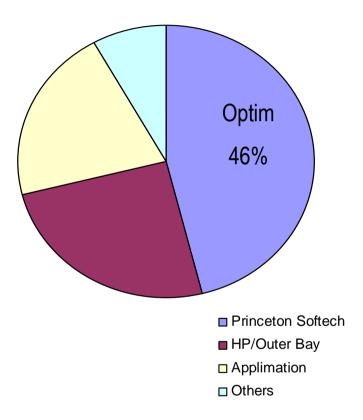


Optim™

Vállalati adatkezelés Optim megoldásokkal

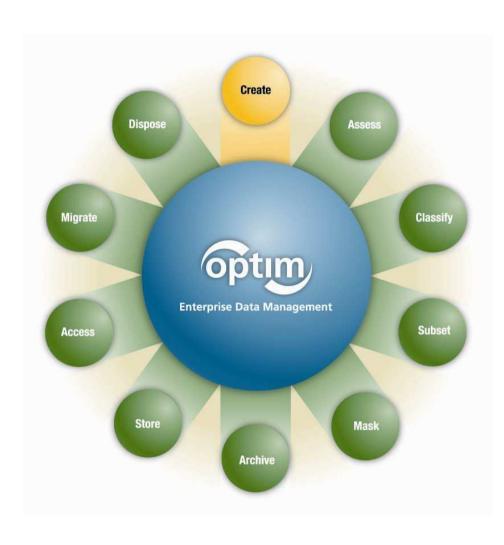
IBM Information Management software

Temesi Gergely, IBM SWG
Information Management Technical Sales
gergely.temesi@hu.ibm.com


© 2009 IBM Corporation

Optim

Princeton Softech


- Proven leader in Enterprise Data Management (EDM):
 - Data Growth
 - Retention & Discovery
 - Data Privacy
 - Test Data Management
 - Application Upgrades
 - Application Retirement
- Solving data management issues since 1989
- Partnered with major infrastructure and applications vendors: Oracle, IBM, EMC, Symantec, Hitachi and more
- 2400 clients worldwide; c. 50% of Fortune 500
- Named a Rising Star Company on Deloitte's 2006 Technology Fast 500.
 - Among 25 of the fastest growing technology, media, telecommunications and life sciences companies in North America

Source: Gartner, "Archiving Software Market to Experience Strong Growth Through 2010," 2006

Solves the EDM Challenge

Test Data Management

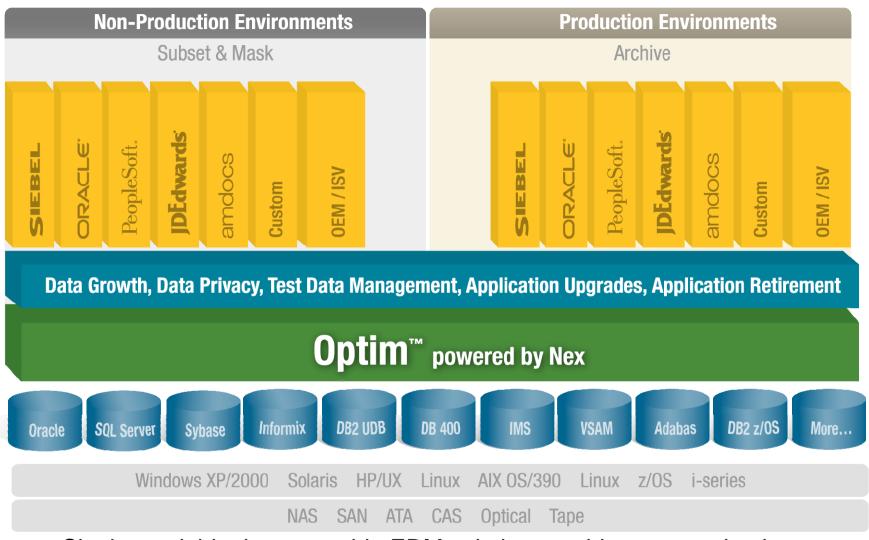
- Create targeted, right sized test environments
- Improve application quality
- Speed iterative testing processes

Data Privacy

- Mask confidential data
- Comply with privacy policies

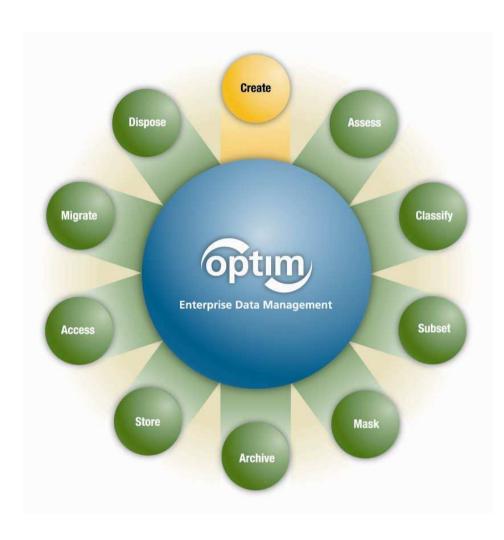
Archiving

- Improve performance
- Control data growth, save storage
- Support retention compliance
- Enable application retirement
- Streamline upgrades



Optim

Enterprise Architecture



 Single, scalable, interoperable EDM solution provides a central point to deploy policies to extract, store, port, and protect application data records from creation to deletion

Solves the EDM Challenge

Test Data Management

- Create targeted, right sized test environments
- Improve application quality
- Speed iterative testing processes

Data Privacy

- Mask confidential data
- Comply with privacy policies

Archiving

- Improve performance
- Control data growth, save storage
- Support retention compliance
- Enable application retirement
- Streamline upgrades

Software development and testing...

