
Getting Started with Metamerge Integrator

Getting Started
with

Metamerge
Integrator

Copyright © 2001, Metamerge
2001.06.21

Getting Started with Metamerge Integrator

Getting Started with Metamerge Integrator

Copyright and Trademark Acknowledgements

All Metamerge products, as well as this manual, are copyrighted, and all rights are reserved by
Metamerge. This manual may not, in whole or in part, be copied, photocopied, translated, or
reduced to electronic medium or machine-readable form without prior written consent from
Metamerge.

The information in this manual is subject to change without notice, and Metamerge assumes no
responsibility for any errors that may appear in this document. This includes references in this
manual to specific platform support.

Integrator is a trademark of Metamerge.

Java and JavaScript are registered trademarks of Sun Microsystems, Inc.

Lotus Notes and Domino are registered trademarks of Lotus Development Corporation.

Windows, SQL Server, Visual Basic and Outlook are registered trademarks of Microsoft
Corporation.

All other company and product names are the trademarks or registered trademarks of their respec-
tive companies.

Getting Started with Metamerge Integrator

Getting Started with Metamerge Integrator

Contents

i

Preface 1
About this manual. 1
Installing the Integrator. 2

Atomizing the Problem 3
Keeping it Simple . 3
The Integrator . 7
Parsers. 10
Connector modes . 11

Working with the Integrator 15
The Admin Interface. 15
Adding AssemblyLines . 20
Adding Connectors . 21
Configuring Connectors . 24

Contents

Getting Started with Metamerge Integratorii

Configuring Parsers . 26
Attribute Mapping . 30
Running an AssemblyLine . 35
Connector Hooks . 39
Aggregating data. 43

Getting Started with Metamerge Integrator 1

Preface

About this manual This book is a simple introduction to a simple system.

Make no mistake; we are using the word ‘simple’ in its most
positive and powerful context, because the best way to wrap our
minds around a complex problem is to break it down into
simpler, more manageable bits and then master these constituent
parts. Divide and conquer. And this applies equally to the prob-
lems related to engineering information exchange across an
office, an enterprise or the globe.

Reducing the complexity of an integration problem means unrav-
eling the intricate weave of information flows and examining it
one thread at a time; Studying their direction and content, as well
as which part of the patchwork they belong in. We all know why
this is important: Understanding is measured in depth, and that
means sticking your head below the surface to get a glimpse of
how deep the rabbit hole really goes.

But this isn't much help if the integration tools we use don't let us
express our understanding of the problem in such simple terms.

Preface

Getting Started with Metamerge Integrator2

That's where the Metamerge Integrator comes in: Helping you
preserve simplicity by giving you the tools to do three things:

z Implement your integration solution in terms of individual
(and comprehensible) threads of communication between
systems and partners.

z Deploy each thread rapidly, and with immediate feedback.

z Maintain and evolve your solution as your organization and
the world around it changes.

Instead of imposing a new view on your information infrastruc-
ture, the Integrator gives you tools to construct the view your
organization wants and needs.

The rest of this document is about tapping into the radical sim-
plicity of the Integrator.

Installing the Integrator Before you can install the Metamerge Integrator, you must first
make sure that you have Java 2, version 1.3 or newer, installed
on the machine.

The best place to get a copy of Java 2 is at

http://java.sun.com/products.

Unless you are planning on writing your own Java programs or
applets, all you will need is the run-time.

Once you've got Java 2 in place, you can install the Integrator
using the automatic installation program.

Be sure to read the release notes for the version you are install-
ing. This is particularly important when upgrading an existing
installation.

In addition, please make sure that you have the latest version of
the Integrator installed. Otherwise some of the screenshots in
this and other documentation may differ from those presented by
your system.

Getting Started with Metamerge Integrator 3

Atomizing
the
Problem

Keeping it Simple The first challenge in solving an integration problem is specify-
ing exactly what needs to be integrated: which systems and
devices are involved, what information they need to exchange
and when.

This can be a difficult task, even if you feel that you have a good
grasp of the situation. For example, try explaining the problem to
someone who isn't as close to it as you are; Or to someone who is
very close to only a few of the systems to be integrated. You'll
probably discover a number of new angles and considerations
that you were not aware of. What seemed up front to be a cut-
and-dried integration project can suddenly begin to look very
complex.

The key to success is to lessen the complexity by breaking the
problem up into smaller, simpler pieces. Atomize and implement.
The Metamerge Integrator gives you the tools to incrementally
implement your integration solution, letting you literally grow
your integration infrastructure one dataflow at a time, and giving
you constant feedback on how the solution is evolving. By turn-

Atomizing the Problem

Getting Started with Metamerge Integrator4

ing the implementation process into an exploratory one, the
Metamerge Integrator will also help you to discover more about
your own installation, evolving the integration solution as your
understanding of the problem set grows.

A great way to get a good mental picture of the problem to be
atomized is to make a picture of it. Grab a pencil and a piece of
paper and sketch out a flow diagram that maps out the integration
problem in broad strokes. This exercise will not only help you to
understand the solution better, it will serve as the blueprint for
implementing it in the Metamerge Integrator.

Integration problems are communication problems, and as such
can typically be broken down into four parts: The systems and
devices that make up the participants in the communication,
when they're supposed to talk, what they should say to each other
and how they should say it. In an integration setting, the constitu-
ent parts can be described as:

Table 1: Integration elements

Data Sources These are the data repositories, systems and devices that
will be talking to each other. Like that Enterprise Directory
you're implementing or trying to maintain, or your CRM
application or the office phone system, or maybe that
Access database with the list over company equipment
and to whom it's been issued. Because the Metamerge
Integrator supports a number of standard data access
API's, like JDBC and ODBC, it can talk to most databases,
including Oracle, Sybase, IBM DB2, Microsoft SQL Server
and Access.

And a database is just one specific type of data source. In
fact, data sources can be a wide variety of systems or
repositories, like a directory service (e.g. Exchange), an
XML document, an LDIF or SOAP file, specially formatted
email, or any number of interfacing mechanisms that
internal systems and external business partners use to
communicate with your company. It can even be a stream
of raw data coming in over an IP port.

Events Events can be described as the circumstances that dictate
when one data source is to talk to another. For example,
whenever a new employee is added to, or deleted from the
HR system. Or when the access control system detects a
keycard being used in a restricted area. Or a calendar/
clock based timer, which starts communications at 12:00
midnight, every day except on Sundays. Or maybe it's a
one-off event: like populating a directory from a collection
of underlying data repositories.

