

®

IBM Software Group

© 2009 IBM Corporation
September 21, 2012

IBM Debug Tool for z/OS

Program number 5655-W70

Tutorial

© 2012 IBM Corporation

This is the tutorial for IBM Debug Tool for z/OS®, one of the IBM zSeries® problem
determination tools.

DTv12s01Introduction.ppt Page 1 of 32

Introduction

Preparing programs for use with the debugger: an overview
� Compiling Enterprise COBOL programs

� Compiling Enterprise PL/I v3.5 and later programs

Debug Tool tutorial

2 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

Take these tutorials to learn how to use Debug Tool to work with programs running on
z/OS systems. Debug Tool is designed to address the needs of application developers
working with complex programs and environments.

Take a look at how the course is structured. It is broken down into sections. If you have
not already used Debug Tool, take each section in order. But if you have already been
using it and want to learn more about a particular topic, you can go directly to that section.

This is the introduction, and it will describe how you can use Debug Tool and how to you
can get the manuals from the IBM website.

The next section, “Preparing programs for use with the debugger” provides an overview of
how to compile programs so you can debug them, and shows where you can get detailed
information about using the various compilers and assembler.

DTv12s01Introduction.ppt Page 2 of 32

Debug Tool tutorial

Scenarios for starting the debugger for LE batch programs

� Trigger the debugger with an LE TEST option in JCL, and
1.	 Display the debugger on a graphical user interface

2.	 Display the debugger on a TIM (Debug Tool terminal
interface manager) terminal through a session manager

3.	 Display the debugger on a dedicated TIM terminal
4.	 Display the debugger on a dedicated non-TIM terminal

�	 Trigger the debugger with the LE 'user exit data set' facility, and
5.	 Display the debugger on a graphical user interface
6.	 Display the debugger on a TIM terminal through a

session manager

7.	 Display the debugger on a dedicated TIM terminal
8.	 Display the debugger on a dedicated non-TIM terminal

Run and debug an LE batch program under TSO
9.	 Use the 'Debug Tool setup file' online panels to run the program

and display the debugger on the TSO terminal

IBM Debug Tool for z/OS tutorial 3 © 2012 IBM Corporation

The section titled "Starting the debugger for batch LE programs" describes the various
methods you can choose from to debug a batch program, and helps you select a method.
After selecting a method, then view the section or sections that describe the specific
methods you have chosen to debug batch programs.

DTv12s01Introduction.ppt	 Page 3 of 32

Debug Tool tutorial

Using Debug Tool's terminal interface

� Full-screen windows and navigation

� Using the debugger
� Stepping through statements and running the program

� Program statement breakpoints
� Monitoring variables

� Displaying variables in the log
� Making breakpoints conditional

� Variable change breakpoints
� Program entry and exit breakpoints
� Jumping to a statement

� Ending the debugging session

IBM Debug Tool for z/OS tutorial 4 © 2012 IBM Corporation

The next sections describe how to use the 3270 terminal interface. Commands and
features that you need to know to debug programs are described, along with hints, tips,
and examples.

DTv12s01Introduction.ppt Page 4 of 32

Debug Tool tutorial

Using Debug Tool's terminal interface (continued)
� Loading program debug files

� Loading sysdebug, listings, dwarf, and source files
� Loading LANGX files

� Retaining settings and breakpoints between sessions

IBM Debug Tool for z/OS tutorial 5 © 2012 IBM Corporation

The next sections describe how to use the 3270 terminal interface. Commands and
features that you need to know to debug programs are described, along with hints, tips,
and examples.

DTv12s01Introduction.ppt Page 5 of 32

Debug Tool tutorial

Using Debug Tool's graphical user interface

� Debug perspective views and navigation

� Using the debugger
� Stepping through statements and running the program

� Program statement breakpoints
� Monitoring variables

� Making breakpoints conditional
� Watch breakpoints

� Program entry and exit breakpoints
� Ending the debugging session

� Loading program debug files
� Loading sysdebug, listings, dwarf, and source files

� Loading LANGX files

IBM Debug Tool for z/OS tutorial 6 © 2012 IBM Corporation

The next set of sections describe how to use the graphical user interface, showing
buttons, commands, and features that you will use to debug programs.

