
IBM

Debug Tool
Terminal interface

IBM’s Interactive Debugger for applications running in z/OS

Basic Commands

For detailed descriptions of commands, command syntax, and
command options, refer to the Debug Tool for z/OS Reference
and Messages manual. A complete set of Debug Tool manuals

can be obtained from the IBM Debug Tool website.
www.ibm.com/software/awdtools/debugtool/

select the “Library” link

Manuals:
Summary of Commands, User’s Guide, Reference and

Messages, and Customization Guide

The following paragraph does not apply to the United Kingdom or
any other country where such provisions are inconsistent with

local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,

BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore,

this statement may not apply to you.

This information could include technical inaccuracies or
typographical errors. Changes are periodically made to the

information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this

at any time without notice.

For Use with Debug Tool Version 12

© Copyright International Business Machines Corporation
2012. All rights reserved.

Revised June 30, 2012

Work with windows and source
ZOOM
or
Z

Expand the source window to the full
screen, or reduce an expanded window

ZOOM (with a cursor
selected border
location)

Expand the cursor selected window

POS 509

Position the source window to
statement number 509

QUALIFY RESET
or
QUA RES

Position the source window to the
current statement

FIND ‘text’
or
F ‘text’

Find the next occurrence of text in the
source window

F5

Function key: repeat the last find
command

Run the program
STEP
or
STEP INTO

Run one statement

F2 Function key: same as STEP

STEP 25 Run 25 statements, starting with the
current statement, one at a time with
step animation

GO

Run the program, starting with the
current statement, until the next
breakpoint or the end of the application

F2 Function key: same as GO command

RUNTO 630

Run the program starting with the
current statement, until the next time it
reaches statement 630 (or reaches a
breakpoint or the end of the
application)

R

Line command: same as a RUNTO
command for the selected statement

JUMPTO 952 Jump to statement 952. Do not execute
the current statement or any other
statements. The program will be
paused at statement 952.

GOTO 952

Same as a combination of JUMPTO
952 followed by a GO command

Commands for working with breakpoints
LIST AT Display a list of all breakpoints in the

log

FINDBP

Find the next statement breakpoint and
position the source window to it

CLEAR AT Clear all breakpoints in the current
enclave

Set and clear statement breakpoints
A or AT Line command: set a breakpoint at the

selected statement

C

Line command: clear the breakpoint at
the selected statement

F6 (with a cursor
selected statement)

Function key: set a breakpoint at the
cursor selected statement. If a
breakpoint already exists at the
statement, clear it.

AT 452 Set a breakpoint at statement 452

AT FROM 99 452

Set a breakpoint that will trigger
starting with the 99th time that
statement 452 is reached

CLEAR AT 452
 or
CL AT 452

Clear the statement breakpoint at
statement 452

D

Line command: disable the breakpoint
at the selected statement (but do not
clear it)

E

Line command: enable the disabled
breakpoint at the selected statement

AT *

Set a special breakpoint that will stop
at all statements

CLEAR AT *
or
CL AT *

Clear the special AT * breakpoint

Set and clear change (watch) breakpoints
AT CHANGE var-
name
or
AT CHA var-name

Set a breakpoint that will trigger when
variable var-name changes

CLEAR AT CHANGE
variable-name
or
CLE AT CHA variable-
name

Clear the change breakpoint for
variable-name

Set and clear program entry and exit breakpoints
AT ENTRY program-
name

Set a breakpoint that will trigger when
program (compile unit) program-name
is entered

CLEAR AT ENTRY
program-name

Clear the entry breakpoint for program-
name

AT ENTRY * Set a special breakpoint that will trigger
at the entry of all programs

CLEAR AT
ENTRY *

Clear the special AT ENTRY *
breakpoint

AT EXIT program-
name

Set a breakpoint that will trigger when
program (compile unit) program-name
is exited

CLEAR AT EXIT
program-name

Clear the exit breakpoint for program-
name

Make breakpoints conditional
To make a breakpoint conditional, code WHEN and a condition.
Examples:
AT 502 WHEN
CUSTID = ‘77409’

Set a breakpoint that will trigger at
statement 502 if the condition is true
when the statement is reached

AT CHANGE
CUSTID WHEN
CUSTID = ‘77409’

Set a breakpoint that will trigger when
variable CUST-ID changes if the
condition is true when it changes

AT CHANGE
CUSTID WHEN BAL >
999

Set a breakpoint that will trigger when
variable CUST-ID changes if the
condition is true when it changes

Monitor variables
SET AUTO ON Turn on the automonitor. Variables

referenced by the current statement
display in the monitor window
automatically.