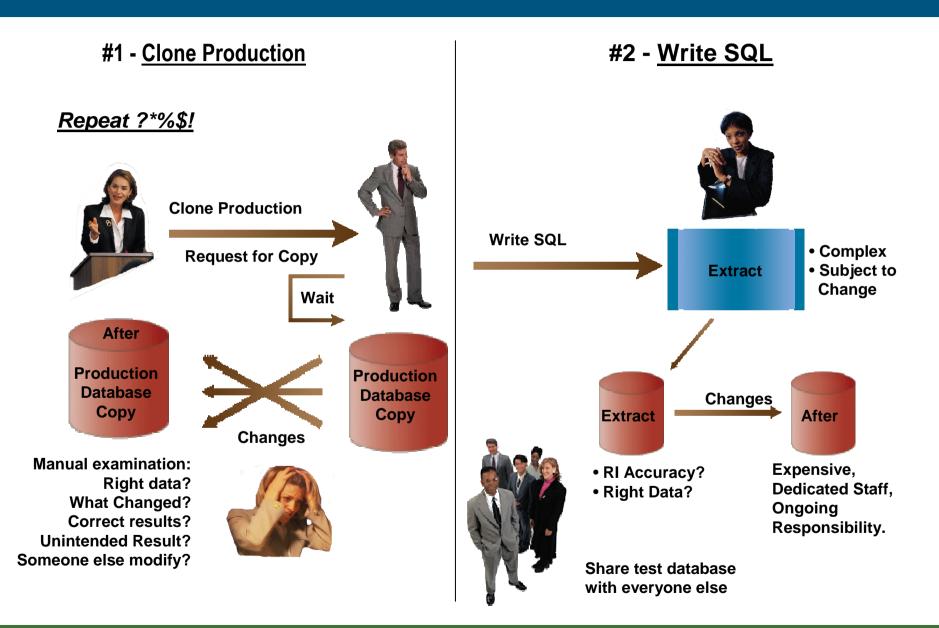
GOOD!!!

Improve Application Quality

- Avoid unplanned downtime
- Meet performance SLAs

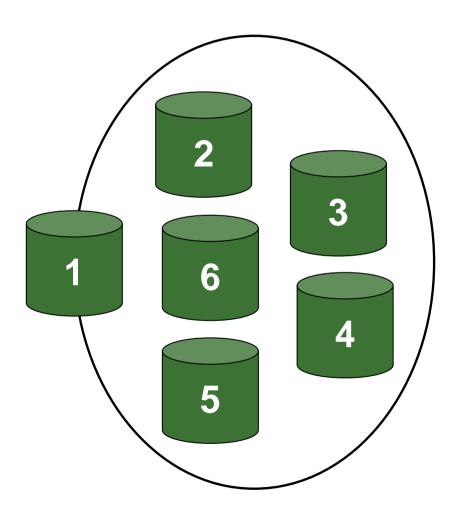
Test Smarter

Speed Time to Market


- Meet delivery schedules
- Generate revenue faster
- Gain first-mover advantage

Reduce Development Costs

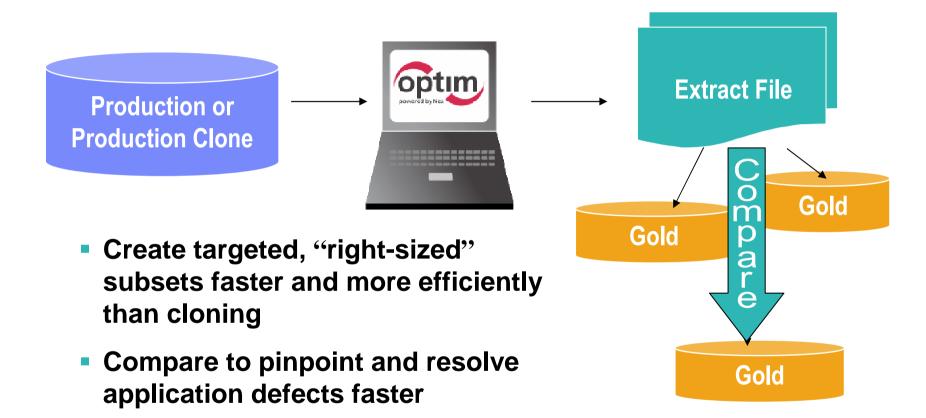
- Reclaim valuable IT staff resources
- Save on software, hardware and storage
- Discover and resolve errors in early stages
- Protect data privacy


FAST!!!

Current Practice?