DTv12s01Introduction.ppt Page 6 of 32

Debug Tool tutorial

Debugging CICS® Applications

� Starting the debugger using the DTCN transaction
� Creating a DTCN profile
� Working with DTCN profiles

� Setting the current terminal ID in a DTCN profile

� Creating and editing a DTCN profile using the GUI plug-in

� Starting the debugger using the CADP transaction
� Creating a CADP profile

� Working with CADP profiles
� Setting the current terminal ID in a CADP profile

IBM Debug Tool for z/OS tutorial 7 © 2012 IBM Corporation

If you have programs that run under CICS, take the tutorial sections that describe
debugging CICS applications.

DTv12s01Introduction.ppt Page 7 of 32

What is IBM Debug Tool for z/OS ?

� An interactive program debugger you can use to control and monitor
application programs while they run

� And a set of related online panels and batch utilities

Debug Tool Application

z/OS

8 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

IBM Debug Tool for z/OS is an interactive program debugger you can use to control and
monitor application programs while they run. It also provides a set of related online and
batch utilities.

DTv12s01Introduction.ppt Page 8 of 32

What features are provided by the interactive debugger?

� Use the debugger to:

�	 Determine why a program is
producing incorrect results

�	 Locate an abending statement

�	 See program statements, and step
through statements one at a time

�	 Set breakpoints at statements,
programs, and conditions

�	 Run until a breakpoint is reached

�	 View and change the values of
variables and storage

�	 And much more

IBM Debug Tool for z/OS tutorial 9 © 2012 IBM Corporation

You can use the debugger to determine why a program is producing incorrect results, or
to run a program that abends and have it stop automatically on the abending statement.
As you are debugging, you can see program statements, and step through statements
one at a time. You can set breakpoints at statements, at programs, and based on
conditions, and then run the program until it reaches a breakpoint. You can view and
change the values of variables in storage, trace the statement path of a program, and
much more.

DTv12s01Introduction.ppt	 Page 9 of 32

Interface with Debug Tool using a terminal

Debug Tool Application Debug Tool Application

z/OS

3270

� Full-screen interface
� A 3270 terminal-based interface is built into Debug Tool

� Debug Tool displays on a 3270 terminal emulator on your workstation

10 © 2012 IBM Corporation IBM Debug Tool for z/OS tutorial

Debug tool has more than one user interface. There is a 3270-based interface built in. The
debugging engine controls the application as it runs, and communicates with a VTAM®

terminal or 3270 emulator. This interface is called the MFI, which stands for mainframe
interface. It is also called the full screen interface.

DTv12s01Introduction.ppt Page 10 of 32

Debug Tool ApplicationDebug Tool

Interface with Debug Tool using
a graphical user interface

� Remote graphical interfaces are available in Rational® Developer for
System z® and CICS Explorer®

� It is software that can be installed on your workstation

� The application running on the mainframe is controlled by the same
debugging engine that is used by the 3270 interface

� Debug Tool displays on your workstation

z/OS

TCP/IP
Application Debug Tool

11 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

There are also remote graphical user interfaces for Debug Tool. The same debugging
engine is used to control the application running on the mainframe, and it communicates
with software installed on your workstation. You can install Rational Developer for System
Z to provide a front end to Debug Tool. The GUI is also available as a plug-in to CICS
explorer. You may prefer to use one of these interfaces instead of a 3270 terminal.

