TU_F_INQ for the
Name and use the drop down menu to select TU_F_INQ for the Microflow
Type. Leave the Proxy Client Connector Resource and Proxy Client
Interaction Specification fields blank.

c. Click Finish.
You have completed the Inquiry subflow and setup of this segment of your
adapter.
Save your workspace by selecting File > Save Workspace from the
menubar.
Now you are ready to generate your adapter.

Note: The copybooks for the Inquiry microflow were previously generated
during the parser subflow (TU_F_PARSER) adapter modeling section
(see 2a on page 148).

Now you are ready to generate your adapter.

Figure 136. Creating an CICS MQAdapter

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 177

4. Generate adapter Code.
To generate adapter code, make sure that you are in the Adapters view and
then, follow this procedure:

Note: You must generate the adapter code in the same directory where you
generated the copybooks.

a. Right click on the TU_F_INQ adapter (listed under the CICS MQAdapters
folder) and select Generate > Generate COBOL Adapter. Enter the output
destination in the PATH field (the example uses C:\Mqiac\Tutorials\FEPI).
Click Finish.
The generated adapter code will be output to the destination path directory.

Create the Signoff subflow
The Signoff subflow is used to sign a user off the Customer application and put
the user on a blank CICS screen.

Follow these steps to create the Signoff subflow:
1. Create the microflow component type for use in the Signoff subflow.

Create a microflow that will model the processing for the user signoff request.
a. Right click on the Microflow Types folder and select Create > Microflow

Type.
b. Enter TU_F_SGNOFF in the Name field.
c. Use the drop down menu in the Connector Resource field to select

TU_F_SGOFFfepi.rsc as the Connector Resource file and then click Finish.

Figure 137. Specifying pathname for adapter code generation output

Build an adapter that supports a FEPI interface

178 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

You just created the one component type that you will need to model the Signoff
subflow.

2. Model the Signoff subflow

In this step you will perform a set of tasks to define and model the Signoff
subflow’s functionality. The model represents the behavior of this subflow at
run time.
This step is made of the following tasks:
v Adding the subflow nodes
v Connecting the subflow nodes
v Defining the mappings
a. Add nodes to the subflow

1) Add the Input Terminal node

An Input Terminal serves as an entry point for the microflow. The Input
Terminal can make a connection to any terminal that resides within the
microflow.

Figure 138. Creating a TU_F_SGNOFF Microflow Type

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 179

a) Drag the node on to the Microflow Definition pane.
In the Microflow Types folder, select the TU_F_SGNOFF microflow
you created.

Note: To model your adapter in the workspace (Microflow
Definition pane), you must make sure the microflow is
selected in the Microflow Types folder.

Drag an Input Terminal type from the Adapter Tree View to the
workspace (Left click and hold on the Input Terminal to drag it to
the workspace).

b) Rename the node
Right click on the Input Terminal and select Rename. Rename the
Input Terminal node to Input REPLY and click Finish.

c) Set the properties for the node
Right click on the Input Terminal and select Properties. From the
drop down menus, select TU_F_MSG_SET in the Message Sets field
and select TU_F_REPLY in the Messages field. Click OK.

2) Add the TU_F_CUST Command node

In this step you will add the command node that processes the
Customer information screen.
a) Drag the node on to the Microflow Definition pane

Drag a TU_F_CUST Command type from the Adapter Tree View to
the workspace. Place the node to the right on the Input REPLY node.

b) Rename the node
Right click on the TU_F_CUST1 Command node and select Rename.

Figure 139. Configuring the Input REPLY Input Terminal node properties

Build an adapter that supports a FEPI interface

180 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Modify TU_F_CUST1 in the New name field to the name
TU_F_CUST and click Finish.

3) Add the TU_F_CMAV Command node

In this step you will add the command node that processes the CESF
Logoff transaction.
a) Drag the node on to the Microflow Definition pane

Drag a TU_F_CMAV Command type from the Adapter Tree View to
the workspace. Place the node to the right on the TU_F_CUST node.

b) Rename the node
Right click on the TU_F_CMAV1 Command node and select Rename

Modify TU_F_CMAV1 in the New name field to the name
CESF_LOGOFF and click Finish

4) Add the Output terminal node

a) Drag the node on to the Microflow Definition pane
Drag an Output Terminal type from the Adapter Tree View to the
workspace and place the node to the right of the CESF_LOGOFF
node.

b) Rename the node
Rename the Output Terminal node to Output REPLY.

c) Flip the node
Right click on the Output REPLY node and select Flip node.

d) Set the properties for the node
Right click on the Output REPLY and select Properties. From the
drop down menus, select TU_F_MSG_SET in the Message Sets field
and select TU_F_REPLY in the Messages field. Click OK

5) Save your workspace by selecting File > Save Workspace from the
menubar.

b. Connect the microflow nodes

In this task you will connect the microflow nodes that are on the Microflow
Definition pane. You will do this by creating connections. A connection is a
wire that connects an output terminal of one microflow node to the input
terminal of another. There are two types of connections (control connection
and data connection). For a detailed description of the different types of
connections, see the section on composing microflows in the MQSeries
Integrator Agent for CICS Transaction Server Using the Control Center book.
1) Right click on the Input REPLY node and select Connect > Out. Move

the connection line to the TU_F_CUST node and left click. This adds a
control connection and a map (Map1 node) between the two nodes.
Refer to Figure 140 on page 182.

2) Add a Map node (Map2) between the TU_F_CUST node and the
CESF_LOGOFF node. To create a Map node, drag a Map type from the
Adapters Tree View (left panel) to the Microflow Definition panel (right
panel) and position the cursor between the nodes before releasing the
mouse button.

3) Add a control connection from the second out terminal (Unknown) on
the TU_F_CUST node to the Map2 node and from the Map2 node to
the CESF_LOGOFF node.

4) Add a control connection from the first out terminal
(TU_F_CUST_SCR_screen) on the TU_F_CUST node to the Output
REPLY node. The auto-adds a Map3 node on the connection.

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 181

5) Add a control connection from the first out terminal
(TU_F_CUST_SCR_screen) on the CESF_LOGOFF node to the Map3
node.

6) Add a Map node (Map4) between the CESF_LOGOFF node and the
Output REPLY node.

7) Add a control connection from the second out terminal (Unknown) on
the CESF_LOGOFF node to the Map4 node and from the Map4 node to
the Output REPLY node.

8) Add a data connection from the Input REPLY node to the Map3 node.
9) Add a data connection from the Input REPLY node to the Map4 node.

10) Save your workspace by selecting File > Save Workspace from the
menubar.

c. Map your subflow

You are now ready to perform the data mappings for the TU_F_SGNOFF
subflow. Mapping models data transformation via a Map node between an
output terminal on one node and an input terminal on another node. Data
transformation can include a variety of functions:
v Associating a field in one message with a field in another message.
v String mapping such as specifying pad characters.

Figure 140. TU_F_SGNOFF

Build an adapter that supports a FEPI interface

182 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

v Date mapping, such as converting a date in one format to a date in
another format.

v Putting literal data into a message.
v Adding custom code to perform other data transformation functions.
1) Perform the mapping for the Map1 node as listed in Table 63 and shown

in Figure 141. This map passes a PF3 key to the Customer information
screen to logoff from the application and return to a blank CICS screen.
a) Right click on the Map1 node (the Map node that appears between

the Input REPLY and TU_F_CUST nodes) and select Properties.
Click the DataMappingExpression tab.

b) Perform a valid value mapping.
v Right click on the destination field for the AIDKEY field in the

TU_F_CUST_SCR_request Output Message and select Add
element. This will create a mapping that is labeled LITERAL on
the input field.

v Right click on the LITERAL field and select Valid Values from the
pop up menu. Use the pull down menu to select PF3 in the Valid
Value field. Click OK

Table 63. Mapping fields for Map1 node (TU_F_REPLY message to
TU_F_CUST_SCR_request message)

Input Field Output Field Description

PF3 AIDKEY Maps the PF3 key

Figure 141. Mapping for Map1 node

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 183

2) Perform the mapping for the Map2 node as listed in Table 64 and shown
in Figure 142 on page 185. This mapping occurs in the case where an
Unknown screen is received from the TU_F_CUST command. The
mapping sets the REPLY_IND to ’E’ and creates an error message.
Right click on the Map2 node (the Map node that appears between the
TU_F_CUST and CESF_LOGOFF nodes) and select Properties. Click the
DataMappingExpression tab.
a) Perform a literal mapping.

i. Right click on the destination field for the CICSMACRO_DATA
field in the CICSMACRO_request Output Message and select Add
element. This will create a mapping that is labeled LITERAL on
the input field.

ii. Double click on LITERAL field and rename it to ’CESF LOGOFF’
(quotes must be used around the CESF LOGOFF string).

b) Perform a valid value mapping.
i. Right click on the destination field for the AIDKEY field in the

CICSMACRO_request Output Message and select Add element.
This will create a mapping that is labeled LITERAL on the input
field.

ii. Right click on the LITERAL field and select Valid Values from
the pop up menu. Use the pull down menu to select ENTERKEY
in the Valid Value field. Click OK.

Table 64. Mapping fields for Map2 node (Unknown message to CICSMACRO_request
message)

Input Field Output Field Description

’CESF LOGOFF’ CICSMACRO_DATA Maps the ’CESF’ transaction to
signoff of CICS system

ENTERKEY AIDKEY Maps the enter key

Build an adapter that supports a FEPI interface

184 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

3) Perform the mapping for the Map3 node as listed in Table 65 and shown
in Figure 143 on page 186. On an Invalid Signoff condition, the mapper
passes along the REPLY record and sets a message stating INVALID
SIGNOFF.

Table 65. Mapping fields for Map3 node (TU_F_REPLY message to TU_F_REPLY
message)

Input Field Output Field Description

TU_F_REPLY TU_F_REPLY Passes the REPLY record

’INVALID SIGNOFF’ REPLY_E_MSG Error message

Figure 142. Mapping for Map2 node

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 185

4) Perform the mapping for the Map4 node as listed in Table 66 and shown
in Figure 144 on page 187. On an Valid Signoff condition, the mapper
passes along the REPLY record.

Table 66. Mapping fields for Map4 node (TU_F_REPLY message to TU_F_REPLY
message)

Input Field Output Field Description

TU_F_REPLY TU_F_REPLY Passes the REPLY record

Figure 143. Mapping for Map3 node

Build an adapter that supports a FEPI interface

186 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

You just modelled the Signoff subflow.

In your model, you have coded the instructions on how the subflow is supposed to
behave at run time. You are now ready to assign this subflow to an CICS MQAdapter.

3. Assign the model of the subflow to a CICS MQAdapter.
In this step you will associate the Signoff subflow (the model that you just
completed), with a CICS MQAdapter.
A CICS MQAdapter provides the actual implementation of the adapter request
processing.
a. Right click on the CICS MQAdapter Collection folder and select Create >

CICS MQAdapter

b. On the Create a new CICS MQAdapter dialog, enter TU_F_SGNOFF for the
Name and use the drop down menu to select TU_F_SGNOFF for the
Microflow Type. Leave the Proxy Client Connector Resource and Proxy
Client Interaction Specification fields blank. Click Finish.

Figure 144. Mapping for Map4 node

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 187

You have completed the microflow and setup your adapter. Save your
workspace by selecting File > Save Workspace from the menubar. Now you
are ready to generate your adapter.

Note: The copybooks for the SIGNOFF microflow were previously
generated during the parser subflow (TU_F_PARSER) adapter
modeling section (see 2a on page 148).

4. Generate adapter Code.
To generate adapter code, make sure that you are in the Adapters view and
then, follow this procedure:

Note: You must generate the adapter code in the same directory where you
generated the copybooks.

a. Right click on the TU_F_SGNOFF adapter (listed under the CICS
MQAdapters folder) and select Generate > Generate COBOL Adapter.
Enter the output destination <mqiac_tutorials>\fepi in the PATH field (the
example uses C:\Mqiac\Tutorials\FEPI). Click Finish.
The generated adapter code will be output to the destination path directory.

Figure 145. Creating an CICS MQAdapter

Build an adapter that supports a FEPI interface

188 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Create the Reset subflow
The Reset subflow is used to reset the Customer screen for inputting the next
customer number.

Follow these steps to create the Reset subflow:
1. Create the microflow component type for use in the Reset subflow

Create a microflow that will model the processing for the Customer screen
reset.
a. Right click on the Microflow Types folder and select Create > Microflow

Type.
b. Enter TU_F_RESET in the Name field.
c. Use the drop down menu in the Connector Resource field to select

TU_F_RESETfepi.rsc as the Connector Resource file and then click Finish.

Figure 146. Specifying pathname for adapter code generation output

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 189

You just created the one component type that you will need to model the Reset subflow.

2. Model the Reset subflow

Now you will begin to define and model the Reset subflow’s functionality.
The subflow processing determines whether or not to reset the Customer
screen.
This step is made of the following tasks:
v Adding subflow nodes
v Connecting the subflow nodes
v Defining the mappings
a. Add nodes to the subflow

You will add the nodes shown in Figure 149 on page 193.
1) Add the Input Terminal node

An Input Terminal serves as an entry point for the microflow. The Input
Terminal can make a connection to any terminal that resides within the
microflow.

Figure 147. Creating a TU_F_RESET Microflow Type

Build an adapter that supports a FEPI interface

190 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

a) Drag the node on to the Microflow Definition pane.
In the Microflow Types folder, select the TU_F_RESET microflow
you created.

Note: To model your adapter in the workspace (Microflow
Definition pane), you must make sure the microflow is
selected in the Microflow Types folder.

Drag an Input Terminal type from the Adapter Tree View to the
workspace (Left click and hold on the Input Terminal to drag it to
the workspace).

b) Rename the node
Right click on the Input Terminal and select Rename. Rename the
Input Terminal node to Input CUST SCR and click Finish.

c) Set the properties for the node
Right click on the Input Terminal and select Properties. From the
drop down menus, select TU_F_3270_MSG_SET in the Message Sets
field and select TU_F_CUST_SCR_screen in the Messages field. Click
OK.

2) Add the Command node

This command processes the Customer information screen.
a) Drag the node on to the Microflow Definition pane

From the Command Types folder in the Adapter Tree View, select a
TU_F_CUST Command type.

Figure 148. Configuring the Input CUST SCR Input Terminal node properties

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 191

Left click and hold on the TU_F_DCUST Command type to drag it
to the Microflow Definition pane. Place the node to the right on the
Input CUST SCR node.

b) Rename the node
Right click on the TU_F_CUST1 Command node and select Rename.
Modify TU_F_CUST1 in the New name field to the name
TU_F_CUST and click Finish.

3) Add the Output terminal node

a) Drag the node on to the Microflow Definition pane
Drag an Output Terminal type from the Adapter Tree View to the
workspace and place the node to the right of the TU_F_CUST node.

b) Rename the node
Rename the Output Terminal node to Output REPLY.

c) Flip the node
Right click on the Output REPLY node and select Flip node

d) Set the properties for the node
Right click on the Output REPLY and select Properties. From the
drop down menus, select TU_F_MSG_SET in the Message Sets field
and select TU_F_REPLY in the Messages field. Click OK.

.
4) Add a second Output terminal node

a) Drag the node on to the Microflow Definition pane
Drag a second Output Terminal type from the Adapter Tree View to
the workspace and place the node to the right of the TU_F_CUST
node and above the Output REPLY node.

b) Rename the node
Rename the Output Terminal node to Output CUST SCR.

c) Flip the node
Right click on the Output CUST SCR node and select Flip node

d) Set the properties for the node
Right click on the Output CUST SCR and select Properties. From the
drop down menus, select TU_F_3270_MSG_SET in the Message Sets
field and select TU_F_CUST_SCR_screen in the Messages field. Click
OK.

5) Save your workspace by selecting File > Save Workspace from the
menubar.

b. Connect the microflow nodes

In this task you will connect the microflow nodes that are on the Microflow
Definition pane. You will do this by creating connections. A connection is a
wire that connects an output terminal of one microflow node to the input
terminal of another. There are two types of connections (control connection
and data connection). For a detailed description of the different types of
connections, see the section on composing microflows in the MQSeries
Integrator Agent for CICS Transaction Server Using the Control Center book.
1) Right click on the Input CUST SCR node and select Connect > Out.

Move the connection line to the TU_F_CUST node and left click. This
adds a control connection and a map (Map1 node) between the two
nodes. Refer to Figure 149 on page 193.

Build an adapter that supports a FEPI interface

192 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

2) Add a control connection from the first out terminal
(TU_F_CUST_SCR_screen) on the TU_F_CUST node to the Output
CUST SCR node.