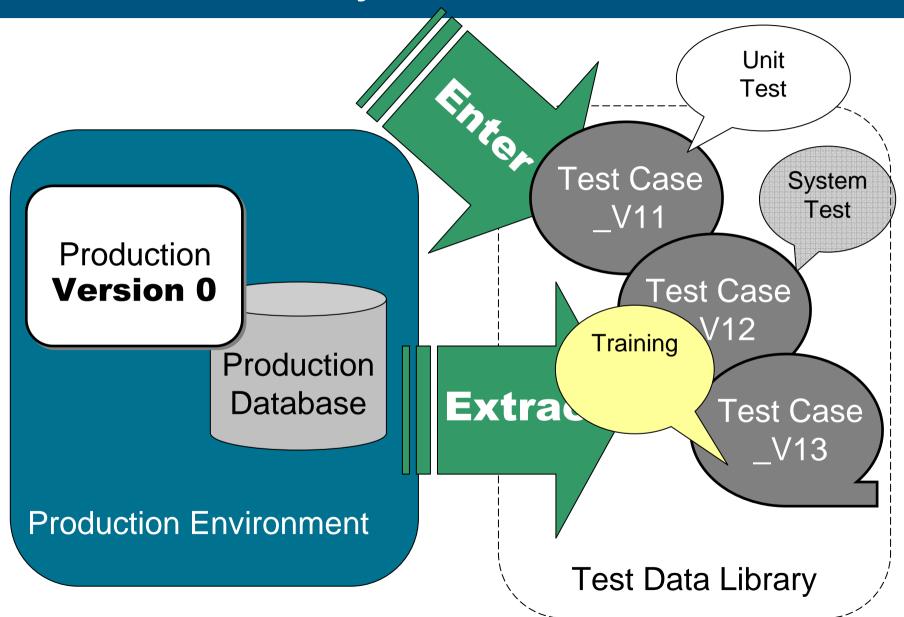
Managing Application Data Growth

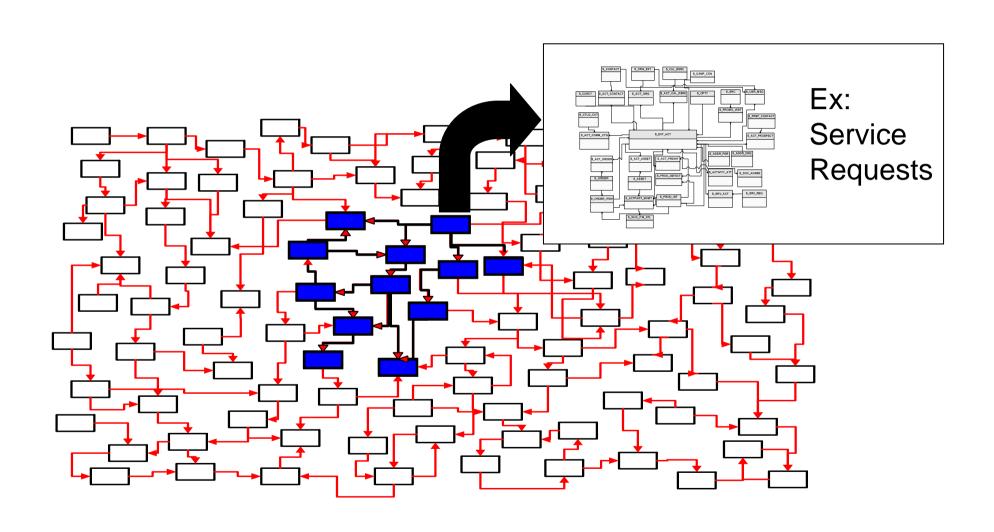
The "Data Multiplier Effect"