SET AUTO ON BOTH Turn on the automonitor. Variables
referenced by both the current
statement and previously displayed
statements display in the monitor
window automatically. This shows
results automatically while stepping.

SET AUTO ON LOG
or
SET AUTO ON BOTH
LOG

Turn on the automonitor. In addition to
displaying variables in the monitor
window, they are also displayed in the
log. This automatically traces variable
values referenced by every statement.

M Line command in the source window:
add all variables referenced by the
selected line to the monitor

Mn (such as M1,
M2, …)

Line command in the source window:
add the nth variable referenced by the
selected line to the monitor

MONITOR LIST var-
name
or
MON LIST var-name

Add variable-name to the monitor

MON LIST TITLED
WSS

Add all variables to the monitor from
COBOL working-storage

C Line command in the monitor window:
clear (remove) the selected item

H Line command in the monitor window:
display the value of the selected item in
hexadecimal format

D Line command in the monitor window:
display the selected value in default
format

CLEAR MONITOR Clear all items from the monitor
window

List variables in the log
L Line command in the source window:

display all variables referenced by the
selected line in the log

Ln (such as L1,
L2, …)

Line command in the source window:
display the nth variable referenced by
the selected line in the log

F4 (with a cursor-
selected variable in the
source window)

Function key: display the cursor-
selected variable in the log

LIST variable-name Display variable-name in the log

LIST TITLED WSS
or
LIST TITLED FS
or
LIST TITLED LS
or
LIST TITLED *

Display all variables in the log from
COBOL working-storage, file, or
linkage section, or all variables

Change values of variables
Overtype the value of
a variable in the
monitor window to
change the value

MOVE 987 TO varx
MOVE ‘ZYX’ TO var

Change the value of variables in
COBOL programs

varx = 987
var = ‘ZYX’

Change the value of variables in PLI,
C/C++, and assembler programs

Work with subprograms
STEP
or
STEP INTO

When the current statement calls or
runs a sub-program, procedure, or
function, step into it. (The sub must be
compiled for debugging)

STEP OVER When the current statement calls or
runs a sub-program, procedure, or
function, run it but do not show it in the
debugger.

STEP RETURN Run to the next program return. This is
a quick way to run to the end of a sub-
program.

LOAD progname

Load program progname. Display it in
the source window if it is available.

QUALIFY PROGRAM
progname

Display the source of progname in the
source window

QUALIFY RESET
or
QU RES

Position the source window to the
current program and current statement

End program testing
QUIT Ends debugging. Prompts with a “Are

you sure…?” message. If accepted,
terminates the program.

QQ Same as QUIT but without a prompt

QUIT DEBUG Ends debugging but the program
continues to run from the current
statement

QUIT DEBUG TASK Used in CICS only. Ends debugging
but the program continues to run. The
DTCN or CADP profile remains active.

QUIT ABEND Ends debugging and terminates the
program with a forced abend.

Playback (step backward in a program)
PLAYBACK ENABLE Turn on the playback recorder.

Consider the PLAYBACK ENABLE
near the beginning of a program.

PLAYBACK START Enter playback mode. The PLAYBACK
ENABLE command must have been
entered previously. STEP commands
will step backward.

PLAYBACK
FORWARD

Set the direction of STEP and RUNTO
commands to forward

PLAYBACK
BACKWARD

Set the direction of STEP and RUNTO
commands to backward

PLAYBACK STOP Exit playback mode, and return to
normal debugging mode.
The playback recorder remains on.

PLAYBACK DISABLE Turn the playback recorder off

Work with program source
SET DEFAULT
LISTINGS lib-name

Search library lib-name for a debug
source file, if it has not already been
found for the current program.
Automatically search this library when
new programs are encountered.

SET DEF LIST (lib1,
lib2, … , libn)

Search library lib-name for a debug
source file, if it has not already been
found for the current program.
Automatically search these libraries
when new programs are encountered.