3) Add a Map node (Map2) between the TU_F_CUST node and the Output
REPLY node. To create a Map node, drag a Map type from the Adapters
Tree View (left panel) to the Microflow Definition panel (right panel)
and position the cursor slightly below the two nodes before releasing
the mouse button.

4) Add a control connection from the second out terminal (Unknown) on
the TU_F_CUST node to the Map2 node and from the Map2 node to the
Output REPLY node.

5) Save your workspace by selecting File > Save Workspace from the
menubar.

c. Map your subflow

You are now ready to perform the data mappings for the TU_F_RESET
subflow. Mapping models data transformation via a Map node between an
output terminal on one node and an input terminal on another node. Data
transformation can include a variety of functions:
v Associating a field in one message with a field in another message.
v String mapping such as specifying pad characters.
v Date mapping, such as converting a date in one format to a date in

another format.
v Putting literal data into a message.

Figure 149. TU_F_RESET Microflow

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 193

v Adding custom code to perform other data transformation functions.
1) Perform the mapping for the Map1 node as listed in Table 67 and shown

in Figure 150. This maps the PF12 key to prepare the Customer
information screen for input of the next Customer number.
Right click on the Map1 node (the Map node that appears between the
Input CUST SCR and TU_F_CUST nodes) and select Properties. Click
the DataMappingExpression tab.
Perform a valid value mapping.
v Right click on the destination field AIDKEY field in the

TU_F_CUST_SCR_request Output Message and select Add element.
This will create a mapping that is labeled LITERAL on the input field.

v Right click on the LITERAL field and select Valid Values from the
pop up menu. Use the pull down menu to select PF12 in the Valid
Value field. Click OK.

Table 67. Mapping fields for Map1 node (TU_F_CUST_SCR_screen message to
TU_F_CUST_SCR_request message)

Input Field Output Field Description

PF12 AIDKEY Maps the PF12 key

2) Perform the mapping for the Map2 node as listed in Table 68 on
page 195 and shown in Figure 151 on page 195. This mapping occurs in
the case where an Unknown screen is received from the TU_F_CUST
command. The mapping sets the REPLY_IND to ’E’ and creates an error
message.

Figure 150. Mapping for Map1 node

Build an adapter that supports a FEPI interface

194 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Right click on the Map2 node (the Map node that appears between the
TU_F_CUST and Output REPLY nodes) and select Properties. Click the
DataMappingExpression tab.
a) Perform a literal mapping.

i. Right click on the destination field REPLY_IND in the
TU_F_REPLY Output Message and select Add element. This will
create a mapping that is labeled LITERAL on the input field.

ii. Double click on LITERAL field and rename it to ’E’ (quotes must
be used around the E string).

b) Perform a literal mapping.
i. Right click on the destination field the REPLY_E_MSG field in the

TU_F_REPLY Output Message and select Add element. This will
create a mapping that is labeled LITERAL on the input field.

ii. Double click on LITERAL field and rename it to ’UNKNOWN
SCREEN IN RESET’ (quotes must be used around the E string).
Click OK.

Table 68. Mapping fields for Map2 node (Unknown message to TU_F_REPLY message)

Input Field Output Field Description

’E’ REPLY_IND Sets REPLY_IND to ’E’ to indicate an
error

’UNKNOWN SCREEN IN
RESET’

REPLY_E_MSG Error message

Figure 151. Mapping for Map2 node

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 195

You just modelled the Reset subflow.

In your model, you have coded the instructions on how the subflow is supposed to
behave at run time. You are now ready to assign this subflow to an CICS MQAdapter.

3. Assign the model of the subflow to a CICS MQAdapter

In this step you will associate the Reset subflow (the model that you just
completed), with a CICS MQAdapter.
A CICS MQAdapter provides the actual implementation of the adapter request
processing.
a. Right click on the CICS MQAdapter Collection folder and select Create >

CICS MQAdapter

b. On the Create a new CICS MQAdapter dialog, enter TU_F_RESET for the
Name and use the drop down menu to select TU_F_RESET for the
Microflow Type. Leave the Proxy Client Connector Resource and Proxy
Client Interaction Specification fields blank. Click Finish.

You have completed the Reset subflow and setup of this segment of your
adapter.

Figure 152. Creating an CICS MQAdapter

Build an adapter that supports a FEPI interface

196 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Save your workspace by selecting File > Save Workspace from the
menubar.

Now you are ready to generate your adapter.

Note: The copybooks were previously generated during the parser subflow
(TU_F_PARSER) adapter modeling section (see 2a on page 148).

4. Generate adapter Code.
To generate adapter code, make sure that you are in the Adapters view and
then, follow this procedure:

Note: You must generate the adapter code in the same directory where you
generated the copybooks.

a. Right click on the TU_F_RESET adapter (listed under the CICS MQAdapters
folder) and select Generate > Generate COBOL Adapter. Enter the output
destination <mqiac_tutorials>\fepi in the PATH field (the example uses
C:\Mqiac\Tutorials\FEPI). Click Finish.
The generated adapter code will be output to the destination path directory.

Create the Navigator microflow
The Navigator microflow is the parent microflow for the FEPI interface. The
Navigator microflow calls the FEPI subflows.

This flow represents the Navigator in the run time environment. See Figure 81 on
page 115.

Follow these steps to create the Navigator microflow:
1. Create the component types for use in the Navigator microflow

This step is made up of the following tasks:

Figure 153. Specifying pathname for adapter code generation output

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 197

v Create a Microflow Type
v Create Decision Types
v Create Data Context Types
a. Create a microflow type

Create a microflow that will model the controlling navigation processing for
the FEPI interface.
1) Click on the Adapters tab to switch to the Adapters view.
2) Right click on the Microflow Types folder and select Create > Microflow

Type.
3) Enter TU_F_NAV in the Name field.
4) Use the drop down menu in the Connector Resource field to select

TU_F_NAV.rsc as the Connector Resource file and then click Finish.

b. Create Decision Types

Now it is time to create the Decision types that will be used in the
Navigator microflow. You will need to create the following Decision types:
v TU_F_SCR_ID — Tests to see what screen the user is on after the Parser

subflow processing completes.
v TU_F_GOOD_SIGNON — Tests for a valid signon.
v TU_F_SIGNOFF — Tests the data in the RAW record to determine

whether to release the LU connection.
1) Create the TU_F_SCR_ID Decision type.

Right click on the Decision Types folder and select Create > Decision
Type. Enter TU_F_SCR_ID in the Name field and click Finish.

Figure 154. Creating a TU_F_NAV Microflow Type

Build an adapter that supports a FEPI interface

198 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

a) Associate a message set and message with the In Terminal on the
TU_F_SCR_ID Decision type.
i. Right click on the TU_F_SCR_ID Decision type under the Decision

Types folder and select Decision Branch. Make sure the In
Terminal tab is selected.

ii. Using the drop down menus, select TU_F_MSG_SET for the
Message Sets field and TU_F_DEC for the Messages field. Click
OK.

b) Create Out Terminals for the SIGNON and CUSTOMER decisions.
The TU_F_SCR_ID Decision type will determine which of these
actions to take based on the screen identity that is returned from the
Parser subflow.
i. Right click on the TU_F_SCR_ID Decision type under the Decision

Types folder and select Decision Branch.
i) Make sure the Out Terminal tab is selected. Click Out Terminal

in the terminal list box and click Rename.
ii) Enter SIGNON in the New name field.
iii) Click Finish.

ii. Enter CUSTOMER in the Name field and click Add. Click OK

Figure 155. Editing the In Terminal on the Decision type

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 199

iii. Right click on the TU_F_SCR_ID Decision type and select
Properties on the pop up menu.
i) Make sure the ConditionExpression tab is selected and the

SIGNON tab is selected.
ii) Click in the SIGNON test condition input area and press

CTRL-SHIFT to display a list of available message fields
(these fields are from the TU_F_DEC message that we
associated with the TU_F_SCR_ID Decision type).

iii) Select the DOC_SCR field to add this to the
ConditionExpression area.

iv) You should add the code shown in Figure 157 on page 201
for the SIGNON terminal test condition. The letter ’S’ for the
DOC_SCR field is based on the screen indicator codes that
are defined for the decision message (TU_F_DEC). The
DOC_SCR field is returned from the parser subflow
indicating the current screen that the user is on.

Figure 156. Editing the Out Terminal on the Decision type

Build an adapter that supports a FEPI interface

200 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

iv. In a similar manner, add the test condition code for the
CUSTOMER terminal remaining terminals. See Table 69 for the
code to add. When finished, click OK

Table 69. Code for the Out Terminal actions for the TU_F_SCR_ID Decision type

Terminal Code Description

SIGNON DOC_SCR = ’S’ S - SIGNON screen identified by Parser subflow

CUSTOMER DOC_SCR = ’C’ C - CUSTOMER screen identified by Parser
subflow

2) Create the TU_F_GOOD_SIGNON Decision type.

Right click on the Decision Types folder and select Create > Decision
Type. Enter TU_F_GOOD_SIGNON in the Name field and click Finish.
Associate a message set and message with the In Terminal on the
TU_F_GOOD_SIGNON Decision type.
a) Right click on the TU_F_GOOD_SIGNON Decision type under the

Decision Types folder and select Decision Branch.
b) Make sure the In Terminal tab is selected. Using the drop down

menus, select TU_F_MSG_SET for the Message Sets field and
TU_F_REPLY for the Messages field. Click OK.

Figure 157. Code for the SIGNON Terminal

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 201

c) Create Out Terminals for the GOOD_SIGNON decision.
The TU_F_GOOD_SIGNON Decision type will determine which
action to take based on whether a valid signon occurs.
i. Right click on the TU_F_GOOD_SIGNON Decision type under the

Decision Types folder and select Decision Branch.
ii. Make sure the Out Terminal tab is selected. Click Out Terminal in

the terminal list box and click Rename.
iii. Enter GOOD_SIGNON in the New name field and click Finish.
iv. Click OK.

Figure 158. Editing the In Terminal on the Decision type

Build an adapter that supports a FEPI interface

202 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

v. Right click on the TU_F_GOOD_SIGNON Decision type and
select Properties on the pop up menu.
i) Make sure the ConditionExpression tab is selected.
ii) Click in the GOOD_SIGNON test condition input area and

press CTRL-SHIFT to display a list of available message fields
(these fields are from the TU_F_REPLY message that we
associated with the TU_F_GOOD_SIGNON Decision type).

iii) Select the REPLY_IND field to add this to the
ConditionExpression area.

iv) You should add the code shown in Figure 160 on page 204 for
the GOOD_SIGNON terminal test condition. The letter ’G’ for
the REPLY_IND field indicates that a valid signon has
occurred.

v) Click OK.

Figure 159. Editing the Out Terminal on the TU_F_GOOD_SIGNON Decision type

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 203

3) Create the TU_F_SIGNOFF Decision type.

The TU_F_SIGNOFF Decision type will determine whether to release the
LU connection.
a) Right click on the Decision Types folder and select Create >

Decision Type.
b) Enter TU_F_SIGNOFF in the Name field and click Finish.
c) Associate a message set and message with the In Terminal on the

TU_F_SIGNOFF Decision type. Right click on the TU_F_SIGNOFF
Decision type under the Decision Types folder and select Decision
Branch.

d) Make sure the In Terminal tab is selected.
e) Using the drop down menus, select TU_F_MSG_SET for the Message

Sets field and TU_F_RAW for the Messages field. Click OK.

Figure 160. Code for the GOOD_SIGNON Terminal

Build an adapter that supports a FEPI interface

204 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

f) Create an Out Terminal for the SIGNOFF decision.
i. Right click on the TU_F_SIGNOFF Decision type under the

Decision Types folder and select Decision Branch.
ii. Make sure the Out Terminal tab is selected. Click Out Terminal in

the terminal list box and click Rename.
iii. Enter SIGNOFF in the New name field and click Finish.
iv. Click OK.

Figure 161. Editing the In Terminal on the TU_F_SIGNOFF Decision type

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 205

g) Set the Decision type properties.
i. Right click on the TU_F_SIGNOFF Decision type and select

Properties on the pop up menu.
ii. Make sure the ConditionExpression tab is selected. Click in the

SIGNOFF test condition input area and press CTRL-SHIFT to
display a list of available message fields (these fields are from the
TU_F_RAW message that we associated with the TU_F_SIGNOFF
Decision type).

iii. Select the SIGNOFF_YN field to add this to the
ConditionExpression area.

iv. You should add the code shown in Figure 163 on page 207 for the
SIGNOFF terminal test condition. The letter ’Y’ for the
SIGNOFF_YN field indicates that signoff should occur.

Figure 162. Editing the Out Terminal on the TU_F_SIGNOFF Decision type

Build an adapter that supports a FEPI interface

206 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

v. Click OK.
c. Create Data Context Types.

You will create the following two Data Context types to use in the
Navigator microflow:
v TU_F_HOLD_REPLY — Holds the data in the REPLY record for

processing later in the flow.
v SYS_FEPI_OVERRIDES — Holds the override values for FEPI processing.
1) Create the TU_F_HOLD_REPLY Data Context type.

a) Right click on the Data Context Types folder and select Create >
Data Context Type. Enter TU_F_HOLD_REPLY in the Name field.

b) Using the drop down menus, set the field property values shown in
Figure 164 on page 208.

Figure 163. Code for the SIGNOFF Terminal

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 207

Click Finish to apply the property values.
2) Right click on the Data Context types folder and select Add to

Workspace > Data Context Type. Select the SYS_FEPI_OVERRIDES Data
Context type and click Finish.

2. Model the Navigator microflow

In this step you will perform a set of tasks to define and model the Navigator
flow’s functionality.
This step is made of the following tasks:
v Adding microflow nodes
v Connecting the nodes
v Defining the mappings
a. Add nodes to the Navigator microflow

In this task, you will drag the component types that you created in step 1
on page 197, onto the Microflow Definition pane. When you drag a

component type onto the Microflow Definition pane, it is instantiated and
referred to as a microflow node. A single component type can be used to
create one or more microflow nodes (instances) as part of the same
microflow.

1) Add the Input Terminal node

The Input Terminal can make a connection to any terminal that resides
within the microflow.
a) Drag the node on to the Microflow Definition pane

In the Microflow Types folder, select the TU_F_NAV microflow you
created.

Figure 164. Creating a TU_D_HOLD_REPLY Data Context type

Build an adapter that supports a FEPI interface

208 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Note: To model your adapter in the workspace (Microflow
Definition pane), you must make sure the microflow is
selected in the Microflow Types folder.

Drag an Input Terminal type from the Adapter Tree View to the
workspace (Left click and hold on the Input Terminal to drag it to
the workspace).

b) Rename the node
Right click on the Input Terminal and select Rename. Rename the
Input Terminal node to Input RAW and click Finish.

c) Set the properties for the node
Right click on the Input Terminal and select Properties. From the
drop down menus, select TU_F_MSG_SET in the Message Sets field
and select TU_F_RAW in the Messages field. Click OK.

2) Add the Parser node

a) Drag the node on to the Microflow Definition pane
Drag a TU_F_PARSER Microflow type from the Adapter Tree View
to the workspace. Place the node to the right on the Input RAW
node.

b) Rename the node
Right click on the TU_F_PARSER1 Microflow node and select
Rename.
Modify TU_F_PARSER1 in the New name field to the name
TU_F_PARSER and click Finish.

3) Add the Decision node

a) Drag the node on to the Microflow Definition pane

Figure 165. Configuring the Input RAW Input Terminal node properties

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 209

Drag a TU_F_SCR_ID Decision type from the Adapter Tree View to
the workspace. Place the node to the right on the TU_F_PARSER
node.

b) Rename the node
Right click on the TU_F_SCR_ID1 Decision node and select
Rename

Modify TU_F_SCR_ID1 in the New name field to the name
TU_F_SCR_ID and click Finish.

4) Add a Reset node

a) Drag the node on to the Microflow Definition pane
Drag a TU_F_RESET Microflow type from the Adapter Tree View to
the workspace. Place the node to the right on the TU_F_SCR_ID
node.

b) Rename the node
Right click on the TU_F_RESET1 Microflow node and select
Rename.
Modify TU_F_RESET1 in the New name field to the name
TU_F_RESET and click Finish.

5) Add the Output terminal node

a) Drag the node on to the Microflow Definition pane
Drag an Output Terminal type from the Adapter Tree View to the
workspace and place the node to the right of the TU_F_RESET
node.

b) Rename the node
Rename the Output Terminal node to Output REPLY.

c) Flip the node
Right click on the Output REPLY node and select Flip node.

d) Set the properties for the node
Right click on the Output REPLY and select Properties.
From the drop down menus, select TU_F_MSG_SET in the Message
Sets field and select TU_F_REPLY in the Messages field. Click OK.