		4 0004 0004 0000 2 0004 0004 0000		0001 DD1 DD	4 0004 0004 0H		04 0004 0004 0 04 0004 0004 0		00100100	04 0004 0004 04 0004 0004		0010010	9 000 001 9 000 001			0001 001 01 0001 001 01	90 000 0000 0 90 000 0000 0			H 00H 000		
<u> </u>	<u> </u>		222	200	122222		82222		2222	822	<u> </u>	222		222	200	<u> </u>	466	822	<u> </u>		200	88
	800000		阿爾爾		(States)									K a Y	AYA'	888 F A	N 10 10 10 10 10 10 10 10 10 10 10 10 10	888				
	888 888 8	_A	A Y A	D 11 12	l their	ni il da	Y a B							BIP A	818	3888		1888				
	88 BBS 8	Pr	AN A	שוא	ובשוו	गारुष	A 18 8							2	AYA'	88 L *	2] 11					
															6688							
																	9 200 200 2					
		Tr		200 200 700	4 0004 0004 0H		04 0004 0004 0 04 0004 0004 0		0010010	04 0004 0004 04 0004 0004		0010010	9 000 001 9 000 001	2		0001 DOT DI	90 000 0000 0 90 000 0000 0	OK 0004 0004		H 00H 000		
<u> </u>	222	1857		28.1		3-22	82222		2222	822	<u> </u>	222		5.0 I	AYA	<u> </u>	122 XX	222	<u> </u>		200	88
		98 60	211	88 B B	S 5 8	8 8 88 8								997.48	8 T S							
		1.08.88	<u> </u>	811	B.A.	2 8 8 8 8																
					1888																	
			38 38 38												388							
	88 888 8	Ur	100 Ja 10											2	AVA							
	88	100 H A	18 is at											87 A	818							
	000 0000 A	.	888				81 2002 2003 25 10 1000 1000 10			83 2002 2002 NJ 1000 1000				9 44	8 A 8.	000 200 20 000 100 10	9 200 2000 2 0 100 1000 1			9 252 253 0 100 100		88
					2 500 500 50		0 500 500 5 0 500 500 5										9 500 5000 5			9 553 555		4
<u> </u>	200				200200000		0 200 200 2	2000	200		<u> </u>	100 100 10 100 100 10		<u> </u>			20020002			9222		9
																						88
	889													828	网络应							
		Sy	777	7776										2	AYA							
	98 P	TO MI OF												BBY A	818							
	886 L		B.C.A.	3.74	. 8. 8. 8										تهت							
		1000																				
																	9 200 200 2					
	001 0001 00 00 1000 100	K 000K 000K 000K 9 1009 1009 1000	500, 500, 500 100 100 100	0000 000 00 1000 1000 100	K (0004 00004 (01 0 7000 70000 70	00 000 000 00 10 100 100 100	04 0004 0004 0 10 1000 1000 10	01 00001 000 10 0000 100	1001 001 00	OX COCK COCK NO 7000 7000	001 0001 00 000 000 100	000 000 00 100 100 10	0 0000 0000 0 0 0000 1000 1	001 001 0001 00 100 000	500, 500, 500 100 100 100	0000 0000 00 1000 1000 10	SC 0004 00004 0 0 1000 1000 1	OX DOX DOX		01 0001 000 0 1000 1000	100K 000K 0	
	001 0001 00 00 1000 100	K 000K 000K 000K 9 1009 1009 1000	500, 500, 500 100 100 100	0000 000 00 1000 1000 100	K (0004 00004 (01 0 7000 70000 70	00 000 000 00 10 100 100 100	04 0004 0004 0 10 1000 1000 10	01 00001 000 10 0000 100	1001 001 00	OX COCK COCK NO 7000 7000	001 0001 00 000 000 100	000 000 00 100 100 10	0 0000 0000 0 0 0000 1000 1	001 001 0001 00 100 000	500, 500, 500 100 100 100	0000 0000 00 1000 1000 10	SC 0004 00004 0 0 1000 1000 1	OX DOX DOX		01 0001 000 0 1000 1000	100K 000K 0	
								3000						<u>a</u> _a						9555		88
		IJ/	488 8											2	818							
	300008	8 F _	188 8											89' ⊿8 <u>8</u>	ΔŢ0.							8
		k met für 1880	Bar 200 and											Bernerolli	100 100 100							88
	887	188 88 89			100 000 10	P*98 98 9								9 -0	7							
	88 888 1	ní	777	PA 10	7-7	THEY	7 78							86.00 X	00							
		100		9 1 6			8 8							87.A								
		LEL	ALL A		UL																	
		2 502 502 500 9 100 100 100			2 2002 2003 20 9 2009 2009 20	52 5552 5552 555 10 1000 1000 100	0 200 200 5 0 100 100 10	00 000 000 00 000 000		03 2003 2003 NJ 2009 2009		100 100 10 100 100 10	9 0000 1000 1 0 0000 1000 1			5000 5000 50 5000 500 50	9 200 2000 2 0 100 1000 1	23 (22 (22) 20 (22 (22)		9 500 500 0 100 100		8
										01 0001 000 10 1000 1000						000 DE 8		00 000 000 00 000 000				#
								3000												9555		88
				888														888				
	20 Miles		8 B 80	8 88		R 200 200 200								997 W		A . A		8 mm				
		118	4	8 100 10	_ (III	ST A B	18888							Bed BB		3 18 18		8 1				
		Γo	110	8 BK	91	A P									20	A W M	M. Con	1 89 H				
						838 Ba									悪激減			888				
					100 000 0					0 200 200						000 000 00 000 000 00						
		100 00 000	002 000 000 100 100 100	100 100 100 100 100 100	1 000 000 10 1 000 000 10	02 002 000 00 10 100 100 100				01 DECT 2000 10 DECT 2000					002 000 000 100 100 100	000 000 0 000 000 0	2 02 00 b	S SS 88			500 (SO)	

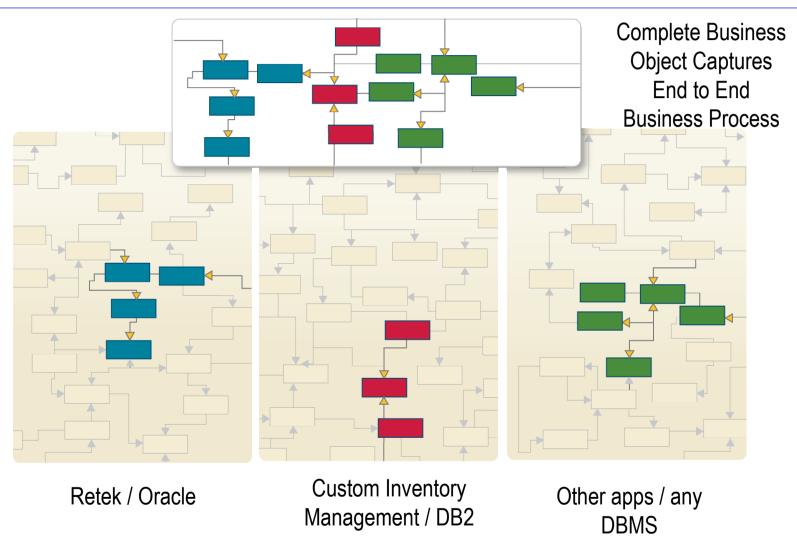
Test Data Management Projects


- Characteristics for Test Data Management Projects
 - Subset capabilities to create realistic and manageable test databases
 - Quickly refresh test environments
 - Edit data to create targeted test cases
 - Compare 'before' and 'after' images of the test data
 - Improve test coverage and quality
 - De-identify (mask) data to protect privacy



