

®

IBM Software Group

© 2009 IBM Corporation
September 24, 2012

IBM Debug Tool for z/OS

Program number 5655-W70

Tutorial

© 2012 IBM Corporation

This is the tutorial for IBM Debug Tool for z/OS®, one of the IBM zSeries® problem
determination tools.

DTv12s06DebuggingBatchTimTest.ppt Page 1 of 23

Debug Tool tutorial

Scenarios for starting the debugger for LE batch programs

� Trigger the debugger with an LE TEST option in JCL, and
1. Display the debugger on a graphical user interface

2. Display the debugger on a TIM (Debug Tool terminal
interface manager) terminal through a session manager

3. Display the debugger on a dedicated TIM terminal
4. Display the debugger on a dedicated non-TIM terminal

� Trigger the debugger with the LE 'user exit data set' facility, and
5. Display the debugger on a graphical user interface
6. Display the debugger on a TIM terminal through a

session manager

7. Display the debugger on a dedicated TIM terminal
8. Display the debugger on a dedicated non-TIM terminal

Running and debugging an LE batch program under TSO
� Use the 'Debug Tool setup file' online panels to run the

program and display the debugger on the TSO terminal

2 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

In this section, you will see a scenario for starting Debug Tool for a batch application. In
this scenario the application runs as a batch job, and a TEST option is coded in the JCL
that will trigger the debugger when the job runs. The debugger displays on a dedicated
Debug Tool terminal interface manager terminal session. You can skip this section if you
do not plan to use Debug Tool this way on your system.

DTv12s06DebuggingBatchTimTest.ppt Page 2 of 23

Debug in batch using a TEST option in JCL
and a dedicated Debug Tool TIM terminal

� Description
�	 A TEST(…) option is coded in the application's run-time JCL to trigger the

debugger

�	 The debugger displays on a dedicated Debug Tool TIM (terminal interface
manager) terminal

� This method can be used:
� To debug LE programs running in batch jobs

� including programs that access IMS™, DB2®, or other types of databases
� and non-LE programs that run in the call chain under an LE program

� If the Debug Tool TIM feature is installed on your system

� When not to use this method:
� If TIM sessions are not installed, use a dedicated non-TIM terminal instead

�	 On older versions of z/OS this method may not work for IMS programs. In
that case, use the Debug Tool 'user exit data set' facility instead.

IBM Debug Tool for z/OS tutorial 3 © 2012 IBM Corporation

This is a commonly used, simple method to start the debugger. The debugger is
displayed on a Debug Tool terminal interface manager terminal. You set a trigger, to start
the debugger when the application runs, by coding a Language Environment (LE) TEST
option in the program's run-time JCL.

You can use this method to debug batch LE programs, including programs that access
DB2, IMS, and other types of databases. Even non-LE subroutines can be debugged
using this method, as long as there is at least one LE program higher in the call chain.
This method assumes that the application is running in a batch job, and that the Debug
Tool terminal interface manager is installed on your system.

This is generally the best method when a TIM terminal is used. However, you cannot use
this method if TIM terminal sessions have not been defined on your system's network. If
not, consider displaying the debugger on a non-TIM terminal or a GUI debugger instead.
Also, if you are running on an older version of z/OS (1.7 or earlier), a TEST option may not
trigger the debugger for IMS batch programs. In that case, the 'user exit data set' method
could be used instead.

DTv12s06DebuggingBatchTimTest.ppt	 Page 3 of 23

Open a dedicated TIM terminal
session for Debu Tool

You may want to set up a desktop icon to
start a 3270 session for Debu Tool

A Debug Tool 3270 session may have a different
configuration than your existing 3270 sessions. You will
need instructions for how to connect to a Debug Tool
terminal from your system programmer.

In this example, the user is
alread lo ed on to TSO

IBM Debug Tool for z/OS tutorial 4 © 2012 IBM Corporation

How to trigger Debug Tool for a batch job

g
Open a dedicated TIM terminal
session for Debug Tool

g
You may want to set up a desktop icon to
start a 3270 session for Debug Tool

dbl
click

A Debug Tool 3270 session may have a different
configuration than your existing 3270 sessions. You will
need instructions for how to connect to a Debug Tool
terminal from your system programmer.

y gg
In this example, the user is
already logged on to TSO

In this example, the user is already logged on to TSO. The first step is to open a dedicated
terminal session for the debugger. You may find it easiest to set up a desktop icon so that
you can quickly start a terminal session for the debugger. A Debug Tool terminal session
may be configured differently than your other 3270 sessions. You may need instructions
from your system programmer describing how to configure a 3270 emulator session to
connect to a dedicated Debug Tool terminal.