6) Add the Signon node

a) Drag the node on to the Microflow Definition pane
Drag a TU_F_SIGNON Microflow type from the Adapter Tree View
to the workspace. Place the node above and to the right of the
TU_F_SCR_ID node.

b) Rename the node
Right click on the TU_F_SIGNON1 Microflow node and select
Rename.
Modify TU_F_SIGNON1 in the New name field to the name
TU_F_SIGNON and click Finish.

7) Add the Good Signon Decision node

a) Drag the node on to the Microflow Definition pane
Drag a TU_F_GOOD_SIGNON Decision type from the Adapter
Tree View to the workspace. Place the node above and to the right
of the TU_F_SIGNON node.

b) Rename the node

Build an adapter that supports a FEPI interface

210 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Right click on the TU_F_GOOD_SIGNON1 Decision node and
select Rename.
Modify TU_F_GOOD_SIGNON1 in the New name field to the
name TU_F_GOOD_SIGNON and click Finish.

8) Add the Inquiry Microflow node

a) Drag the node on to the Microflow Definition pane
Drag a TU_F_INQ Microflow type from the Adapter Tree View to
the workspace. Place the node to the right on the
TU_F_GOOD_SIGNON node.

b) Rename the node
Right click on the TU_F_INQ1 Microflow node and select Rename.
Modify TU_F_INQ1 in the New name field to the name TU_F_INQ
and click Finish.

9) Add the Signoff Decision node

a) Drag the node on to the Microflow Definition pane
Drag a TU_F_SIGNOFF Decision type from the Adapter Tree View
to the workspace. Place the node to the right of the TU_F_INQ
node.

b) Rename the node
Right click on the TU_F_SIGNOFF1 Decision node and select
Rename.
Modify TU_F_SIGNOFF1 in the New name field to the name
TU_F_SIGNOFF and click Finish.

10) Add the Signoff Microflow node

a) Drag the node on to the Microflow Definition pane
Drag a TU_F_SGNOFF Microflow type from the Adapter Tree View
to the workspace. Place the node to the right on the
TU_F_SIGNOFF node and above and to the left of the Output
REPLY node.

b) Rename the node
Right click on the TU_F_SGNOFF1 Microflow node and select
Rename.
Modify TU_F_SGNOFF1 in the New name field to the name
TU_F_SGNOFF and click Finish.

11) Add the Hold Reply Data context node

a) Drag the node on to the Microflow Definition pane
Drag a TU_F_HOLD_REPLY Data Context type from the Adapter
Tree View to the workspace. Place the node above and between the
TU_F_INQ and TU_F_SIGNOFF nodes.

b) Rename the node
Right click on the TU_F_HOLD_REPLY1 Data Context node and
select Rename.
Modify TU_F_HOLD_REPLY1 in the New name field to the name
TU_F_HOLD_REPLY and click Finish.

12) Add the FEPI Overrides Data context node

a) Drag the node on to the Microflow Definition pane
Drag a SYS_FEPI_OVERRIDES Data Context type from the Adapter
Tree View to the workspace. Place the node above the
TU_F_SGNOFF Microflow node.

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 211

b) Rename the node
Right click on the SYS_FEPI_OVERRIDES1 Data Context node and
select Rename.
Modify SYS_FEPI_OVERRIDES1 in the New name field to the
name SYS_FEPI_OVERRIDES and click Finish.

13) Save your workspace by selecting File > Save Workspace from the
menubar.

b. Connect the microflow nodes

In this task you will connect the microflow nodes that are on the Microflow
Definition pane. You will do this by creating connections. A connection is a
wire that connects an output terminal of one microflow node to the input
terminal of another. There are two types of connections (control connection
and data connection). For a detailed description of the different types of
connections, see the section on composing microflows in the MQSeries
Integrator Agent for CICS Transaction Server Using the Control Center book.
1) Right click on the Input RAW Input Terminal node and select Connect

> Out. Move the connection line to the TU_F_PARSER Command node
and left click. This adds a control connection. Refer to Figure 166 on
page 215.

2) Add a control connection from the TU_F_PARSER Microflow node to
the TU_F_SCR_ID node.

3) Add a control connection from the first out terminal (SIGNON) on the
TU_F_SCR_ID Decision node to the TU_F_SIGNON node.

4) Add a control connection from the TU_F_SIGNON Microflow node to
the TU_F_GOOD_SIGNON Decision node.

5) Add a Map node (Map1) between the TU_F_GOOD_SIGNON Decision
node and the TU_F_INQ Microflow node. To create a Map node, drag
a Map type from the Adapters Tree View (left panel) to the Microflow
Definition panel (right panel) and position the cursor between the node
before releasing the mouse button.

6) Add a control connection from the first out terminal (GOOD_SIGNON)
on the TU_F_GOOD_SIGNON Decision node to the Map1 node and
from the Map1 node to the TU_F_INQ Microflow node.

7) Add a control connection from the TU_F_INQ Microflow node to the
TU_F_SIGNOFF Decision node. This adds a control connection and a
map (Map2 node) between the two nodes.

8) Add a Map node (Map3) between the TU_F_SIGNOFF Decision node
and the TU_F_SGNOFF Microflow node. To create a Map node, drag a
Map type from the Adapters Tree View (left panel) to the Microflow
Definition panel (right panel) and position the cursor between the
nodes before releasing the mouse button.

9) Add a control connection from the first output terminal (SIGNOFF) on
the TU_F_SIGNOFF Decision node to the Map3 node and from the
Map3 node to the TU_F_SGNOFF Microflow node.

10) Add a control connection from the TU_F_SGNOFF Microflow node to
the Output REPLY node.

11) Add a Map node (Map4) between the TU_F_SIGNOFF Decision node
and the Output REPLY node. To create a Map node, drag a Map type
from the Adapters Tree View (left panel) to the Microflow Definition
panel (right panel) and position the cursor between the nodes before
releasing the mouse button.

Build an adapter that supports a FEPI interface

212 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

12) Add a control connection from the second output terminal (default) on
the TU_F_SIGNOFF Decision node to the Map4 node and from the
Map4 node to the Output REPLY node.

13) Add a Map node (Map5) between the TU_F_GOOD_SIGNON Decision
node and the Output REPLY node. To create a Map node, drag a Map
type from the Adapters Tree View (left panel) to the Microflow
Definition panel (right panel) and position the cursor between the
nodes before releasing the mouse button.

14) Add a control connection from the second output terminal (default) on
the TU_F_GOOD_SIGNON Decision node to the Map5 node and from
the Map5 node to the Output REPLY node.

15) Add a control connection from the second output terminal
(CUSTOMER) on the TU_F_SCR_ID Decision node to the TU_F_RESET
Microflow node.

16) Add a control connection from the first out terminal
(TU_F_CUST_SCR) on the TU_F_RESET Microflow node to the Map1
node.

17) Add a control connection from the second out terminal (TU_F_REPLY)
on the TU_F_RESET Microflow node to the Output REPLY node.

18) Add a Map node (Map6) between the TU_F_SCR_ID node and the
Output REPLY node. To create a Map node, drag a Map type from the
Adapters Tree View (left panel) to the Microflow Definition panel (right
panel) and position the cursor between the nodes before releasing the
mouse button.

19) Add a control connection from the third out terminal (default) on the
TU_F_SCR_ID Decision node to the Map6 node and from the Map6
node to the Output REPLY node.

20) Add a data connection. Right click on the Input RAW node and select
Connect > Out. Move the connection line to the Map1 node and select
In > DataConnectionType from the pop up menu.

21) Add a data connection. Right click on the Input RAW node and select
Connect > Out. Move the connection line to the Map2 node and select
In > DataConnectionType from the pop up menu.

22) Add a data connection from the Map2 node to the Input Terminal of
TU_F_HOLD_REPLY Data Context node.

23) Add a data connection from the Output Terminal of
TU_F_HOLD_REPLY Data Context node to the Map3 node.

24) Add a data connection from the Map3 node to the Input Terminal of
SYS_FEPI_OVERRIDES Data Context node.

25) Add a data connection from the Output Terminal of
TU_F_HOLD_REPLY Data Context node to the Map4 node.

26) Save your workspace by selecting File > Save Workspace from the
menubar.

Table 70. Summary of connections used in the TU_F_NAV microflow

From To Type of Connection

Input RAW TU_F_PARSER Control Connection

TU_F_PARSER TU_F_SCR_ID Control Connection

TU_F_SCR_ID
(first out terminal — SIGNON)

TU_F_SIGNON Control Connection

TU_F_SIGNON TU_F_GOOD_SIGNON Control Connection

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 213

Table 70. Summary of connections used in the TU_F_NAV microflow (continued)

From To Type of Connection

TU_F_GOOD_SIGNON (First
terminal)

Map1 Control Connection

Map1 TU_F_INQ Control Connection

TU_F_INQ Map2 Control Connection

Map2 TU_F_SIGNOFF Control Connection

TU_F_SIGNOFF (Decision)
(first out terminal — SIGNOFF)

Map3 Control Connection

Map3 TU_F_SGNOFF Control Connection

TU_F_SGNOFF Output REPLY Control Connection

TU_F_SIGNOFF (Decision)
(second out terminal — default)

Map4 Control Connection

Map4 Output REPLY Control Connection

TU_F_GOOD_SIGNON
(second out terminal — default)

Map5 Control Connection

Map5 Output REPLY Control Connection

TU_F_SCR_ID
(second out terminal —
CUSTOMER)

TU_F_RESET Control Connection

TU_F_RESET
(first out terminal —
Output CUST SCR)

Map1 Control Connection

TU_F_RESET
(second out terminal —
Output REPLY)

Output REPLY Control Connection

TU_F_SCR_ID
(third out terminal — default)

Map6 Control Connection

Map6 Output REPLY Control Connection

Input RAW Map1 Data Connection

Input RAW Map2 Data Connection

Map2 TU_F_HOLD_REPLY Data Connection

TU_F_HOLD_REPLY Map3 Data Connection

TU_F_HOLD_REPLY Map4 Data Connection

Map3 SYS_FEPI_OVERRIDES Data Connection

Build an adapter that supports a FEPI interface

214 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

c. Map the Navigator microflow

The act of mapping refers to the modeling of data transformation via a Map
node, between an output terminal on one node and an input terminal on
another node.
Data transformation can include a variety of functions:
v Associating a field in one message with a field in another message.
v String mapping such as specifying pad characters.
v Date mapping, such as converting a date in one format to a date in

another format.
v Putting literal data into a message.
v Adding custom code to perform other data transformation functions.
1) Perform the mapping for the Map1 node as shown in Figure 167 on

page 216.
This map passes along the RAW record data for processing in the
TC_F_INQ subflow.
Right click on the Map1 node (the Map node that appears between the
TU_F_GOOD_SIGNON and TU_F_INQ nodes) and select Properties.
Click the DataMappingExpression tab.
Left click on the TU_F_RAW message under the Input RAW message
(view input message on left of panel) and drag the mouse cursor to the
TU_F_RAW message under the TU_F_RAW output message (view

Figure 166. TU_F_NAV

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 215

output message on right of panel). This will create a mapping between
the two messages. Click OK.

2) Perform the mapping for the Map2 node as shown in Figure 168 on
page 217.
This mapping passes along the RAW record for testing in the
TU_F_SIGNOFF decision and puts the REPLY record in the
TU_F_HOLD_REPLY data context.
Right click on the Map2 node (the Map node that appears between the
TU_F_INQ and TU_F_SIGNOFF nodes) and select Properties. Click the
DataMappingExpression tab.
Select the Input RAW message tab (Input Messages) and
TU_F_SIGNOFF message tab (Output Messages). Left click on the
TU_F_RAW message under the Input RAW message tab and drag the
mouse cursor to the TU_F_RAW message under the TU_F_SIGNOFF
message tab. This will create a mapping between the two messages (see
Figure 168 on page 217).

Figure 167. Mapping for Map1 node

Build an adapter that supports a FEPI interface

216 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Select the TU_F_INQ message tab (Input Messages) and
TU_F_HOLD_REPLY message tab (Output Messages). Left click on the
TU_F_REPLY message under the TU_F_INQ message tab and drag the
mouse cursor to the TU_F_REPLY message under the
TU_F_HOLD_REPLY message tab. This will create a mapping between
the two messages (see Figure 169 on page 218). Click OK.

Figure 168. Mapping for Map2 node

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 217

3) Perform the mapping for the Map3 node as shown in Figure 170 on
page 219 .
This map sets the RELEASE_LU_IND field to ’R’ (release LU connection
for signoff) and passes along the REPLY record.
a) Perform a literal mapping. Under the SYS_FEPI_OVERRIDE Output

Messages tab, right click on the RELEASE_LU_IND field and select
Add element. This will create a mapping that is labeled LITERAL on
the input field. Double click on LITERAL field and rename it to ’R’
(quotes must be used). Refer to Figure 170 on page 219.

b) Click Apply.
c) Select the TU_F_HOLD_REPLY tab under the Input Messages and

the TU_F_SGNOFF tab under the Output Messages. Map the
TU_F_REPLY message to the TU_F_REPLY message

d) Perform a literal mapping. Under the TU_F_SGNOFF Output
Messages tab, right click on the REPLY_IND field and select Add
element. This will create a mapping that is labeled LITERAL on the
input field. Double click on LITERAL field and rename it to ’L’
(quotes must be used). This indicates that the signoff path will be
followed. Refer to Figure 171 on page 220.

Figure 169. Mapping for Map2 node

Build an adapter that supports a FEPI interface

218 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

e) Click OK.

Figure 170. Mapping for Map3 node (SYS_FEPI_OVERRIDES message)

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 219

4) Perform the mapping for the Map4 node as shown in Figure 172 on
page 221 .
This mapping passes along the REPLY record in the
TU_F_HOLD_REPLY data context to the Output REPLY.
Right click on the Map4 node (the Map node that appears between the
TU_F_SIGNOFF and Output REPLY nodes) and select Properties. Click
the DataMappingExpression tab.
Select the TU_F_HOLD_REPLY message tab (Input Messages) and
Output REPLY message tab (Output Messages). Left click on the
TU_F_REPLY message under the TU_F_HOLD_REPLY message tab and
drag the mouse cursor to the TU_F_REPLY message under the Output
REPLY message tab. This will create a mapping between the two
messages (see Figure 172 on page 221). Click OK.

Figure 171. Mapping for Map3 node (TU_F_REPLY message to TU_F_REPLY message)

Build an adapter that supports a FEPI interface

220 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

5) Perform the mapping for the Map5 node as shown in Figure 173 on
page 222 .
This mapping passes along the REPLY record in the
TU_F_GOOD_SIGNON decision to the Output REPLY.
Right click on the Map5 node (the Map node that appears between the
TU_F_GOOD_SIGNON and Output REPLY nodes) and select Properties.
Click the DataMappingExpression tab.
Left click on the TU_F_REPLY message under the
TU_F_GOOD_SIGNON message tab and drag the mouse cursor to the
TU_F_REPLY message under the Output REPLY message tab. This will
create a mapping between the two messages (see Figure 173 on
page 222). Click OK.

Figure 172. Mapping for Map4 node

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 221

6) Perform the mapping for the Map6 node as listed in Table 71 and shown
in Figure 174 on page 223.
This mapping occurs in the case where an Unknown screen is received
from the TU_F_SCR_ID decision. The mapping sets the REPLY_IND to
’E’ and creates an error message.
a) Perform a literal mapping. Right click on the destination field for the

literal (the REPLY_IND field in the TU_F_REPLY Message) and select
Add element. This will create a mapping that is labeled LITERAL on
the input field. Double click on LITERAL field and rename it to ’E’
(quotes must be used).

b) Perform a second literal mapping. Right click on the destination field
the REPLY_E_MSG field in the TU_F_REPLY Message and select
Add element. This will create a mapping that is labeled LITERAL on
the input field.

c) Double click on LITERAL field and rename it to ’UNKNOWN SCR
FROM TU_F_SCR_ID’ (quotes must be used). Click OK.

Table 71. Mapping fields for Map6 node (Unknown message to TU_F_REPLY message)

Input Field Output Field Description

’E’ REPLY_IND Sets REPLY_IND to ’E’ to indicate an
error

’UNKNOWN SCR FROM
TU_F_SCR_ID’

REPLY_E_MSG Error message

Figure 173. Mapping for Map5 node

Build an adapter that supports a FEPI interface

222 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

You just modelled the Navigator microflow.