Code an EQADEBUG
DD in JCL

An EQADEBUG DD can be used to
specify a library concatenation for
debug source files. It is an alternative
to the “SET DEF LIST …” setting.

LDD csect-name
LDD program-name

Load the LANGX file for the specified
csect or program. Libraries specified by
“SET DEF LIST …” or an EQADEBUG
DD are searched.

IBM

Debug Tool
Terminal interface

IBM’s Interactive Debugger for applications running in z/OS

“How To” quick reference
and Notes

For detailed descriptions of commands, command syntax, and
command options, refer to the Debug Tool for z/OS Reference
and Messages manual. A complete set of Debug Tool manuals

can be obtained from the IBM Debug Tool website.
www.ibm.com/software/awdtools/debugtool/

select the “Library” link

Manuals:
Summary of Commands, User’s Guide, Reference and

Messages, and Customization Guide

The following paragraph does not apply to the United Kingdom or
any other country where such provisions are inconsistent with

local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,

BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore,

this statement may not apply to you.

This information could include technical inaccuracies or
typographical errors. Changes are periodically made to the

information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this

at any time without notice.

For Use with Debug Tool Version 12

© Copyright International Business Machines Corporation
2012. All rights reserved.

Revised December 14, 2010
How to bypass an Abend condition

If an abend occurs, you are notified with a message in the log. If
the program is stopped at an abend, and you STEP or GO, the
application will abend. To continue without abending:
GO BYPASS This command bypasses the statement

where the abend occurred, passes
control to the next logical statement,
and stops there.

How to call Fault Analyzer to capture a fault entry
CALL %FA Invoke IBM Fault Analyzer for z/OS to

capture a fault entry based on the
current state of the application. Control
is returned to the debugger after the
fault entry has been captured, and
debugging can continue.

Files that can be used by the debugger, and
commands to use them
Preferences File
(DD name INSPPREF)

A file that contains a series of Debug
Tool commands (a script) that runs
automatically when the debugger
starts. It is typically used to customize
debugging settings and the
environment for the developer.

Command File
(DD name
INSPCMDS)

A file that contains a series of Debug
Tool commands (a script) that runs
automatically when the debugger
starts. It runs after the preferences file
completes, if there is one. It is typically
used to run a series of commands to
control execution of the test session
and programs.

Log File
(DD name INSPLOG)

A file where Debug Tool writes
messages that are written to the log
window., such as results of various
Debug Tool Commands.

SET LOG ON FILE
file-name OLD

Command that opens file-name of the
log file. All log messages occurring
after this command is issued are
written to the file.

USE file-name Command to run Debug Tool
commands (a script) contained in the
specified file.

LANGX file Debugging information for OS/VS
COBOL, VS COBOL II, or Assembler

Save settings file Allows saving/restoring of SETTINGS
between debugging executions. The
default naming convention is user-
id.DBGTOOL.SAVESETS, but may be
customized on each system.
File attributes: sequential, RECFM=VB,
LRECL=3204 or more, BLKSIZE=any

Save breakpoints and
monitors file

Allows saving/restoring of breakpoints
and MONITOR values between

debugging sessions. The default
naming convention is user-
id.DBGTOOL.SAVEBPS, but may be
customized on each system.
File attributes: PDS or PDSE (Library),
RECFM=VB, LRECL=3204 or more,
BLKSIZE=any

SET SAVE SETTINGS
AUTO

Automatically save current settings to
the save settings data set when the
debugger ends

SET SAVE BPS
AUTO

Automatically save current breakpoints
to the save breakpoints and monitors
data set when the debugger ends

SET SAVE
MONITORS AUTO

Automatically save current monitors to
the save breakpoints and monitors
data set when the debugger ends

SET RESTORE
SETTINGS AUTO

Automatically restore settings from the
save settings data set when the
debugger starts

SET RESTORE BPS
AUTO

Automatically restore breakpoints from
the save breakpoints and monitors
data set when the debugger starts

SET RESTORE
MONITORS AUTO

Automatically restore monitors from the
save breakpoints and monitors data set
when the debugger starts