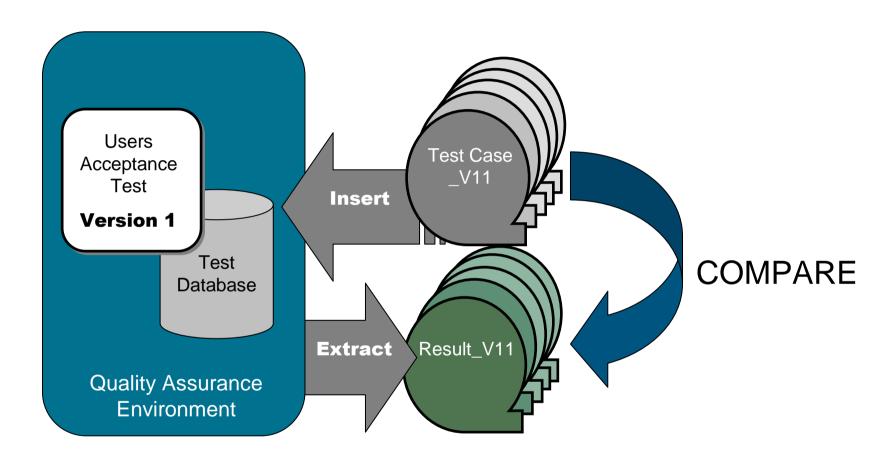
Improve development efficiencies

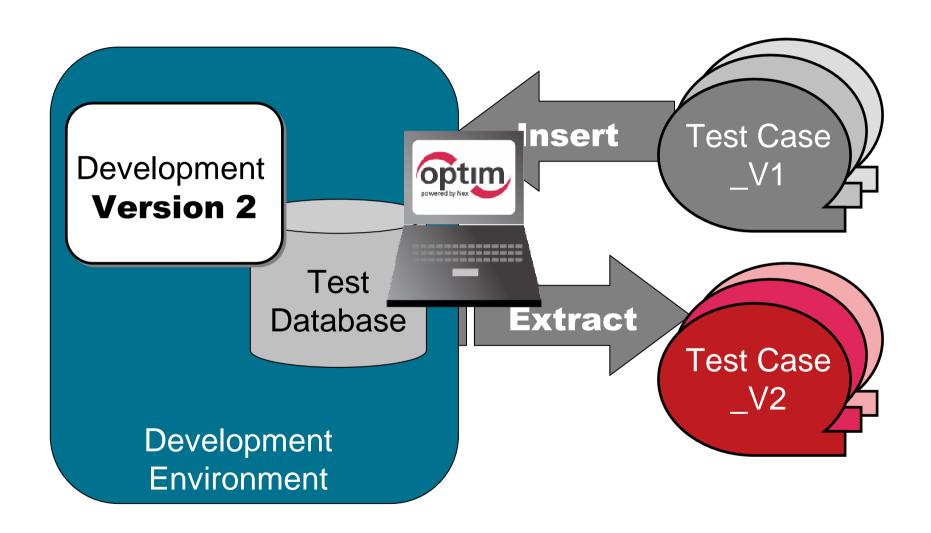
A Test Data Library



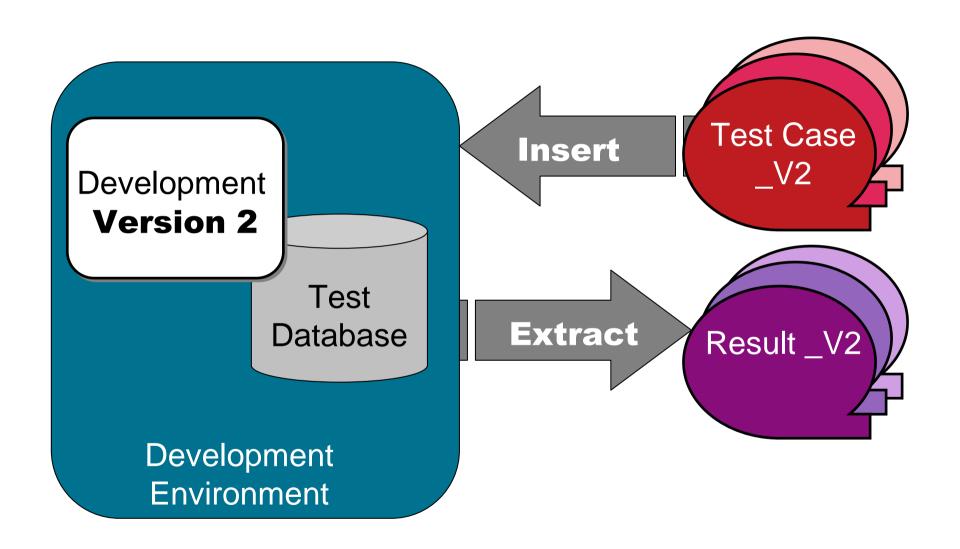
What's in a Test Case?

Federated Data Support

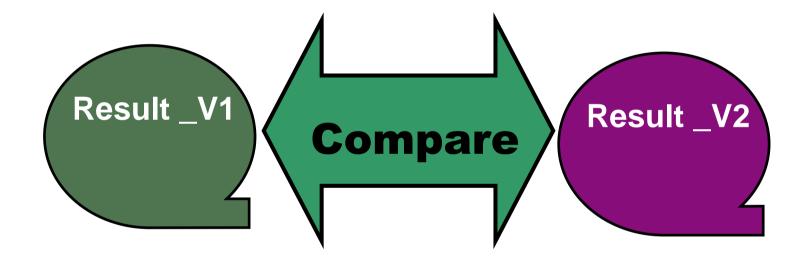




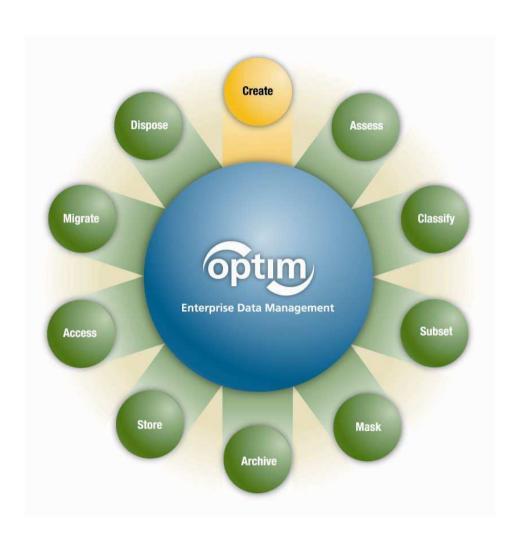
Tracking the Results



 Take snapshots of process results for later comparison Reuse Test Cases from "Test Case Library"