DTv12s01Introduction.ppt Page 11 of 32

ApplicationDebug Tool

Automate debugging with your own script

� “Batch mode" debugging
� Can be unattended – everything can be scripted

� A command file is used to run a series of debugger commands

� The script controls the programs, and messages are written to a log file

� Consider using it, for example:
� instead of COBOL 'DISPLAY' statements
� to display messages to help automate regression testing

� If the script does not run the application to completion, the debugging interface
displays after the script finishes

Command File

Log File

Application Debug Tool

12 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

And there is one more way to interface with Debug Tool: do not interface with it at all. You
can use something called batch mode debugging, which means that you do not work
interactively with the debugger. Instead, you code a debugging script that controls the
application. You write a command file, which contains a series of Debug Tool commands.
Debug Tool uses your command file to control the application. During the run, your script
writes messages to a log file. You might be wondering when you might use batch mode
debugging instead of just interacting with the debugger from a terminal or workstation.
And the answer is that typically you do not. However, you might consider using batch
mode debugging instead of coding display statements into your COBOL programs, or to
get a trace of statements as the program runs. This method can also be used to automate
your regression testing runs, by checking for certain conditions at certain places in your
programs, and generating messages based on the results. Batch mode debugging gives
you a powerful way to programmatically get information about your application while it
runs without changing the actual programs.

DTv12s01Introduction.ppt Page 12 of 32

IBM Debug Tool for z/OS tutorial 13 © 2012 IBM Corporation

What kinds of applications can be debugged?

� One debugging engine, with support for many environments

z/OS

3270
or GUI

3270
or GUI

Debug Tool

Batch
Application

Batch
region

Debug Tool

Transaction

CICS
Application

CICS
region

Debug Tool

Transaction

IMS
Application

IMS/TM
region

Debug Tool

DB2 Stored
Procedure

WLM
region

Batch

Debug Tool

Posix
Application

3270
or GUI

3270
or GUI

3270
or GUI

CICS IMS/TM
DB2

stored
procedure

UNIX
systems
services

Debug tool provides a single debugging engine that supports many different
environments. You can use the same debugger for your batch, CICS, and online IMS™

applications. It is the same debugging engine when you work with DB2® stored
procedures and programs running with UNIX® systems services on z/OS. As a result,
there is only a single debugger to learn. You do not need different debuggers in different
application environments.

DTv12s01Introduction.ppt Page 13 of 32

Debug Tool and Language Environment

� Two types of application programs run on z/OS systems:
�	 LE programs: programs that use Language Environment (LE) services

when they run

�	 Non-LE programs: programs that do not use LE services when they run

� Debug Tool has support for both types of programs

� Language Environment is a common set of run-time services
�	 Including date and time functions, math functions, application utilities,

storage management, subsystem support, and others

�	 Since 1991, the direction has been for z/OS compilers to produce modules
that require LE run-time services

� Modern, in-service IBM compilers on z/OS produce LE programs
� All non-LE IBM compilers on z/OS are older and out of service

� This training module (basic) describes how to use Debug Tool with LE
programs
� The advanced training module includes topics that describe how to use

IBM Debug Tool for z/OS tutorial 14 © 2012 IBM Corporation

Debug Tool with non-LE programs

On a z/OS mainframe system, there are two types of programs, programs that use
Language Environment services when they run, and programs that do not. IBM Debug
Tool for z/OS supports both types of programs.

Language Environment is a common set of run-time services that a program accesses
as it runs. These are services such as date and time functions, math functions, application
utilities, storage management, support for subsystems such as CICS and IMS, and many
others. Since the early 1990's, the direction for compilers on the z/OS platform has been
that compilers produce modules that require Language Environment run-time services.
This design allows for much smaller and more efficient application modules, since service
routines do not have to be copied into program load modules, and service routines are
accessed only when they are needed in real time.

Modern IBM z/OS compilers produce programs that require Language Environment
services to be available at run-time. z/OS compilers that do not produce modules that use
Language Environment services are old and no longer in service.

These tutorials describe how to use the debugger with programs that use Language
Environment. The tutorials do not cover debugging older programs that do not use
Language Environment, although those topics can be learned from product manuals or
advanced on-site training classes.

