
Getting Started
with

Versions 4.6.6 or greater

Rev. 1.0.2 2002.02.06

Getting Started with
© 2000-2002 All rights reserved
Metamerge
Akersgaten 43
N-0158 Oslo, Norway

All trademarks are the property of their respective companies.

For further enquiries, contact info@metamerge.com
Or visit the web site at www.metamerge.com
 Metamerge Integrator™

www.metamerge.com
www.metamerge.com
www.metamerge.com

Getting Started with Metamerge Integrator™

Getting Started with
Contents

Preface
1 About this manual

2 Scripting Languages

2 Installing Metamerge Integrator

3 Installing the Tutorial Files

Simplify and Solve
5 How Do You Eat an Elephant?

5 To Integrate Is To Communicate

11 AssemblyLines

12 Connectors

13 Parsers

Introducing Integrator
15 Rapid Integration Development

16 Creating A New Configuration File

19 Creating an AssemblyLine

23 Adding The Input Connector

27 Mapping Attributes Into The AssemblyLine

34 Adding The Output Connector

36 Running Your AssemblyLine
 Metamerge Integrator™ 1

40 Working With Hooks

43 Schema Conversion

46 Adding The Join Connector

47 Setting Up Link Criteria

51 Soapbox Once More
Getting Started with Metamerge Integrator™2

Getting Started with
Preface

About this manual

This book is a simple introduction to a simple system.

Make no mistake; the word ‘simple’ is used here in its most positive and powerful context,
because the best way to wrap our minds around a complex problem is to break it down into
simpler, more manageable bits and then master these constituent parts. Divide and con-
quer. And this applies equally to the problems related to engineering information exchange
across an office, an enterprise or the globe.

Reducing the complexity of an integration problem means unraveling the intricate weave of
information flows and examining them one thread at a time; Studying their direction and
content, as well as the part of the patchwork to which they belong. But this isn't much help
if the integration tools we use don't let us express our understanding of the problem in
these terms.

That's where Metamerge Integrator comes in, helping you preserve simplicity by giving you
the tools to:

! Implement your integration solution in terms of individual threads of communication
(the data flows) between systems and devices;

! Create, test and deploy each flow rapidly, and with immediate feedback;

! Easily maintain and evolve your solution as your organization and the world around it
changes.

This means that integration projects become easier to estimate and plan, often simply a
matter of counting and costing the individual data flows to be implemented. And since you
are developing the solution flow-by-flow visually and interactively, you can report and dem-
onstrate status to both project and corporate management at any time.

Furthermore, Integrator manages the technicalities of connecting to and interacting with
the various data sources that you want to integrate, abstracting away the details of their
APIs, transports, protocols and formats. Instead of focusing on data, Integrator lifts your
view to the information level, allowing you to concentrate on the business and information
management logic needed to perform each exchange.

Integrator also lets you build and maintain libraries of integration logic and components
that can be reused to address new challenges. Development projects across your organiza-
tion can all share Integrator assets, resulting in independent projects (even point solutions)
that immediately fit into a coherent, integrated integration infrastructure.
 Metamerge Integrator™ 1

Finally, the Metamerge approach results in a more rational and predictable use of resources,
since you only bring in your data source and technology experts (Oracle, DB2, SecureWay,
iPlanet, MQSeries...) at the very start of a project in order to set up your library of communi-
cation components. Once in place, these integration assets, although centrally managed,
are available across the network, letting you leverage them to create new solutions and
enhancing existing ones.

Although many of these topics are dealt with in the Customer Pages of the Metamerge
website (www.metamerge.com), this document will give you an introduction to our
approach, as well as how to tap into the radical and elegant simplicity of Metamerge
Integrator.

Scripting Languages

Integrator allows you to choose from a wide selection of scripting languages, including
JavaScript, VBScript and Perl. In fact, any script language that plugs into the Windows Script-
ing Host under Windows or the Beans Scripting Framework under Unix may be used.

If you want to use a particular scripting language which is not already available to you in
Integrator, then please contact your Metamerge representative for more information on
how to secure and install the desired interpreter, or check our online documentation.

In addition, please note that this manual (as well as other Metamerge documentation) does
not expressly cover the use or applicability any of these languages. Although JavaScript is
the language most used with Integrator — and many of the example scripts in this manual
do show the usage of JavaScript for adding transformation and computational logic to an
Integrator solution — you should refer to relevant JavaScript documentation for further
details on this language.

Installing Metamerge Integrator

Before you can install Metamerge Integrator, you must first make sure that you have Java 2,
version 1.3 or newer, installed on the machine. Note that if you are planning to run Integra-
tor under Windows (NT/2000/XP), then the you can choose between two installation pro-
grams: one that includes the Java VM, and one without.

Otherwise, the best place to get a copy of Java 2 is at: http://java.sun.com/products.
Unless you are planning on writing your own Java programs or applets, all you will need to
download and install is the run-time.

Once you have Java 2 in place, you can install Integrator using the automatic installation
program. If for some reason the installation program does not operate on your system,
please check our website for manual installation instructions, or contact your Metamerge
representative.
Getting Started with Metamerge Integrator™2

http://java.sun.com/products
http://java.sun.com/products
http://www.metamerge.com

Getting Started with
Be sure to read the release notes for the version you are installing. This is particularly impor-
tant when upgrading an existing installation.

Sometimes you will find Service Releases for the latest version. In this case it is only neces-
sary to download and install the latest service release.

Finally, please make sure that you have the latest version of Integrator installed. Otherwise
some of the screenshots in this and other documentation may differ from those presented
by your system. The cover page of the manual indicates which versions it applies to.

Installing the Tutorial Files

In order to work with the examples in this manual, you should refer back to our website for
both a link to download the necessary files, as well as instructions on where to install them.

You will still be able to complete the first part of the Getting Started tutorial without them.
However, in order to add Join functionality to your AssemblyLine, it will be an advantage to
have these example files in place.
 Metamerge Integrator™ 3

Getting Started with Metamerge Integrator™4

Getting Started with
Simplify and Solve

How Do You Eat an Elephant?

The answer is: one bite at a time. The same approach applies equally well to an integration
or systems deployment project.

The key to success is to reduce complexity by breaking the problem up into smaller, man-
ageable pieces. This means starting with a portion of the overall solution, preferably one
that can be completed in a week or two. Ideally, this should also be a piece that can be put
independently into production. That way, it’s already providing return on investment while
you tackle the rest.

Once you have isolated the piece you are going to work with, simplify it further by isolating
the basic units of communication, the data flows themselves, and you will be poised to start
implementing them using Metamerge Integrator.

Integration development is done with Integrator through a series of try-test-refine cycles,
making the process an exploratory one. This will not only help you to discover more about
your own installation, but also let you evolve your integration solution as your understand-
ing of the problem set grows.

A great way to get a good mental picture of the problem at hand is to make a picture of it.
Grab a pencil and a piece of paper (and an eraser) and sketch out a flow diagram that maps
out the solution in broad strokes. This exercise will not only help you to visual the scope of
the task, it will serve as the blueprint for implementing it in Metamerge Integrator.