Atomizing the Problem

Getting Started with Metamerge Integrator 5

There are many diagramming conventions and styles available to
choose from, but the actual shape and type of symbols is less
important than your understanding of the problem. Use boxes or
balls or bubbles or whatever you're comfortable with, but be con-
sistent and be sure to label everything clearly and legibly. That
way, when you look at your diagram in a couple of months, you
will still understand it.

If we start by sketching out the data sources and data flows, then
one example of a flow diagram (minus the message content
labels) could look like this:

Here we see the Enterprise Directory (ED) getting data from the
database (DB1). Along the way, the dataflow also picks up infor-
mation from DB2.

Data Flows These are the threads of the conversations and their
content. They are drawn as arrows which point in the
direction the data is to move, with each flow representing a
unique message being passed from one data source to
another. These flow arrows should also be labeled to
indicate the actual data being communicated (e.g.
employee name, phone number, date of employment, etc.)

Attribute Mapping
and

Transformation

It goes without saying that for a conversation to be
meaningful to all participants, everyone involved must
understand what is being said. But that doesn't mean that
all data sources look at each piece of data the same way.
One system might represent a telephone number as
textual information, including the dashes and parenthesis
used to make the number easier to read. Another data
source might store them as numerical data. If these two
systems are to talk together about this data, then the
information will have to be translated during the
conversation. Furthermore, the information may need to be
aggregated with data from other data sources, and parts of
the conversation may be directed at different receiving data
source, resulting in branching arrows.

Table 1: Integration elements (Continued)

ED

DB2

DB1

Atomizing the Problem

Getting Started with Metamerge Integrator6

The Metamerge philosophy is all about dealing with the flows
one at a time: atomizing the problem. So let's take a closer look at
the part of the flow arrow going from DB1 to the directory.

This flow describes the operation of populating the directory, fill-
ing it with information gathered from the database. We’ll deal
with the branch coming from DB2 later.

Now we need to detail the data that will be sent, as well as the
circumstances for the transfer. Databases tend to view data as
records that are made up of a number of fields. Directories on the
other hand handle entities, each of which contains a number of
attributes. In order to complete our visualization of the data flow,
we will need to show how the fields of a database record are
mapped (and possibly modified) to become the attributes of the
directory.

Now that we have a good representation of our solution, let's take
a look at the interface of the Metamerge Integrator administration
tool.

EDDB1

ED
Email

DB1
Email
First
Last
Title

First
Last
FullName

Alias

Title

 DB1.First + “.” +

= DB1.Email
= DB1.First
= DB1.Last
= DB1.First + ‘ ’ +

= DB1.First,

= DB1.Title

Database
w/ Records

Directory
w/ Entries mapped from DB1 records

 DB1.Last

 DB1.Last

Atomizing the Problem

Getting Started with Metamerge Integrator 7

The Integrator The data flow arrows in our diagram translate in the Metamerge
Integrator to AssemblyLines, which work in a similar fashion to
real-world industrial assembly lines.

An AssemblyLine is made up of two or more processing units
called Connectors, and each Connector is linked into either an
input or an output data source.

It’s important to emphasize that each AssemblyLine should be
used to implement a single uni-directional dataflow line in our
diagram. If we wish to support bi-directional synchronization

Real-world assembly lines are made up of a number of spe-
cialized machines that differ in both function and construc-
tion, but have one significant attribute in common: they can
be linked together to form a continuous path from input
source(s) to output.

An assembly line generally has one or more input units
designed to accept fish fillets, cola syrup, wood shavings -
whatever the raw materials needed for production are.
These materials are processed, often with by-products
being extracted along the way. Finally the finished goods are
delivered from the line in the desired form.

If a production crew gets the order to produce something
else, they break down the line, keeping the machines that
are still relevant to the new order. New units are connected
in the right places, the line is adjusted and production starts
again.

The Metamerge Integrator’s AssemblyLines work in much
the same way, except that at the end of the day, you don't
have to clean out the leftover fish bits.

Atomizing the Problem

Getting Started with Metamerge Integrator8

between two or more data sources, then we will want to use a
separate AssemblyLine for each unique flow.

At the same time, our AssemblyLines should be made up of as
few Connectors as possible—generally one per data source par-
ticipating in the flow.

Connectors are like puzzle pieces that click into place with each
other while plugging into a specific data source, like an SQL
database, an LDAP-compliant Directory or a text file.

Each time you select one of these puzzle pieces and add it to an
AssemblyLine, you chose whether it is going to be an input
Connector, gathering information into the AssemblyLine, or an
output Connector, inserting, updating or deleting data in the con-

nected system or device1.

ED

DB2

DB1

ED

DB2

DB1

Switched for input

Switched for ouput

LDAP
Connector

LDAP
Connector

Atomizing the Problem

Getting Started with Metamerge Integrator 9

Whenever you need to include a new data source to the flow,
simply choose the relevant Connector, set it to input or output
mode and insert it into the AssemblyLine where you want it to
go.

The Metamerge Integrator gives you a library of Connectors to
choose from, like LDAP, JDBC, Exchange and JMS to name a
few. And if you can't find the one you are looking for, you can
extend an existing Connector, overriding any or all of its func-
tions, or even roll your own using one of the leading scripting
languages, including JavaScript, Visual Basic and Perl. Or you
can use Java to extend the objects of the engine itself, since the
Metamerge Integrator is written entirely in Java.

The Integrator supports most transport protocols and mecha-
nisms, like TCP/IP, SSL, HTTP and FTP, and it can access data
through a multitude of API's and protocols: LDAP, JDBC,
ODBC, JMS, plus many more, as well as databases and propri-
etary repositories such as Oracle, Microsoft SQL Server, Lotus
Notes and Exchange. A Connector can even read unstructured
data by pairing the Connector up with a Parser (see page 10 for
more details on Parsers). The Metamerge Integrator is shipped
with a variety of Parsers, like LDIF, XML, CSV and Fixed-
length field, as well as giving you the tools to extend these or
write your own.

In addition to plugging into data sources, Connectors are also
the place where you put the business logic needed to reformat
and re-contextualize the data that is being transferred (but we'll
get back to that later.)

1. You might think that we've chosen to draw these puzzle pieces the wrong way: that data should be flowing in from above and then
downwards to the receiving data sources. But anyone who has ever tried to implement an integration solution will testify that data
doesn't tend flow on its own; it has to be sucked out of input sources and then pumped into the output sources. And that's what Con-
nectors are good at.