Version 2: Unit Test

Version 2: Regression Test



Version 2: Regression Test of Process "A"

Solves the EDM Challenge

Test Data Management

- Create targeted, right sized test environments
- Improve application quality
- Speed iterative testing processes

Data Privacy

- Mask confidential data
- Comply with privacy policies

Archiving

- Improve performance
- Control data growth, save storage
- Support retention compliance
- Enable application retirement
- Streamline upgrades

The Easiest Way to Expose Private Data ... Internally with the Test Environment

- 70% of data breaches occur internally (Gartner)
- Test environments use personally identifiable data
- Standard Non-Disclosure Agreements may not deter a disgruntled employee
- What about test data stored on laptops?
- What about test data sent to outsourced/overseas consultants?
- Payment Card Data Security Industry Reg. 6.3.4 states, "Production data (real credit card numbers) cannot be used for testing or development"
 - ▶ HIPAA, GLBA, PIPED, DDP, NPP, others

The Solution is Data De-Identification

In the News....

2007... largest off-price apparel retailer in the United States...

- TJ Maxx hack exposes consumer data
- 45.7 million accounts
- Data Breach Will Cost TJX \$1.7B
- Payment Card Industry Data Security Standard

http://blog.wired.com/27bstroke6/2007/03/data_breach_wil.html

What is Data Masking?

- AKA depersonalization, desensitization, or data scrubbing
- Technology that helps conceal real data
- Scrambles data to create new, legible data
- Retains the data's properties, such as its width, type, and format
- Common data masking algorithms include random, substring, concatenation, date aging
- Used in Non-Production environments as a Best Practice to protect sensitive data

Component A - Consistency

- Masking is a repeatable process
- Subsystems need to match originating
- The same mask needs to be applied across the enterprise
 - Predictable changes
 - Random change will not work
- Change all 'Jane' to 'Mary' again and again

Example: First and Last Name



- Direct Response Marketing, Inc. is testing its order fulfillment system
- To fictionalize customer names, use the a random lookup function to pull first and last names randomly from the Customer Information table:
 - "Gerard Depardieu" becomes "Ronald Smith"
 - "Lucille Ball" becomes "Elena Wu"

Example: Bank Account Numbers

- First Financial Bank's account numbers are formatted "123-4567" with the first three digits representing the type of account (checking, savings, or money market) and the last four digits representing the customer identification number
- To mask account numbers for testing, use the actual first three digits, plus a sequential four-digit number
- The result is a fictionalized account number with a valid format:
 - "001-9898" becomes "001-1000"
 - "001-4570" becomes "001-1001"

Masking with Key Propagation

Original Data

Customers Table

Cust ID	Name	Street
08054	Alice Bennett	2 Park Blvd
19101	Carl Davis	258 Main
27645	Elliot Flynn	96 Avenue

Orders Table

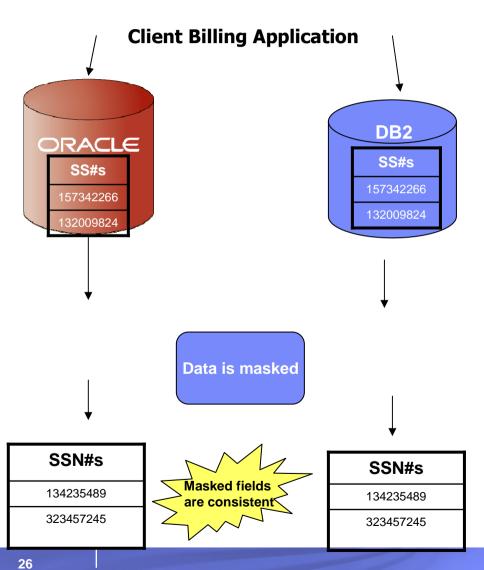
Cust ID	Item #	Order Date
27645	80-2382	20 June 2004
27645	86-4538	10 October 2005

De-Identified Data

Customers Table

Cust ID	Name	Street
10000	Auguste Renoir	Mars23
10001	Claude Monet	Venus24
10002	Pablo Picasso	Saturn25

integrity is Orders Table

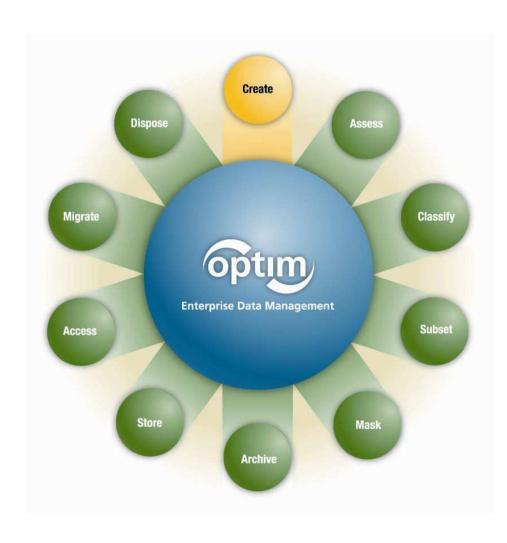

Cust ID	Item #	Order Date
10002	80-2382	20 June 2004
10002	86-4538	10 October 2005

© 2009 IBM Corporation

Referential

Component B - Context

- A single mask will affect 'downstream' systems
- Column/field values must still edits pass
 - SSN
 - Phone numbers
 - E-mail ID
- Zip code must match
 - Address
 - Phone area code
- Age must match birth date