How to invoke the debugger:
Batch LE program, connecting to GUI debugger
Insert a CEEOPTS DD statement with TEST run-time option in
the JCL in the step or steps to be debugged. Syntax:
 //CEEOPTS DD *
 TEST(,,,TCPIP&address%port:)
 address = the IP address of your workstation, and
 port = the listening port number configured in the GUI
 TCPIP directs the debugger to use a GUI
Example:

 //CEEOPTS DD *
 TEST(,,,TCPIP&123.45.67.89%8001:)

How to invoke the debugger:
Batch LE program, connecting to a Terminal
Interface Mgr (TIM) terminal
Insert a CEEOPTS DD statement with TEST run-time option in
the JCL in the step or steps to be debugged. Syntax:
 //CEEOPTS DD *
 TEST(,,,VTAM%userid:)
 userid = your user ID
 VTAM%user-id: directs the debugger to use the terminal
 interface manager. It will connect to the TIM terminal
 where userid is logged on.
Example:
 //CEEOPTS DD *

 TEST(,,,VTAM%USRX001:)

How to invoke the debugger:

Batch non-LE program, connecting to a GUI
debugger
Change the program name on the EXEC statement to
EQANMDBG, and code an EQANMDBG DD statement with the
program name and a TEST option.

For example, if the EXEC statement in the run JCL looks like:
 //STEP10 EXEC PGM=MYPROG,PARM=’ABC,123’

Replace the EXEC statement with:
 //STEP10 EXEC PGM=EQANMDBG,PARM=’ABC,123’
 //EQANMDBG DD *
 MYPROG, TEST(,,,TCPIP&address%port:)
 /*

How to invoke the debugger:
Batch non-LE program, connecting to a Terminal
Interface Mgr (TIM) terminal
Change the program name on the EXEC statement to
EQANMDBG, and code an EQANMDBG DD statement with the
program name and a TEST option.

For example, if the EXEC statement in the run JCL looks like:
 //STEP10 EXEC PGM=MYPROG,PARM=’ABC,123’

Replace the EXEC statement with:
 //STEP10 EXEC PGM=EQANMDBG,PARM=’ABC,123’
 //EQANMDBG DD *
 MYPROG,TEST(,,,VTAM%userid :)
 /*

How to invoke the debugger:
Debugging batch programs under TSO
The Debug Tool Setup Utility can optionally be used to debug
batch programs under TSO. It is on the Debug Tool utility menu in
ISPF.

How to invoke the debugger:
CICS programs
Use the DTCN or CADP transaction to create a debugging profile
for CICS applications, depending on which of these is installed on
your systems.

The DTCN transaction is used to define a profile to start the
debugger for one or more CICS programs, based on program
name, transaction id, user id, and other criteria. DTCN is a
feature of IBM Debug Tool for z/OS.

There is an optional graphical user interface for DTCN (an
Eclipse plug-in) so you can set debugging profiles from a
workstation without using a terminal.

The CADP transaction is used to define one or more profiles to
start the debugger for CICS programs, based on program name,
transaction id, user id, and other criteria. CADP is a feature of
CICS.
The Language Environment TEST option

The LE TEST option is used to invoke the debugger.

It has five sub-options, separated by commas and a colon:
TEST(test-level , command-file , prompt , connection :
preferences-file)

test-level is not typically coded. It is used to control when the
debugger will automatically stop as a program runs. (default = all
conditions and abends)

command-file can be used to specify the DDname or file name
of a script file containing debugger commands that will run
automatically.

prompt is not typically coded. (default = display the debugger
when triggered)

connection controls where the debugger displays:
VTAM%user-id: = Connect to the TIM terminal where user-id
logged on
MFI%terminal-id: = Connect to the non-TIM terminal named
terminal-id
TCPIP%workstation_tcpip_address%port_id = Connect to GUI
debugging software such as the Debug Tool Eclipse plug-in

preferences-file can be used to specify the DDname or file name
of a script file containing debugger commands that will run
automatically. The preferences file (if specified) runs before the
command file (if specified).

Example: TEST(,,,VTAM%USER123:)

Notes:
Use NAMES EXCLUDE/INCLUDE to reduce storage footprint
especially in CICS, and to completely eliminate programs/non-
executable load modules from Debug Tool consideration

Use CALL %VER to display WA the version and level of Debug
Tool being used

Set up a log file so you have a record of your debugging session.
If it isn’t needed, no harm is done, but if you need it, then you do
not have to recreate the debugging session to get the log. A SET
LOG ON FILE file-name OLD command will open a log file.