LDAP ODBC

JMS
Notes

LDAP
Connector

ODBC
Connector

Connector Connector
JMS Notes

Lotus

Lotus

Atomizing the Problem

Getting Started with Metamerge Integrator10

In our first integration problem, we have two data sources (the
database and the Enterprise Directory), so we will need two Con-
nectors to implement the data flow. Looking more closely at the
problem, we see that the Integrator will be reading from a file in
comma-separated values format (CSV), which has been dumped
from the database. We will update our directory by sending it a
document in XML format that contains this data.

So the first step is to pick which Connectors to use.

Parsers This is simple: Since both the CSV input file and output XML
document are specially formatted flat files, then we will use a
FileSystem Connector in each case. The CSV Connector will be
switched to input mode, and the XML Connector will be
switched to output.

But something is missing. FileSystem Connectors only read and
writes raw bytestreams. They have no idea of how to format and
structure the data that they read or write.

This is what a Parser does: it translates the data from the data
source's format to the Integrator's own internal representation,
and vice versa. So while some Connectors link into data sources

CSV

XML

Input

Output

FileSystem FileSystem
Connector Connector

Atomizing the Problem

Getting Started with Metamerge Integrator 11

that have an implicit data structure, like a database or directory,
all others must be matched up with a relevant parser.

Regardless of the way in which information flows (or is pulled)
into the input Connector, and irrespective of its structure, once
the data is inside the system, it is represented in a format that all
Connectors can understand and use. Furthermore, this data is also
made available to any custom scripts that are hooked into the

AssemblyLine2.

Connector modes Up until now, we've spoken about input and output modes for a
Connector. There are six Connector modes: two input modes
(Iterator and Lookup) and three output modes (AddOnly, Delete
and Update), plus one mode, named Passive, for Connectors that
are only called as needed and are not part of the normal
AssemblyLine execution.

2. Hooking scripts into AssemblyLines and Connectors is explained on page 39.

Parser

Parser

CSV

XML

Input

Output

FileSystem FileSystem
Connector Connector

CSV Parser

XML Parser

Table 2: Connector modes

AddOnly (output) AddOnly mode is an output mode, and a variation on
Update. This mode causes the Connector to simply
append to the output source, like adding to the end of an
XML document, log file or CSV file.

Delete (output) An output mode, this will cause the Connector to remove
the specified record or entry from the system it is plugged
in to. Of course, you can script it yourself to handle multiple
record deletes.

Atomizing the Problem

Getting Started with Metamerge Integrator12

In order to solve our integration problem, we will need to set the
input Connector to Iterator mode, so that it reads through the
entire CSV file. The output Connector will be in AddOnly mode,
since we are creating and then appending to a flat file. If we

Iterator (input) Connectors set to Iterator mode spin through an input
source and evoke the AssemblyLine for each data entry
returned. When the end of input is reached, the
AssemblyLine stops, unless there are other Connectors set
to Iterator mode in the AssemblyLine; Then each one is
executed in turn.

Lookup (input) Lookup mode means that the Connector will query a data
source for a specific record, passing the data into the
AssemblyLine for processing

Passive Setting the mode to Passive will result in the Connector
never being called during normal AssemblyLine
processing. Instead, the must be activated through calls
from scripts in the AssemblyLine, e.g. in another
Connector. So what's the point then? Well, Connectors in
Passive mode are used to handle exceptions, like writing

status or error messages to a log databasea, or sending a
message to the console, or even firing off an email to the
systems administrator.

Update (output) The Update mode causes the Connector to take the
desired set of the data, transform it as specified and drop it
into place in the destination system, while checking to see
if new entries are to be added or existing ones updated.

a. The Metamerge Integrator already offers log file handling. However, if you want
your log stored in a database, then you use the relevant Connector in Passive
Mode

Table 2: Connector modes (Continued)

Atomizing the Problem

Getting Started with Metamerge Integrator 13

update our diagram to include this new information, we get the
following:

Now the final step is to take a look at how the data is to be
mapped from the CSV file to the XML document, and what, if
any, transformations will be necessary.

The CSV input data looks like this:

The first line describes the fields that are included in the file,

while the following lines contain the data to be transferred3. This
means that once the information has been pulled into the
AssemblyLine, then the variables “First”, “Last”, “Email” and
“Title” will be available for any Connectors and scripts that need
to work with them.

3. Of course, if the field names are not in the file, or if we wish to override them, then you can specify this in the connector directly.

FileSystem FileSystem
Connector Connector

CSV

XML

Input

Output

Iterator mode AddOnly mode

CSV Parser

XML Parser

First;Last;Email;Title
Michael;Knagenhjelm;michael@metamerge.no;CEO
Bjorn;Stadheim;bjorn@metamerge.no;Chief Scientist
Johan;Varno;johan@metamerge.no;CTO
Skip;Skippy;;This should be skipped

Atomizing the Problem

Getting Started with Metamerge Integrator14

The XML document that we are going to write is to contain the
following fields: “Email”, “First”, “FullName”, “Last”, “Alias”
and “Title”. Let's add this to our diagram.

Now that our diagram is complete, it’s time to implement the
solution in the Integrator.

FileSystem FileSystem
Connector Connector

CSV

XML

Input

Output

Iterator mode AddOnly mode

CSV Parser

XML Parser

Email
First
Last
Title

Email = Email
First = First
Last = Last
FullName = First + ‘ ’ + Last
Alias = First,

First + ‘.’ + Last
Title = Title

Getting Started with Metamerge Integrator 15

Working
with the
Integrator

The Admin Interface The Metamerge Integrator system is actually two programs:

z The Integrator Server, that reads the configuration file you
create and then runs the desired AssemblyLines. This pro-
gram file is called MISERVER.

z The Admin Tool, the program that you use to configure the
Integrator, as well as for testing and debugging your
AssemblyLines. The Admin Tool program is called
MIADMIN.

Like the Integrator Server, the Admin Tool is also written 100%
in Java, and runs in any environment that offers a Java 2 compli-
ant Virtual Machine.

If you haven't already started the Admin Tool, do so now.

Working with the Integrator

Getting Started with Metamerge Integrator16

You will be presented with the main screen:

You may also have noticed that the Display area already shows
an AssemblyLine called Sample1. This is because the Integrator
was started with the command to load the rs.cfg file, the
default configuration file (if you look at the title bar of the
Admin Tool window, you can see the name of the configuration
file currently open.)

However, we are going to add our first AssemblyLine manually
ourselves in order to stretch our legs a bit with the system. But
before we get into the meat of the implementation, we'll take a
closer look at some of the main elements of the interface.