To Integrate Is To Communicate

Integration problems are all about communication, and as such can typically be broken
down into four parts: The systems and devices that are to communicate, when they're sup-
 Metamerge Integrator™ 5

posed to talk, what they should say to each other and how they should say it. These four
constituent elements of a communications scenario can be described as follows:

Table 1: Integration elements

Data Sources

These are the data repositories, systems and devices that will be talking to each
other. Like that Enterprise Directory you're implementing or trying to maintain; or
your CRM application; or the office phone system; or maybe that Access database
with the list over company equipment and to whom it's been issued.

Data sources represent a wide variety of systems and repositories, like databases
(Oracle, DB2, SQL Server), directories (iPlanet, SecureWay, ActiveDirectory), direc-
tory services (e.g. Exchange), files (XML, LDIF or SOAP documents), specially for-
matted email, or any number of interfacing mechanisms that internal systems
and external business partners use to communicate with your information assets
and services.

Events

Events can be described as the circumstances that dictate when one set of data
sources is to talk to another. One example is whenever an employee is added to,
updated or deleted from the HR system. Or when the access control system
detects a keycard being used in a restricted area. An event can also be based on a
calendar/clock based timer, e.g., starting communications at 12:00 midnight,
every day except on Sundays. It could even be a one-off event like populating a
directory.

Events are usually tied to a data source, and are related to the data flows that are
triggered when the specified set of circumstances arise.

Data Flows

These are the threads of the conversations and their content, and are usually
drawn as arrows which point in the direction of data movement.

Each data flow represents a unique message being passed from one set of data
sources to another.
Getting Started with Metamerge Integrator™6

Getting Started with
There are many diagramming conventions and styles available to choose from, but the
actual shape and type of symbols is less important than your understanding of the problem.
Use boxes or balls or bubbles or whatever you're comfortable with, but be consistent and be
sure to label everything clearly and legibly. That way, when you look at your diagram in a
couple of months (or when someone else does), it still makes sense.

Let’s start our first Integrator tutorial by doing a simple a flow diagram:

Here we see the third data source (DS3) getting data from DS1. Along the way, the dataflow
also aggregates information from a second source (DS2).

First off, it’s important to understand that each AssemblyLine implements a single uni-
directional data flow. If we wish to do bi-directional synchronization between two or more

Attribute Mapping and Transformation

It goes without saying that for a conversation to be meaningful to all participants,
everyone involved must understand what is being said. But we can probably
count on our data sources representing their data content in a different ways.
One system might represent a telephone number as textual information, includ-
ing the dashes and parenthesis used to make the number easier to read. Another
one might store them as numerical data.

If these two systems are to talk together about this data, then the information will
have to be translated during the conversation. Furthermore, the information in
one source may not be complete, and may need to be augmented with attributes
from other data sources. Furthermore, only parts of the data in the flow may be
relevant to some of our output sources.

Choosing which fields or attributes are to be handled in a data flow, or passed on
to a data source, as well as how each connected system refers to and represents
this information, is called Attribute Mapping.

Table 1: Integration elements (Continued)

DS3

DS1 DS2
 Metamerge Integrator™ 7

data sources, then we will have to use a separate AssemblyLine for handling the flow in
each direction. The reason for this is that the form and content of the data, as well as the

operations carried out on it, will most likely be different for each direction1.

Although there are no limits to the number of Connectors that an AssemblyLines can con-
tain, our AssemblyLines should be made up of as few Connectors as possible (e.g., one per
data source participating in the flow), while at the same time including enough compo-
nents and script logic to make the AssemblyLine as autonomous as possible. The reasoning
behind this is primarily to make the AssemblyLine easy to understand and maintain. It will
also result in simpler, faster and more scalable solutions.

The Metamerge philosophy is all about dealing with the flows one at a time, simplifying the
problem set, so we’ll zoom in on the flow going from DS1 to DS3.

1. Integrator is fully featured for creating request-response information solutions like Web Services.
For more information, check out our website, under the Docs & Resources section of the Customer
Pages.

DS3

DS1 DS2
DS3

DS1 DS2
Getting Started with Metamerge Integrator™8

Getting Started with
This arrow could describe the operation of populating the directory, or migrating data from
one type (or version) of data store to another.

Our next step is to detail the data that will be sent.

Some data sources, like databases, view data as records that are made up of a number of
fields. Directories on the other hand handle entities, each of which contains a number of
attributes. In addition, these two types of sources use different sets of predefined data
types.

But we don’t really have to worry about how the data is stored in the sources: Integrator
takes care of that for us. Everything that gets pulled into our data flow will be converted to
a canonical format: Java objects, so that once inside the AssemblyLine, all data elements
are called “attributes”, share the same set of data types and can be dealt with in a generic
fashion.

DS3

DS1
 Metamerge Integrator™ 9

In order to complete our visualization of the data flow, we’ll record how the attributes of the
input data source are mapped (and possibly modified) to become those of the output
source.

To keep our example simple and easy to install, we’ll be using a comma-separated value

file2 as our DS1 that contains the fields First, Last and Title. Our output data source (DS3)
will be an XML document.

Now that we have a good representation of our solution, let's take a look at how Metamerge
Integrator handles data flows.

2. This input data file is available for download from the Customer pages of the Metamerge website.

First
Last

Title

First = DS1.First

Last = DS1.Last
FullName = DS1.First + “ “ + DS1.Last

Title = DS1.Title

Mail = <compute from name>

DS3

DS1
Getting Started with Metamerge Integrator™10

Getting Started with
AssemblyLines

The data flow arrows in our diagram translate in Metamerge Integrator to AssemblyLines,
which work in a similar fashion to real-world industrial assembly lines.

Real-world assembly lines are made up of a number of specialized machines that differ in
both function and construction, but have one significant attribute in common: they can be
linked together to form a continuous path from input source(s) to output.

An assembly line generally has one or more input units designed to accept fish fillets, cola
syrup, car parts — whatever the raw materials needed for production are. These ingredi-
ents are processed and merged together. Sometimes by-products are extracted from the
line along the way. At the end of the production line, the finished goods are delivered to
waiting output units.

If a production crew gets the order to produce something else, they break down the line,
keeping the machines that are still relevant to the new order. New units are connected in
the right places, the line is adjusted and production starts again.

Metamerge Integrator’s AssemblyLines work in much the same way, except that at the end
of the day, you don't have to clean out the leftover fish bits.

Integrator AssemblyLines receive information from various input units, perform operations
on this input and then convey the finished “product” through output units. Furthermore,
Integrator AssemblyLines work on only a single item at a time — i.e. one data record, direc-
tory entry, registry key, etc. Data from the connected input sources (e.g., fields, attributes,

values...) are accumulated in a Java “bucket” (called the work object) and scripts are applied
to this information, verifying data content, computing new values and changing existing
ones, until it is ready for delivery from the line into one or more output sources.