Component C - Flexibility

- Laws being interpreted
- New regulations being considered
- Change is the only certainty
- ERPs being merged
- Masking routines will change, frequently
- Quick changes will be needed

Solves the EDM Challenge

Test Data Management

- Create targeted, right sized test environments
- Improve application quality
- Speed iterative testing processes

Data Privacy

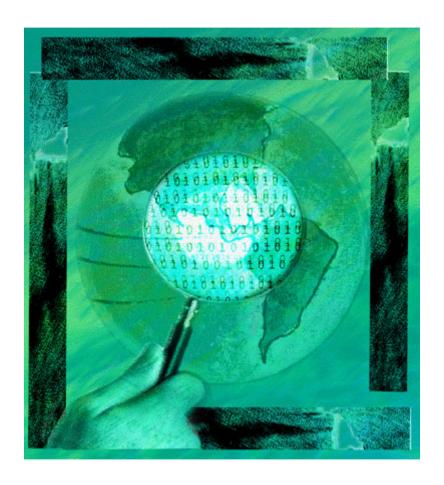
- Mask confidential data
- Comply with privacy policies

Archiving

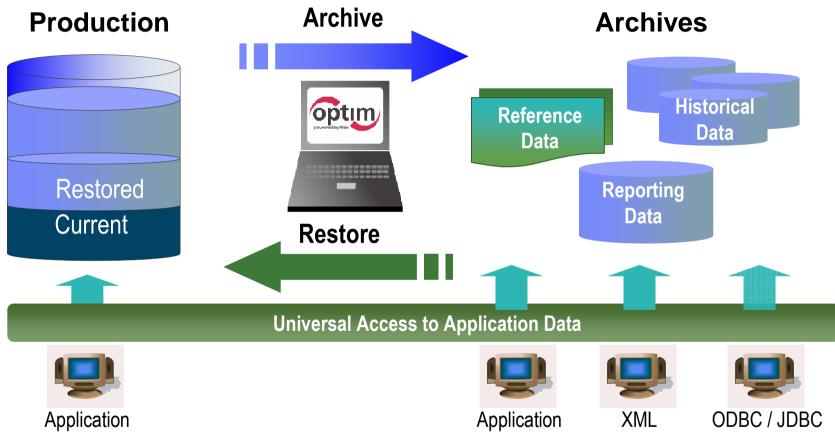
- Improve performance
- Control data growth, save storage
- Support retention compliance
- Enable application retirement
- Streamline upgrades

What are the Key Drivers of Data Growth?

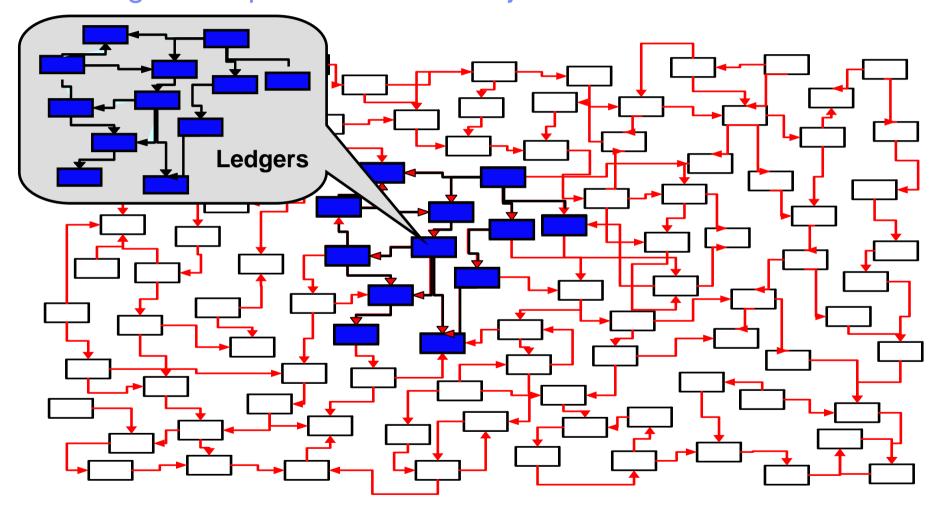
- Mergers & acquisitions
- Organic business growth
 - eCommerce
 - ERP/CRM
- The digital revolution
- Records retention
 - Basel II
 - SOX
 - Euro-SOX
- Data multiplier effect
- Forrester estimates that 85% of data stored in databases is inactive


* Source: Noel Yuhanna, Forrester Research, Database Archiving Remains An Important Part Of Enterprise DBMS Strategy, 8/13/07