In your model, you have coded the instructions on how the Navigator is supposed to
behave at run time. You are now ready to assign this subflow to an CICS MQAdapter.

3. Assign the model of the Navigator microflow to a CICS MQAdapter.
In this step you will associate the Navigator microflow (the model that you just
completed), with a CICS MQAdapter.
A CICS MQAdapter provides the actual implementation of the adapter request
processing.
a. Right click on the CICS MQAdapter Collection folder and select Create >

CICS MQAdapter

b. On the Create a new CICS MQAdapter dialog, enter TU_F_NAV for the
Name and use the drop down menu to select TU_F_NAV for the Microflow
Type. Leave the Proxy Client Connector Resource and Proxy Client
Interaction Specification fields blank. Click Finish.

Figure 174. Mapping for Map6 node

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 223

You have completed the microflow and setup your adapter.

Save your workspace by selecting File > Save Workspace from the
menubar.

Now you are ready to generate your adapter.

Note: The copybooks were previously generated during the parser subflow
(TU_F_PARSER) adapter modeling section (see 2a on page 148).

4. Generate adapter Code.
To generate adapter code, make sure that you are in the Adapters view and
then, follow this procedure:

Note: You must generate the adapter code in the same directory where you
generated the copybooks.

a. Right click on the TU_F_NAV adapter (listed under the CICS MQAdapters
folder) and select Generate > Generate COBOL Adapter. Enter the output
destination <mqiac_tutorials>\fepi in the PATH field (the example uses
C:\Mqiac\Tutorials\FEPI). Click Finish.
The generated adapter code will be output to the destination path directory.

Figure 175. Creating an CICS MQAdapter

Build an adapter that supports a FEPI interface

224 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

You have created all of the microflows that are required for the FEPI adapter.

Deploying an adapter

In the following section you will learn how to deploy the adapter that you created. The
deploy operation sends the copybooks, source code, JCL and the configuration
parameters for each microflow that you generated, to the host system, for source code
configuration, object code build and parameter update operations.

You must deploy all the subflows prior to deploying the Navigator flow.

You now need to deploy the adapters that you have generated. The following
adapters need to be deployed:
v TU_F_PARSER (subflow)
v TU_F_SIGNON (subflow)
v TU_F_INQ (subflow)
v TU_F_SGNOFF (subflow)
v TU_F_RESET (subflow)
v TU_F_NAV (Navigator microflow)

Note: You will notice that all subflows will be compiled during the deployment of
the Navigator microflow (TU_F_NAV). This does not mean that you can
deploy only the Navigator as a shortcut. Each microflow must be deployed
individually.

Figure 176. Specifying pathname for adapter code generation output

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 225

The Navigator (TU_F_NAV) has no knowledge of the copybooks and file
structures required by each subflow. Therefore, deploying only the
Navigator will result in compile errors for each subflow.

To deploy an adapter, make sure that you are in the Adapters view and then,
follow this procedure:
1. Right click on the adapter (listed under the CICS MQAdapters folder) and

select Generate > Deploy COBOL Adapter. Click the Define Settings radio
button and enter the following information:
v IP Address — IP Address - The host system IP address (for example,

9.89.7.114)
v High Level Qualifier — The high level qualifier for the partition data set

(PDS)
v Account — The account under which JCL submits a job for compilation.

Note: If you wish to save these settings for reuse, then click Save. You will be
prompted to specify an output location and filename to store the setting
information. The next time you deploy adapter code you can click the
Use Pre-defined Settings radio button and enter the saved filename.

Click Next.

2. On the User Identification panel enter your user ID and password. Click
Finish.
The generated adapter code, copybooks, and JCL (Compile / Properties File
Update) files will be moved to the OS/390 server

Figure 177. Specifying the target host

Build an adapter that supports a FEPI interface

226 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

3. The Sub-process dialog appears and provides a status of the deploy process as it
happens. When the deploy is complete the generated adapter code, copybooks,
and JCL (Compile / Properties File Update) files will be moved to the OS/390
server.

Note: You should scroll through the output listing in the Sub-process dialog
window to see if any errors occurred.

Figure 178. Logon to the host

Figure 179. Sub-process dialog indicating status of the deploy process

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 227

4. Select OK to close the dialog.

You have completed the deploy steps and the adapter now resides on the OS/390
server and is ready to be tested. See Chapter 6, “Validating the adapters” on
page 231 for instructions on how to test the adapter.

Check to see that the adapter compiled in CICS

In the following sections you will you will perform a series of tasks designed to test
and validate that the adapters that you created were successfully deployed to the host.

After you have deployed the adapter to the OS/390 server, you need to make sure
that it compiled with no errors. Consult with your CICS systems administrator for
assistance with this procedure.

Defining the adapter resources to CICS
If you do not have access to CICS at your site, you will need to ask your CICS
administrator to perform the necessary CEDA and CEMT functions. You will need
to provide the CICS administrator with the following information as it relates to
the adapter that you deployed:
v Program names
v Group name
v Transaction Identifiers

For the FEPI adapter, the following values apply:

Table 72. Values for the Define Transactions screen

Program Group Transid

TUFNAV MIACUSER TUF1

TUFSGON MIACUSER TUF2

TUFSGOFF MIACUSER TUF3

TUFPRSER MIACUSER TUF4

TUFRESET MIACUSER TUF5

TUFINQ MIACUSER TUF6

To define resources to CICS, the CICS administrator must:
v Run the CEDA transaction to define programs and any files to CICS.
v Submit JCL to run the Properties File Update job.

This is necessary only if you did not automatically submit JCL using the
generator facility in the builder.
If you were not allowed to submit JCL automatically, you can manually submit
JCL (DFHMAMPU) to run the Properties File Update job (DFHMAMUP). See
the MQSI Agent for CICS Run Time User’s Guide for information on the
Properties file update JCL (DFHMAMPU).

Build an adapter that supports a FEPI interface

228 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

The CICS administrator must NEWCOPY any server adapter programs that were
modified.

For an example of defining CICS resources to CICS, See “Example procedure for
defining adapter resources to CICS” on page 239.

Build an adapter that supports a FEPI interface

Chapter 5. Build an adapter that supports a FEPI interface 229

230 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Chapter 6. Validating the adapters

The adapter validation process employs the same Simulator program that was
used in the MQSI Agent for CICS run time installation verification procedure. This
program formats and submits a request message, in order to simulate a controlling
application that is requesting services of the MQSI Agent for CICS run time
software.

The Simulator program, along with the same sample back-end programs used in
the IVP are incorporated as part of this tutorial to simulate run time processing,
including processing the back-end transactions associated with each type of
adapter you modeled.

How the Simulator works
Upon receipt of the request message from the Simulator, the MQSI Agent for CICS
invokes the server adapter program (DPL, MQ or FEPI) identified in the request.

The server adapter performs adapter request processing, as modeled, which results
in a reply message. A successful reply (GOOD RESPONSE RECEIVED) means that
the server adapter was deployed successfully.

See Figure 180 on page 232 for an illustration of the processing that occurs when
you issue a request using the simulator.

© Copyright IBM Corp. 2001 231

Preparing to use the Simulator
When you first invoke the Simulator, some of the screens will be populated with
data from the Installation Verification Procedure (IVP). Although the adapters you
modeled will access the same back-end sample transactions that the IVP accessed,
you will need to modify some fields to reflect information about the adapters that
you modeled in the tutorials.

Running the Simulator to validate the adapters
See Figure 181 on page 233 for a flow of the Simulator invoking an adapter that
you modeled in the tutorial.

Figure 180. Request processing using the simulator

Validating the adapters

232 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Perform the following steps to validate the adapters that you have deployed:
__ 1. Log on to the OS/390 host system
__ 2. Start the Simulator.

Figure 181. Flow of an adapter being run from the Simulator

Validating the adapters

Chapter 6. Validating the adapters 233

From the CICS command line type CMA1.
CMA1 is the transaction identifier for the Simulator.

__ 3. Press Enter. The Simulator Request Initiation screen displays.

__ 4. Press F11 Reset Data.
Type the following values.

REQUEST QUEUE:
X(48). Accept the default value. This is the CICS Bridge Request
Queue.

cma1

DFHCE3543 You have cancelled your sign-on request. Sign-on is terminated.

Figure 182. Simulator transaction

SIMULATOR REQUEST INITIATION DFHMASP1

REQUEST QUEUE: BRIDGE.REQUEST.QUEUE
REQUEST NAME: MAIVPREQ TYPE: 1 (0) Async; (1) Sync; (2) Sync/Rollback
PROCESSTYPE: DFHMAINA
PROCESS ID:

REPLY QMODEL: MIAC.IVP.REPLY.MODEL.QUEUE
DYNAMIC QNAME: SIMULATION.*
WAIT ON REPLY: 030 seconds

USERID:
USER DATALEN: 00000 SYMBOLICS NAME: MAIVPREQ
MAX REPLYLEN: 00400

Please select system option:

(1) SEND REQUEST (2) REPLAY DATA
(9) MANAGE DATA (10) EXPAND DATA (11) RESET DATA (12) EXIT

(13) PROCESS STATUS (14) REPLY DATA (16) RETURN

Figure 183. Simulator request initiation screen — Initial appearance

Validating the adapters

234 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

REQUEST NAME:
X(8). The request name indicates the name of the request to
process. The value specified is used to read the MQSI Agent for
CICS Properties file to determine processing flow and parameters.
Valid values are as follows:
v For MQ Adapter, enter TUMQ01

v For DPL Adapter, enter TUDPL01

v For FEPI Adapter, enter TU_F_NAV

TYPE: X(1). Indicates the processing mode. Enter 0 for asynchronous
processing.
v 0 = request processing will be run asynchronously. For requests

that will be updating information when adapter request
processing runs in asynchronous mode, syncpoints are taken
while the Navigation Manager, Navigator and server adapter
programs complete their processing. These synchronization
points provide the necessary state, status and journaling
information in the event of subsequent failure. This information
can in turn be used in a compensation flow.

v 1 = request processing will be run synchronously. For requests
that will be making inquiries only (i.e., the request will not result
in information being updated).

v 2 = request processing will include rollback processing.
Synchronous Rollback is a processing mode where the MQSI
Agent for CICS BTS process and all activities run within the
process are initiated and run in synchronous mode (i.e., BTS
RUN ACQPROCESS SYNCHRONOUS and RUN ACTIVITY()
SYNCHRONOUS commands), however, any failure within any
activity within the process results in an abend of the process.
This has the effect of returning the state of any and all
recoverable resources updated during adapter request processing
to its original state, that is, the state prior to the execution of the
failed adapter request or process.

PROCESSTYPE:
X(8). Accept the default value. This field indicates the type of the
new MQSI Agent for CICS run time process instance.

PROCESS ID:
Leave blank.

REPLY QMODEL:
X(48). Accept the default value. Name of the model reply queue.

DYNAMIC QNAME:
X(48). Accept the default value. Prefix used for the name of the
Reply Queue when dynamically built.

WAIT ON REPLY:
9(4). Identifies how long the Simulator will wait for a response
before timing out. Accept the default value of 30 seconds.

USERID:
X(8). For MQ and DPL adapters you can leave this blank. For FEPI,
enter your valid CICS user ID. This will be used for authentication
in MQSeries-CICS bridge and to allocate a PassTicket in the FEPI
Navigator. For the FEPI Navigator, this field corresponds to the
MAT_USELUPASS field that is set to Y in the Resource files.

Validating the adapters

Chapter 6. Validating the adapters 235

USER DATALEN:
9(5). For DPL and MQ type 00005. For FEPI type 00006. This
indicates the length of the user data in the request message.

SYMBOLICS NAME:
Leave blank.

MAX REPLYLEN:
9(5). For DPL and MQ type 00401. For FEPI type 00400. This
indicates the length of reply data in the reply message.

__ 5. Select PF 10 EXPAND DATA

The Simulator symbolic mapping utility screen appears

Select F10 MODE to change from BROWSE mode to UPDATE mode.

For MQ and DPL, tab to data entry area on screen and type 10000 .

For FEPI you must account for the SIGNOFF field for releasing the LU. So
tab to the data entry area on screen and type 10000Y. The Y will release the
LU. If you enter any other value but Y, the LU will not be released.

SIMULATOR SYMBOLIC MAPPING UTILITY DFHMASP4

NAME: COLUMN: 1 CHAPTER:
OFFSET: LEFT/RIGHT BY: 35 SIZE: 5
LIST BY: O (O)FFSET/(N)AME/(S)EQ UPDATE MODE: BROWSE
Please select system option:

OFFSET NAME ----+----+----+----+----+----+----+
0 FILLER

(1) TOP (3) SELECT (4) VIEW (7) BACKWARD (8) FORWARD (10) MODE (12) EXIT
(13) HEX (16) RETURN (19) LEFT (20) RIGHT (22) INIT (ENTER) GO TO
SYMBOLICS WERE NOT FOUND FOR AREA SELECTED - FILLER USED TO MAP TEMP STORAGE

Figure 184. Simulator Symbolic Mapping Utility

Validating the adapters

236 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

__ 6. Select (ENTER).

__ 7. Select F16 RETURN to go back to the Simulator request initiation screen.
__ 8. For FEPI Adapter only

Before you send the request message, make sure that FEPI is running by
ensuring that the Target, Nodes, Property Set and Pool are in service. You
may need to check with your CICS administrator.

__ 9. Select F1 SEND REQUEST to send the request.

v If the request is processed, you receive a GOOD RESPONSE RECEIVED
in the message area of the Simulator Request Initiation screen.

v If the request is not processed, you receive an ERROR RESPONSE
RECEIVED in the message area of the Simulator Request Initiation
screen. See the section on troubleshooting the simulator in the MQSeries
Integrator Agent for CICS Run Tim User’s Guide for information on how to
respond to an ERROR RESPONSE RECEIVED message.

SIMULATOR SYMBOLIC MAPPING UTILITY DFHMASP4

NAME: COLUMN: 1 CHAPTER:
OFFSET: LEFT/RIGHT BY: 35 SIZE: 5
LIST BY: O (O)FFSET/(N)AME/(S)EQ UPDATE MODE: UPDATE
Please select system option:

OFFSET NAME ----+----+----+----+----+----+----+
0 FILLER 10000

Figure 185. Updated symbolic mapping utility screen

SIMULATOR REQUEST INITIATION DFHMASP1

REQUEST QUEUE: QAS1.MAC.BRIDGE.REQUEST
REQUEST NAME: TUMQ01 TYPE: Q (0) Async; (1) Sync; (2) Sync/Rollback
PROCESSTYPE: DFHMAINA
PROCESS ID:

REPLY QMODEL: QAS1.MAC.MODEL.QUEUE
DYNAMIC QNAME: SIMULATION.*
WAIT ON REPLY: 030 seconds

USERID:
USER DATALEN: 00005 SYMBOLICS NAME:
MAX REPLYLEN: 00401

Please select system option:

(1) SEND REQUEST (2) REPLAY DATA
(9) MANAGE DATA (10) EXPAND DATA (11) RESET DATA (12) EXIT
(13) PROCESS STATUS (14) REPLY DATA (16) RETURN

Figure 186. Simulator request initiation screen — Sending the request

Validating the adapters

Chapter 6. Validating the adapters 237

__ 10. Check the reply to the adapter request

After you receive a response to the F1 SEND REQUEST, select F14 REPLY
DATA from the Simulator Request Initiation screen.
The Simulator Symbolic Mapping Utility screen appears.
Select F20 RIGHT (shift F8) to scroll the screen image to the right. This will
allow you to view the reply data:

__ 11. Select F16 RETURN to return to the Simulator Request Initiation Screen.
From this screen you can reset the data and type in the values required to
test the next adapter. See 4 on page 234.

SIMULATOR SYMBOLIC MAPPING UTILITY DFHMASP4

NAME: COLUMN: 36 CHAPTER:
OFFSET: LEFT/RIGHT BY: 35 SIZE: 169
LIST BY: O (O)FFSET/(N)AME/(S)EQ UPDATE MODE: BROWSE
Please select system option:

OFFSET NAME ----+----+----+----+----+----+----+
0 FILLER Cust Action OK 10000ONE

(1) TOP (3) SELECT (4) VIEW (7) BACKWARD (8) FORWARD (10) MODE (12) EXIT
(13) HEX (16) RETURN (19) LEFT (20) RIGHT (22) INIT (ENTER) GO TO

Figure 187. Simulator symbolic mapping utility screen

Validating the adapters

238 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Appendix. Example procedure for defining adapter resources
to CICS

After you build and deploy your adapters to CICS, a CICS systems administrator
will need to define the adapter resources to CICS.