In this example, the user has already configured a special terminal session for Debug
Tool, and set up an icon for it on the desktop. The icon is double clicked.

DTv12s06DebuggingBatchTimTest.ppt Page 4 of 23

Log on to Debug Tool with your
User ID and assword

Open a dedicated TIM terminal
session for Debu Tool

IBM Debug Tool for z/OS tutorial 5 © 2012 IBM Corporation

Open a Debug Tool TIM terminal and log on

p
Log on to Debug Tool with your
User ID and password

Enter

g
Open a dedicated TIM terminal
session for Debug Tool

That opened a terminal session for the debugger. Notice the title "Debug Tool terminal
interface manager" on the Debug Tool terminal. That indicates that it is a TIM terminal. If
your Debug Tool terminal does not have this title, then you either have not correctly
connected to it, or you have a non-TIM terminal session. If you do not have a TIM
terminal, take one of the tutorial sections that describes how to debug using a non-TIM
terminal, instead of this section.

Next, log on to the Debug Tool terminal with your ID and password. Typically, this is the
same ID and password you use to log onto TSO. Do not be confused by thinking that you
are logging onto TSO twice. You are not logging onto TSO here, you are logging on to
Debug Tool. The ID and password are typed in, and enter is pressed.

DTv12s06DebuggingBatchTimTest.ppt Page 5 of 23

IBM Debug Tool for z/OS tutorial 6 © 2012 IBM Corporation

The Debug Tool TIM terminal is ready

click

At this point your Debug Tool terminal is ready to receive a debugging session. Next, the
TSO terminal session is selected again by clicking on it.

DTv12s06DebuggingBatchTimTest.ppt Page 6 of 23

Open the JCL that will run the
a lication in batch

IBM Debug Tool for z/OS tutorial 7 © 2012 IBM Corporation

Open the JCL that will run the batch program

pp
Open the JCL that will run the
application in batch

Enter

In TSO, open the JCL that runs the application you want to debug. In this example, the
ISPF editor is selected.

DTv12s06DebuggingBatchTimTest.ppt Page 7 of 23

Open the JCL that will run the
a lication in batch

Open the JCL that will run the batch program

pp
Open the JCL that will run the
application in batch

Enter

8 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

Open the JCL in the editor.

DTv12s06DebuggingBatchTimTest.ppt Page 8 of 23

In the JCL, code a TEST
o tion

This is the JCL before adding a TEST option

p
In the JCL, code a TEST
option

9 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

This is JCL that is used to run the application program in this example. It is shown here
before any changes have been made.

DTv12s06DebuggingBatchTimTest.ppt Page 9 of 23

Code a TEST option:
on the EXEC statement, or
in a CEEOPTS DD statement

(But not both)

VTAM%userid: denotes
a TIM terminal

In the JCL, code a TEST
o tion

Code a TEST option in a CEEOPTS DD
or as a PARM on the EXEC statement

-
-

Code a TEST option:
- on the EXEC statement, or
- in a CEEOPTS DD statement
(But not both)

VTAM%userid: denotes
a TIM terminal

p
In the JCL, code a TEST
option

10 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

To set a trigger for the debugger, code a Language Environment TEST option in the JCL.
There are two ways to do it. Depending on how the JCL is coded, you may be able to
code a TEST option directly on the EXEC statement that runs the program. Or you can
add a special DD statement called CEEOPTS, and code a TEST option as input data in
the CEEOPTS DD. Although both methods are shown in this example, only code one or
the other.

Notice how the TEST option is coded. After the third comma, it has "VTAM%user ID:".
The VTAM® keyword specifies that the Debug Tool terminal interface manager will be
used. The user ID is coded after the % sign. This is the user ID that was used to log onto
the Debug Tool TIM terminal, and it will be used by Debug Tool to locate the terminal.

DTv12s06DebuggingBatchTimTest.ppt Page 10 of 23

Submit the ob

IBM Debug Tool for z/OS tutorial 11 © 2012 IBM Corporation

Submit the JCL to run the batch job

jSubmit the job

Enter

The job is ready to run. The JCL is submitted to batch.