CALL %HOGAN – invoke HOGAN application (CICS)
CALL %DUMP – invoke LE dump
CALL %FA – invoke Fault Analyzer (dump)
CALL %CEBR – invoke CICS temp storage browser
CALL %CECI – invoke command interpreter

DTCXXO – CICS transaction to TURN ON SUPPORT for non-LE
assembler and/or OS/VS COBOL in CICS (Must issue this
transaction in order to debug non-LE assembler or OS/VS
COBOL under CICS) (Use DTCXXF to turn support “off”)

Working with program function (PF) keys

QUERY PFKEYS Display a list of the current function key
settings in the log

SET KEYS ON Displays the function key settings on
the bottom two lines of the screen

SET KEYS OFF Turns off the function key display

SET KEYS 12 With “SET KEYS ON”, displays
function keys 1 - 12

SET KEYS 24 With “SET KEYS ON”, displays
function keys 13 - 24

SET PF16 “Monitor” =
MONITOR LIST %CU
LOCAL

Set the F16 key to the command
“MONITOR LOCAL %CU LIST”. The
function key display will show PF16 as
“Monitor”.

Default function key settings
F1 / 13 HELP

F2 / 14 STEP

F3 / 15 END

F4 / 16 LIST

F5 / 17 FIND

F6 / 18 AT/CLEAR

F7 / 19 UP

F8 / 20 DOWN

F9 / 21 GO

F10 / 22 ZOOM

F11 / 23 ZOOM LOG

F12 / 24 RETRIEVE

IBM

Debug Tool
Terminal interface

IBM’s Interactive Debugger for applications running in z/OS

Commands used to work with
storage and registers and

assembler programs

For detailed descriptions of commands, command syntax, and
command options, refer to the Debug Tool for z/OS Reference
and Messages manual. A complete set of Debug Tool manuals

can be obtained from the IBM Debug Tool website.
www.ibm.com/software/awdtools/debugtool/

select the “Library” link

Manuals:
Summary of Commands, User’s Guide, Reference and

Messages, and Customization Guide

The following paragraph does not apply to the United Kingdom or
any other country where such provisions are inconsistent with

local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,

BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore,

this statement may not apply to you.

This information could include technical inaccuracies or
typographical errors. Changes are periodically made to the

information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this

at any time without notice.

For Use with Debug Tool Version 12

© Copyright International Business Machines Corporation
2012. All rights reserved.

Revised June 30, 2012

Set an AT CHANGE breakpoint based on a
storage area
AT CHANGE
%STORAGE
(X’12B4C’,20)

Set a change breakpoint to watch the
storage area beginning at address
12B4C for a length of 20 bytes
(Note: X’12B4C’ is assembler syntax.
For C it is 0x12B4C. For COBOL it is
H’12B4C’)

Display storage in the MEMORY window
ZOOM MEM Display (zoom in to) the memory

window
Note: ZOOM again will zoom out of the
memory window.

MEM variable-name Position the memory window to the
address of variable-name

MEM X'A500'
MEM X'A500'+20
MEM X'A500'+X'B6'
MEM X'A500'-32

Position the memory window to the
specified address or offset
Note: If the address has more than 8
significant hexadecimal digits, it is
taken as a 64-bit address. If it has 7 or
8 significant digits, it is a 31-bit
address. Otherwise, it is a 24-bit
address.

MEM %GPR12-> Position the memory window to an
address pointed to by register 12

Display storage in the log or monitor
Note:
 LIST … will display an item in the log.
 MONITOR LIST … will display an item in the monitor.
LIST STOR(var,20)

MONITOR LIST
STOR(var,20)

Display 20 bytes of storage beginning
at the address of variable var

LIST
or
MONITOR LIST
followed by one of:
STOR(X'5F000',64)
or
STOR(X'5F000'->
+256,64)
or
STOR(X'5F000'->
+X'100')

Display storage at an address or offset

LIST
or
MONITOR LIST
followed by one of:
STOR(R1->,16)
or
STOR(%GPR1-> ,16)
or
STOR(%GPR1->
+256,16)