A
B

C

D

E

A The Main menu provides pull-down menus for a number of functions,
like opening and saving configuration files, viewing registered
certificates and changing the look and feel of the Admin Tool.

B The Button bar provides shortcuts to the commands to create a new
configuration file, open an existing one or save changes you’ve
made to the currently open one.

C Object tabs are used to select the various types of objects in the
Integrator (like Connectors and AssemblyLines) for setting system
parameters, as well as for accessing libraries of Connectors,
Parsers and scripts.

D The Display area is where the information specific to the current
object you are working with is displayed and edited.

E Context tabs are for switching between different objects that are
open. These tabs line up along the bottom of the Display area.

Working with the Integrator

Getting Started with Metamerge Integrator 17

The Main menu has three pull-down menus: File, View and Help.
The File menu the following selections:

If you click on the View menu, you will get the following options:

Under the Help menu you will find only the About selection.

A

B

C
D
E

A Here are the standard File menu selections for creating a new
configuration file, opening an existing one, saving changes, as well
as saving the current configuration to a new filename.

B These two selections are for opening and saving a configuration file
for a server on a different machine that has been configured to allow
remote administration.

C Here is where you start the server and execute your AssemblyLines.
D This next selection is to start a monitor window for a remote server
E Exits the administration program.

F
G
H
I

F Creates a printable report describing the currently selected
AssemblyLine.

G Here is where you control information about any certificates that are
needed by your connectors.

H This selection gives you three Look and Feel (L&F) options for the
Admin Tool: Windows, Metal and Motif.

I Opens the debug monitor window.

Working with the Integrator

Getting Started with Metamerge Integrator18

Just under the main menu is the Button bar, with shortcuts for
creating new configuration files, opening existing ones and sav-
ing changes to disk.

Down the left side of the screen are the Object tabs:

Creates a new
configuration.

Saves the current
configuration to file.

Opens an existing
configuration file.

A This tab is for creating and managing your AssemblyLines.
B Here you can work with EventHandlers. These are objects that can

be configured to wait for events—like incoming mail, or a trigger in a
database—format the incoming data, if necessary, and then fire up
one or more AssemblyLines to handle this information.
EventHandlers are not covered in this manual.

C Click here to access to your own library of Connectors. These have
been either written by you, or inherited from one of the basic ones
and configured or extended to meet your needs.

D Where you will find the collection of Parsers that you've written or
extended from the base templates.

E Here you write the script that are to be evaluated first, before
AssemblyLines are started. Global prologs can be used to register
global variables that you will be using, like counters and
accumulators for keeping track of statistics or other status
information.

F Any Java classes that you want to make available to your
Connectors and scripts are kept here.

G This tab allows you to access Java VM parameters.
H All the base templates for Connectors, EventHandlers and Parsers

are found here.

A
B
C
D
E
F
G
H

Working with the Integrator

Getting Started with Metamerge Integrator 19

The area to the right of the Object tabs is the Display area and
this part of the screen changes as you select different Object tabs,
giving you a list of objects to work with.

The screenshot above shows the list of Base Templates. Unlike
the other lists, the Base Templates screen presents you with a set
of tabs at the bottom of the list. This is because these templates
come in three flavors: Connector Templates, EventHandler Tem-
plates and Parser Templates. You can get the list you want by
clicking on the relevant tab.

Like the other object lists, Base Templates also has a set of but-
tons at the top of the Display area. These are Add, Open and
Delete, and they are available for all objects except for Java
Libraries and System Properties, where you only get Add and

Delete4.

4. If you want to edit a Java Library then you must do so in a Java development tool or editor. The Java Library list is simply a refer-
ence to the libraries (packages) that you want to include.

Working with the Integrator

Getting Started with Metamerge Integrator20

If you open an Integrator object (like an AssemblyLine, an
EventHandler or a Connector) by either double-clicking on the
desired object, or by selecting the object and then clicking the
Open button, the Display area changes to show the details of the
selected object. In addition, a new tab is added to the Context
tabs at the bottom of the screen. All you have to do is select the
Context tab that you want to work with to move from one to
another.

In addition, the Context title (which is located at the top of the
Display area just under the Button bar) also changes to show you
what you are looking at, as well giving you a Close button to
remove this context tab from the display.

Often when you open up a detail view, it covers the entire Admin
Tool. Don’t panic: You can always go back to the previous screen
by clicking on the Context tab, or by pressing the Close button as
shown above.

Now that we've taken a look at the main interface elements, it's
time to add our own AssemblyLine.

Adding AssemblyLines The first step is to select “AssemblyLine” tab from the Object
tabs at the left of the screen. Then press the Add button at the top
of the Display area. Enter the name “DB_2_DIR” in the dialog
that appears.

Now there should be two AssemblyLines in the list shown in the
Display area.

Select the one entitled “DB_2_DIR” and press the Open button
above the list. This will add a “DB_2_DIR” Context tab at the
bottom of the screen and show you an empty AssemblyLine
screen.

Working with the Integrator

Getting Started with Metamerge Integrator 21

If you look just below the Context title, you will see a set of tabs
for the AssemblyLine, and a row of buttons below these. These
tabs present you with the various aspects of an AssemblyLine
that you can configure, like adding Connectors, or writing a Pro-
log or Epilog script.

Below this tab bar are the buttons used to Add, Remove and
Rename Connectors, as well as changing the order that they will
be executed by moving them Up or Down in the list. There is also
a button labeled Run for executing our AssemblyLine, and
another for viewing the Logfile created when this AssemblyLine
is run.

However, we are going to leave the “Prolog”, “Epilog” and “Set-
tings” tabs alone, selecting instead with “Data Flow” tab where
we’ll add the first Connector to our AssemblyLine.

Adding Connectors As mentioned in the previous section, Connectors are the work-
horses of an AssemblyLine, and we will need to add a Connector
for each data source that we are reading from or writing to.

Our first Connector will be for reading in the CSV input file.
That means we need a FileSystem type Connector. We’ll set it to
Iterator mode and then pair it up with a CSV Parser

A B C D

A “Prolog” is for the script that is to be run first each time the
AssemblyLine is to be run. Note that the AssemblyLine Prolog script
is run after any Global Prolog scripts have been evaluated.

B The "Data Flow" tab shows you the list of Connectors attached to
this AssemblyLine.

C “Epilog” is for the script that is fired off at the end of AssemblyLine
execution.

D Here you will find a number of general parameters that control how
the AssemblyLine operates.

Working with the Integrator

Getting Started with Metamerge Integrator22

With the “Data Flow” tab selected, press the Add button to create
the first Connector.

