

IBM Debug Tool for z/OS, V12.1

Highlights

 Provides a single debugging
tool for batch, TSO, CICS,
DB2,DB2 stored procedures
and IMS applications written in
COBOL,PL/I, C/C++ and
assembler

 Offers more productivity
enhancements when used with
Rational Developer for System
z (available separately)

 Includes tools to quickly
identify and convert OS/VS
COBOL code to ANSI 85
standard

 Supplies tools to help you
determine how thoroughly
your code has been tested

 Workstation GUI interface

In an increasingly complex and
competitive environment with
challenging business demands,
application developers are faced
with constant pressure to deliver
function-rich applications quickly.

Regardless of whether it was
designed to perform routine or
critical tasks, the underlying code
that drives your applications is
highly complex. Application
developers have to work quickly to
meet demand, with minimal errors
— even adapting code on the fly
as your business needs evolve.

To effectively build and service
applications, you need robust,
easy-to-use tools to compile, test
and debug your applications.

IBM® Debug Tool for z/OS®,
V12.1 is an interactive source-level
debugging tool for compiled
applications. It is a program testing
and analysis aid that helps you
examine, monitor, and control the
execution of applications written in
C, C++, COBOL, PL/I or
assembler on a z/OS system.

It provides debugging capability for
applications running in a variety of
environments, such as batch,
TSO, IBM CICS®, IBM IMS™, IBM
DB2®, IBM DB2 stored
procedures and IBM z/OS UNIX®
System Services.

Debug Tool also includes features
to help you identify old OS/VS and
VS COBOL II applications and to
upgrade the source code
automatically to IBM Enterprise
COBOL. It also supplies tools to
help you determine how
thoroughly your code has been
tested.

Debug Tool for z/OS, V12.1
replaces all prior versions of both
IBM Debug Tool for z/OS and IBM
Debug Tool Utilities and Advanced
Functions for z/OS. This single
Debug Tool for z/OS, V12.1
product includes all of the function
in the previous separate products
as well as the new V12.1 function.
Delivering this single
comprehensive product provides
significantly more function to
existing Debug Tool for z/OS
customers, and will help simplify
ordering and installation.

Advanced debugging of SOA and composite applications on System z

 Figure 1: Debug Tool environment

2

Debug Tool is tightly integrated
with IBM Rational® Developer for
System z® and other tools in the
IBM portfolio of problem
determination tools, so that you
can develop, test and debug
traditional and SOA applications
from the same user interface.

Data at your fingertips

Debug Tool provides an
interactive, full-screen, IBM 3270
system-based terminal interface
with four windows that enable
single-step debugging, dynamic
patching and breakpoints:

 The Monitor window displays the
status of items you select,
variables and registers. You can
view, monitor and alter
application variables or storage
in real-time.

 The Source window displays the
program code, highlighting the
statement being run. In the prefix
area of this window, you can
enter commands to set, display
and remove breakpoints.

 The Log window records and
displays your interactions with
Debug Tool and can show
program output. The information
you see in this window is
included in the log file.

 The Memory window (swappable
with the Log window) helps you
display and scroll through
sections of memory. You can
update memory by typing over
existing data with new data. The
Memory window also keeps track
of addresses for easier
navigation.

Debug Tool gives you great
flexibility to choose how to display
monitored variables and lets you
update large or small variables
directly in the monitor window.

For COBOL character variables
displayed using the automonitor
command, Debug Tool displays
values in character format
regardless of whether the string
contains unprintable characters.
You can change these values by
typing over them in the Monitor

window.
In the automonitor section of the
Monitor window, you can display
the value of a variable in the
variable’s declared data type and
displaying the user register names
in assembler AUTOMONITOR
output, when possible.

Control debugging
environment

With Debug Tool, you can choose
how you view and manage the
process of debugging your
applications. Using the full-screen
interface, you can interactively
debug almost any application as it
runs — including batch
applications.

You can start Debug Tool when an
application starts or during an
abend. Alternatively, you can write
applications so that they start the
tool automatically — at specified
times — interrupting the running of
the application.

 Figure 2: Rational Developer for System z works with Debug Tool to help mainframe developers be more productive.

3

Using the setup utility, you can
create a setup file that contains the
program information you need —
including file allocations, runtime
options, program parameters and
application name — to run your
application and start Debug Tool.

Setup files can save you time
when you are debugging a
program that you have to restart
multiple times. You can create
several setup files for each
program. Each setup file can store
information about starting and
running your program under
different circumstances.

IBM Language Environment® user
exits can be linked with the
application or with a private copy
of a Common Execution
Environment (CEE) runtime load
module.