DTv12s06DebuggingBatchTimTest.ppt Page 11 of 23

Select the Debu Tool terminal

When the step runs, the TEST option is processed, and
Debu Tool is dis la ed on the Debu Tool terminal

IBM Debug Tool for z/OS tutorial 12 © 2012 IBM Corporation

When the job step runs, the debugger is triggered

click

gSelect the Debug Tool terminal

g p y g
When the step runs, the TEST option is processed, and
Debug Tool is displayed on the Debug Tool terminal

When a step runs that has a TEST option specified, Language Environment receives the
TEST option and starts Debug Tool. The debugger is displayed in the TIM terminal
session. Here, the Debug Tool terminal emulator window is selected by clicking on it.

DTv12s06DebuggingBatchTimTest.ppt Page 12 of 23

The batch program can be
debugged from the Debug
Tool terminal

And you can click your TSO
terminal to continue working
in TSO

IBM Debug Tool for z/OS tutorial 13 © 2012 IBM Corporation

The debugger automatically displays on the TIM terminal

The batch program can be
debugged from the Debug
Tool terminal

And you can click your TSO
terminal to continue working
in TSO

The batch job is running on the host z/OS system, and Debug Tool is communicating with
the Debug Tool terminal. Notice that you can control the program from the Debug Tool
terminal, and you can also click your TSO terminal window to continue working in TSO at
the same time. Be aware that the TSO session is no longer needed. You could log off
from TSO and continue to debug, because Debug Tool is controlling the application that is
running in its own batch address space.

DTv12s06DebuggingBatchTimTest.ppt Page 13 of 23

Choosing between the CEEOPTS DD or EXEC parm

� There are two ways to code a TEST option in JCL to start Debug Tool:
� in a CEEOPTS DD, or

� on the EXEC statement

� Comparing the two methods:
� Both are easy, but CEEOPTS can be easier because:

� it is simpler to cut and paste into JCL without making a syntax mistake
� It can be used with a JCL PROC without changing the PROC
� It will trigger the debugger when the first LE program runs, even if it is a

subprogram
•	 but a TEST option on the EXEC statement will only trigger if the main

program is an LE program

IBM Debug Tool for z/OS tutorial 14 © 2012 IBM Corporation

There are two ways to code a TEST option in JCL to start Debug Tool. On the EXEC
statement, or with a CEEOPTS DD statement. For most people, the CEEOPTS DD
method is a little easier. Here is why.

When you use the CEEOPTS method, it can be easier to “cut and paste” a TEST option
into JCL from other JCL where you have coded it before. Also, if a cataloged JCL PROC
is used, you may not be able to code a parm on the EXEC statement, because it is
embedded in the PROC. With a CEEOPTS DD, it is easy to code it in your JCL to make it
take effect in any step you want in your PROC. You will see an example of that in a
minute.

Finally, when you use CEEOPTS, Debug Tool will trigger when the first LE program is
called, even if it is a subprogram. That is an advantage over the other method, because
when you code a TEST option on the EXEC statement, Debug Tool will only trigger if the
main program is an LE program.

DTv12s06DebuggingBatchTimTest.ppt	 Page 14 of 23

A CEEOPTS DD with a TEST(…) option can be used to
trigger the debugger

� When LE initializes, it looks for a CEEOPTS DD statement
�	 If CEEOPTS is present in the JCL step, LE reads it to retrieve run-time

options

�	 If a TEST(…) option is present, LE starts the debugger

� Considerations
�	 LE version 1.7 or later is required (shipped with z/OS V1.7)

�	 LE will not read a CEEOPTS DD :
� In older versions of z/OS:

•	 with IMS applications (batch or IMS/TM)
•	 when the LE Library Routine Retention facility (LRR) is used

IBM Debug Tool for z/OS tutorial 15 © 2012 IBM Corporation

When you run an LE program, which includes programs compiled with compilers such as
Enterprise COBOL and Enterprise PL/I, Language Environment initializes when the
program starts. When LE initializes, as part of its normal processing, it looks for a
CEEOPTS DD statement. If it finds one, it reads it to retrieve run-time options. When you
pass a TEST option to LE, it will start Debug Tool.