DTv12s01Introduction.ppt	 Page 14 of 32

What compilers can be used with Debug Tool ?

LE-conforming compilers and assembler

� Enterprise COBOL for z/OS � Enterprise PL/I for z/OS

� COBOL for OS/390® and VM * � PL/I for MVS and VM *
� COBOL for MVS and VM * � OS PL/I * 2.1, 2.2, and 2.3
�	 VS COBOL II * V1R3 and V1R4

(linked with LE services) � z/OS XL C/C++
� z/OS C/C++ *

� High Level Assembler, when the � OS/390 C/C++ *
program calls LE services

(CEEENTRY macro is coded)

Non-LE-conforming compilers and assembler
� High Level Assembler, when the � VS COBOL II * V1R3 and V1R4

program does not call LE services (linked without LE services)
(CEEENTRY macro is not coded)

� OS/VS COBOL *

IBM Debug Tool for z/OS tutorial 15 © 2012 IBM Corporation

This is not a complete list of compilers that can be used with Debug Tool.

* denotes an older compiler that has been withdrawn from service

Here is a partial list of popular IBM compilers for the z/OS platform that can be used with
IBM Debug Tool for z/OS. For COBOL, Enterprise COBOL for z/OS is the latest compiler.
Other compilers are older, and if your organization still uses older COBOL compilers,
there could be benefit in migrating to the latest compiler. Some compilers are no longer in
support, such as the obsolete VS COBOL II and OS/VS COBOL compilers, but can still be
used with Debug Tool.

For PL/I, Enterprise PL/I is the latest, but many older versions of PL/I can still be used
with Debug Tool.

The debugger supports programs compiled using the latest z/OS XL C and C++
compiler, and some of the older C and C++ compilers. Debug Tool also provides robust
support for programs written in assembler language.

DTv12s01Introduction.ppt	 Page 15 of 32

Debug

Tool

Program

Compile Link

1. Compile the program
with support for the
debugger and create
a debug file

2. Set a trigger. For
example, code a
TEST option in the
JCL for batch, or use
DTCN for CICS

3. Run the application.
LE will receive the
TEST option and start
the debugger

The steps for using Debug Tool with LE programs

Debug
Tool

Program Source

Program

Load
Module

Compile Link Object

z/OS

SYSDEBUG
File

LE

Enterprise COBOL or Enterprise PL/I batch example

TEST(…) compiler option

Add an LE TEST option to the
JCL that runs the program

16 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

Here are the steps for starting Debug Tool with a Language Environment-conforming
program. First, build the module. Compile and link a load module with support for the
debugger. For modern compilers such as Enterprise COBOL and Enterprise PL/I, the
compiler will produce a special file containing debugging information, such as a Sysdebug
file.

Next, set a debugging trigger. A debugging trigger is a setting or code that will cause the
debugger to start when you run the program in a certain environment. Set it up so that at
run time, a special TEST option will be passed to Language Environment when the
program starts. There a many different ways to pass the TEST option. For example, it can
be done for a batch program with a simple change to JCL. For CICS programs, a special
transaction called DTCN can be used to turn on the TEST option for a specific program or
transaction. Setting triggers for Language Environment conforming programs will be
covered in detail in later sections.

Finally, run the application. When Language Environment receives the TEST run-time
option, it starts the debugger. The debugger uses the special debug file created by the
compiler to get information about the program, such as source statements and variable
locations. The debugger is displayed on a 3270 terminal or graphical user interface.