As CICS environments will vary from site to site, do not use the information in
this example to define your adapter resources to your CICS environment. The
procedures documented in the following sections are examples and they should be
used only for reference purposes.

Defining DPL adapter resources to CICS

Check to see that the adapter compiled in CICS
After you have deployed the adapter to the OS/390 server, you need to make sure
that it compiled with no errors.

Perform the following steps to check the compile:
1. Sign on to the OS/390 server and select the option to access TSO.
2. Enter your TSO logon password and select Enter.

3. Press Enter to complete signon.

------------------------------- TSO/E LOGON -----------------------------------

Enter LOGON parameters below: RACF LOGON parameters:

Userid ===> QASGSR1

Password ===> New Password ===>

Procedure ===> IKJCLOUD Group Ident ===>

Acct Nmbr ===> 00

Size ===> 1024

Perform ===>

Command ===>

Enter an ’S’ before each option desired below:
-Nomail -Nonotice -Reconnect -OIDcard

PF1/PF13 ==> Help PF3/PF15 ==> Logoff PA1 ==> Attention PA2 ==> Reshow
You may request specific help information by entering a ’?’ in any entry field

Figure 188. TSO/E logon screen

© Copyright IBM Corp. 2001 239

4. Press Pause to go to the ISPF Primary Option Menu.

5. Type S.H on the Option line and press Enter to see go to the compile job
listing:

ICH70001I QASGSR1 LAST ACCESS AT 14:49:51 ON MONDAY, OCTOBER 8, 2001
IKJ56455I QASGSR1 LOGON IN PROGRESS AT 15:05:30 ON OCTOBER 8, 2001
15.00.56 JOB07309 $HASP165 QASGSR1C ENDED AT ECNODE15 MAXCC=4 CN(INTERNAL)
15.03.07 JOB07310 $HASP165 QASGSR1C ENDED AT ECNODE15 MAXCC=4 CN(INTERNAL)
15.03.58 JOB07311 $HASP165 QASGSR1C ENDED AT ECNODE15 MAXCC=0 CN(INTERNAL)

Figure 189. List of completed job notifications sent to OS/390 server (for active user id) via
the deploy process

Menu Utilities Compilers Options Status Help
ss

ISPF Primary Option Menu

0 Settings Terminal and user parameters User ID . : QASGSR1
1 View Display source data or listings Time. . . : 13:46
2 Edit Create or change source data Terminal. : 3278
3 Utilities Perform utility functions Screen. . : 1
4 Foreground Interactive language processing Language. : ENGLISH
5 Batch Submit job for language processing Appl ID . : ISP
6 Command Enter TSO or Workstation commands TSO logon : IKJCLOUD
E ECC Utilities Early, Cloud and Company Utilities TSO prefix: QASGSR1
S SDSF Spool Display and Search Facility System ID : DSYS
Z SYS Support Operating System Support Functions MVS acct. : 00

Release . : ISPF 4.5

Enter X to Terminate using log/list defaults

Option ===>S.H
F1=Help F3=Exit F10=Actions F12=Cancel

Figure 190. ISPF Primary Option Menu

240 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

6. To view an output listing, type an S to the left of its job name and press Enter.
This will open (for view purposes) the JES2 JOB LOG:

Scroll to the bottom of the JES2 JOB LOG to see the Error Message Summary
report. To advance directly to the bottom of the JES2 JOB LOG type M on the
Command Input line and press F8.

Display Filter View Print Options Help

SDSF HELD OUTPUT DISPLAY ALL CLASSES LINES 37,935 LINE 1-3 (3)
NP JOBNAME JOBID OWNER PRTY C ODISP DEST TOT-REC TOT-
S QASGSR1C JOB07309 QASGSR1 112 X HOLD LOCAL 10,247

QASGSR1C JOB07310 QASGSR1 96 X HOLD LOCAL 27,565
QASGSR1C JOB07311 QASGSR1 144 X HOLD LOCAL 123

COMMAND INPUT ===> SCROLL ===> PAGE
F1=HELP F2=SPLIT F3=END F4=RETURN F5=IFIND F6=BOOK
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 191. Spool Display and Search Facility Held Output Display screen

Display Filter View Print Options Help

SDSF OUTPUT DISPLAY QASGSR1C JOB07309 DSID 2 LINE 0 COLUMNS 02- 81
COMMAND INPUT ===> SCROLL ===> PAGE
********************************* TOP OF DATA **********************************

J E S 2 J O B L O G -- S Y S T E M C S Y S -- N O D E

15.00.23 JOB07309 ---- MONDAY, 08 OCT 2001 ----
15.00.23 JOB07309 IRR010I USERID QASGSR1 IS ASSIGNED TO THIS JOB.
15.00.33 JOB07309 ICH70001I QASGSR1 LAST ACCESS AT 14:49:51 ON MONDAY, OCTOBER
15.00.33 JOB07309 $HASP373 QASGSR1C STARTED - INIT 1 - CLASS A - SYS DSYS
15.00.35 JOB07309 - --TIMINGS (M
15.00.35 JOB07309 -JOBNAME STEPNAME PROCSTEP RC EXCP CONN TCB SRB
15.00.35 JOB07309 -QASGSR1C COMPILE TRANSTEP 00 84 226 .00 .00
15.00.49 JOB07309 -QASGSR1C COMPILE COBLSTEP 04 1307 1217 .04 .00
15.00.54 JOB07309 -QASGSR1C COMPILE LINKSTEP 00 278 708 .01 .00
15.00.54 JOB07309 -QASGSR1C ENDED. NAME- TOTAL TCB CPU TIM
15.00.54 JOB07309 $HASP395 QASGSR1C ENDED
------ JES2 JOB STATISTICS ------

08 OCT 2001 JOB EXECUTION DATE
34 CARDS READ

10,247 SYSOUT PRINT RECORDS
F1=HELP F2=SPLIT F3=END F4=RETURN F5=IFIND F6=BOOK
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 192. JES2 Job Log

Appendix. Example procedure for defining adapter resources to CICS 241

7. Review the summary report. If errors are found, correct them.
8. Press F3 END to return to the output listings and select another to view.

Defining the adapter resources to CICS
After deploying an adapter to the OS/390 server, you need to define the adapter
resources (programs and transaction ids) to CICS. You will need to do this each
time a new adapter is deployed.

You also must NEWCOPY any server adapter programs that were modified.

Using the CEDA transaction, perform the following tasks:
v Define the adapter programs to CICS
v Define the adapter transactions to CICS
v Install the adapter programs to CICS
v Install the adapter transactions to CICS

Using the CEMT transaction, perform the following tasks:
v Validate the association of installed programs to installed transactions
v NEWCOPY the adapter programs

Running the CEDA transaction
The following sections provide the instructions on running the CEDA transaction
to define and install adapter resources to CICS.

Define the adapter programs to CICS: You should have the names of the adapter
programs and transactions available before running the CEDA transaction. The
names of the programs and their associated transaction identifiers are listed in the
ispec file(s). The ispec file(s) that you used for your adapter is located in the
following directory:
C:\<mqiac_base>\cics

Perform the following steps to define adapter programs to CICS.
1. Access a command line in CICS.

Display Filter View Print Options Help

SDSF OUTPUT DISPLAY QASGSR1C JOB07309 DSID 104 LINE 288 COLUMNS 02- 81
COMMAND INPUT ===> SCROLL ===> PAGE
MESSAGE SUMMARY REPORT

SEVERE MESSAGES (SEVERITY = 12)
NONE

ERROR MESSAGES (SEVERITY = 08)
NONE

WARNING MESSAGES (SEVERITY = 04)
NONE

INFORMATIONAL MESSAGES (SEVERITY = 00)
2008 2278 2322

**** END OF MESSAGE SUMMARY REPORT ****

Figure 193. Error Message Summary report section of the JES2 JOB LOG

242 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

2. Type the following command:
ceda def prog

3. Press Enter.
The Define Program screen appears:

DEF PROG
OVERTYPE TO MODIFY CICS RELEASE = 0530
CEDA DEFine PROGram()
PROGram ==>
Group ==>
DEscription ==>
Language ==> CObol | Assembler | Le370 | C | Pli
RELoad ==> No No | Yes
RESident ==> No No | Yes
USAge ==> Normal Normal | Transient
USElpacopy ==> No No | Yes
Status ==> Enabled Enabled | Disabled
RSl : 00 0-24 | Public
CEdf ==> Yes Yes | No
DAtalocation ==> Below Below | Any
EXECKey ==> User User | Cics
COncurrency ==> Quasirent Quasirent | Threadsafe
REMOTE ATTRIBUTES
DYnamic ==> No No | Yes

+ REMOTESystem ==>
MESSAGES: 2 SEVERE

SYSID=QAS1 APPLID=CICSQAS1

PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

4. Type values for the PROGram, Group and Transid (Use F8 — Scroll Forward
to access the transaction id field).

Table 73. Values for the Define Transactions screen

Program Group Transid

TUNAV1 MIACUSER TUDN

TUDPL1 MIACUSER TUD1

5. Press Enter to define the program to CICS.
You should see the message DEFINE SUCCESSFUL at the bottom of the screen.

6. Press F3 END to return to the define program command line.
Repeat the CEDA define program function until each adapter program is
defined to CICS.

Define the adapter program transactions to CICS: Perform the following steps to
define adapter programs to CICS:
1. Access a command line in CICS.
2. Type the following command:

ceda def trans

3. Press Enter.
The Define Transaction screen appears:

Appendix. Example procedure for defining adapter resources to CICS 243

DEF TRANS
OVERTYPE TO MODIFY CICS RELEASE = 0530
CEDA DEFine TRANSaction()
TRANSaction ==>
Group ==> DEV1
DEscription ==>
PROGram ==>
TWasize ==> 00000 0-32767
PROFile ==> DFHCICST
PArtitionset ==>
STAtus ==> Enabled Enabled | Disabled
PRIMedsize : 00000 0-65520
TASKDATALoc ==> Below Below | Any
TASKDATAKey ==> User User | Cics
STOrageclear ==> No No | Yes
RUnaway ==> System System | 0 | 500-2700000
SHutdown ==> Disabled Disabled | Enabled
ISolate ==> Yes Yes | No
Brexit ==>

+ REMOTE ATTRIBUTES
S An object must be specified.

SYSID=QAS1 APPLID=CICSQAS1

4. Type values for the TRANSaction, Group, DEscription and PROGram.
5. Press Enter to define the transaction to CICS.

You should see the message DEFINE SUCCESSFUL at the bottom of the screen.
6. Press F3 END to return to the define transaction command line.

Repeat the CEDA define transaction function until each adapter program
transaction is defined to CICS.

Install the adapter programs to CICS: Perform the following steps to install the
adapter programs to CICS.
1. Access a command line in CICS.
2. Type the following command:

ceda inst gr(x) prog(y)

Where x = the group name assigned and y = the program being installed.

Note: You can choose to run the install command on the entire group by
typing ceda inst gr(x) on the command line (where x = the name of the
group). This command automatically installs all of the adapter programs
and their transactions to CICS. When you install programs to CICS in
this manner, you will receive an error even though the programs and
transactions were successfully installed. To verify that the programs
and their associated transactions were installed, go to a CICS command
line and type the following command:
CEMT I TRANS

The screen shows the programs and the transactions installed for the group
specified in the command.

3. Press Enter to install the program.
You should see the message INSTALL SUCCESSFUL at the bottom of the
screen:

244 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

INST GR(MIACUSER) PROG(TUMQ01G)
OVERTYPE TO MODIFY
CEDA Install
Connection ==>
DB2Conn ==>
DB2Entry ==>
DB2Tran ==>
DOctemplate ==>
Enqmodel ==>
File ==>
Journalmodel ==>
LSrpool ==>
Mapset ==>
PARTItionset ==>
PARTNer ==>
PROCesstype ==>
PROFile ==>
PROGram ==> TUMQ01G
Requestmodel ==>

+ Sessions ==>

SYSID=QAS1 APPLID=CICSQAS1
INSTALL SUCCESSFUL TIME: 16.24.37 DATE: 01.275

PF 1 HELP 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

4. Select F3 END to return to the CEDA INST command line.
5. Edit the command line to indicate the next program to install and select Enter

to install that program.
Repeat the process until you have installed all the programs to CICS.

Install the adapter program transactions to CICS: Perform the following steps to
install the adapter programs to CICS.
1. Access a command line in CICS.
2. Type the following command:

ceda inst gr(x) trans(y)

Where x = the group name assigned and y = the program transaction being
installed.

3. Press Enter to install the transaction.
You should see the message INSTALL SUCCESSFUL at the bottom of the
screen.

4. Select F3 END to return to the CEDA INST command line.
5. Edit the command line to indicate the next program transaction to install and

select Enter to install that transaction.
Repeat the process until you have installed all the program transactions to
CICS.

If you want to see that the programs and transactions are associated with each
other, go to a CICS command line and type the following command:
CEMT I TRANS

NEWCOPY the adapter programs to CICS: From the CICS command line type
the following:
CEMT I PROG(x)

Where x = the installed adapter program.

The following screen appears:

Appendix. Example procedure for defining adapter resources to CICS 245

CEMT I PROG(TUDPL1)
STATUS: RESULTS - OVERTYPE TO MODIFY
Prog(TUDPL1) Len(0000000) Pro Ena Pri Ced

Res(000) Use(0000000000) Bel Uex Ful Qua

SYSID=QAS1 APPLID=CICSQAS1
RESPONSE: NORMAL TIME: 09.30.08 DATE: 10.08.01

PF 1 HELP 3 END 5 VAR 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Tab to the Pri field and type New. The following update occurs:

I PROG(TUDPL1)
STATUS: RESULTS - OVERTYPE TO MODIFY
Prog(TUDPL1) Len(0031280) Pro Ena Pri Ced NORMAL

Res(000) Use(0000000000) Bel Uex Ful Qua

SYSID=QAS1 APPLID=CICSQAS1
RESPONSE: NORMAL TIME: 09.32.43 DATE: 10.08.01

PF 1 HELP 3 END 5 VAR 7 SBH 8 SFH 9 MSG 10 SB 11 SF

See Chapter 6, “Validating the adapters” on page 231 for how to run and validate
the adapter.

Defining MQ adapter resources to CICS

Check to see that the adapter compiled in CICS
After you have deployed the adapter to the OS/390 server, you need to make sure
that it compiled with no errors.

Perform the following steps to check the compile:
1. Sign on to the OS/390 server and select the option to access TSO.

246 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

2. Enter your TSO logon password and select Enter.

3. Press Enter to complete signon.

4. Press Pause to go to the ISPF Primary Option Menu

------------------------------- TSO/E LOGON -----------------------------------

Enter LOGON parameters below: RACF LOGON parameters:

Userid ===> QASGSR1

Password ===> New Password ===>

Procedure ===> IKJCLOUD Group Ident ===>

Acct Nmbr ===> 00

Size ===> 1024

Perform ===>

Command ===>

Enter an ’S’ before each option desired below:
-Nomail -Nonotice -Reconnect -OIDcard

PF1/PF13 ==> Help PF3/PF15 ==> Logoff PA1 ==> Attention PA2 ==> Reshow
You may request specific help information by entering a ’?’ in any entry field

Figure 194. TSO/E logon screen

ICH70001I QASGSR1 LAST ACCESS AT 11:45:30 ON TUESDAY, OCTOBER 2, 2001
IKJ56455I QASGSR1 LOGON IN PROGRESS AT 13:35:59 ON OCTOBER 2, 2001
11.41.33 JOB07145 $HASP165 QASGSR1C ENDED AT ECNODE15 MAXCC=4 CN(INTERNAL)
11.43.36 JOB07146 $HASP165 QASGSR1C ENDED AT ECNODE15 MAXCC=4 CN(INTERNAL)
11.45.56 JOB07147 $HASP165 QASGSR1C ENDED AT ECNODE15 MAXCC=4 CN(INTERNAL)
11.46.43 JOB07148 $HASP165 QASGSR1C ENDED AT ECNODE15 MAXCC=0 CN(INTERNAL)

Figure 195. List of completed job notifications sent to OS/390 server (for active user id) via
the deploy process

Appendix. Example procedure for defining adapter resources to CICS 247

5. Type S.H on the Option line and press Enter to see go to the compile job
listing:

6. To view a job type an S to the left of its job name and press Enter. This will
open (for view purposes) the JES2 JOB LOG:

Menu Utilities Compilers Options Status Help
ss

ISPF Primary Option Menu

0 Settings Terminal and user parameters User ID . : QASGSR1
1 View Display source data or listings Time. . . : 13:46
2 Edit Create or change source data Terminal. : 3278
3 Utilities Perform utility functions Screen. . : 1
4 Foreground Interactive language processing Language. : ENGLISH
5 Batch Submit job for language processing Appl ID . : ISP
6 Command Enter TSO or Workstation commands TSO logon : IKJCLOUD
E ECC Utilities Early, Cloud and Company Utilities TSO prefix: QASGSR1
S SDSF Spool Display and Search Facility System ID : DSYS
Z SYS Support Operating System Support Functions MVS acct. : 00

Release . : ISPF 4.5

Enter X to Terminate using log/list defaults

Option ===>S.H
F1=Help F3=Exit F10=Actions F12=Cancel

Figure 196. ISPF Primary Option Menu

Display Filter View Print Options Help

SDSF HELD OUTPUT DISPLAY ALL CLASSES LINES 56,188 LINE 1-5 (5)
NP JOBNAME JOBID OWNER PRTY C ODISP DEST TOT-REC TOT-
S QASGSR1C JOB06978 QASGSR1 112 X HOLD LOCAL 13,874

QASGSR1C JOB06979 QASGSR1 112 X HOLD LOCAL 14,206
QASGSR1C JOB06980 QASGSR1 96 X HOLD LOCAL 27,723
QASGSR1C JOB06981 QASGSR1 144 X HOLD LOCAL 127
QASGSR1 TSU06975 QASGSR1 144 K HOLD LOCAL 258

COMMAND INPUT ===> SCROLL ===> PAGE
F1=HELP F2=SPLIT F3=END F4=RETURN F5=IFIND F6=BOOK
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 197. Spool Display and Search Facility Held Output Display screen

248 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Scroll to the bottom of the JES2 JOB LOG to see the Error Message Summary
report. To advance directly to the bottom of the JES2 JOB LOG type M on the
Command Input line and press F8.