But there are a couple of considerations and restrictions. First, you must be at LE version
1.7 or later. Since LE is shipped with z/OS, typically that means that the z/OS operating
system must be at version 1.7 or later.

LE will not read a CEEOPTS DD statement with IMS applications on older versions of
z/OS. So, if you want to debug an IMS batch application and you are running on an older
system, you cannot use a TEST option in JCL to do it. In that case, use the 'Debug Tool
user exit data set facility' to trigger the debugger.

DTv12s06DebuggingBatchTimTest.ppt	 Page 15 of 23

Options for coding a CEEOPTS DD

� Example:
//STEP5 EXEC PGM=MYPROG

//CEEOPTS DD *

TEST(,,,VTAM%userid:)

• where userid = your user ID
•	 VTAM%user-id: directs the debugger to use the terminal interface

manager. It will connect to the TIM terminal where userid is logged on.

� You can use a file instead of in-stream data:

//CEEOPTS DD DSN=MY.CEEOPTS.FILE,DISP=SHR

� When executing a JCL PROC, use the stepname.CEEOPTS syntax to
name the step you want to debug:

//RUNPROC EXEC PROC99

//ASTEP.CEEOPTS DD *

TEST(,,,VTAM%userid:)

IBM Debug Tool for z/OS tutorial 16 © 2012 IBM Corporation

Here are examples of coding CEEOPTS DD statements in your JCL. In the first example,
CEEOPTS is coded as one of the DD statements in a step. The TEST option can be
coded as in-stream data as is shown.

The second example shows that you can have your TEST option coded in a file if you
find that more convenient.

The third example shows how you can code a CEEOPTS DD statement when the JCL
executes a PROC. In this case, notice that the EXEC statement runs a PROC named
PROC99. The “ASTEP.CEEOPTS” DD statement will add the CEEOPTS DD to a proc
step named ASTEP. When it is done this way, you do not have to make any changes to
the PROC itself.

DTv12s06DebuggingBatchTimTest.ppt	 Page 16 of 23

A TEST(…) option on the EXEC statement can be used to

trigger the debugger

� When LE initializes, it examines the PARM string on the EXEC
statement for LE run-time options
�	 A slash character (/) in the parm string signals that LE options are

present

� If an LE TEST(…) option is present, LE starts the debugger

� For COBOL programs, code LE options after the last slash
COBOL
//STEP5 EXEC PGM=COBPROG,

// PARM='/TEST(,,,VTAM%userid:)'

� For non-COBOL LE programs, code LE options before the first slash
PL/I, C/C++, LE Assembler
//STEP5 EXEC PGM=MYPROG,

// PARM='TEST(ALL,,,VTAM%userid:)/'

IBM Debug Tool for z/OS tutorial 17 © 2012 IBM Corporation

There are two ways to code a TEST option in JCL. Either use a CEEOPTS DD
statement as you have already seen, or code a TEST option on the EXEC statement.

Here is how to code a TEST option on the EXEC statement. When LE initializes, it
examines the PARM string on the EXEC statement for LE run-time options and looks for a
slash. For COBOL programs, everything after the last slash is taken as LE options. For
non-COBOL LE programs, everything before the first slash is taken as LE options. In
either case, you must code a slash at the appropriate location in your PARM string.

Here is an important restriction. LE will examine the PARM string from the EXEC
statement only if the main program is an LE program. That means that you cannot use this
method to start Debug Tool if the main program is a non-LE program.

DTv12s06DebuggingBatchTimTest.ppt	 Page 17 of 23

The slash (/) character is a separator
between program parameters and LE options

� You can code program parameters together with a TEST option

� These examples pass the string 'ABC,1234' to the program
�	 LE options and the slash (/) are stripped off, and only the remaining string

is passed to the application program

�	 For a COBOL program, code LE options after the last slash:
//STEP5 EXEC PGM=COBPROG,
// PARM='ABC,1234/TEST(,,,VTAM%userid:)'

�	 For a PL/I, C/C++, or LE assembler program, code LE options before
the first slash:

PL/I, C/C++, LE Assembler:

//STEP5 EXEC PGM=PLIPROG,

// PARM='TEST(ALL,,,VTAM%userid:)/ABC,1234'

IBM Debug Tool for z/OS tutorial 18 © 2012 IBM Corporation

When you code a TEST option on the EXEC statement, you can still code parameters for
your program. Here are examples that pass the data string “ABC,1234” to the application
program as a parameter.