DTv12s01Introduction.ppt Page 16 of 32

Debug

Tool

Program

Assemble Link

EQALANGX

utility

1. Build: Assemble or
compile to create a
load module and a
debug file

2. Set a trigger: Set it
up so Debug Tool
will start when the
program runs

3. Run: Run the
application, and
Debug Tool will
start

The steps for using Debug Tool with non-LE programs

Debug
Tool

Program Source

Program

Load
Module

Assemble Link

Object

z/OS

LANGX
file

EQANMDBG

(non-LE batch Assembler example)

ADATA
option

EQALANGX

utility
Sysadata

file

Change the JCL to run

program EQANMDBG

17 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

Here are the steps for starting Debug Tool with a program that does not use Language
Environment services. Again, these are typically assembler programs or programs
compiled with obsolete compilers. First, compile the program and link it into a load
module. A special utility program that comes with Debug Tool is used to create a special
LANGX file that contains information that the debugger will use.

Next, set a debugging trigger. The methods available for setting a trigger for programs
that do not use Language Environment services will not be covered in this tutorial, with the
exception of CICS programs. However, starting the debugger for all types of programs is
described in the Debug Tool manuals, and can be covered in formal workshops.

Finally, run the application. The trigger causes the debugger to start, and it uses the
LANGX file to get information about the program, such as source statements and variable
locations. The debugger is displayed on a 3270 terminal or graphical user interface.

DTv12s01Introduction.ppt Page 17 of 32

IBM Debug Tool for z/OS tutorial 18 © 2012 IBM Corporation

Debug batch LE applications

� Debug batch programs while they run in batch jobs
� Including DB2 and IMS batch

� This workshop module describes two simple methods to trigger the
debugger when an LE program runs in batch
� Code an LE 'TEST' option in the run-time JCL, or

� Use the Debug Tool 'User exit data set' online panels in TSO

� The advanced training module describes how to trigger the debugger
for non-LE batch programs

Debug Tool

Batch
Application

z/OS

Batch
region C. When the batch

job step runs, the
debugger starts
because of the
trigger

A. Set a trigger, then
B. Submit the batch job

D. The debugger
displays on a
Debug Tool terminal
or GUI interface

You can use Debug Tool to work with batch programs, including programs that access
DB2 and IMS databases. To start the debugger for a batch application, you set a program
trap so Debug Tool will start automatically when the program runs. There are several
ways to set a trap. For example, if the system is set up for it, you can specify the name of
the batch program on a special Debug Tool panel in TSO. Then just submit the job, and
Debug Tool starts automatically. Another way to set a trap is to code a special test option
in your JCL, and then when you run the job, the debugger starts. Remember that the
debugger can be displayed either on a 3270 terminal or on GUI debugging software on
your workstation. When you set your debugging trap, you specify which interface you want
to use. This is the first, and generally best, method available to debug batch applications.
Run them in their native environment, as a batch job. However, there is another way to
debug batch applications.

DTv12s01Introduction.ppt Page 18 of 32

IBM Debug Tool for z/OS tutorial 19 © 2012 IBM Corporation

Debug batch applications in TSO

� You can run a batch application in TSO, instead of running it in batch,
with the 'Debug Tool setup file utility' online panels
� This is another, optional way to debug batch programs

� Use the online panels to create and run a "setup file"
� A setup file serves a similar function as JCL, but runs an application in

TSO instead of in batch
� It contains the name of the program to execute, parameters, and a list of files

(similar to DD statements)

� Existing JCL can be copied to create a setup file

Debug Tool

Batch
Application

z/OS

TSO
region

C. When the setup
file runs your
program in TSO,
the debugger
starts because of
the trigger

A. Use the online panels to create
a setup file and set a trigger

B. Run the setup file

D. The debugger
displays on your
TSO terminal or a
GUI interface

TSO

You can optionally debug your batch programs under TSO. Debug Tool gives you a
special set of ISPF panels called the Debug Tool setup file utility that you can use to copy
information from batch JCL and run your program. The debugger will be displayed on your
TSO terminal or on GUI debugging software on your workstation.