The input and output units of an Integrator AssemblyLine are called Connectors, and each
Connector is linked into a data source. Connectors tie the dataflow to the outside world,
and are also the place where most data transformation and aggregation take place. They
are also where you can layer in your business, security and identity management logic.
 Metamerge Integrator™ 11

Connectors

Connectors are like puzzle pieces that click together while at the same time linking to a
specific data source, like an SQL database, message queue or a text file.

Each time you select one of these puzzle pieces and add it to an AssemblyLine, you first
chose the type of Connector. Then you assign the Connector its role in the data flow. This is
called the Connector mode, and it tells Integrator how to use the Connector: either as in
input unit, iterating through, or looking up information in its source — or as an output

Connector, inserting, updating or deleting data in the connected system or device3.

You can change both the type and mode of a Connector whenever you want, and if you’ve
planned for this eventuality, then the rest of the AssemblyLine may not need to be changed
at all. That’s why it’s important to treat each Connector as a “black box” that either delivers
data into the mix, or extracts some of it to send to a data source. The more independent
each Connector is, the easier your solution will be to augment and maintain. Not to men-
tion making it possible to swap out data sources entirely!

By making your Connectors as autonomous as possible, you can also readily transfer them
to your Connector Library and reuse them to create new solutions faster — even share
them with others. Using Integrator’s library feature also makes maintaining and enhancing
your Connectors easier, since all you have to do is update the Connector template in your
library, and any number of AssemblyLines using this template will inherit the enhance-
ments. And when you are ready to put your solution to serious work, you can reconfigure
your library Connectors to connect to the production data sources instead of those in your
test environment, and move your solution from lab to live in minutes.

3. You might think that we've chosen to draw these puzzle pieces the wrong way: that data should be
flowing in from above and then downwards to the receiving data sources. But anyone who has ever
tried to implement an integration solution will testify that data doesn't tend flow on its own; it has to
be sucked out of input sources and then pumped into the output sources. And that's what
Connectors are good at.

LDAP
Connector

LDAP
Connector

Switched for input

Switched for output
Getting Started with Metamerge Integrator™12

Getting Started with
Whenever you need to include a new data source to the flow, simply select the desired
Connector, set it to the relevant input or output mode and insert it into the AssemblyLine.

Metamerge Integrator gives you a library of Connectors to choose from, like LDAP, JDBC, MS
NT4 Domain, Lotus Notes and JMS. And if you can't find the one you are looking for, you can
extend an existing Connector by overriding any or all of its functions using one of the lead-
ing scripting languages, including JavaScript, Visual Basic and Perl. You can even roll your
own, either with a script language inside our Script Connector “wrapper”, or from scratch
using Java or C/C++. But be sure to check the Customer Pages of our website to make sure
that someone else hasn’t already done this for you! Connectors, like all other Integrator
components, are free to download and trade.

Furthermore, Integrator supports most transport protocols and mechanisms, like TCP/IP,
HTTP and FTP — with or without SSL, or other encryption mechanisms to secure the infor-
mation flow.

Parsers

Even unstructured data, like text files or bytestreams coming over an IP port, are handled
quickly and simply with Integrator by passing the bytestream through one or more Parsers.
Parsers are a second type of Integrator component, and the system is shipped with a variety
of Parsers, including LDIF, DSML, XML, CSV and Fixed-length field. And just like Connectors,
you can extend and modify these, as well as create your own.

Continuing with our example from page 10, the next step is to identify our data sources.
Since our input data source is a text file in comma-separated value format, then we will be
using the FileSystem Connector paired up with the CSV parser. We’ll use a FileSystem
Connector for output as well, but this time we will choose the XML parser in order to format
our file as an XML document. The actual mechanics of doing this in Integrator will be dis-

Message

RDBMS Web

JDBC
Connector

Web Service
Connector

JMS
Connector

LDAP
Connector

Bus
Directory

Service
 Metamerge Integrator™ 13

cussed in a minute. First, we’ll take a look at what our AssemblyLine looks like visually, using
our puzzle pieces.

Now that we’ve identified which components to use, we are ready to build this
AssemblyLine using Metamerge Integrator. However, before you continue, you will need an
input file. You can either download this file from the Customer pages of the Metamerge
website, or create it yourself in a text editor. The data looks like this:

First;Last;Title
Bill;Sanderman;Chief Scientist
Mick;Kamerun;CEO
Jill;Vox;CTO
Roger
Gregory;Highpeak;VP Product Development
Peter;Belamy;Business Support Manager

Call this file “People.csv” and place it in the examples/Tutorial4 sub-directory of your
Integrator installation. Once it’s is in place, you are ready to build your solution using
Metamerge Integrator.

4. Please note that the examples in this manual have been created on a Windows platform, and there-
fore use the Windows pathname conventions. In order for your solution to be platform indepen-
dent, you should be using the forward slash (/) instead of the backslash character (\) in your
pathnames, e.g., examples/Tutorial/Tutorial1.cfg)

FileSystem
Connector

FileSystem
Connector

CSV
File

CSV Parser

XML
Document

XML Parser
Getting Started with Metamerge Integrator™14

Getting Started with
Introducing Integrator

Rapid Integration Development

Metamerge Integrator is actually two programs:

! Admin Tool This program gives you a graphical interface to create, test and
debug your integration solutions. It’s what we call the TIDE —
Transformation and Integration Development Environment —
and with it you create a configuration that will be executed by the
run-time engine (next point). This executable is called
MIADMIN.

! Run-time Server Using the configuration file you’ve created with the Admin Tool,
the Run-time Server powers the integration solution. This pro-
gram file is called MISERVER, and you can deploy your solution
using as many or as few server instances as you want. There are
no limitations imposed by the technology or the Metamerge Inte-
grator license agreement.

Both systems are written 100% in Java, and run in any environment that offers a Java 2 com-
pliant Virtual Machine.

If you haven't already started the Admin Tool, do so now. After a moment you should be
presented with the Main Screen. You may be asked if you wish to create a new configura-

tion file called rs.cfg. Answer Yes and you will be presented with the main screen1.

1. If the screen you see is different from the image above, your system may have a different display
setting selected. You can change this with the menu selection View | Look & Feel. Please note
also that the Integrator window is resizeable, so again, if the screenshots in this manual do not
match your own experience, try changing the size of the window on your screen.

The View | Preferences selection opens a dialog where you can set a number of other user inter-
face parameters, like whether the Button toolbar is visible or not, or if you want Integrator to use
the Status Bar at the bottom of the window.

If this does not help, check the version number of Integrator, found by selecting Help | About
from the Main Menu, and then reading the resulting dialog box. This version number should match
up with the product version information on the cover of this manual.
 Metamerge Integrator™ 15

At the top of the screen is the Main Menu and the Button Bar.

The Button Bar provides commands for creating new configuration files, open existing ones
and saving your current work. These same commands are also available under the File
menu, where you will also find the Save As selection for saving your configuration to a
new filename. Note that the path and filename of the current configuration file appear at all
times in the title bar of the Integrator window.