Enter “CSVinput” for the name. This is just a descriptive name,
but for the sake of clarity and maintainability, you will want to be
sure that you can identify your Connectors from their titles.

Then in the Connector drop-down list, select the connector type
called metamerge.FileSystem. This drop-down listbox contains
all the Base Connector Templates, as well as any Connectors that

you've already added to this AssemblyLine5 or to the Connector
Library.

In the last drop-down listbox, labeled “Connector Mode”, select
Iterator.

Once you've filled out the dialog, click OK to accept the new
Connector.

5. You might be wondering why the other Connectors in this AssemblyLine should appear in this drop-down list. Why would you
want to inherit from another Connector in the same AssemblyLine? One of the reasons might be to send your output to the same
communicator that you are getting your input from.

For example, an AssemblyLine for processing information requests coming over an IP port would receive a query, look up the
information in other connected systems and then pipe the results back to the same port. Although this might seem pretty straightfor-
ward, problems arise when you consider the fact that each Connector opens and “owns” a connection to its data source. If that data
source can only service a single process at a time (as in the IP port example above) then the output Connector would not be able to
open its own connection to return the result data. By inheriting the output Connector from the one doing the input, both share the
single connection and no conflicts arise.

Working with the Integrator

Getting Started with Metamerge Integrator 23

The screen should now look like this:

As you create new Connectors, they appear in the list on the left
side of the screen. Just above the list is a row of buttons for add-
ing, removing and renaming Connectors, as well as one for run-
ning the AssemblyLine that contains this Connector.

There is also a button for opening the Logfile window that dis-
plays messages generated from the last run of the AssemblyLine.

Finally, there are two buttons for moving the selected Connector
up or down in the AssemblyLine (Note: if you can’t see all the
buttons, simply resize the window until you can.)

The order in which Connectors appear in the Assembly Line is
significant, in that they are executed from top to bottom. Further-
more, the flow of information is also from top to bottom, so that a
Connector has access to the data handled by the all Connectors
that appears before (above) it in the AssemblyLine.

Now take a look in the yellow band at the top of the Display area.
This is the Connector header. Here you can find a number of
parameters for this Connector: mode, type and configuration,
plus three values in the column to the right.

Working with the Integrator

Getting Started with Metamerge Integrator24

The top two values are for controlling how this Connector inher-
its Attribute Mapping and Event Hooks (this is a little typo in the
interface which will be corrected in the next release). The third
value varies a bit for the various Connector modes:

For Iterator mode then this value is Delta Settings (as it is now).
If you click on this field then you get a dialog where you can tell
the Integrator to keep track of records read from the data source
and then quickly identify if new entries have been added or exist-
ing one have been deleted. This is a great feature if you are look-
ing at a log from an HR system and want to know when
employees have been added or deleted.

For Lookup mode, then this field is called Allow Duplicates
which can be turned on or off.

Finally, for Update mode, it becomes Compute Changes, telling
the Integrator to lookup data before writing to determine if there
have been changes. The Integrator then will only write to the data
source if changes are detected. This can be important when writ-
ing to systems that will immediately generate enterprise synchro-
nization on an update, like Lotus Notes.

Configuring Connectors If you move the mouse over one of these underlined values, you
will see that the arrow turns into a hand (just like in a web
browser). These fields are links that open dialogs for modifying
the underlying values when you click them.

We need to configure this Connector to specify where the input
file is found, as well as which Parser to use. So, click on the
underlined word configure in Connector header, or double-click
on the “CSVinput” Connector in the list to the left.

Working with the Integrator

Getting Started with Metamerge Integrator 25

The Configure Connector dialog will appear, showing you the
parameters available for this type of Connector.

Type in the name and location of the input CSV file, as shown
above. You will find the example data file in the Sample1 sub-
catalog of the directory where the Integrator was installed.

Notice how some of the fields in the dialog are red while others
are black. Red text indicates that the value of this parameter has
been inherited from another Connector; either one in this
AssemblyLine, the Connector Library or from a Base Template
Connector. Whenever you override an inherited parameter by
entering a value in the edit field, then the text label turns black.
This color coding applies to other integration objects as well,
like EventHandlers and Parsers.

Finally, choose the CSV parser (metamerge.CSV) from the drop-
down list over Content Parsers.

Working with the Integrator

Getting Started with Metamerge Integrator26

Configuring Parsers In the Configure Connector dialog select the tab labeled “Parser”
at the top of the dialog and you will get the parameters available
for this type of Parser.

For a CSV Parser, this is the field separator (e.g. comma, semi-
colon, etc.) and, optionally, the field names. If you remember
back on page 9 where we looked at the CSV input data, the first
line contained the field names. If the CSV file you are reading
does not contain the field names in the first line, or if you want to
override these, then you must enter the names in the Field Names
field. The list should use the same separator as specified in the
Field Separator field. Without some specification of the field
names, then the Integrator will not be able to structure the data
correctly.

The last tab in this dialog is the "Attributes" tab, which gives us a
screen for testing our connection and viewing the data coming in
from the data source.

In order to test the connection, simply press the Connect button.
This causes the Connector to make contact with the data source

Working with the Integrator

Getting Started with Metamerge Integrator 27

and retrieve information on how the data is structured. If all goes
well, then the Next button will be enabled.

Each time you now press the Next button, the Connector reads a
line from the input file, fills attributes with data and displays
them in tablular form.

We can see from the results above that the Connector is working.
These are the attributes that will be available later for mapping
into the AssemblyLine, and you can remove any or all of them
from list by clicking away the checkmark in the “Include” col-
umn.

Close the Configure Connector dialog when you’re finished.

It’s now time to take a closer look at the Connector Display area,
and in particular, at how to set up attribute transformation and
mapping.

Working with the Integrator

Getting Started with Metamerge Integrator28

In order to understand how attribute mapping works in the
Metamerge Integrator, it's first necessary to make the acquain-
tance of the container object that actually carries data down the
AssemblyLine: the WorkEntity.

The WorkEntity starts off completely empty at the beginning of
the AssemblyLine, and we have to create attributes and map over
values from an input Connector in order for the data to be
included in AssemblyLine processing. Conversely, we have to
map that data back into any output Connectors so that it is avail-
able for making changes in the data source.

Looking under the hood; When an input Connector reads in data,
this information is actually stored in attributes that are local to

A B C D

A “Attribute Map” is the tab for selecting which attributes to map.
B The “Hooks” tab (which we'll look at more closely on page 39) is for

extending the Connector with scripts.
C The attributes we select for mapping appear in the “Working

Attribute” list.
D This is where we specify the mapping for an attribute, plus any

transformations (like converting numbers to strings, or vice versa).