DTv12s01Introduction.ppt Page 19 of 32

Debug CICS applications

� Use the Debug Tool DTCN or CADP transaction to set a trigger
� Define the trigger attributes that identify your application using a

combination of: program name, transaction ID, terminal ID, user ID, and
others

� Specify where the debugger will be displayed
� Single terminal mode: Debug Tool and the application share one terminal
� Dual terminal mode: Debug Tool displays on a different CICS terminal (that

you specify) than the application
� GUI interface: Debug Tool displays on a GUI interface on your workstation

Debug Tool

CICS

transaction

z/OS

CICS
region

C. When the
program runs, the
debugger starts
because of the
trigger

A. Use DTCN or CADP
to set a trigger

B. Run the application

D. The debugger
displays on a CICS
terminal or GUI
interface

CICS

20 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

Use the same debugging engine to work with your CICS applications. To start the
debugger for a CICS program, you will use a special Debug Tool transaction. Either DTCN
or CADP. The Debug Tool transaction displays a screen where you specify information
about the application that you want to debug. You can specify information such as the
program name, the transaction ID, the CICS terminal ID, and the user ID. Then you save
your debugging profile, and the trap is set. Then, just run your application normally in
CICS. When it runs, Debug Tool is displayed on your CICS terminal or a remote GUI
debugger.

It is typical to debug CICS applications in something called single terminal mode. That
means that Debug Tool is displayed on the same terminal where your transaction is
running. The debugger and your application share the terminal. However, you can also in
debug in dual terminal mode. That means your application is running on a CICS terminal,
but the debugger is displayed on a different CICS terminal or on a remote GUI debugger.
One of the benefits of dual terminal debugging is the ability for one person to run a CICS
transaction, and another person to debug it. Also be aware that you can debug
background CICS transactions, that is transactions that are not attached to a CICS
terminal. For example, transactions that are initiated from web-based remote systems may
run as background transactions.

DTv12s01Introduction.ppt Page 20 of 32

CICS

XXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXX

---- ------------------------ --------

11 22222 333

111 222222222222 33333

11 22222222 333333

IBM Debug Tool for z/OS tutorial 21 © 2012 IBM Corporation

Debug IMS/TM transaction applications

� Set a program trap by specifying the program name on a Debug Tool panel in TSO

Dual Terminal mode:
Run the application as it
normally runs in an online
IMS region.
Debug Tool is displayed
on a Debug Tool terminal
or a GUI interface.

BTS (Batch Terminal Simulator):
Use Debug Tool online panels
to create a setup file to run BTS
in TSO. Run your IMS transaction
under BTS. Debug Tool is
displayed on your TSO terminal
or a GUI interface.

IMS Online Applications (IMS/TM)

Debug Tool
IMS

Application

Transaction

z/OS

IMS/TM message
processing region

Debug Tool

IMS

3270
or remote

GUI
debugger

Debug Tool
IMS

Application

BTS
z/OS

TSO region
TSO

And use the same debugging engine to work with your IMS transaction manager
transactions. To start the debugger for an online IMS program, use a special Debug Tool
panel in TSO to specify the program name. Then, you can run your transaction normally in
a regular IMS message processing region. When your program runs, Debug Tool is
displayed on a 3270 terminal or a remote GUI debugger.

If you have IBM Batch Terminal Simulator software, you can debug an IMS transaction
while it is running in your TSO region or in a batch job that you control.

DTv12s01Introduction.ppt Page 21 of 32

__

__

__

Site-specific information you need before using Debug Tool:
Compiling programs for use with the debugger

� Standard compiler processes should be updated to specify the
required compiler options and to save a debug file for the
debugger
�	 What is the process for compiling a program for Debug Tool on your

system:

�	 Have program promotion processes been updated to promote debug
files along with the program modules?

______ (yes / no)

IBM Debug Tool for z/OS tutorial 22 © 2012 IBM Corporation

The standard compiler processes should be updated so that the required compiler options
are specified to prepare the program for debugging, and to save a debug file.

If you do not maintain your compile JCL, you may need to ask how to compile a program
to use it with Debug Tool. Find out if the standard compiler processes have been updated
for Debug Tool. If so, are there special parameters or selections needed for the
debugger? Or will you make modifications to your own compiler JCL? These are often
decisions made by the system programmer or source library administrator. If you are not
sure, contact them to find out how compiler processes on your system have been
customized for use with Debug Tool.