Review source while you
debug

Debug Tool enables you to focus
on a particular problem area by
checking your application for
errors one line at a time. By using
single-step debugging — and
setting dynamic breakpoints —
you can monitor, interrupt and
continue the flow of the application
to identify errors easily.

A basic breakpoint indicates a
stopping point in your program.
For example, you can use a
breakpoint to stop on a particular
line of code. Breakpoints can also
contain instructions, calculations
and application changes. For
example, you can set a breakpoint
to have Debug Tool display the
contents of a variable when the
debugging process reaches a
particular line of code.

You can also use a breakpoint to
patch the flow of the program
dynamically. You can set
breakpoints in an application to
monitor variables for changes, and
watch for specified exceptions and
conditions while an application
runs. You can set, change and

remove breakpoints as you debug
the application. This means that
you don’t have to know where you
want to set a breakpoint before
you start debugging.

In CICS, Debug Tool supports
“pattern matching breakpoints” that
use the program or compile unit
names specified in CADP or
DTCN profiles to start Debug Tool
and provides commands to enable
and disable the breakpoints.

You can also debug applications
written in a mix of COBOL, C, C++
or PL/I languages without leaving
the tool. You can also include
assembler programs in this mix
and, using the disassembly view,
you can debug programs compiled
with the NOTEST compiler option
or applications that include other
languages.

For each programming language
you can use a set of interpreted
commands to specify actions to be
taken. These commands are
subsets of the languages — so
they’re easy to learn, and you can
modify the flow of your application
while you are debugging it. You
can use the commands to
dynamically patch (or alter) the
value of variables and structures
and to control the flow of an
application.

SOA development and
debugging

Debug Tool supports debugging of
monolithic, composite, and SOA
applications. Customers creating
new Web services — whether
newly written or refactored using
existing application assets that use
Rational Developer for System z
— can immediately debug them
using the Debug Tool plug-in
provided.

DESCRIBE CHANNEL and LIST
CONTAINER commands can
display CICS channels and
containers, including containers
that hold state information for Web

services. Users can display the
information, even if it is not being
referenced by the application
program being debugged.

Debug Tool now provides support
for invoking the z/OS XML parser
to parse complete XML 1.0 or 1.1
documents in memory. If the
document is syntactically valid, the
XML is formatted and shown in the
Debug Tool log. Otherwise,
diagnostic information is provided
to help identify the syntax error.

Enhanced debugging
capabilities

Debug Tool provides a rich set of
commands, tools and utilities to
help you to debug your programs.
When used with the setup utility in
Debug Tool, these can help to:
Prepare your high-level language
and programs for debugging by
converting, compiling (or
assembling) and linking your
COBOL, PL/I, C/C++ and
assembler source code.
-Conduct analysis on your test
cases to determine how thoroughly
they validate your programs.

In complex applications, it’s easy
to forget how you reached a
particular point in your program.
Debug Tool commands enable you
to replay statements that have
already run. If you compile your
program with the IBM COBOL for
OS/390® and VM compiler, or the
Enterprise COBOL for z/OS
compiler, you can review the
values of variables and replay the
statements while debugging.

For programs compiled with the
COBOL for OS/390 and VM
compiler, the Enterprise COBOL
for z/OS compiler, or the
Enterprise PL/I for z/OS compiler,
you can automatically monitor the
values of variables referenced at
the current statement. When the
automonitor function is active, any
variables that are referenced by
the current statement are
automatically selected for

4

monitoring. You can view these
variables in the monitor window.

Move to Enterprise COBOL
to reuse and extend
existing code

Previously, to create faster, more
efficient applications, you had to
sacrifice debugging support. With
Debug Tool you can debug
Enterprise COBOL for z/OS
applications that have been
compiled with standard or full-
optimization compiler options.

You can also analyze your load
modules to help you identify
candidate OS/VS COBOL
programs for conversion and then
to convert these OS/VS COBOL
applications to Enterprise COBOL
for z/OS. You can then compile
and debug these applications to
extend the life of your existing
code.

Debug Tool software also provides
coverage tools that enable you to
conduct analysis on your test
cases and determine how
thoroughly they exercise your
programs.

Combine with other
development tools to
optimize applications

Debug Tool shares a number of
side files with IBM Fault Analyzer,
making it easier for you to test and
manage abends in new and
existing applications. For example,
the IDILANGX file produced by
Fault Analyzer can be used by
Debug Tool to debug assembler
programs, and you can create a
readable listing from a Fault
Analyzer side file or a SYSDEBUG
file generated by the COBOL
compiler.

You can also use the Interactive
System Productivity Facility (ISPF)
panels in Debug Tool to invoke
File Manager Base, DB2 or IMS
functions and a user exit enables
you to specify a TEST run-time
option string in the DB2, IMS or
batch environments.