Working with the Integrator

Getting Started with Metamerge Integrator 29

the Connector itself, and which disappear when the Connector is
finished working.

In order for this data to survive the Connector, and be passed on
down the AssemblyLine, it must first be copied from the
Connector’s local storage to attributes that are created in the
WorkEntity. All scripts and functions that work with the data,
must necessarily reference these attributes in the WorkEntity.

And finally, when the dataflow reaches an output Connector, the
data must first be mapped back from the WorkEntity to the out-
put Connector's attributes before it can be written to the data
source.

The simplest way to create new attributes for the WorkEntity, and
get their mapping automatically in place, is by pressing the
Select button at the bottom of the Working Attribute list.

Attribute Mapping

WorkEntity

Local Connector
Storage

Working with the Integrator

Getting Started with Metamerge Integrator30

If the Connector is able to open a connection, and if the data
source can return the names of the fields being read (or you have
specified them yourself in the Connector Configuration dialog),
then you will be presented with a list of available attributes.

Simply click the checkbox next to the fields you want mapped
from the Connector to the WorkEntity.

If for some reason the Integrator cannot read the attribute names
from the data source, or if you want to create new attributes that
will contain computed values, simply use the New button at the
bottom of the Working Attribute list, and type in the names of the
attributes you want to add.

Attribute Mapping Attribute mapping can be simple or advanced.

Simple mapping means that the value in the Connector attribute
is copied unmodified over to the corresponding attribute in the
Work Entry.

Working with the Integrator

Getting Started with Metamerge Integrator 31

Just click on one of the entries in the Working Attribute list and
you will see that simple mapping is the default for attributes
selected from the input Connector's list.

If you want to see the actual script which is created and run by
the Integrator to handle the mapping of this variable, click on the
Advanced radio button.

As you can see from the screenshot above, the value returned for
the selected attribute is read from the conn object (which gives
you access to the Connector’s attributes and functions).

The Integrator Admin tool gives you a simple editor window in
which to write your scripts. Here you'll find buttons for cut, copy
and paste operations, as well as undo and redo. The last two but-
tons (you may have to resize the window to see them) are for
searching and repeating the last search.

Working with the Integrator

Getting Started with Metamerge Integrator32

With the input Connector in place, all we have to do now is add
an output Connector, and then our first AssemblyLine will be
ready to test.

You do this in the same way that you added the input Connector.
Choose a FileSystem Connector type here as well, but this time
coupled to an XML Parser.

As with the input Connector, you can open the Configure
Connector dialog by either double-clicking on the new entry in
the Connector list, or selecting the desired Connector and then
clicking on the underlined word configure in the Connector
header.

Again, choose the Sample1 directory for the file path of the
Sample1.xml output file, and choose “output” in the second
drop-down. This will cause the Integrator to create a new XML
file each time, while “append” would make the system append to
the end of an existing one.

Now we have to map the variables from the WorkEntity into
attributes in the output Connector so they can be written to the

Working with the Integrator

Getting Started with Metamerge Integrator 33

XML document. Once again we will use the Select button at the
bottom of the. Did you notice how the list is now labelled
“Connector Attribute List” instead of “Working Attribute List”?
This is because we are mapping the other way this time: into the
Connector.

But when we press Select, we get the following message:

By clicking on Yes, we are asking the Integrator Admin to
present us with a list of WorkEntity attributes so that we can
select from these. In return, we get a dialog that looks very simi-
lar to the one we used to choose attributes for mapping to the
input Connector.

Make sure all the fields are checked for inclusion and press the
Close button.

Now we know that the output Connector will take all the
attributes mapped over from the WorkEntity and write them to
the XML file. But our job is done yet.

You may recall that back on page page 6 we specified two addi-
tional attributes: “FullName” and “Alias”. Since these attributes
are not available directly from the WorkEntity, we must create
them ourselves. This is done by pressing the New button at the

Working with the Integrator

Getting Started with Metamerge Integrator34

bottom of the Connector Attribute list. You will be presented
with the following dialog.

Simply enter the name of the new attribute and press OK. Repeat
this procedure for “Alias” as well.

Once we have created the attributes “FullName” and “Alias” we
have to set up the mapping and transformation necessary to cre-
ate their values.

Selecting “FullName” first, choose advanced mapping mode and
enter the script shown below.

The script in the screenshot is a bit tiny, so here is a more legible
copy:

Without going into the mechanics of JavaScript here, this snippet
defines two variables called “gn” and “sn”, assigns to them the
values of the Working Entity’s attributes “First” and “Last” (con-
verted to string variables). The script then sets the return value—
which will be placed in the “FullName” attribute in the example
above—as a single string value equal to the value of the two
attributes read from the WorkEntity joined together with a space
character between them.

var gn = work.getString(”First”);
var sn = work.getString(”Last”);

ret.value = gn + ” ” + sn;

Working with the Integrator

Getting Started with Metamerge Integrator 35

Now click on the Alias attribute and enter a slightly longer, but
just as simple a script.

This JavaScript code snippet starts off similar to the previous one
used for the “FullName” attribute:

Notice how it then creates a new attribute (which is local to this
script) and assigns it two values. The script then returns the new
attribute itself, instead of simply returning a string value as we
did for “FullName”.

An attribute can hold any number of values if you need it to—and
you probably will. A typical example is the “Email” attribute,
which could be made to hold several address values. Then we
could connect into the data source(s) where the other email
addresses were stored and aggregate them into the “Email”
attribute in our AssemblyLine.

Running an
AssemblyLine

Once the attribute mapping is completed, we are ready to test our
new AssemblyLine. This can be done directly from the Admin
Tool.

You must first save your configuration before you can test it.
Remember: you are in the Admin Tool. The changes you are mak-
ing must be saved to the configuration file before the Integrator
Server can get access to them.

var gn = work.getString(”First”);
var sn = work.getString(”Last”);

attribute = system.newAttribute(”Alias”);
attribute.addValue(gn);
attribute.addValue(gn + ”.” + sn);

ret.value = attribute;

Working with the Integrator

Getting Started with Metamerge Integrator36

Saving your configuration can be done by either selecting
File|Save from the Main menu, or by pressing the Save button on
the Button bar.

Once the configuration file is saved, click on the Run button to
execute the currently selected AssemblyLine.

You will get a monitor window that displays messages from both
the Java VM and from the Integrator Server.

At the top of the screen are the details of how the Integrator was
started, including which command line parameters were used.