Creating A New Configuration File

Integrator configurations are stored in files that are created and maintained in the Admin
Tool and run by the Server. Each configuration file contains the AssemblyLines that a Server
is to run, as well as the Integrator components that make up these lines. It also holds user
preferences like colors and the GUI interface style.
Getting Started with Metamerge Integrator™16

Getting Started with
Although it’s not within the scope of this text, configurations can also be spread over sev-
eral files, and stored at several locations. Integrator will then assemble its configuration
dynamically at startup, using include URLs/filepaths that you have specified. This means
that you can create and maintain corporate settings and components that can be shared
by many server configurations.

When you start the system for the first time, Integrator will ask if you want to create the
default configuration file, called rs.cfg. Instead of using the default configuration file, we’re
going to create a new one. Do so by either pressing the New Configuration button, or by
using the File | New menu selection to create a configuration file called “Tutorial1”
(please note that the “.cfg” extension will be added for you). This file should be located in

the examples/Tutorial directory2

Looking along the left side of the window, you can see a number of tabs. These are the
Configuration Tabs, and they give you access to your AssemblyLines and EventHandlers
(which we’ll get into later). There are also tabs here for building and maintaining libraries of
Integrator components, as well as for setting system and configuration properties.

2. Note that pathnames can be written as relative to the directory that you specified when installing
Integrator.
 Metamerge Integrator™ 17

At the very bottom is the tab where you will find the set of components that are installed

with your system3.

Without going into the Admin Tool interface in great detail, we’ll go over the general layout
of these configuration screens:

First, each one shows you an Element List of selected configuration objects. You select an
item by clicking on it, and in most cases you can open or edit it by double-clicking. You can
also change the space allocated for any column in the list by moving the mouse cursor over

3. The three lists under the Base Templates tab show you which components are currently installed. If
you have just installed Integrator, then these are the components that were bundled with this
release. Additional Connectors, EventHandlers and Parsers are also available for download from the
Metamerge website as part of our Early Technology Access program. Check our website for more
details.
Getting Started with Metamerge Integrator™18

Getting Started with
the boundary between columns, and then clicking and dragging the boundary to its new
location.

At the top of each Element List is a row of buttons providing the set of operations that are
available for that type of object. The list of available operations will vary from screen to
screen, but the general behavior is the same: You select an entry in the list and then press
the button — with the obvious exception of the Add button, where you do not need to
select anything first.

Finally, you can select several elements at once by clicking on one and dragging up or down
in the list while holding the mouse button down. This is particularly handy if you want to
delete more than one element.

That will do for now. Let’s get started with creating our first integration solution.

Creating an AssemblyLine

The first thing we have to do is to create a new AssemblyLine. We do this by first selecting
the AssemblyLine Object Tab and then pressing the Add button. C this AssemblyLine
“CSVtoXML”.

You can call an AssemblyLine whatever you want, but it is important to use a naming con-
vention that will help to document your solution.

Use of special characters and spaces in naming AssemblyLines or Integrator components
(like Connectors and EventHandlers) is not good idea, as it may cause problems later when
you want to start Integrator Server from a command prompt to run your solution.

Integrator will now take you to the AssemblyLine screen. The first thing you will notice is
that this new screen fills the entire window. But don’t panic, you can go back to the Config-
 Metamerge Integrator™ 19

uration screen (or any other open object) by selecting one of the Context Tabs at the bot-
tom of the screen.

Before we start adding our Connectors, let’s take a quick look at the layout of the
AssemblyLine screen.

At the top of the details screens associated with each of the Object Tabs (in this case, our
new AssemblyLine Details display), you’ll find a colored title bar. In addition to the name of
the currently selected object, this bar holds a button row that, at the very least, has a Close
button for leaving this screen.

In the AssemblyLine Details screen we have the following buttons as well:

Connector DetailsConnector List

AssemblyLine Button Row Object Button Row
Getting Started with Metamerge Integrator™20

Getting Started with
! Run This button lets us execute the current AssemblyLine;

! Run Debug Integrator includes a data flow debugger which allows us to step
through our AssemblyLine, watching the data being transported and
transformed inside the line, as well as our own script variables, as con-
trol is passed from Connector to Connector;

! View Logfile Each AssemblyLine gets its own set of logfiles, and we use this button
to open a display window for the most recent copy.

! Close Closes this Object Details display.

The white box on the left side of the screen is the Connector List where new Connectors
appear as we add them. To the right of the Connector List is a large gray area where the
details of the currently selected Connector are displayed.

At the top of this details area are the AssemblyLine Tabs. These give you access to various
aspects of this data flow:

! Prolog The Prolog tab let’s you set up scripts to be evaluated/executed when
the AssemblyLine starts up (and before control is passed to the first
Connector).

! Data Flow Here is where the Connectors are created and maintained.

! Epilog The Epilog tab is for scripts that are to be run when the AssemblyLine
is complete and is about to exit.

! Settings which gives you a number of configuration parameters for this
AssemblyLine.

If you click on the Settings tab, you will see that you can do things here like selecting the

script language you want to use in this AssemblyLine4, as well as limiting the number of

4. Regardless of which script language you select to use in your AssemblyLine, Integrator still lets you
use components that have been scripted using other languages. So you can write your
AssemblyLine logic in JavaScript, but still use that Connector you created with VBScript, as well as
your Perl-based Parser.
 Metamerge Integrator™ 21

iterations (which is handy when developing and testing your AssemblyLine on large data
sets).

Just below the AssemblyLine Tabs is the AssemblyLine Button Row, offering you a number
of AssemblyLine operations:

Going from left to right in this row, these buttons perform the following actions:

! Add Adds a new Connector to the AssemblyLine;

! Script Creates a “data-source free” Connector, called a Script Compo-
nent, that can be used to hold script logic for manipulating data
in the AssemblyLine;

! Remove Deletes the currently selected Connector;

! Rename Allows you to change the visual name of the current Connector;

! Up Move the selected Connector up one spot towards the start of
the AssemblyLine. This position is significant since the
AssemblyLine calls the Connectors in order from top to bottom;

! Down Takes the current Connector and pushes it down in the list of
Connectors;

! Copy to Library Makes a copy of the selected Connector and drops it into your
Connector Library.

We’re going to make use of this button row in order to add our first Connector to the
AssemblyLine.
Getting Started with Metamerge Integrator™22

Getting Started with
Adding The Input Connector

Click on the Add button to create the first Connector.

We’ll call it “InputPeople” and then choose the metamerge.FileSystem template from
the list of available Connectors. This is the same list that you saw when you selected the
Base Templates tab in the main Configuration screen back on page 18, plus any Connectors
that you have in your Connector Library which show up at the top of the drop-down.

The last parameter to set here is the Connector mode, and this tells the AssemblyLine how

this Connector is to be used. Integrator has six Connector modes5:

Table 1: Connector Modes

AddOnly

This mode is for Connectors that will only be adding new information to the data source,
e.g., writing to files, populating a database or directory for the first time, etc.

Delete

Delete mode causes the Connector to search for a specific record (or records) to delete.