Debug in many
environments

IBM Debug Tool can help you
debug an application while it runs
in a host environment, such as a
batch application, TSO, ISPF,
CICS, IMS or DB2 (including IBM
DB2 stored procedures)
environments. Debug Tool can
help you debug almost any
application and almost any host
language, including COBOL, PL/I,
C/C++ and Assembler applications
running on z/OS systems.

With Debug Tool, you can compile
and link your COBOL, PL/I, C and
C++ programs, and assemble and
link Assembler programs — as
well as pre-process and compile
your CICS and DB2 programs.

IBM Rational Developer for
System z works with Debug Tool,
to give your developers a fully

integrated development, test and
debugging environment for all
applications running on z/OS,
whether traditional, SOA or Web-
based.

A CICS utility transaction (CADP
or DTCN) enables you to control
debugging in the CICS
environment. For example, you
can debug based on a specific
program or transaction name,
while other CICS-specific
capabilities enable you to specify
the span of a debug session or
view — or edit CICS storage and
diagnose storage violations.

Display and alteration of 64-bit
general purpose registers in
assembler expressions is provided
on hardware that supports 64-bit
addressing. Debug Tool correctly
displays data items according to
type, including three floating-point
data types: binary (IEEE), decimal
and hexadecimal.

 Figure 3: Formatted XML structure using List Storage command

5

New in V12.1

 Support for the IBM Explorer for
z/OS component in CICS
Explorer V1.1.1 and IMS
Enterprise Suite Explorer V2.1.2.
IBM Explorer for z/OS provides a
common framework for
managing connections between
multiple plug-ins and their server
components. When using the
framework, users are prompted
only once per session for their ID
and password, even when
accessing multiple tools on the
same LPAR. IBM Explorer for
z/OS also includes a perspective,
views, and APIs to list, create,
edit, and control z/OS datasets,
partitioned datasets, zFS files
and paths and to submit jobs and
view JES spool output.

 Delay debug mode is added,
enabling Debug Tool to operate
in a dormant state until a compile
unit of interest to the
user becomes active. Delay
debug mode is valid for non-
CICS programs written in
Enterprise PL/I or Enterprise
COBOL. When delay debug is
on, Debug Tool delays starting
the initialization for the
debugging session until a
compile unit matching the
program naming pattern in the
delay debug profile is found. That
matched compile unit is started
using the TEST runtime options
in the delay debug profile.

 You can now debug non-CICS C
and C++ applications that use
XPLINK linkage without having to
insert compiled-in hooks.
Additional benefits include
smaller load modules, enhanced
performance, and improved
interaction between Java-based
applications and COBOL, PL/I,
and Assembler.

 The three Debug Tool Language
Environment user
exits (EQADBCXT, EQADDCXT,
and EQADICXT) are merged into
a single one: EQAD3CXT.

 Remote communication security
is enhanced to enable encrypted
communication between Debug

Tool and remote debug mode for
better privacy and integrity. The
enablement uses the Secure
Sockets Level (SSL) protocol
and digital certificates.

 DTCN enhancement prevents a
non-owner from deleting a
profile. The 3270 BMS DTCN
transaction checks to see if users
are authorized to delete or
modify other owners' profiles,
and rejects unauthorized
attempts.

 DTCN profile plug-in is integrated
with CICS objects in the CICS
Explorer. This provides a new
mechanism to create or manage
a DTCN profile when you want to
debug a transaction or program.

 The Coverage Utility increases
the number of monitor sessions
from 32 to 256.

 You can specify a SET LIST BY
SUBSCRIPT command to control
the display format when you view
a COBOL array. You can change
it to display as it is stored in
memory. This enhancement is
for remote debug mode only.

 Previously, Debug Tool allowed
duplicate monitor commands
to be entered. Now users can
prevent duplicate monitor
definitions. This enhancement
potentially saves space in the
monitor window and in the
monitor commands list.

 Debug Tool does not establish a
Monitor command for Monitor
Local List expression if one or
more variables are not defined in
the specified compile unit. This
enhancement reduces
unnecessary information in the
monitor window.

 Storage overhead is reduced,
and performance of automonitor
is improved when you debug a
program with large structures.

 PL/I conditions associated with
file handling can now use
a wildcard instead of users
having to specify a file
reference.

 The EQAOPTS DYNDEBUG
command is added so that you
can specify an initial default for
the SET DYNDEBUG command.

 The %CHAR Debug Tool built-in
function is added to enable you
to display the result of an
expression in EBCDIC format.

 The NONLESP option is added
to EQANMDBG to enable you to
direct Debug Tool to use a
different storage subpool for its
storage in cases where the
program being debugged does a
FREEMAIN of subpool 1 (where
Debug Tool places its data by
default).