This area is of
special interest to
us, as this is
where
AssemblyLine
status appears.

Working with the Integrator

Getting Started with Metamerge Integrator 37

These specify both the configuration file and the AssemblyLine
to run. Then there is a brief banner that displays the version num-
ber of the Integrator. This is followed by a couple of lines that
show where the Java libraries and extensions are being loaded
from.

From the above monitor output we can also see that this is an
evaluation copy of the Integrator, as well as the date when this
copy expires.

In the second line from the bottom of the AssemblyLine status
area we can see that our “DB_2_DIR” AssemblyLine ran with no
errors.

If you now press the Logfile button, then the system will display
the logfile generated by our AssemblyLine.

A new Context tab opens with the contents of the logfile:

Working with the Integrator

Getting Started with Metamerge Integrator38

The logfile gives us a view of what goes on behind the curtain
when the Integrator is running an AssemblyLine. Let's walk
quickly through it.

z First Global Prologs6 are loaded and evaluated.

z Next the connectors are instantiated and initialized, making
all connections to data sources. That way, if one of them
fails, then we know about it before we start processing any
data.

z After the Connectors are ready, the AssemblyLine's own
Prolog script is executed.

Here is where fun starts:

z The Integrator passes control to the first Connector, which
is in Iterator mode. We can see from the logfile that we
have not entered any values for the parameters controlling
the timeout interval, maximum number of errors before
aborting, or the maximum number of reads for Connectors

in Iterator mode in this AssemblyLine7.

z After that we get some summary statistics showing that
four entries were read by the CSV input Connector, and
that four entries were written (added) by the XML output
Connector. That jibes nicely with our expectations.

z Finally the Epilog script is executed and the AssemblyLine
ends.

So far everything looks good. The only place we haven't checked
yet is the output XML document itself.

Back on page page 32 we told the XML output Connector to call
the file Sample1.xml and to write it to the Sample1 sub-direc-
tory. If we open this file, preferrably in a browser that can inter-
pret XML, like Internet Explorer or Netscape Navigator, we can

6. There can be any number of Global Prolog scripts, and these are defined under the “Global Prolog” screen accessed through the
Object tabs. These are evaluated before AssemblyLines are started. That way any variables or functions are available to the scripts
in the AssemblyLine.

7. The read timeout interval is set in the Connector Configuration dialog, while the other two parameters belong to the AssemblyLine
and can be accessed from the “Settings” tab from the AssemblyLine screen. This is also where you specify Global Prologs to evalu-
ate as well as which script language is to be used for coding hooks in AssemblyLine Connectors.

Working with the Integrator

Getting Started with Metamerge Integrator 39

see that it does indeed contain the XML data that our Assem-
blyLine just created. Mission accomplished.

But wait! That last entry looks a bit strange. Obviously ;) we
were supposed to skip that one.

That means we'll have to add some intelligence to our input
Connector to weed out unwanted data. We'll do this by hooking
one or more scripts to the Connector.

Connector Hooks Hooks are triggers in a Connector's work cycle where you can
add a script which is to be executed each time the Integrator
reaches that point; Like before a Delete, or after an Update. The
hooked script will run before the Connector continues.

Each Connector mode offers its own set of Hooks in addition to
those that are common to all modes. To access a Connector's
Hooks, you have to select the desired Connector in the
AssemblyLine “Data FLow” list, make sure you are in the “Data-

Working with the Integrator

Getting Started with Metamerge Integrator40

Flow” tab of the AssemblyLine and then select the Connector tab
labeled “Hooks”.

As you can see, the Connector Hooks that are available in
Iterator mode are: Before GetNext, After GetNext, GetNext ok and
GetNext fail.

In addition to the sub-tab which is labeled the same as the
Connector’s mode, there are two other sub-tabs under “Hooks”:
“Common”, for those Hooks that all Connector modes offer, and
“Function Override” for replacing the Connector's data access
functions, like GetNext, Lookup and Update, with your own
scripted versions.

Working with the Integrator

Getting Started with Metamerge Integrator 41

We’ll drop our script (again in JavaScript) for filtering the input
data into the After GetNext Hook.

A more legible copy of the script—without the comment lines—
follows:

The first thing we do here is to write the input data to the log

file8. Then we check for the “skip” value, and if we find it, we
ignore this entry, returning instead to the top of the Iterator loop
to get the next one.

8. Although writing scripts is not within the scope of this manual, we’ll take a quick look at some of the commonly used objects avail-
able for scripting in the Integrator:

system This object provides access to system variables and functions, like skipEntry() in the example above.
task The task object represents the AssemblyLine itself and offers functions like logmsg() and dumpEntry().
work Used to access the WorkEntity’s data and functions.
conn The Connector itself, providing access to local storage attributes and operations.
entry This object is a base type that other objects, like work and conn are inherited from. As a result, it may be used from within

a Connector script to reference variables and functions in the Connector itself, instead of using the conn object.

task.logmsg(“Dump of input entry”);
task.dumpEntry(conn);

var gn = conn.getString(”First”);

if (gn.equalsIgnoreCase(”skip”)) {
task.logmsg(”Skipping: ” + gn);
system.skipEntry();

}

Working with the Integrator

Getting Started with Metamerge Integrator42

When we run this AssemblyLine again, we now get the follow-
ing output to our logfile, showing us that our script is working as
planned.

Each record is being dumped to the logfile as it is read, and our
script is causing the input Connector to skip the specified entry.
The other three entries were passed into the AssemblyLine and
then all three were written to the XML document.

Checking our output file, we find that the last record has been
omitted.

Working with the Integrator

Getting Started with Metamerge Integrator 43

Aggregating data And now an apology to our Unix users, because the next part of
this example will involve Microsoft Outlook. We are going to
use the Email attribute from the input Connector to get each per-
son's mobile phone number from the Outlook Contacts database

and write it to the XML document with the other data9.

This will complete our implementation of the data flow diagram
we drew back on page 5, with the Outlook Contacts database
assuming the role of our “DB2” data source.

The first thing we have to do is to add a new Connector to our
AssemblyLine. This time we will call it "OutlookLookup", and
choose the MSOutlook type and Lookup mode.

Now this may look like an ordinary Connector, but in fact, it is
actually a Script Connector, in that all the functionality has been
implemented through a script.

9. You are going to have to add the founders of Metamerge to your list of Contacts in Outlook, in order to get this demo to work.
Pretty sneaky, eh? Remember to add a value for the mobile telephone number.

ED

DB2

DB1

Working with the Integrator

Getting Started with Metamerge Integrator44

Bring up the Connector Configuration dialog in order to view the
script.