Iterator

A Connector in Iterator mode will run through the data source (or the desired part of it, like
a view of a database, or the sub-tree of a directory) and then return these data objects
(records, entries, etc.) one at a time for processing in the AssemblyLine. Connectors in Iter-
ator mode are called Iterators for short.

An AssemblyLine can contain more than one Iterator, and these will be executed in succes-
sion, the second Iterator starting up once the first one reaches the end of its data set.

Lookup

This mode will cause the Connector to find and return one (or more) records, and is the
mode used to join information into a data flow.
 Metamerge Integrator™ 23

There is no limit to the number of Connectors that an AssemblyLine can hold, and you can
also have as many of the same type as well — even connected to the same data source. In
some cases, this is even necessary.

For example, if you want to create an AssemblyLine to delete all the records in a data
source, you will first need an Iterator (e.g., a Connector in Iterator mode) which will run
through the data set and return each entry, one and a time, for processing. These objects
are passed on to your second Connector, which is of the same type, but this time set to
Delete mode. This AssemblyLine will loop through the input source and delete each entry
that it finds.

Sometimes it is undesirable to have multiple simultaneous connections to the same data
source (it can even be impossible due to resource locking or limits imposed by software
licenses). In this case, you can tell Integrator to reuse an existing connection when you set
up a new Connector. This is done by scrolling all the way to the bottom of the Connector
Type drop-down list. Here you will find the names of all the Connectors that appear in the

5. Please note that not all modes are available for all Connectors. For example, if you are working with
a flat file, then Lookup, Delete and Update will not be supported. Unless of course you write your
own Connector, or enhance an existing one to handle this.

Passive

Passive mode tells the AssemblyLine that this Connector is not to be executed during
normal operation.

What’s the point then? Well, let’s say that you want to log all error messages to a DB2 data-
base. You would set up a JDBC Connector to point to this data source and put it in Passive
mode. Then wherever you have error handling code (and we’ll take a closer look at this
later) you can invoke your Passive-mode Connector to write the error-log to the database.

Update

In Update mode, a Connector will first try to find the specified record (or records). If it suc-
ceeds, then existing entries will be modified with the information you pass to the
Connector.

If the lookup fails, then the Connector will add the information instead.

Table 1: Connector Modes (Continued)
Getting Started with Metamerge Integrator™24

Getting Started with
AssemblyLine before this one. These reusable Connectors appear in the list with an “at” (@)
before their names:

Returning to our example once more, as soon you have given your Connector its name,
type and mode (as we just discussed on page 23), press OK to confirm your choices. This
new Connector will appear in the AssemblyLine Connector List at the left hand side of the
window. Notice how the details for the currently selected Connector are now shown in the
Details display area to the right of the list.
 Metamerge Integrator™ 25

The first thing we have to do with any Connector that we add is configure it. You do this by
pressing the Configure... button at the top area of the Connector details display.

This will bring up the Connector Configuration dialog. This dialog is closely tied to the data
source we are connecting to, and will be different for each type of Connector.

The FileSystem Connector that we just added does not require any authentication param-
eters. However, it does need the pathname of the file to use, the I/O mode and, since we
are now working with unstructured data, a parser to pass the bytestream through in order
to format it.

Select the People.csv file in the Tutorial directory, set the Connector to input mode and
then choose the CSV parser.

Once the configuration parameters are in place, it’s time to check to see if we have a live
connection to the data source by selecting the Attributes tab at the top of this dialog.

 From this tab we can press the Connect button at the bottom of the window and see if
our Connector can reach the data source. If all goes well, then the Next button will become
enabled. Each time we press the Next button, we are telling the system to read the next
Getting Started with Metamerge Integrator™26

Getting Started with
entry in the data source, analyze the schema and then convert the source-specific data
types to their relevant Java objects, e.g. strings, date/time, integers etc.

The data retrieved from the source is displayed in the grid, with the attribute names, the
Java object types that Integrator is converting them to and the actual values found in the
data source. Not only do we confirm that we are live with the connected system or file, but
we can also do a visual control of the data being read. And don’t panic if Integrator is not
converting the underlying data types as you wish — you can always override this behavior
when you map these attributes into the data flow, as you’ll see in the next section.

Mapping Attributes Into The AssemblyLine

Attribute Mapping is the operation of moving information between the data source and our
data flow. We just saw in the previous step how Integrator not only discovers the schema for
us, it is also automatically converting the data to Java objects. So why is Attribute Mapping
necessary?

There are a couple of reasons. First off, although Integrator has made the data available to
you, the system has no preconceptions of how you intend to use it. So at the very least, you
need to select which attributes you want to use.

In addition, some of the attributes may have to be computed, combined or created, or con-
verted to a different format or type than Integrator has chosen. All this is all typically han-
dled through scripting in your Attribute Map.

Connectors are actually made up of two parts: the Raw Connector, which knows how to talk
to, and interpret responses, from a particular data source; and the generic Connector
“wrapper” that allows Connectors to plug into and operate in the Integrator AssemblyLine
framework.
 Metamerge Integrator™ 27

Information passed to (or from) a data source is kept in a temporary local storage object
inside the Raw Connector. It is from here that we map attributes into the AssemblyLine, or
in the case of an output Connector, map them out to the data source.

You can change the Raw Connector part of a Connector at any time by simply changing its
type. However, if you do, you probably also need to change the Attribute Map, since scripts
in your AssemblyLine, as well as other Connectors may be impacted by the change. Particu-
larly if the schema of the new data source is different from that of the old one.

Your Attribute Map may also be affected if you change the mode of your Connector, since
Connectors in an input mode map attributes from local storage in the Raw Connector (the
script object called conn) to the object used to store and transport data in the
AssemblyLine (the work object). Output Connectors map attributes the other way: from
work to conn.

01
10

00
11

01
01

010010111100101011001010100011010011011

Connector

Data Source

in an input mode

AssemblyLine
transports data in
the work object

Data in transit to or
from a data source is
kept in local storage
in the Raw Connector
(called the conn object)
Getting Started with Metamerge Integrator™28

Getting Started with
If we return to our example again, cast your eyes at the lower left part of the Connector dis-
play window where you’ll find the Attribute Map list.

Below this list you will find three buttons:

! New This button you add new attributes to the list. Although the Select
button (below) allows you to choose from a list of existing attributes,
the New button lets you add attributes by hand that may not be avail-
able (e.g., they may need to be computed, or perhaps optional
attributes that the Connector did not discover in the source).

! Select Pressing Select opens up a dialog with a list of attributes to select
from. For in input Connector then this is the schema that Integrator
discovered in the data source. In the case of an output Connector, this
list will contain those attributes that are already in our data flow;

! Delete Removes one or more attributes.

Press the Select button, and we’ll set up the Attribute Map for our Connector. You will be
presented with the Select Connector Attributes dialog, displaying the list of attributes that
the system discovered when you pressed Connect and Next in the Connector Configura-
tion dialog in the previous section.
 Metamerge Integrator™ 29

This dialog can be used at any time to add or remove attributes from the schema that Inte-
grator has retrieved for you.