 A new parameter, COMPOPTS,
is now supported by the load
module analyzer. COMPOPTS
lists the compiler options that are
known at runtime to be listed for
each CSECT in the load module.

 The new EQAOPTS QUIET
keyword for the
SVCSCREEN,OFF
command can be used
to suppress the EQA2458I
message.

 The new EQAOPTS
STARTSTOPMSG command
tells Debug Tool whether to issue
a message when each Debug
Tool session starts and stops.

 The Debug Tool Utilities enable
you to customize the site default
data set name for new users for
the options Debug Tool User Exit
Data Set and Delay Debug
Profile.

 The Terminal Interface Manager
now allows you to customize the
site default data set name for the
option "LE options data set".

 The LOADDEBUGDATA
command has been enhanced to
support %CU and %PROGRAM
substitution for the cu_name
operand.

 POSIX multi-process support is
enhanced for remote debug
mode.

6

Part of a leading-edge
family of z/OS tools

Debug Tool for z/OS is part of the
IBM Problem Determination family
of products. These include IBM
Application Performance Analyzer
for z/OS, IBM Debug Tool for
z/OS, IBM Fault Analyzer for z/OS,
IBM File Manager for z/OS, and
IBM Workload Simulator for
OS/390 and z/OS.

Designed to help you maximize
your investment in IBM System z
products, these products are a
robust suite of integrated
development tools that enable you
to improve IT operational efficiency
and transform applications to
achieve greater business flexibility.

The IBM Problem Determination
tools help application developers
to improve application delivery
throughout the application life
cycle. You can use these tools to
help increase productivity and IT
effectiveness across source code
debugging, application ABEND
analysis, data management and
application performance analysis.

The IBM Problem Determination
tools do much more than support
traditional applications. They
include capabilities that enable you
to build SOA applications. They
are tightly integrated with other
tools in the IBM problem
determination tools portfolio, as
well as other tool sets. The tools
also continue to support and make
the most of the latest subsystem
levels. These capabilities help
make IBM problem determination
tools an excellent choice for your
business.

For more information

To learn more about IBM problem
determination tools, contact your
IBM representative or
IBM Business Partner, or visit the
following Web sites:

IBM Problem Determination Tools
family:
ibm.com/software/awdtools/
deployment/

IBM Application Performance
Analyzer for z/OS:
ibm.com/software/awdtools/apa/

IBM Debug Tool for z/OS:
ibm.com/software/awdtools/
debug tool/

IBM Fault Analyzer for z/OS:
ibm.com/software/awdtools/
faultanalyzer

IBM File Manager for z/OS:
ibm.com/software/awdtools/
filemanager

IBM Workload Simulator for z/OS
and OS/390:
ibm.com/software/awdtools/
workloadsimulator

© Copyright IBM Corporation 2012

IBM Corporation
555 Bailey Ave
San Jose, CA 95141, U.S.A.

Produced in the U.S.A.
April 2012
All Rights Reserved

IBM, the IBM logo, ibm.com, and
WebSphere are trademarks of IBM
Corporation, registered in many
jurisdictions worldwide. A current
list of IBM trademarks is available
on the Web at “Copyright and
trademark information” at
ibm.com/legal/copytrade.shtml .

Java and all Java-based
trademarks and logos are
trademarks of Sun Microsystems,
Inc, in the United States, other
countries, or both.

Microsoft and Windows are
trademarks of Microsoft
Corporation, in the United States,
other countries, or both.

UNIX is a registered trademark of
The Open Group in the United
States and other countries

Other company, product and
service names may be trademarks
or service marks of others.

References in this publication to
IBM products or services do not
imply that IBM intends to make
them available in all countries in
which IBM operates.

The IBM home page on the
internet can be found at ibm.com

IBM Debug Tool for z/OS, V12.1, at a glance

Hardware requirements

 Any hardware configuration capable of running IBM z/OS

Software requirements

 IBM z/OS, V1.11 (5694-A01) or later

 Depending on the functions used in the product, other related
products may be required. See the product Web site, listed below,
for more detailed software requirements

http://www.ibm.com/software/awdtools/deployment/
http://www.ibm.com/software/awdtools/deployment/
http://www.ibm.com/software/awdtools/apa
http://www.ibm.com/software/awdtools/debugtool/
http://www.ibm.com/software/awdtools/debugtool/
http://www.ibm.com/software/awdtools/faultanalyzer/
http://www.ibm.com/software/awdtools/faultanalyzer/
http://www.ibm.com/software/awdtools/filemanager
http://www.ibm.com/software/awdtools/filemanager
../../Local%20Settings/Temp/notesC9812B/ibm.com/software/awdtools/workloadsimulator
../../Local%20Settings/Temp/notesC9812B/ibm.com/software/awdtools/workloadsimulator
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/