7. Review the summary report. If errors are found, correct them.
8. Press F3 END to return to the list of output listings and select another to view.

Defining the adapter resources to CICS
After deploying an adapter to the OS/390 server, you need to define the adapter
resources (programs and transaction ids) to CICS. You will need to do this each
time a new adapter is deployed.

Display Filter View Print Options Help

SDSF OUTPUT DISPLAY QASGSR1C JOB06978 DSID 2 LINE 0 COLUMNS 02- 81
COMMAND INPUT ===> M SCROLL ===> PAGE
********************************* TOP OF DATA **********************************

J E S 2 J O B L O G -- S Y S T E M C S Y S -- N O D E

15.48.08 JOB06978 ---- WEDNESDAY, 26 SEP 2001 ----
15.48.08 JOB06978 IRR010I USERID QASGSR1 IS ASSIGNED TO THIS JOB.
15.48.15 JOB06978 ICH70001I QASGSR1 LAST ACCESS AT 13:35:05 ON WEDNESDAY, SEPT
15.48.16 JOB06978 $HASP373 QASGSR1C STARTED - INIT 1 - CLASS A - SYS DSYS
15.48.19 JOB06978 - --TIMINGS (M
15.48.19 JOB06978 -JOBNAME STEPNAME PROCSTEP RC EXCP CONN TCB SRB
15.48.19 JOB06978 -QASGSR1C COMPILE TRANSTEP 00 81 207 .00 .00
15.48.36 JOB06978 $HASP375 QASGSR1C ESTIMATED LINES EXCEEDED
15.48.37 JOB06978 -QASGSR1C COMPILE COBLSTEP 04 1722 1565 .07 .00
15.48.43 JOB06978 -QASGSR1C COMPILE LINKSTEP 00 286 720 .01 .00
15.48.43 JOB06978 -QASGSR1C ENDED. NAME- TOTAL TCB CPU TIM
15.48.43 JOB06978 $HASP395 QASGSR1C ENDED
------ JES2 JOB STATISTICS ------

26 SEP 2001 JOB EXECUTION DATE
34 CARDS READ

F1=HELP F2=SPLIT F3=END F4=RETURN F5=IFIND F6=BOOK
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 198. JES2 Job Log

Display Filter View Print Options Help

SDSF OUTPUT DISPLAY QASGSR1C JOB06978 DSID 104 LINE 289 COLUMNS 02- 81
COMMAND INPUT ===> SCROLL ===> PAGE
MESSAGE SUMMARY REPORT

SEVERE MESSAGES (SEVERITY = 12)
NONE

ERROR MESSAGES (SEVERITY = 08)
NONE

WARNING MESSAGES (SEVERITY = 04)
NONE

INFORMATIONAL MESSAGES (SEVERITY = 00)
2008 2278 2322

**** END OF MESSAGE SUMMARY REPORT ****

Figure 199. Error Message Summary report section of the JES2 JOB LOG

Appendix. Example procedure for defining adapter resources to CICS 249

You also must NEWCOPY any server adapter programs that were modified.

Using the CEDA transaction, perform the following tasks:
v Define the adapter programs to CICS.
v Define the adapter transactions to CICS.
v Install the adapter programs to CICS.
v Install the adapter transactions to CICS.

Using the CEMT transaction, perform the following tasks:
v Validate the association of installed programs to installed transactions
v NEWCOPY the adapter programs

Running the CEDA transaction
The following sections provide the instructions on running the CEDA transaction
to define and install adapter resources to CICS.

Define the adapter programs to CICS: You should have the names of the adapter
programs and transactions available before running the CEDA transaction. The
names of the programs and their associated transaction identifiers are listed in the
ispec file(s). The ispec file(s) that you used for your adapter is located in the
following directory:
C:\<mqiac_base>\cics

Perform the following steps to define adapter programs to CICS.
1. Access a command line in CICS.
2. Type the following command:

ceda def prog

3. Press Enter.
The Define Program screen appears:

DEF PROG
OVERTYPE TO MODIFY CICS RELEASE = 0530
CEDA DEFine PROGram()
PROGram ==>
Group ==>
DEscription ==>
Language ==> CObol | Assembler | Le370 | C | Pli
RELoad ==> No No | Yes
RESident ==> No No | Yes
USAge ==> Normal Normal | Transient
USElpacopy ==> No No | Yes
Status ==> Enabled Enabled | Disabled
RSl : 00 0-24 | Public
CEdf ==> Yes Yes | No
DAtalocation ==> Below Below | Any
EXECKey ==> User User | Cics
COncurrency ==> Quasirent Quasirent | Threadsafe
REMOTE ATTRIBUTES
DYnamic ==> No No | Yes

+ REMOTESystem ==>
MESSAGES: 2 SEVERE

SYSID=QAS1 APPLID=CICSQAS1

PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

4. Type values for the PROGram, Group and Transid (Use F8 — scroll forward to
access the transaction id field).

5. Press Enter to define the program to CICS.
You should see the message DEFINE SUCCESSFUL at the bottom of the screen.

250 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

6. Press F3 END to return to the define program command line.
Repeat the CEDA define program function until each adapter program is
defined to CICS.

Define the adapter program transactions to CICS: Perform the following steps to
define adapter programs to CICS.
1. Access a command line in CICS.
2. Type the following command:

ceda def trans

3. Press Enter.
The Define Transaction screen appears:

DEF TRANS
OVERTYPE TO MODIFY CICS RELEASE = 0530
CEDA DEFine TRANSaction()
TRANSaction ==>
Group ==> DEV1
DEscription ==>
PROGram ==>
TWasize ==> 00000 0-32767
PROFile ==> DFHCICST
PArtitionset ==>
STAtus ==> Enabled Enabled | Disabled
PRIMedsize : 00000 0-65520
TASKDATALoc ==> Below Below | Any
TASKDATAKey ==> User User | Cics
STOrageclear ==> No No | Yes
RUnaway ==> System System | 0 | 500-2700000
SHutdown ==> Disabled Disabled | Enabled
ISolate ==> Yes Yes | No
Brexit ==>

+ REMOTE ATTRIBUTES
S An object must be specified.

SYSID=QAS1 APPLID=CICSQAS1

4. Type values for the TRANSaction, Group, DEscription and PROGram

Table 74. Values for the Define Transactions screen

Program Group Transid

TUMNAV1 MIACUSER TUM1

TUMQ01P MIACUSER TUMP

TUMQ01G MIACUSER TUMG

5. Press Enter to define the transaction to CICS.
You should see the message DEFINE SUCCESSFUL at the bottom of the screen.

6. Press F3 END to return to the define transaction command line.
Repeat the CEDA define transaction function until each adapter program
transaction is defined to CICS.

Install the adapter programs to CICS: Perform the following steps to install the
adapter programs to CICS.
1. Access a command line in CICS.
2. Type the following command:

ceda inst gr(x) prog(y)

Where x = the group name assigned and y = the program being installed.

Appendix. Example procedure for defining adapter resources to CICS 251

Note: You can choose to run the install command on the entire group by
typing ceda inst gr(x) on the command line (where x = the name of the
group). This command automatically installs all of the adapter programs
and their transactions to CICS. When you install programs to CICS in
this manner, you will receive an error even though the programs and
transactions were successfully installed. To verify that the programs
and their associated transactions were installed, go to a CICS command
line and type the following command:
CEMT I TRANS

The screen shows the programs and the transactions installed for the group
specified in the command.

3. Press Enter to install the program.
You should see the message INSTALL SUCCESSFUL at the bottom of the
screen:

INST GR(MIACUSER) PROG(TUMQ01G)
OVERTYPE TO MODIFY
CEDA Install
Connection ==>
DB2Conn ==>
DB2Entry ==>
DB2Tran ==>
DOctemplate ==>
Enqmodel ==>
File ==>
Journalmodel ==>
LSrpool ==>
Mapset ==>
PARTItionset ==>
PARTNer ==>
PROCesstype ==>
PROFile ==>
PROGram ==> TUMQ01G
Requestmodel ==>

+ Sessions ==>

SYSID=QAS1 APPLID=CICSQAS1
INSTALL SUCCESSFUL TIME: 16.24.37 DATE: 01.275

PF 1 HELP 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

4. Select F3 END to return to the CEDA INST command line.
5. Edit the command line to indicate the next program to install and select Enter

to install that program.
Repeat the process until you have installed all the programs to CICS.

Install the adapter program transactions to CICS: Perform the following steps to
install the adapter programs to CICS.
1. Access a command line in CICS.
2. Type the following command:

ceda inst gr(x) trans(y)

Where x = the group name assigned and y = the program transaction being
installed.

3. Press Enter to install the transaction.
You should see the message INSTALL SUCCESSFUL at the bottom of the
screen.

4. Select F3 END to return to the CEDA INST command line.

252 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

5. Edit the command line to indicate the next program transaction to install and
select Enter to install that transaction.
Repeat the process until you have installed all the program transactions to
CICS.

If you want to see that the programs and transactions are associated with each
other, go to a CICS command line and type the following command:
CEMT I TRANS

NEWCOPY the adapter programs to CICS: From the CICS command line type
the following:
CEMT I PROG(x,y,z)

Where x,y, z = the installed adapter programs.

The following screen appears:

CEMT I PROG(TUDPL1)
STATUS: RESULTS - OVERTYPE TO MODIFY
Prog(TUDPL1) Len(0000000) Pro Ena Pri Ced

Res(000) Use(0000000000) Bel Uex Ful Qua

SYSID=QAS1 APPLID=CICSQAS1
RESPONSE: NORMAL TIME: 09.30.08 DATE: 10.08.01

PF 1 HELP 3 END 5 VAR 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Tab so that the cursor follows the Pri field and type New. The following update
occurs:

Appendix. Example procedure for defining adapter resources to CICS 253

I PROG(TUDPL1)
STATUS: RESULTS - OVERTYPE TO MODIFY
Prog(TUDPL1) Len(0031280) Pro Ena Pri Ced NORMAL

Res(000) Use(0000000000) Bel Uex Ful Qua

SYSID=QAS1 APPLID=CICSQAS1
RESPONSE: NORMAL TIME: 09.32.43 DATE: 10.08.01

PF 1 HELP 3 END 5 VAR 7 SBH 8 SFH 9 MSG 10 SB 11 SF

See Chapter 6, “Validating the adapters” on page 231 for how to run and validate
the adapter.

Defining FEPI adapter resources to CICS

Check to see that the adapter compiled in CICS
Perform the following steps to check the compile:
1. Sign on to the OS/390 server and select the option to access TSO.
2. Enter your TSO logon password and select Enter.

------------------------------- TSO/E LOGON -----------------------------------

Enter LOGON parameters below: RACF LOGON parameters:

Userid ===> QASGSR1

Password ===> New Password ===>

Procedure ===> IKJCLOUD Group Ident ===>

Acct Nmbr ===> 00

Size ===> 1024

Perform ===>

Command ===>

Enter an ’S’ before each option desired below:
-Nomail -Nonotice -Reconnect -OIDcard

PF1/PF13 ==> Help PF3/PF15 ==> Logoff PA1 ==> Attention PA2 ==> Reshow
You may request specific help information by entering a ’?’ in any entry field

Figure 200. TSO/E logon screen

254 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

3. Press Enter to complete signon.

4. Press Pause to go to the ISPF Primary Option Menu.

5. Type S.H on the Option line and press Enter to see go to the compile job
listing:

ICH70001I QASGSR1 LAST ACCESS AT 10:45:40 ON TUESDAY, OCTOBER 9, 2001
IKJ56455I QASGSR1 LOGON IN PROGRESS AT 10:54:20 ON OCTOBER 9, 2001
09.55.55 JOB07340 $HASP165 QASGSR1C ENDED AT ECNODE15 MAXCC=4 CN(INTERNAL)
10.06.30 JOB07341 $HASP165 QASGSR1C ENDED AT ECNODE15 MAXCC=4 CN(INTERNAL)
10.12.06 JOB07342 $HASP165 QASGSR1C ENDED AT ECNODE15 MAXCC=4 CN(INTERNAL)
10.22.46 JOB07343 $HASP165 QASGSR1C ENDED AT ECNODE15 MAXCC=4 CN(INTERNAL)
10.27.34 JOB07344 $HASP165 QASGSR1C ENDED AT ECNODE15 MAXCC=4 CN(INTERNAL)
10.34.02 JOB07345 $HASP165 QASGSR1C ENDED AT ECNODE15 MAXCC=4 CN(INTERNAL)
10.36.25 JOB07346 $HASP165 QASGSR1C ENDED AT ECNODE15 MAXCC=4 CN(INTERNAL)
10.38.56 JOB07347 $HASP165 QASGSR1C ENDED AT ECNODE15 MAXCC=4 CN(INTERNAL)
10.41.23 JOB07348 $HASP165 QASGSR1C ENDED AT ECNODE15 MAXCC=4 CN(INTERNAL)
10.43.34 JOB07349 $HASP165 QASGSR1C ENDED AT ECNODE15 MAXCC=4 CN(INTERNAL)
10.46.08 JOB07350 $HASP165 QASGSR1C ENDED AT ECNODE15 MAXCC=4 CN(INTERNAL)
10.47.13 JOB07351 $HASP165 QASGSR1C ENDED AT ECNODE15 MAXCC=0 CN(INTERNAL)

Figure 201. List of completed job notifications sent to the OS/390 server (for active user id)
via the deploy process

Menu Utilities Compilers Options Status Help
ss

ISPF Primary Option Menu

0 Settings Terminal and user parameters User ID . : QASGSR1
1 View Display source data or listings Time. . . : 13:46
2 Edit Create or change source data Terminal. : 3278
3 Utilities Perform utility functions Screen. . : 1
4 Foreground Interactive language processing Language. : ENGLISH
5 Batch Submit job for language processing Appl ID . : ISP
6 Command Enter TSO or Workstation commands TSO logon : IKJCLOUD
E ECC Utilities Early, Cloud and Company Utilities TSO prefix: QASGSR1
S SDSF Spool Display and Search Facility System ID : DSYS
Z SYS Support Operating System Support Functions MVS acct. : 00

Release . : ISPF 4.5

Enter X to Terminate using log/list defaults

Option ===>S.H
F1=Help F3=Exit F10=Actions F12=Cancel

Figure 202. ISPF Primary Option Menu

Appendix. Example procedure for defining adapter resources to CICS 255

6. To view an output listing an S to the left of its name and press Enter. This will
open (for view purposes) the JES2 JOB LOG:

Scroll to the bottom of the JES2 JOB LOG to see the Error Message Summary
report. To advance directly to the bottom of the JES2 JOB LOG type M on the
Command Input line and press F8.