Once the window is up, you can either select the attributes that you want individually, or
use the Select All button at the bottom of the dialog. Note that if we wanted additional

Click on Select All to tag all the attributes for inclusion, and then OK to confirm your
choice and close the dialog. Now the selected attributes will appear in the Attribute Map
part of the Connector Details display area.
Getting Started with Metamerge Integrator™30

Getting Started with
As you select attributes in this list, the details of how the mapping is performed are dis-
played off to the right. If you look to the top of these mapping details then you will notice
two radio buttons: Advanced and Simple. As you can see, we are using simple mapping

for our attributes, which means that Integrator is copying the value(s) from the Raw
Connector’s attributes with the same name.

However, if we want to convert the incoming data, or otherwise manipulate these values,
then we can script this ourselves in Advanced mode. Select Advanced mode and you’ll
notice something interesting: even in Simple mode, Integrator has actually written a little
code snippet for us.

This line of script returns the attribute called “First” from local storage in the Raw
Connector (the conn object).

We’ll take a moment to look at Integrator’s script editor window, which appears wherever
you need to write scripts. While in this window, you have a number of typical editor features
(some of them appearing as buttons in the row above the editor window).

! Arrow keys move the cursor around in the editor window. If you hold the
SHIFT key down at the same time, then you select text. Pressing
CTRL and the left and right arrow keys moves the cursor around
a word at a time. And, of course, you can combine SHIFT and
CTRL to select whole words or lines of script.
 Metamerge Integrator™ 31

! Cut cuts the selection out of the text. This function is available as
both the first button in the row above the editor window, as well
as through the CTRL-X keyboard shortcut.

! Copy copies the current selection. Copy can be done by selecting the
second button in the button row, or pressing CTRL-C.

! Paste pastes text (that you’ve copied or cut) into the script at the cur-
rent position of the cursor. You can either use the third button or
press CTRL-V.

! Undo rolls back the last editing operation. This is the fourth button.

! Redo reapplies the change that you just undid, Redo appears in the but-
ton row just after the Undo button

! Find allows you to search for text in your script. You can either click on
the sixth button (second from the right) or press CTRL+F.

! Find Again repeats the last search, appears at the right end of the button
row, and has its own keyboard shortcut: CTRL+G.

Time to try our hand at scripting by adding an attribute called “FullName” which we’ll
compute using values from other attributes read in from the input source.

So press the New button at the bottom of the Attribute Map list.

In the dialog box that appears, enter the name “FullName” and press OK.

Integrator will automatically try to use simple mapping to retrieve the value from a data
source attribute called “FullName”. This won’t work since this information is not available
in input file.
Getting Started with Metamerge Integrator™32

Getting Started with
Instead, you need to select this new entry in the Attribute Map list and click on the
Advanced mapping radio button. This gives us access to the script editor window. Here is
the script that we’ll use to create the value for this attribute:

This short script does the following for us:

var gn = conn.getString("First");
var sn = conn.getString("Last");

These first two lines get the string value of the “First” and “Last” attributes and store
them in local variables called gn and sn respectively.

ret.value = gn + " " + sn;

Our last statement returns the value of these two local variables concatenated together

with a single space between them6.

The input feed to our data flow is now finished: we are connecting to our input source,
passing the bytestream through the CSV parser one line at a time, converting these fields
to Java objects and moving this data into the AssemblyLine. It’s time to add our output
Connector.

6. We could have created this attribute in our output Connector. However, since we’re going to need it
in our AssemblyLine later, we’ll put it here in the input Connector.
 Metamerge Integrator™ 33

Adding The Output Connector

From the AssemblyLine Details screen, press the Add button again. This time we’ll name
our Connector “XMLoutput”, we’ll choose the FileSystem type once more, but this time
set the Connector to AddOnly mode since we will be writing to a file.

As always, we have to configure this Connector using the Configure button, as we did
back on page 26.

Call the output file “Output.xml” and write it to the same directory where our input file
was located. Then select Output mode and choose the metamerge.XML parser. Once

you are finished, you can press OK to close the Configure Connector dialog.

Once we are back in the AssemblyLine screen, our last step is to tell the “XMLoutput”
Connector which of our AssemblyLine attributes we want to write to our XML document. To
do this, we use the Select button at the bottom of the Attribute Map list.

Integrator will now give you a warning dialog stating that you are not selecting attributes
from the data source itself. Instead, you are about to be presented with a list over all the
attributes that are currently available in our Java “bucket” (the work object) in our
AssemblyLine.

Once you press Yes to acknowledge the warning, you will get a familiar selection list. How-
ever, if you look at the title of this dialog, you’ll see that you are now selecting from the
Getting Started with Metamerge Integrator™34

Getting Started with
Work Entry (our Java “bucket”). You can use the Select All button here to choose all the
attributes and then close the dialog.

All we have left to do now is to add the “Mail” attribute that we specified in our diagram on
page 10. This will be a computed field, and we will construct this value on-the-fly (just as we
did for “FullName” in the input Connector). In addition, since people often have more
than on email address, we’ll make this a multi-value attribute.

In order to do this, press the New button at the bottom of the Attribute Map list. This will
open a dialog asking you to name the new attribute. Call it “Mail” and press OK.

Now press the Advanced Attribute Mapping radio button and enter the script shown
below.

Let’s walk through this script:

var gn = work.getString("First");
var sn = work.getString("Last");

These first two lines store the values of the “First” and “Last” attributes in local variables.
Notice how we are using the work object to access data inside the AssemblyLine.

var att = system.newAttribute("tempname");

This next line uses a system call to create a new attribute. We have to give it a temporary
name, although this will not be transferred when we return the value at the end of the
script.

att.addValue(gn + "@company.com");
att.addValue(gn + "." + sn + "@company.com");

These two lines compute and add two values to this attribute, making it a multi-value
attribute.
 Metamerge Integrator™ 35

ret.value = att;

Finally, we return the newly created attribute. The Integrator framework will deal with this
for us, converting the complex object to the format of the output source.

At last we are ready to watch our first data flow implementation in action.

Running Your AssemblyLine

Your AssemblyLine is now complete and ready to test. To do this, press the Run button in

the Object Button Row at the top of the AssemblyLine Details area7.

7. Before you run your AssemblyLine, you may want to go to View | Preferences and check the box
entitled “reuse command window”. This will tell Integrator not to open a new window each time
your run your AssemblyLine.
Getting Started with Metamerge Integrator™36

Getting Started with
When you tell Integrator to run an AssemblyLine, the system starts up an instance of the

server and then pipes the current configuration to it8. Integrator will also create a monitor
window that the server writes its status output to.

Not counting the “Process exit code” line at the bottom that simply tells us that the server
stopped after executing the specified AssemblyLine, the output in this window is divided
into four main parts:

! First comes some information about the version of the server that you are running.

! After this is a section that describes the environment that Integrator is running in,
including which VM it is configured to use, and the working directory.

! The third part shows our license information.