Display 16 bytes of storage at the
address pointed to by a register, or an
offset of a register address

Modify storage
1. MON LIST var to
display the variable in
the monitor
2. Overtype the value of
the variable in the
monitor

Follow these steps to modify the
value of a variable using the monitor
window

1. ZOOM MEM to
display the memory
window
2. MEM address to
position to the address
3. Overtype
hexadecimal values in
the memory window

Follow these steps to modify storage
using the memory window

A1 = 1
(note: decimal 1)
A1 = 'Text'
A1 = X'123C'
A1 = A1 + 5

Replace variable A1 with a value or
expression

STORAGE(X'5F000',4)
= 256

Update 4 bytes of storage at an
address with the binary equivalent of
decimal 256

STOR(X'5F000',4) =
X'100'

Update 4 bytes of storage at an
address with a right-justified
hexadecimal value

STOR(X'5F000') =
X'00000100'

Update 4 bytes of storage at an
address with a hexadecimal value

STOR(X'5F000') =
'Some Text'

Update 9 bytes of storage at an
address with a text string

%GPR8->+8 <l'x> = x Assign the value of X to the 4 bytes at
offset 8 from the contents of R8

%GPR2->+6 <14> =
R8->+0

Move a string of 14 bytes pointed to
by the contents of R8 (where R8 is an
equated register in the program) to 6
bytes past the location pointed to by
register 2

%GPR6->+0 <X'20'> =
X'00

Set 32 bytes pointed to by register 6
to zero.
Note: specify the length of the
receiving storage within < >

Display registers in the log or monitor
Note:
 LIST … will display an item in the log.
 MONITOR LIST … will display the item in the monitor.
LIST REG

Display the sets of different types of
registers in the log or monitor

MON LIST REG

Display all general purpose registers in
the log

LIST
or
MONITOR LIST
followed by one of:
64BIT REG
 or
SHORT FLOAT REG
 or
LONG FLOAT REG

Display all of different types of registers
in the monitor or log

LIST %GPR12
 or
MONITOR LIST
%GPR12

Display general purpose register 12 in
the log or monitor

LIST %GPRGn
 or
MONITOR LIST
%GPRGn

Display a 64-bit general purpose
register in the log or monitor

LIST %FPRn
 or
MONITOR LIST
%FPRn

Display a short-precision floating point
register in the log or monitor in
hexadecimal format

LIST %FPRDn
 or
MONITOR LIST
%FPRDn

Display a short-precision floating point
register in the log or monitor in decimal
format

LIST %FPRBn
 or
MONITOR LIST
%FPRBn

Display a short-precision floating point
register in the log or monitor in binary
format

LIST %EPRn
 or
MONITOR LIST
%EPRn

Display a extended-precision floating
point register in the log or monitor in
hexadecimal format

LIST %EPRDn
 or
MONITOR LIST
%EPRDn

Display a extended-precision floating
point register in the log or monitor in
decimal format

LIST %EPRBn
 or
MONITOR LIST
%EPRBn

Display a extended-precision floating
point register in the log or monitor in
binary format

Modify the contents of a register
1. MON LIST %GPRn
(or one of the other
register types) to
display the register in
the monitor
2. Overtype the
contents of the register
in the monitor

Follow these steps to modify the
contents of a register using the monitor
window

%GPR1 = x’1afc3’
%GPR12 = 10
%GPR5 = %GPR5 + 1

Replace the contents of a register with
a value or expression
Note: The other register types can be
modified:
%GPRGn (64-bit general purpose)
%FPRn (floating point)
%EPRn (extended floating point)

Display the address, length, and type of a
variable
DESC ATTR var List (describe) the attributes of variable

var in the log

Display the program PSW (program status word)
LIST %PSW Display the PSW in the log

MON LIST %PSW Display the PSW in the monitor

Display the address of a program or module
DESC PROG pgm1 List (describe) the attributes of

program ASAM1, including it’s address
in storage

DESC LOAD lmod1 List (describe) the attributes of load
module LMOD1, including it’s address
in storage

LIST %EPA Display the entry point address of the
current program

LIST %AMODE Display the current addressing mode

LIST %BLOCK Display the name of the current block
point (a CSECT is a block, for
example)