Display Filter View Print Options Help

SDSF HELD OUTPUT DISPLAY ALL CLASSES LINES 37,935 LINE 1-3 (3)
NP JOBNAME JOBID OWNER PRTY C ODISP DEST TOT-REC TOT-
S QASGSR1C JOB07309 QASGSR1 112 X HOLD LOCAL 10,247

QASGSR1C JOB07310 QASGSR1 96 X HOLD LOCAL 27,565
QASGSR1C JOB07311 QASGSR1 144 X HOLD LOCAL 123

COMMAND INPUT ===> SCROLL ===> PAGE
F1=HELP F2=SPLIT F3=END F4=RETURN F5=IFIND F6=BOOK
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 203. Spool Display and Search Facility Held Output Display screen

Display Filter View Print Options Help

SDSF OUTPUT DISPLAY QASGSR1C JOB07309 DSID 2 LINE 0 COLUMNS 02- 81
COMMAND INPUT ===> SCROLL ===> PAGE
********************************* TOP OF DATA **********************************

J E S 2 J O B L O G -- S Y S T E M C S Y S -- N O D E

15.00.23 JOB07309 ---- MONDAY, 08 OCT 2001 ----
15.00.23 JOB07309 IRR010I USERID QASGSR1 IS ASSIGNED TO THIS JOB.
15.00.33 JOB07309 ICH70001I QASGSR1 LAST ACCESS AT 14:49:51 ON MONDAY, OCTOBER
15.00.33 JOB07309 $HASP373 QASGSR1C STARTED - INIT 1 - CLASS A - SYS DSYS
15.00.35 JOB07309 - --TIMINGS (M
15.00.35 JOB07309 -JOBNAME STEPNAME PROCSTEP RC EXCP CONN TCB SRB
15.00.35 JOB07309 -QASGSR1C COMPILE TRANSTEP 00 84 226 .00 .00
15.00.49 JOB07309 -QASGSR1C COMPILE COBLSTEP 04 1307 1217 .04 .00
15.00.54 JOB07309 -QASGSR1C COMPILE LINKSTEP 00 278 708 .01 .00
15.00.54 JOB07309 -QASGSR1C ENDED. NAME- TOTAL TCB CPU TIM
15.00.54 JOB07309 $HASP395 QASGSR1C ENDED
------ JES2 JOB STATISTICS ------

08 OCT 2001 JOB EXECUTION DATE
34 CARDS READ

10,247 SYSOUT PRINT RECORDS
F1=HELP F2=SPLIT F3=END F4=RETURN F5=IFIND F6=BOOK
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 204. JES2 Job Log

256 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

7. Review the summary report. If errors are found, correct them.
8. Press F3 END to return to the list of output listings and select another to view.

Defining the adapter resources to CICS
After deploying an adapter to the OS/390 server, you need to define the adapter
resources (programs and transaction ids) to CICS. You will need to do this each
time a new adapter is deployed.

You also must NEWCOPY any server adapter programs that were modified.

Using the CEDA transaction, perform the following tasks:
v Define the adapter programs to CICS.
v Define the adapter transactions to CICS.
v Install the adapter programs to CICS.
v Install the adapter transactions to CICS.

Using the CEMT transaction, perform the following tasks:
v Validate the association of installed programs to installed transactions
v NEWCOPY the adapter programs

Running the CEDA transaction
The following sections provide the instructions on running the CEDA transaction
to define and install adapter resources to CICS.

You should have the names of the adapter programs and transactions available
before running the CEDA transaction. The names of the programs and their
associated transaction identifiers are listed in the ispec file(s). The ispec file(s) that
you used for your adapter is located in the following directory:
C:\program files\ibm mqseries integrator agent for cics\cics

Display Filter View Print Options Help

SDSF OUTPUT DISPLAY QASGSR1C JOB07309 DSID 104 LINE 288 COLUMNS 02- 81
COMMAND INPUT ===> SCROLL ===> PAGE
MESSAGE SUMMARY REPORT

SEVERE MESSAGES (SEVERITY = 12)
NONE

ERROR MESSAGES (SEVERITY = 08)
NONE

WARNING MESSAGES (SEVERITY = 04)
NONE

INFORMATIONAL MESSAGES (SEVERITY = 00)
2008 2278 2322

**** END OF MESSAGE SUMMARY REPORT ****

Figure 205. Error Message Summary report section of the JES2 JOB LOG

Appendix. Example procedure for defining adapter resources to CICS 257

Define the adapter programs to CICS
Perform the following steps to define adapter programs to CICS.
1. Access a command line in CICS.
2. Type the following command:

ceda def prog

3. Press Enter

The Define Program screen appears:

DEF PROG
OVERTYPE TO MODIFY CICS RELEASE = 0530
CEDA DEFine PROGram()
PROGram ==>
Group ==>
DEscription ==>
Language ==> CObol | Assembler | Le370 | C | Pli
RELoad ==> No No | Yes
RESident ==> No No | Yes
USAge ==> Normal Normal | Transient
USElpacopy ==> No No | Yes
Status ==> Enabled Enabled | Disabled
RSl : 00 0-24 | Public
CEdf ==> Yes Yes | No
DAtalocation ==> Below Below | Any
EXECKey ==> User User | Cics
COncurrency ==> Quasirent Quasirent | Threadsafe
REMOTE ATTRIBUTES
DYnamic ==> No No | Yes

+ REMOTESystem ==>
MESSAGES: 2 SEVERE

SYSID=QAS1 APPLID=CICSQAS1

PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

4. Type values for the PROGram, Group, and Transid (you will need to scroll to
the next page to enter a value for the transaction id).

Table 75. Values for the Define Transactions screen

Program Group Transid

TUFNAV MIACUSER TUF1

TUFSGON MIACUSER TUF2

TUFSGOFF MIACUSER TUF3

TUFPRSER MIACUSER TUF4

TUFRESET MIACUSER TUF5

TUFINQ MIACUSER TUF6

Note: If you have modified the Specification files supplied with the FEPI
tutorial, then you will need to modify the values used to define the
values for the program, group and transid accordingly.

5. Press Enter to define the program to CICS.
You should see the message DEFINE SUCCESSFUL at the bottom of the screen.

6. Press F3 END to return to the define program command line.
Repeat the CEDA define program function until each adapter program is
defined to CICS.

Define the adapter program transactions to CICS
Perform the following steps to define adapter programs to CICS.
1. Access a command line in CICS.

258 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

2. Type the following command:
ceda def trans

3. Press Enter

The Define Transaction screen appears:

DEF TRANS
OVERTYPE TO MODIFY CICS RELEASE = 0530
CEDA DEFine TRANSaction()
TRANSaction ==>
Group ==> DEV1
DEscription ==>
PROGram ==>
TWasize ==> 00000 0-32767
PROFile ==> DFHCICST
PArtitionset ==>
STAtus ==> Enabled Enabled | Disabled
PRIMedsize : 00000 0-65520
TASKDATALoc ==> Below Below | Any
TASKDATAKey ==> User User | Cics
STOrageclear ==> No No | Yes
RUnaway ==> System System | 0 | 500-2700000
SHutdown ==> Disabled Disabled | Enabled
ISolate ==> Yes Yes | No
Brexit ==>

+ REMOTE ATTRIBUTES
S An object must be specified.

SYSID=QAS1 APPLID=CICSQAS1

4. Type values for the TRANSaction, Group, DEscription and PROGram.
5. Press Enter to define the transaction to CICS.

You should see the message DEFINE SUCCESSFUL at the bottom of the screen.
6. Press F3 END to return to the define transaction command line.

Repeat the CEDA define transaction function until each adapter program
transaction is defined to CICS.

Install the adapter programs to CICS
Perform the following steps to install the adapter programs to CICS.
1. Access a command line in CICS.
2. Type the following command:

ceda inst gr(x) prog(y)

Where x = the group name assigned and y = the program being installed.

Note: You can choose to run the install command on the entire group by
typing ceda inst gr(x) on the command line (where x = the name of the
group). This command automatically installs all of the adapter programs
and their transactions to CICS. When you install programs to CICS in
this manner, you will receive an error even though the programs and
transactions were successfully installed. To verify that the programs
and their associated transactions were installed, go to a CICS command
line and type the following command:
CEMT I TRANS

The screen shows the programs and the transactions installed for the group
specified in the command.

3. Press Enter to install the program.
You should see the message INSTALL SUCCESSFUL at the bottom of the
screen:

Appendix. Example procedure for defining adapter resources to CICS 259

INST GR(MIACUSER) PROG(TUMQ01G)
OVERTYPE TO MODIFY
CEDA Install
Connection ==>
DB2Conn ==>
DB2Entry ==>
DB2Tran ==>
DOctemplate ==>
Enqmodel ==>
File ==>
Journalmodel ==>
LSrpool ==>
Mapset ==>
PARTItionset ==>
PARTNer ==>
PROCesstype ==>
PROFile ==>
PROGram ==> TUMQ01G
Requestmodel ==>

+ Sessions ==>

SYSID=QAS1 APPLID=CICSQAS1
INSTALL SUCCESSFUL TIME: 16.24.37 DATE: 01.275

PF 1 HELP 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

4. Select F3 END to return to the CEDA INST command line.
5. Edit the command line to indicate the next program to install and select Enter

to install that program.
Repeat the process until you have installed all the programs to CICS.

Install the adapter program transactions to CICS
Perform the following steps to install the adapter programs to CICS.
1. Access a command line in CICS.
2. Type the following command:

ceda inst gr(x) trans(y)

Where x = the group name assigned and y = the program transaction being
installed.

3. Press Enter to install the transaction.
You should see the message INSTALL SUCCESSFUL at the bottom of the
screen.

4. Select F3 END to return to the CEDA INST command line.
5. Edit the command line to indicate the next program transaction to install and

select Enter to install that transaction.
Repeat the process until you have installed all the program transactions to
CICS.

If you want to see that the programs and transactions are associated with each
other, go to a CICS command line and type the following command:
CEMT I TRANS(TUF*)

This lists all the transactions that start with TUF.

NEWCOPY the adapter programs to CICS
From the CICS command line type the following:
CEMT I PROG(x)

Where x = the installed adapter program.

260 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

The following screen appears:

CEMT I PROG(TUDPL1)
STATUS: RESULTS - OVERTYPE TO MODIFY
Prog(TUDPL1) Len(0000000) Pro Ena Pri Ced

Res(000) Use(0000000000) Bel Uex Ful Qua

SYSID=QAS1 APPLID=CICSQAS1
RESPONSE: NORMAL TIME: 09.30.08 DATE: 10.08.01

PF 1 HELP 3 END 5 VAR 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Tab to the Pri field and type New. The following update occurs:

I PROG(TUDPL1)
STATUS: RESULTS - OVERTYPE TO MODIFY
Prog(TUDPL1) Len(0031280) Pro Ena Pri Ced NORMAL

Res(000) Use(0000000000) Bel Uex Ful Qua

SYSID=QAS1 APPLID=CICSQAS1
RESPONSE: NORMAL TIME: 09.32.43 DATE: 10.08.01

PF 1 HELP 3 END 5 VAR 7 SBH 8 SFH 9 MSG 10 SB 11 SF

See Chapter 6, “Validating the adapters” on page 231 for how to run and validate
the adapter.

Appendix. Example procedure for defining adapter resources to CICS 261

262 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2001 263

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

CICS MQSeries SupportPac
CICSPlex MVS VTAM
e-business OS/390
IBM RACF

Lotus and LotusScript are trademarks of Lotus Development Corporation in the
United States, or other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Notices

264 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Other company, product, and service names may be trademarks or service marks
of others.

Notices

Notices 265

266 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Glossary

The glossary contains key terms and their meanings as used in the information.

If a particular concept or term appears in one section only, it might not be contained in the glossary. It
might, however, be found via the “Index” on page 273.

The glossary does not contain terms of other IBM products such as MQSeries.

A
activity. In BTS, one part of the process managed by
CICS business transaction services. Typically, an activity
is part of a business transaction.

Activities can be hierarchically organized, in a tree
structure. An activity that starts another activity is
known as a parent activity. An activity that is started
by another is known as a child activity.

A program that implements an activity differs from a
traditional CICS application program only in its being
designed to respond to BTS events.

adapter . The output of the MQSeries Integrator Agent
for CICS Adapter Builder. It consists of COBOL source
code that is compiled and run in a CICS environment
on an OS/390 server. The adapter implements a
business transaction.

Depending on how one models the adapter, it can
contain a wide variety of functionalities, such as control
flow, data flow, sequential navigation, conditional
branching including decision and iteration, data typing,
storing data context, transformation of data elements,
logical operations and custom code.

The adapter can enable any MQSeries-enabled
application or application that can initiate a CICS
program by invoking one or more server adapter
programs, to access:

Existing CICS transactions (including custom
programs) via a distributed program link (DPL).

Legacy CICS and IMS applications via a 3270 data
stream.

MQSeries-enabled applications via MQSeries.

In the MQSeries Integrator Agent for CICS Adapter
Builder, the adapter is built in two complementary
ways:

The structures of messages are imported or created
and maintained in the form of message sets, in the
Message Set view. See message set.

The processing of messages is modeled in the form
of a microflow in the Adapters view. See microflow.

adapter reply message. A message sent out of the
MQSI Agent for CICS run time in response to an

adapter request message sent from the controlling
application. An adapter reply message contains the
result of processing the business transaction that was
defined in the request message. Not every adapter
request message merits a reply. At build time the
request message is formatted to indicate whether or not
a reply is required

The adapter reply message is an application-level reply.
It is different from a response that is required by a
communications protocol. For example, EXCI requires
that all requests be responded to at the protocol level.
Therefore, if the controlling application used EXCI for
the adapter request message and if no adapter reply
message was required, a protocol-level response would
still be sent. However, this protocol-level response
would not be performed by the MQSeries Integrator
Agent for CICS. This protocol-level response would not
have to be addressed during build time, diagnostics
and tracing.

adapter request. The means by which the controlling
application invokes the MQSI Agent for CICS run time.
An adapter request is sent in the form of an adapter
request message.

adapter request message. A message sent by the
controlling application to the MQSI Agent for CICS run
time to invoke an adapter to process a business
transaction. If the controlling application is
MQSeries-enabled, the adapter request message is of
the form of an MQSeries message. If the controlling
application is using a CICS-supplied interface the
request message is of the form of a communication area
(COMMAREA).

adapter request processing. The programmatic
functions (modeled at build time) that an adapter
performs in order to manage and fulfill a business
transaction on the server run time. To handle the work
required by adapter request processing, MQSI Agent
for CICS can invoke one or multiple server adapter
programs without requiring action by the controlling
application. Each adapter request results in a different
instance of the Navigation Manager, Navigators and
only those server adapter programs that are needed to
support that adapter request.

© Copyright IBM Corp. 2001 267

asynchronous. An event that occurs at a time that is
unrelated to the time at which another event occurs.
The two events are mutually asynchronous. The
relationship between the times at which they occur is
unpredictable.

asynchronous mode. A type of MQSI Agent for CICS
run time processing in which the BTS process
implements an instance of the MQSI Agent for CICS
run time is run asynchronously from the initiating
unit-of-work. All BTS activities within that BTS process
will be run asynchronously from their parent activities.
This has the effect of running the BTS process and all
activities as separate units-of-work each with a distinct
commit scope.

You would typically want to process a request in
asynchronous mode if as a result of the processing,
data will be updated.

asynchronous processing. A means of distributing the
processing of an application between systems in an
intercommunication environment. The processing in
each system is independent of the session on which
requests are sent and replies are received. No direct
correlation can be made between requests and replies
and no assumptions can be made about the timing of
replies.

auditing. Collecting and recording information about
the state of MQSI Agent for CICS run time for the
purpose of diagnostics and tracing. MQSI Agent for
CICS run time uses BTS facilities for auditing.

audit trail utility. A CICS-supplied utility program,
DFHATUP, that enables you to print selected BTS audit
records from a specified logstream.

authentication. In computer security, verification of
the identity of a user or the user’s eligibility to access
an object. In MQSI Agent for CICS, the authentication
process is established within the MQSeries-CICS bridge
via an AUTH parameter passed to the bridge monitor
at startup.

B
build time. The time period when business
transaction processing is defined, modeled or modified
electronically. At build time, a programmer that is
familiar with the enterprises business processes uses
the MQSeries Integrator Adapter Builder to:

v Extract (and store as structured data types)
information from COBOL records and 3270 screens.

v Model and define the Navigators and server adapter
programs to be used by MQSI Agent for CICS run
time.

v Generate the source code used by MQSI Agent for
CICS run time.

build time environment. A modeling environment.
The adapter modeling environment for MQSI Agent for
CICS runs under Windows NT .

builder. See MQSeries Integrator Agent for CICS Adapter
Builder on 270.

business transaction. A self-contained business
function. An account transfer for example. Traditionally,
in CICS a business transaction might be implemented
as multiple user transactions. Using BTS, a business
transaction might be implemented as multiple
activities. In MQSI Agent for CICS run time, the
adapter enables the processing that will manage and
complete the business transaction.