! The fourth and last area the monitor output is usually the biggest, and tells you a
number of things: which parameters where used to start the server; the configuration
file that is being used; and finally messages generated during the execution of the
AssemblyLine and its Connectors. You can send messages to this screen as well, using
special Integrator objects and functions available when writing your scripts.

8. Of course, you can start up the server from outside the Admin Tool and instruct it which configura-
tion file to use. For more information, check out the online Customer Pages of our website.
 Metamerge Integrator™ 37

At the bottom of this last section is the message that our AssemblyLine (CSVtoXML) ran
without errors. That means that we should be able to open the output file that we specified
back on page 34.
Getting Started with Metamerge Integrator™38

Getting Started with
Opening this file (e.g., in a browser) will allow you to confirm that the AssemblyLine has
actually converted the CSV input data to the XML document.
 Metamerge Integrator™ 39

We can see that our input data was correctly read in from the CSV file, and then passed to
our output Connector which wrote it to the XML document. Even our “Mail” attribute is
there, computed on-the-fly for us by our script.

However, one of the entries (“Roger”) appears to be incomplete. This entry is lacking both
the “Last” and “Title” attributes. If we check our input data file (listed on page 14) then we
can see that these fields are actually missing from our input CSV file.

The easiest solution would be to edit the CSV file and add the missing fields; However, few
data sources will give us this much control. So instead, we are going to try filtering our input
by scripting a Hook.

Before we start evolving our AssemblyLine, let’s save our work first by either pressing the
Save button in the Main Button bar, by selecting File | Save from the Main Menu, or by

pressing Ctrl+S. Each time you save your configuration file, the last save time value is
updated in the title bar.

Working With Hooks

Hooks are waypoints in a Connector's work cycle where you can add logic to be executed
each time Integrator reaches that point; Like before a Delete, or after an Add operation. The
hooked script will run until completion before the Connector continues its work.
Getting Started with Metamerge Integrator™40

Getting Started with
There are a number of Hooks that are common to all Connectors, plus a few that are mode-
specific. In order to work with the Hooks of the “InputPeople” Connector, first select it in
the Connector List and then click on tab labeled Hooks (right next to Attribute Map).

There are three sets of Hooks for every Connector, represented by folders in the Hooks
tree-list:

! In Prolog, These scripts are fired up when the AssemblyLine first starts, meaning
they are run only once;

! DataFlow Here is where you’ll find the Hooks that are executed at every iteration
of the AssemblyLine, each time this Connector is run. In the above
example, since the “InputPeople” Connector is in Iterator mode
then this means that it will be doing a number of GetNext operations
to retrieve the input data. As a result, Integrator gives us Hooks like
Before GetNext and After GetNext so that we can wrap this read
operation in our own logic;

! After Epilog Hooks are executed once at the end of the AssemblyLine’s life-cycle.
 Metamerge Integrator™ 41

So, with the “InputPeople” Connector selected, click on the After GetNext Hook in the
list. Now enter the following script in the edit window to the right of the Hooks list:

Stepping through the script, let’s see what our filtering code is doing:

var sn = conn.getString("Last");
var title = conn.getString("Title");

These first two lines are retrieving the values (as strings) of two attributes that are available
in the Raw Connector (the conn object).

if (sn == null)
{

Then we check to see if the value returned for the “Last” attribute is null9, meaning that it
does not exist in the input data source. If this is the case, then the next three lines are exe-
cuted.

task.logmsg("--> Record skipped (missing data)");

The task object gives us access to AssemblyLine functions, like logmsg() which lets us
write to the AssemblyLine’s logfile.

task.dumpEntry(conn);

This time we use the AssemblyLine’s dumpEntry() function to write the contents of the Raw
Connector’s local storage object (conn) to the logfile. Note that this function works equally
well for output Connectors, except that we would be passing it the work object instead.

9. We will probably want to test for the existence of more fields in the production version of our
AssemblyLine.
Getting Started with Metamerge Integrator™42

Getting Started with
system.skipEntry();
}

Finally, we use the system object to signal to Integrator that we want to skip this input
entry, and start back at the top of the AssemblyLine loop and read the next one.

Before we test our line again, we’re going to make a slight change to the output Attribute
Map.

Schema Conversion

In our example, the output attributes happened to have the same names as those in the
input source. But let’s imagine for a moment that our specification had called for the out-
put attributes to be called “FirstName” and “LastName”.

Integrator makes mapping schemas easy, and all we need to do is update the names of
these attributes directly in the Attribute Map of our output Connector.

So, select the “XMLoutput” Connector, click on the attribute that you want to change and
start typing.

First

Last

Title

FirstName = DS1.First
LastName = DS1.Last

FullName = DS1.First + “ “ + DS1.Last

Title = DS1.Title
Mail = <compute from name>

DS3

DS1
 Metamerge Integrator™ 43

And don’t worry about this affecting scripts in your AssemblyLine, since we are only chang-
ing these names locally for the Attribute Mapping phase of the output Connector; The
“First” and “Last” attributes are still being read in correctly, and are available inside the

AssemblyLine10.

We’ll leave these changes in (even though it’s not actually part of our original specification)
and then run our AssemblyLine again. When Integrator completes, go back to the output
browser window and hit the refresh button If you closed that window, you’ll have to repeat
the steps you used to open the output file after the first run.

10. Because Integrator keeps focus in the field that you are entering, even if you switch to a different
Connector or AssemblyLine, you may need to press ENTER (or otherwise shift focus to another
Attribute) so that Integrator knows that you are finished with your changes before you trying run-
ning the AssemblyLine again.
Getting Started with Metamerge Integrator™44

Getting Started with
Once our output file is visible again, we can confirm that “Roger” is no longer there (he
used to be between “Jill” and “Gregory”). Furthermore, we can see the changes that we
made to the names of two of our attributes.

We’ll save our work again (CTRL+S), and then go to the next step: Aggregating data from a
third data source.
 Metamerge Integrator™ 45

Adding The Join Connector

Included with the Tutorial files is a simple database over people who owe us money (impor-
tant information, this!). We’ll use this source to do get information about our debtors into
the output source.

Our first step is to add a third Connector by pressing the Add button in the AssemblyLine
Button Bar. Call this one “Debtors” and choose the metamerge.BTreeObjectDB
Connector type. This Connector needs to be in Lookup mode since we’ll be searching for
records that match the data inside our AssemblyLine.

We were working with the “XMLoutput” Connector last, so when we add one to the list,
Integrator drops our new Connector right after the one currently selected. But this won’t
work, because we need to do the aggregation between the input and output Connectors.

To fix this, press the Up button in the AssemblyLine button row.

This moves our Connector up one slot so that it will be executed after “InputPeople”, but
before “XMLoutput”.

Once again we press the Configure... button to set up this Connector.

Enter the pathname of the data file, which may be different from the one above, depending
on where you installed Integrator (note that the database file itself is called “Debtors.dat”).
In the Key Attribute Name field you need to specify the name of the attribute that differ-
entiates these records. In our tutorial database this is the “FullName” attribute (which
should give you a hint as to why we constructed a similarly named attribute in our input
Connector).
Getting Started with Metamerge Integrator™46

Getting Started with
To test our Connector, we select the Attributes tab, press Connect and then Next. You
should now be able to see the data in this source.