As you can see, this Connector has been created using Visual
Basic Script. If we click on the "Script" tab, we get the script
itself.

Again, without delving into details here, we can see that this
script starts out by setting up a connection with Outlook. It then
implements a number of functions that have to be in place for a
Script Connector, although many of them will not be used for a
Connector in Lookup mode.

For example, since the getNextEntry function has been imple-

mented, then this Connector can be used in Iterator mode10.

10. That means that instead of reading from the CSV input file, we could have spooled all the contacts in Outlook to our XML docu-
ment.

Working with the Integrator

Getting Started with Metamerge Integrator 45

However, if we look further down in the script, we see that most
of other functions are simply dummies that return an error mes-
sage if used.

Since we need to be able to use this Connector in Lookup mode,
we will have to make our own findEntry function.

Actually, we are going to make several changes.

First off, we might as well complete this Connector by imple-
menting all the functionality needed to use this Connector in
other modes as well. But most importantly, the script above maps
the Outlook data into Connector attributes with different names

than those used internally in Outlook11.

In order to script functions that access features and variables in
Outlook, we will need to maintain a translation table over
attribute names in our Connector and what they're called inter-
nally in Outlook. Not a very pretty, or maintainable solution in
the long run.

Instead, we will simply rewrite this script to use Outlook's own
attribute names, as well as adding the functions needed to sup-
port all Connector modes. You can download the enhanced script
from the Metamerge Customer pages using the link found on the
Docs and References page.

Just copy the contents of this file into the Connector.

11. Here you can see how the entry object is used to access local Connector attributes, as mentioned in footnote 8. on page 41.

Working with the Integrator

Getting Started with Metamerge Integrator46

Once the script is in place, we can continue to configure this
Connector like any other.

Since we are doing a Lookup, we will have to tell the Connector
what to look for. This can be quite a problem when you're trying
to aggregate information from two or more sources that have lit-
tle or no data overlap; no common fields or attributes that you
can search with to find a match. Sometimes you're even forced to
build a cross-reference table.

As luck would have it, there is an attribute that is stored in both
data sources: the Email attribute. Click on the "Link Criteria"
Connector tab and we'll add this Link Criteria.

Working with the Integrator

Getting Started with Metamerge Integrator 47

Press the Add button and specify that a match is when the
“Email1Address” field read from Outlook and the “Email”
attribute of the WorkEntity are equal.

Open the configuration dialog for the "OutlookLookup" Connec-
tor. Bring up the “Attributes” tab and press the Connect button,
and then Next. This makes the Connector read in both the first
entry in the Outlook Contacts register, but also the structure of
the data. Close this dialog and then click on Select at the bottom
of the Connector's Working Attribute list. Choose to include the

“MobileTelephoneNumber”12 attribute.

Now we have to map this attribute into the output Connector as
well. However, before we can do that, we must move the

12. Just drag the window larger if you can't see the “MobileTelephoneNumber” attribute.

Working with the Integrator

Getting Started with Metamerge Integrator48

"OutlookLookup" Connector ahead of "XML output" in the
AssemblyLine. Otherwise the new attribute will not be ‘visible’
to the XML Connector.

Select the "OutlookLookup" Connector and press the Up button.

Now you can select the "XML output" Connector and press the
Select button at the bottom of the Working Attribute list.

You should now get a new entry in the selection dialog that you
didn't get the last time.

Select “MobileTelephoneNumber” for inclusion and close the
selection dialog.

Now if you take a look at the following excerpt from the
improved Outlook Connector script, you will see that if the

Working with the Integrator

Getting Started with Metamerge Integrator 49

findEntry function does not find a match then it returns a status of
2, along with an error message: “Not found”.

Since we have not configured this AssemblyLine to tolerate any
errors, then it will halt because of this return value.

We have two options here: either rewrite the Connector script to
not treat a failed search as an error, or we can trap that error by
putting a script into the Lookup fail Hook for this Connector.

An empty script would have been enough to cause the error to be
swallowed. We are going to add the following line to assign the
attribute a default value:

sub findEntry ()

flt = "[" &
search.getFirstCriteriaName() &
"] = '" &
search.getFirstCriteriaValue() &
"'"

set item = contacts.Items.Find (flt)

if item is nothing then

result.setStatus 2

result.setMessage "Not found"

else

populateEntry entry, item

end if

end sub

work.setAttribute(”MobileTelephoneNumber,””);

Working with the Integrator

Getting Started with Metamerge Integrator50

Finally, our enhanced AssemblyLine is ready. Save the configu-
ration file and run the AssemblyLine again, and then let's look
for the new attribute in the output XML document.

There it is: the “MobileTelephoneNumber” attribute has been
retrieved from the Contact register in Outlook and written to the

XML file. It's a wrap13.

And we can continue to enhance and improve our AssemblyLine,
but then that's the beauty of the Integrator: incremental imple-
mentation. It means that you can grow your integration solution
to fit your needs.

With the Integrator, you get an infrastructure that fits perfectly in
its environment because it's been grown and evolved there.

And when you approach an integration problem by first atomiz-
ing the individual dataflows, you reduce complexity. This gives
you gains across the board: in deployment speed, accuracy of the
solution, robustness, maintainability... The list goes on.

13. Ok, so the mobile telephone numbers are not legit. But if you need to get hold of any of these gentlemen, the place to start is
www.metamerge.com (unless you've already managed to get hold of a business card).

Working with the Integrator

Getting Started with Metamerge Integrator 51

Of course, the examples in this text have been reasonably simple.
But you will soon find that practically any integration solution
can be implemented quickly and efficiently with the Integrator.
In fact, as you start to think in terms of Metamerge's atomize and
implement mantra, you will see your installation, and your inte-
gration needs, from a whole new perspective.

Perception is reality, and our perception is formed (and limited)
by the toolset we have at our disposal. So you can continue to
accept reality as you perceive it, whittling away at the vision of
your integration infrastructure in order to make it fit the tools you
are using.

Or you can switch tools.

But be warned—it may be hard to go back.

Working with the Integrator

Getting Started with Metamerge Integrator52

	Preface
	About this manual
	Installing the Integrator

	Atomizing the Problem
	Keeping it Simple
	The Integrator
	Parsers
	Connector modes

	Working with the Integrator
	The Admin Interface
	Adding AssemblyLines
	Adding Connectors
	Configuring Connectors
	Configuring Parsers
	Attribute Mapping
	Running an AssemblyLine
	Connector Hooks
	Aggregating data