Also, find out if your program promotion processes have been customized so that the
debug files are promoted along with the program. This promotion of debug files is needed
if you want the ability to debug programs at different stages of their life cycle.

DTv12s01Introduction.ppt	 Page 22 of 32

__

__

__

Site-specific information you need before using Debug Tool:
Terminal and GUI interfaces

� What debugging interfaces are available for debugging batch
programs, IMS/TM transactions, and DB2 stored procedure programs?

�	 Graphical interface
� Will a graphical interface for the debugger be installed on your workstation?

______ (yes / no)
� If yes, which one? ___

�	 Dedicated terminals for the 3270 terminal interface

� Are dedicated Debug Tool terminals
installed on your system? ______ (yes / no)

� Is the Debug Tool TIM (terminal interface
manager) installed on your system? ______ (yes / no)

� How do you connect to a Debug Tool terminal on your system?

IBM Debug Tool for z/OS tutorial 23 © 2012 IBM Corporation

Before using the debugger, you need to know how it is configured on your system. If you
are not sure about the answers, you should contact the person who installed Debug Tool.
The answers will help you understand which sections of the this tutorial to take, since
different sections apply to different ways that the debugger can be configured. Take only
the sections of the tutorial that correspond to the way that Debug Tool is configured on
your system.

First, determine the answer to the question: "Will GUI debugging software be installed on
your workstation?". And if the answer is yes, which software product will be used? One
product that includes the GUI debugger is Rational Developer for System z. Another way
to make the GUI debugger available is to install CICS Explorer, and then install the Debug
Tool plug-in.

Next, determine if you will be using the 3270 interface. If so, find out if dedicated
terminals for the 3270 interface have been installed on your system. If they have,
determine if those terminals use a service called the Debug Tool "terminal interface
manager", or "TIM". You will need to know whether you will be using a TIM terminal when
you start the debugger.

The procedure to connect to a Debug Tool terminal will be unique to your system, based
on the terminal emulator used and the network address of your host systems. If you have
not been shown how to connect to a Debug Tool terminal, check with the person or group
that installed Debug Tool.

DTv12s01Introduction.ppt	 Page 23 of 32

Site-specific information you need before using Debug Tool:
LE and non-LE programs

� The methods used to start Debug Tool depend on whether your
programs are LE or non-LE programs

� An LE program is a program prepared with a compiler that generates a
module that uses LE (Language Environment) services when it runs
� Currently supported IBM COBOL, PL/I, and C/C++ compilers on z/OS are LE

compilers
� Assembler programs that explicitly call LE services are LE programs

�	 Other programs are non-LE
� Older, out-of-support compilers may not be LE compilers. For example,

OS/VS COBOL is not an LE compiler. COBOL II programs may run as non-LE
programs.

� Assembler programs that do not call LE services are non-LE programs

� Will you debug LE programs? _____ (yes / no)

� Will you debug non-LE programs? _____ (yes / no)

IBM Debug Tool for z/OS tutorial 24 © 2012 IBM Corporation

The way you start Debug Tool may depend on whether your application programs use
Language Environment (LE) services or not. Language Environment is a collection of run
time services that IBM supplies that are used by many programs running on z/OS. A
Language Environment-conforming program is one that is prepared with a compiler that
generates a module that uses Language Environment services when it runs. If you are
using currently supported IBM COBOL, PL/I, or C or C++ compilers, then you have
Language Environment-conforming programs. Or if you have explicitly added code to your
assembler programs to call Language Environment services, then those assembler
programs are also Language Environment-conforming programs.

However, older, out of support compilers may not be LE compilers. For example, if you
are using the old OS/VS COBOL compiler, those programs are non-Language
Environment-conforming programs. If you have assembler programs that do not have
Language Environment calls coded into them, then they are also non- Language
Environment programs.