C
CICS transaction. A unit of application data
processing (consisting of one or more application
programs) initiated by a single request, often from a
terminal. A transaction may require the initiation of one
or more tasks for its execution.

CICS Business Transaction Services (CICS/BTS). A
CICS domain that supports an application
programming interface (API) and services that simplify
the development of business transactions. Using BTS,
each action that comprises the business transaction is
implemented as one or more CICS transactions. In
order to use MQSeries Integrator Agent for CICS
Transaction Server you must install CICS/BTS.

communication area (COMMAREA). A CICS area
that is used to pass data between tasks that
communicate with a given terminal. The area can also
be used to pass data between programs within a task.
At run time, the DPL Stub program requires that
information from the controlling application be passed
in the form of a communication area.

compensation. The act of modifying the effects of a
child activity. Typically, compensation undoes the
actions taken by an activity. For example, compensation
for an order activity might be to cancel the order. In
MQSeries Integrator Agent for CICS Transaction Server
compensation is taken under consideration at build
time. If a business transaction is to include
compensation, the adapter model needs to reflect it. It
can modify the effects of many activities within a given
process. Although the Adapter Builder does not
support creating compensation microflows explicitly,
programmer’s can set values in a microflow and use
logic in the controlling application to associate one flow
to another for the purpose of performing compensation.

controlling application. Any MQSeries-enabled
application or any application that is capable of
initiating a CICS program. In MQSI Agent for CICS
processing, the controlling application is responsible for
the overall business flow and that also invokes MQSI
Agent for CICS run time. The controlling application

Glossary

268 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

manages business context, complex state, multiple
request and reply interactions, asynchronous
processing, overall business flow compensation and the
continuation of one logical request through multiple
requests, if required. Examples of controlling
applications include MQSeries Integrator, MQSeries
Workflow, WebSphere, or any local or remote
application can initiate a CICS program.

microflow. The model of the functionality that is
realized in the compiled adapter. A user creates
microflows using the MQSeries Integrator Agent for
CICS Adapter Builder. At build time the microflows are
models of all, or part, of the processing of a business
transaction during adapter request processing. At run
time, the modeled microflows are implemented in
adapter request processing.

custom program. A program that augments adapter
request processing. A custom program can contain
complex rules such as logic and complex IO that could
not be modeled using the MQSeries Integrator Agent
for CICS Adapter Builder. To invoke the custom
program is exactly the same as the mechanism to
invoke a microflow processing with CICS transactions,
(that is, DPL.)

D
data-container. A named area of storage, maintained
by BTS and used to pass data between activities or
between different invocations of the same activity. Each
data-container is associated with an activity; it is
identified by its name and by the activity for which it
is a container. An activity can have any number of
containers as long as they all have different names. A
data-container can be read by all the activities that
comprise a process.

Distributed Program Link (DPL). A function of CICS
intersystem communication that enables CICS to ship
LINK requests between CICS regions. MQSI Agent for
CICS run time can initiate programs, including custom
programs using one or a sequence of DPLs, via CICS
LINK.

DPL Stub program. During MQSI Agent for CICS run
time processing, a DPL Stub program defines and runs
the BTS process (synchronously or asynchronously) and
creates process data-containers.

E
error logging. The process of writing error
information to a file. During MQSI Agent for CICS run
time processing, the error logging will occur via an MQ
queue. An error listener program allows the queue to
be drained and hardened to a VSAM resource. Error
listener program could be replaced and the queue

drained and hardened to resource such as a database, a
Tivoli interface or a third party system management
package.

F
FEPI. Front End Programming Interface. A terminal
emulator that permits CICS programs to interact with
other 3270-based applications through virtual terminal
sessions. InMQSI Agent for CICS run time, a server
adapter program can interface with IBM’s FEPI as part
of processing a business transaction. The server adapter
program interaction with FEPI must be modeled and
defined at build time. Using IBM’s FEPI product, the
server adapter program can send requests to and
receive replies from any CICS and IMS application
whose 3270 datastream is intended for a SLU2 3278
Model 2 terminal (24 rows by 80 columns), that is, the
returned buffer in the a single send and receive is not
greater than 3600 bytes.

J
journal. A set of one or more data sets to which
records are written during a CICS run:

v By CICS to implement user-defined resource
protection (logging to the system log).

v By CICS to implement user-defined automatic
journaling (to any journal, including the system log) .

v Explicitly by the JOURNAL command from any
application program (user journaling to any journal,
including the system log).

journaling. The recording of information onto any
journal (including the system log), for possible
subsequent processing by the user. The primary
purpose of journaling is to enable forward recovery of
data sets. In MQSI Agent for CICS run time, journaling
refers to the collecting and maintaining information
about the state of MQSI Agent for CICS run time and
application data to enable the compensation and
recovery of the processing of an adapter request
message.

The MQSI Agent for CICS run time journaling facility
uses CICS/BTS container services to support
compensation. Journal information is maintained only
during the processing of each adapter request message,
except in the case of failure. In the case of failure,
MQSI Agent for CICS retains state information and
application data for subsequent use in a compensation
flow.

The Navigation Manager, Navigators and server
adapter programs participate in capturing two types of
data that are used for compensation:

v State information is stored in the process and status
data-containers as part of the BTS process.

v Journal data is stored in the journal data-container as
part of the BTS process.

Glossary

Glossary 269

L
legacy application. An application to which data is
sent and from which data is received by MQSeries
Integrator Agent for CICS Transaction Server via the
FEPI server adapter program.

M
MQSeries-CICS bridge. An IBM product that
provides the interface between MQSeries enabled
applications and CICS. MQSeries-CICS bridge enables
an application, not running in a CICS environment, to
run a program or transaction on CICS and get a
response back.

If the controlling application invokes the adapter via
MQSeries, then the MQSeries-CICS bridge will provide
the interface between MQSeries and the run time
adapter. This non-CICS application can be run from
any environment that has access to an MQSeries
network that encompasses MQSeries for MVS/ESA.
The MQSI Agent for CICS run time does not require
users to signon before issuing requests for processing.
However, the run time permits customers to check
authentication levels based on the user ID and or
password in request messages for CICS programs that
are run as part of MQSI Agent for CICS run time. The
MQSeries-CICS bridge is the control point for
establishing the authentication level required. The
MQSeries-CICS bridge will link to a DPL Stub program
that in turn defines and starts the BTS process that
implements adapter request processing.

MQSI Agent for CICS message header. The required
portion of the adapter request message that provides
the meta-information used by the MQSI Agent for CICS
run time for the processing of a message in CICS.

MQSeries Integrator Agent for CICS Transaction
Server. A member of IBM MQSeries product family
that facilitates development of adapters for business
integration solutions. MQSeries Integrator Agent for
CICS Transaction Server will enable any
MQSeries-enabled application or any application
capable of initiating a CICS program to access:

v Existing CICS transactions (including custom
programs) via a distributed program link (DPL).

v Legacy CICS and IMS applications via a 3270 data
stream.

v MQSeries-enabled applications via MQSeries.

MQSeries Integrator Agent for CICS Transaction Server
consists of the following components:

v MQSeries Integrator Agent for CICS Adapter Builder

v MQSeries Integrator Agent for CICS server run time

MQSeries Integrator Agent for CICS Adapter
Builder. The part of MQSeries Integrator Agent for
CICS Transaction Server that is used to model, build

and output adapters to MQSI Agent for CICS run time.
The builder provides a graphical environment for
modeling adapters. The models generate COBOL
source code for deployment of the adapters on an
OS/390 server. The builder software consists of the
following facilities:

v Importers, for extracting information from COBOL
records and 3270 screens and storing the information
as structured data types.

v Control Center component, for a GUI that supports
the modeling and definition of the Navigators and of
the three types of server adapter programs (3270
Dialog Adapter, DPL Adapter and MQSeries
Adapter). The definitions are stored as Extensible
Markup Language (XML) documents in MQSeries
Integrator’s repository.

v Generator facility, for reading Navigator and server
adapter program definitions from the repository. The
generator also reads static templates that contain the
portion of server run time that is never affected by
modeling. The generator then transforms the
definitions and generates source code (COBOL and
JCL). The generator sends the source code to the
OS/390 server for compilation.

MQSeries Integrator Agent for CICS server run time.
The part of the MQSeries Integrator Agent for CICS
that runs and executes on an OS/390 server as a CICS
application using CICS/BTS facilities. The server run
time is capable of operating in a SYSplex environment.

The server run time consists of:

v MQSeries-CICS bridge monitor and link tasks

v A DPL Stub program that links to the Navigation
Manager

v A Navigation Manager program that invokes the
Navigator programs (The type of Navigator program
and server adapter programs generated at run time
depends on what was modeled in the builder).

v Three types of server adapter programs. These
programs perform processing as modeled in the
builder:

– The FEPI server adapter program that interfaces
with IBM’s FEPI product to access CICS and IMS
applications.

– The CICS server adapter program that interfaces
to the existing CICS transactions, including
custom programs that can be developed to
augment the adapter, via DPL.

– The MQSeries server adapter program that
interfaces to the MQSeries-enabled applications.

v Error listener program.

v Support of compensation flows and journaling.

v Support of audit levels using CICS/BTS facilities.

v Utility programs that support the server run time.

Glossary

270 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

N
Navigator. MQSI Agent for CICS run time programs
that perform adapter request processing, manage states
during the microflow processing and invoke server
adapter programs. The Navigator and the server
adapter programs are generated as the result of
modeling via the MQSeries Integrator Agent for CICS
Adapter Builder.

Navigation Manager. MQSI Agent for CICS run time
program that invokes the Navigator programs. Runs as
DFHROOT in BTS process.

P
process. In BTS, a collection of one or more activities.
A process is the largest unit that CICS BTS can work
with and has a unique name by which it can be
referenced and invoked. In MQSI Agent for CICS, the
process is uniquely identified by the 36 byte process
name value in the message adapter message header
(DFHMAHV).

process container. A data-container associated with a
process. Process containers can be read by all the
activities that make up the process. Note that they are
not the same as the root activity’s containers.

R
Resource Access Control Facility (RACF). An IBM
licensed program that provides access control by
identifying users to the system; verifying users of the
system; authorizing access to protected resources;
logging detected, unauthorized attempts to enter the
system; and logging detected accesses to protected
resources. RACF is included in OS/390 Security Server
and is also available as a separate program for the MVS
and VM environments. In MQSI Agent for CICS RACF
is used to make sure that a user has the authority to
run a particular CICS DPL bridge task.

run time. The time period during which the adapter is
operational, with business transactions being managed
and completed.

S
screen navigation. A form of data transfer between
two application programs in which the first program
accesses the second program through a terminal
emulator or other communications program, and
obtains data that would appear at known screen
locations if the second program was being accessed by
a human operator. The FEPI server adapter program
performs screen navigation to capture 3270 screen
images from legacy CICS and IMS applications.

server adapter programs. Any one of three types of
programs in the server run time that are invoked by
the Navigator program to perform the business
transaction activity defined within a microflow at build
time.

Server adapter programs include the following:

v The FEPI server adapter program that interfaces to
the legacy CICS and IMS applications. It performs
screen navigation.

v The CICS server adapter program that interfaces to
the existing CICS transactions, including custom
programs that can be developed to augment the
Message Adapter, via DPL.

v The MQSeries server adapter program that interfaces
to the MQSeries-enabled applications.

synch point. A logical point in execution of an
application program where the changes made to the
recoverable resources by the program are consistent
and complete and can be committed. The output,
which has been stalled to that point, is sent to its
destination(s), the input is removed from the message
queues, and any database updates are made available
to other applications. When a program terminates
abnormally, CICS recovery and restart facilities do not
backout updates prior to the last completed syncpoint.

synchronous. 1) Pertaining to an event that happens,
exists, or arises at precisely the same time as another
event. (2) Pertaining to an operation that occurs
regularly or predictably with regard to the occurrence
of a specified event in another process; for example, the
calling of an input output routine that receives control
at a pre-coded location in a program. Contrast with
asynchronous.

synchronous mode. A type of MQSI Agent for CICS
run time processing in which the BTS process that
implements an instance of the MQSI Agent for CICS
run time is run in the same unit-of-work with the same
commit scope as the MQSeries-CICS bridge link task.
The DPL Stub program (DFHMADPL) and the BTS
process initiated by the Stub program are run
synchronously as part of this single unit-of-work.

You would typically want to process a request in
synchronous mode if the request is merely inquiring on
status (an account inquire for example).

synchronous rollback. A type of MQSI Agent for
CICS run time processing where, as in synchronous
mode processing, the MQSI Agent for CICS BTS
process and all activities run within the process are
initiated and run in synchronous mode (i.e., BTS RUN
ACQPROCESS SYNCHRONOUS and RUN ACTIVITY (
) SYNCHRONOUS commands) however, any failure
within any activity within the process results in an
abend of the process. This has the effect of returning
the state of any and all recoverable resources updated

Glossary

Glossary 271

during adapter request processing to its original state
(the state prior to the execution of the failed adapter
request or process).

U
user. The persons that interact with both the MQSI
Agent for CICS run time and the MQSI Agent for CICS
Adapter Builder.

W
workload management. In CICS, a method of
optimizing the use of system resources by spreading
workload as evenly as possible between different
regions.

Glossary

272 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

Index

R
Run time

processing mode
asynchronous 268
synchronous 271
synchronous rollback 271

© Copyright IBM Corp. 2001 273

274 MQSeries® Integrator Agent for CICS® Transaction Server: Tutorial and Techniques

����

Printed in U.S.A.

SC34-6087-00

	Contents
	Figures
	Tables
	About MQSI Agent for CICS
	The objectives of this tutorial
	Who should use this tutorial
	Related information

	Chapter 1. Guidelines for building adapters
	Requirements analysis and design considerations
	Requirements analysis
	Design considerations
	Application interface
	Run time environment variables

	Determining the critical data structures in the server application

	Building adapters
	Deploying adapters
	High level control flow of a CICS business transaction at run time

	Chapter 2. Tutorial overview
	About the business transaction that you will model
	Accessing the files to perform the tutorials
	Assumptions
	Tutorial directory structure
	Accessing a completed workspace

	Chapter 3. Build an adapter that supports a DPL interface
	Designing an adapter
	Addressing a business need
	About the adapter you will design

	Accessing the DPL tutorial files
	Configuring the Specification files for a DPL interface
	Creating an adapter that supports a DPL interface
	Deploying an adapter
	Check to see that the adapter compiled in CICS
	Defining the adapter resources to CICS

	Chapter 4. Build an adapter that supports an MQ interface
	Designing an adapter
	Addressing a business need
	About the adapter that you will design

	Identify the components of the run time environment

	Accessing the MQ tutorial files
	Configuring the Specification files for an MQ interface
	Creating an adapter that supports an MQ interface
	Deploying an adapter
	Check to see that the adapter compiled in CICS
	Defining the adapter resources to CICS

	Chapter 5. Build an adapter that supports a FEPI interface
	Designing an adapter
	Addressing a business need
	About the adapter you will design
	Identify the components of the run time environment

	Accessing the FEPI tutorial files
	Configuring the Specification Files
	Creating an adapter that supports a CICS FEPI interface
	Import Message Sets
	Create the subflows for the FEPI adapter
	Create the Parser subflow
	Create the Signon subflow
	Create the Inquiry subflow
	Create the Signoff subflow
	Create the Reset subflow

	Create the Navigator microflow

	Deploying an adapter
	Check to see that the adapter compiled in CICS
	Defining the adapter resources to CICS

	Chapter 6. Validating the adapters
	How the Simulator works
	Preparing to use the Simulator
	Running the Simulator to validate the adapters

	Appendix. Example procedure for defining adapter resources to CICS
	Defining DPL adapter resources to CICS
	Check to see that the adapter compiled in CICS
	Defining the adapter resources to CICS
	Running the CEDA transaction

	Defining MQ adapter resources to CICS
	Check to see that the adapter compiled in CICS
	Defining the adapter resources to CICS
	Running the CEDA transaction

	Defining FEPI adapter resources to CICS
	Check to see that the adapter compiled in CICS

	Defining the adapter resources to CICS
	Running the CEDA transaction
	Define the adapter programs to CICS
	Define the adapter program transactions to CICS
	Install the adapter programs to CICS
	Install the adapter program transactions to CICS
	NEWCOPY the adapter programs to CICS

	Notices
	Trademarks

	Glossary
	Index