Again, Integrator is reading the schema and converting the data accordingly to Java objects.
You can close this dialog now.

Now we set up the Attribute Map by pressing the Select button under the Attribute Map

list, and then pick only “Amount” and “DateOfLoan” from the list presented11. That’s all
we need, plus we already have an attribute named “FullName” so we don’t need to aggre-
gate this data into our AssemblyLine.

Setting Up Link Criteria

Because it’s in Lookup mode, our new “Debtors” Connector will be searching for specific
entries in its data source, trying to find a match for the entry that is already inside the
AssemblyLine. Exactly how this match will be made is specified by us in what is called the
Connector’s Link Criteria.

If you take a look at the AssemblyLine screen (still in the DataFlow tab for our
AssemblyLine), you’ll see that because our Connector is in Lookup mode, we’ve got a new
tab next to Attribute Map and Hooks.

Selecting this tab brings up the Link Criteria display where we can specify how this
Connector is to do its lookup.

11. As you’ll see in the following section, we are about to use this data source’s “FullName” field to
set up our Link Criteria. However, an attribute does does not need to be included in our Attribute
Map in order for us to use it as part of a Link Criteria.
 Metamerge Integrator™ 47

Now, do you recall how we looked at Integrator’s feature for scripting an Attribute Map
directly ourselves? The same applies here, so by clicking the Advanced Link Mode
checkbox (just under the Link Criteria tab itself) we get an Editor window where we can
write the data source specific lookup call ourselves. This could be an SQL SELECT state-
ment for a JDBC Connector, or an LDAP search call if we where connected to directory.

However, just as with Attribute Mapping, Integrator can handle the details of this for us
automatically, creating the relevant command for the underlying data source, and keeping
our solution a bit more data source independent.

We’ll use this feature and simply press the Add button at the bottom of the screen (shown
in the screenshot above).

When the Link Criteria dialog box appears, we first choose an attribute from the schema
that Integrator discovered in the data source. Then we select a comparison operation (like
equals or contains). The last field lets us specify the attribute inside our AssemblyLine to
be compared. to.
Getting Started with Metamerge Integrator™48

Getting Started with
For our example, we’ll choose the “FullName” attribute from our Debtors data source,

the equals operation, and then the “FullName”12 attribute that we scripted in our input
Connector. Press the OK button when you’re done.

Once the dialog is closed and you are back in the AssemblyLine screen, select the
“XMLoutput” Connector so that we can update its Attribute Map to include the data that
we’re aggregating into the line. Do this by once again pressing the Select button under the
Attribute Map list, clicking past the warning again, and then choosing the new “Amount”
and “DateOfLoan” attributes.

You may be wondering why the “First” and “Last” attributes no longer appear to be
selected. That’s because when Integrator builds this list, it compares the current Attribute
Map with the list of available attributes to see what’s already been included. Since we’ve
changed the names of the “First” and “Last” attributes for our output map, Integrator
can’t find them in our Attribute Map anymore, and un-checks them in the selection dialog.
If you were to click on them, then these attributes would be added to the mapping list with
their original names again.

Now you can close this dialog box, save your work and run the AssemblyLine again.

12. You probably noticed the dollar sign ($) in front of the “FullName” attribute coming from our
AssemblyLine. This special character causes Integrator to retrieve the first value of this attribute (it
might have any number of values) to use in building the Link Criteria. If we wanted to match any
one of the values of a multi-value attribute, we would use the at sign (@) instead.
 Metamerge Integrator™ 49

Our XML document should now look like this13:

We can see a couple of important changes here: First, we can see the two new “Debtors”
fields that we included in the output. Secondly, and possibly a bit of a surprise, we notice
that our XML file now includes only three entries.

13. Please note that the order in which the attributes for each entry appear is not relevant, and may not
be the same on your system as it appears in the screenshots of this manual.
Getting Started with Metamerge Integrator™50

Getting Started with
That’s because these are the only entries in our input source (“InputPeople”) that Integra-
tor managed to match with data in our aggregation source (“Debtors”). When our Lookup
Connector did not find matching information in the database, it faulted to the
AssemblyLine error handler which then skipped this entry — like when we used the
system.skipEntry() function in our input filter script.

If this is not what we want, then all we have to do is enable the On Error Hook of our
”Debtors” Connector.

Instead of sending the Lookup Failed error to the AssemblyLine error handler, Integrator
detects that we have error handling code of our own and uses it instead. Of course, we will
probably want to do something a bit more intelligent than just enabling an empty script
Hook.

In addition, remember how we filtered out “Roger” during our initial input? This could
cause a situation where the person or people filtered during input actually owed us money,
but our AssemblyLine never gets that far with these records.

As an alternative, we could have created default values for missing attributes in our first
Connector. Integrator gives you a number of ways to handle missing values.

However, this won’t help much in our case, since we want real values for both “First” and
“Last” in order to create a “FullName” attribute which we later need in the “Debtors”
Link Criteria.

Hmmm. Back to the drawing board.

Soapbox Once More

As you can see, although Integrator makes building our data flows fast and easy, the quality
of the resulting solution is dependent on how good our specification is. But Integrator actu-
ally helps us here as well by removing the platform and vendor technology blinders that
block our vision and limit our imagination.
 Metamerge Integrator™ 51

And when you approach an integration problem at the data flow level, you reduce complex-
ity. This gives you gains across the board: in deployment speed, accuracy of the solution,
robustness, maintainability... The list goes on. In fact, as you start to think in terms of
Metamerge's simplify and solve mantra, you will see your installation, and its integration
possibilities, from a whole new perspective.

Integrator also keeps making a difference long after your solution is finished and deployed;
Because as your business and technical requirements change, Integrator lets you enhance
and evolve your solution to meet these new challenges. That's the beauty of Integrator:
incremental implementation. It means that you can grow your integration solution (and
your infrastructure) to fit your needs, as well as the environment where it’s going to live.

Perception is reality, and our perception is formed — and limited — by the toolset we use.
The choice is simple: You can continue to accept reality as you perceive it, whittling away at
the vision of your integration infrastructure in order to make it fit the tools you are using. Or
you can switch tools.

But be warned — it may be hard to go back.
Getting Started with Metamerge Integrator™52

	Preface
	About this manual
	Scripting Languages
	Installing Metamerge Integrator
	Installing the Tutorial Files

	Simplify and Solve
	How Do You Eat an Elephant?
	To Integrate Is To Communicate
	Table 1: Integration elements �

	AssemblyLines
	Connectors
	Parsers

	Introducing Integrator
	Rapid Integration Development
	Creating A New Configuration File
	Creating an AssemblyLine
	Adding The Input Connector
	Table 1: Connector Modes �

	Mapping Attributes Into The AssemblyLine
	Adding The Output Connector
	Running Your AssemblyLine
	Working With Hooks
	Schema Conversion
	Adding The Join Connector
	Setting Up Link Criteria
	Soapbox Once More