Make a note of which types of programs you will be using with Debug Tool, Language
Environment programs, non- Language Environment programs, or some of each.

DTv12s01Introduction.ppt	 Page 24 of 32

Select Debug Tool
from the list

http://www.ibm.com/software/awdtools/deployment/

IBM PD tools (including Debug Tool)
information and manuals are on the web

Select Debug Tool
from the list

25 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

You can get more information about Debug Tool, and all of the IBM problem determination
tools, on the web. Direct your browser to this URL:
www.ibm.com/software/awdtools/deployment .

To get to the Debug Tool page, select the link for "Debug Tool for z/OS".

DTv12s01Introduction.ppt Page 25 of 32

Click Librar

yClick Library

Click the Library link from the
Debug Tool for z/OS web page

26 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

You can view or download manuals from the web. From the Debug Tool page, there is a
link to the library. Click the word library on the left side of the screen.

DTv12s01Introduction.ppt Page 26 of 32

Click to view or
download a manual

Click to view or
download a manual

Debug Tool for z/OS manuals
can be viewed or downloaded

27 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

From the library page, you can view a manual by clicking a link in either the PDF or View
book column, or you can download a manual by right clicking the link in the PDF column.

DTv12s01Introduction.ppt Page 27 of 32

Debug Tool for z/OS manuals:
• User's Guide
• Reference and Messages
• Summary of Commands and Built in Functions
• Customization Guide
• Coverage Utility User's Guide and Reference
• Debug Tool Program Directory
• CCCA User's Guide
• CCCA Program Directory
• and others

Debug Tool for z/OS manuals
available from the web

IBM Debug Tool for z/OS tutorial 28 © 2012 IBM Corporation

-

Debug Tool for z/OS manuals:
• User's Guide
• Reference and Messages
• Summary of Commands and Built-in Functions
• Customization Guide
• Coverage Utility User's Guide and Reference
• Debug Tool Program Directory
• CCCA User's Guide
• CCCA Program Directory
• and others

The Debug Tool library provides several manuals. You will find helpful information about
the debugger in the “Summary of Commands and Built-in functions”, the “Users guide”,
and in the “Reference and Messages” manuals. The Reference and Messages manual
has a chapter that describes the commands in detail. In this example, the link for the
"Debug Tool commands" chapter is selected.

DTv12s01Introduction.ppt Page 28 of 32

Commands are described in detail in the

Reference and Messages manual

IBM Debug Tool for z/OS tutorial 29 © 2012 IBM Corporation

A list of commands is shown. You can easily navigate to see more information by clicking
on a link for a command on the left side of the page.

DTv12s01Introduction.ppt Page 29 of 32

Commands syntax and examples are shown in the

Reference and Messages manual

IBM Debug Tool for z/OS tutorial 30 © 2012 IBM Corporation

The Reference and Messages manual describes the syntax and parameters available for
each command. For many commands, examples are shown and explained, as on this
page which is showing variations of the AT command.

That is the end of this section, an introduction to Debug Tool.

DTv12s01Introduction.ppt Page 30 of 32

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better
meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send email feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_DTv12s01Introduction.ppt

This module is also available in PDF format at: ../DTv12s01Introduction.pdf

IBM Debug Tool for z/OS tutorial 31 © 2012 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

DTv12s01Introduction.ppt Page 31 of 32

 Trademarks, copyrights, and disclaimers

IBM, the IBM logo, ibm.com, CICS, CICS Explorer, DB2, IMS, OS/390, Rational, System z, VTAM, z/OS, and zSeries are trademarks or registered
trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of other IBM trademarks is available on the web at "Copyright and trademark information" at
http://www.ibm.com/legal/copytrade.shtml

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2012. All rights reserved.

IBM Debug Tool for z/OS tutorial 32 © 2012 IBM Corporation

DTv12s01Introduction.ppt Page 32 of 32