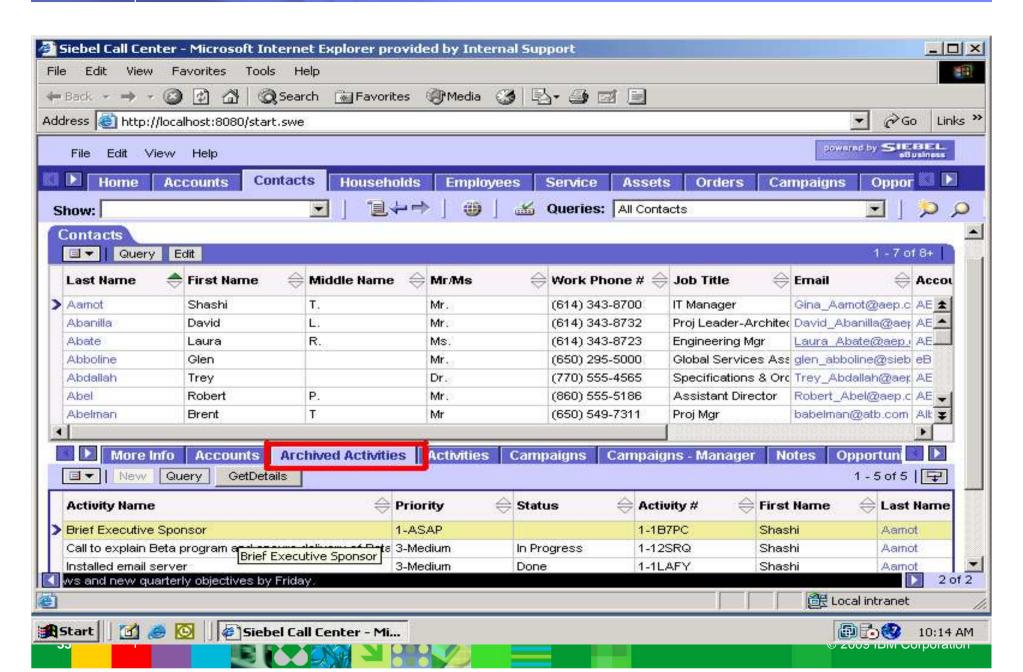
The Symptoms


- Applications perform slowly
 - SLAs are being missed
 - Customer satisfaction declining
- Backups seems to take forever
- Batch jobs run into working hours
- Legal costs are soaring
- "Every time I turn around we are buying more storage"

© 2009 IBM Corporation

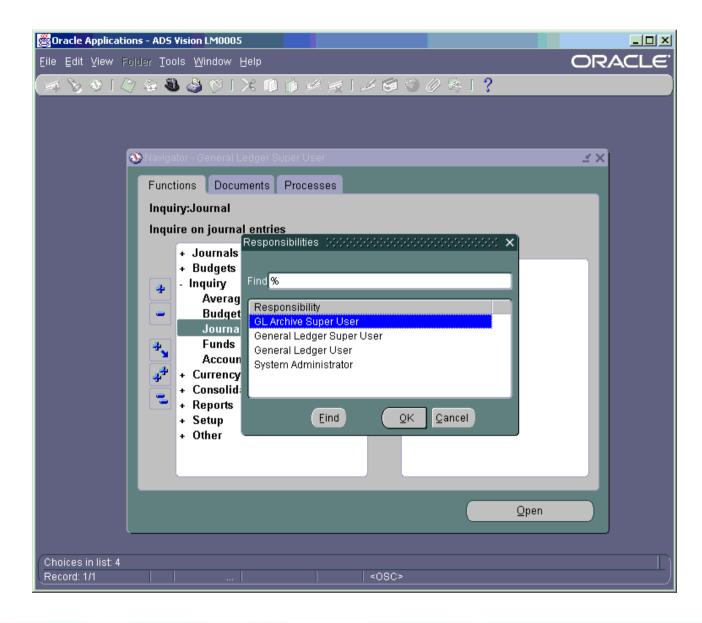

OptimTM Data Growth Solution: Archiving

- Complete Business Object provides historical reference snapshot of business activity
- Storage device independence enables ILM
- Immutable file format enables data retention compliance


Archiving a Complete Business Object

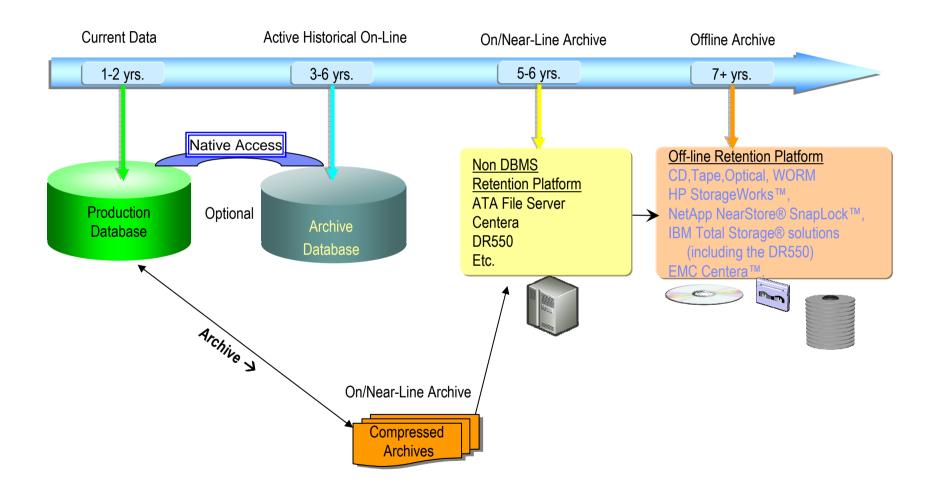
Optim

Integrated Within Siebel

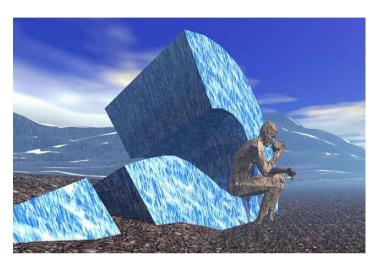


Optim

Switch to GL Archive User



Store - Data Retention Strategies



What Benefits Will You See from Data Archiving?

1) Improved Performance, Shorter Outages

Faster applications, Less outage = More Revenue

2) Reduction of Costs

Less Data in Production Environments = Significant Savings

3) Mitigation of Risks

Data Retention policies and procedures = Compliance with audit and e-discovery requests

Questions