Remember that for COBOL programs, all parameters coded after the last slash are taken
as LE options. So to pass parameters to the program, code them all before the last slash.

For non-COBOL LE programs, all parameters coded before the first slash are taken as
LE options. So to pass parameters to your program, code them all after the first slash.

In either case, LE strips its options and the slash out of the parm string before control is
passed to the application program. So the LE options are not received by your program.

DTv12s06DebuggingBatchTimTest.ppt	 Page 18 of 23

EXEC parm considerations

� z/OS limits the JCL parameter string to 100 bytes
�	 Adding the TEST option can make the total length too long

� If the parm string becomes too long, you can:
�	 Use a different method to trigger Debug Tool, or

�	 Truncate the user portion of the parm string, and then add the missing
data manually with the debugger after the program starts

� If the parm string becomes too long to fit on a line, it can be continued
to the next line using this syntax
�	 Example:

//RUNSAM1 EXEC PGM=SAM1,

// PARM=('THIS,IS AN,EXAMPLE,OF,A,VERY,LO',

// 'NG,PARAMETER/TEST(,,,VTAM%USRID01:)'),

// REGION=4M

IBM Debug Tool for z/OS tutorial 19 © 2012 IBM Corporation

z/OS limits JCL parameters to a total of 100 bytes. It is possible to run into a situation
where adding a TEST option will make the total length exceed 100 bytes.

If the parameter string becomes too long, you have a couple of options. First, you can
use a different method to start Debug Tool. Either use a CEEOPTS DD statement, or use
the 'Debug Tool user exit data set' facility. Another option is to truncate the user portion of
the string, and then add the missing data manually using the debugger after the program
starts.

If the string becomes too long to fit on one line, it can be continued to the next line. An
example is shown for the syntax used to code a long parameter string that spans multiple
lines.

DTv12s06DebuggingBatchTimTest.ppt	 Page 19 of 23

COBOL example
slash before TEST

�

�

Coding a TEST option with a batch DB2 application

Do not code a TEST option on the EXEC statement in DB2 batch jobs
if the JCL executes program IKJEFTxx as in this example

A TEST option will not trigger the debugger with program IKJEFTxx,
because it is not an LE program
� Instead, use a CEEOPTS DD or the 'Debug Tool user exit data set'

facility

� or optionally, the TEST option can be coded in the DB2 RUN parms:
//* RUN DB2 PROGRAM
//STEP6 EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DSNA)
RUN PROGRAM(PHONEP01) PLAN(PHONEP01)

PARMS('/TEST(,,,VTAM%USRID99:)') -
LIB('DNET603.ADLAB.LOAD')

END
//* ()

COBOL example
(slash before TEST)

IBM Debug Tool for z/OS tutorial 20 © 2012 IBM Corporation

Do not code a TEST option on the EXEC statement when running a DB2 batch application
that executes program IKJEFT01. The debugger will not be triggered, since that program
is not an LE program. Instead, consider using a CEEOPTS DD. Or optionally, a TEST
option can be coded in the run parms in SYSTSIN as in the example.

DTv12s06DebuggingBatchTimTest.ppt Page 20 of 23

Coding a TEST option with a batch IMS application

� Do not code a TEST option on the EXEC statement for IMS batch jobs
if the JCL executes program DFSRRCxx as in this example

� A TEST option will not trigger the debugger with program DFSRRCxx,
because it is not an LE program
�	 Instead, use a CEEOPTS DD or the 'Debug Tool user exit data set'

facility

�	 Example of batch IMS JCL:
//*

//* RUN IMS PROGRAM

//STEP6 EXEC PGM=DFSRRC00,

// PARM=('DLI,IMSPROG,TDIMSP,200,,,,,,,,,,N')

//DFSRESLB DD DSN=IMS.RESLIB,DISP=SHR

//IMS DD DSN=FMN.PSBLIB,DISP=SHR

//CEEOPTS DD *

TEST(,,,VTAM%USRID99:)

.

.

IBM Debug Tool for z/OS tutorial 21 © 2012 IBM Corporation
.

Also, do not code a TEST option on the EXEC statement when running an IMS batch
application that executes program DFSRRC00. The debugger will not be triggered, since
that program is not an LE program. Instead, consider using a CEEOPTS DD statement or
the 'Debug Tool user exit data set' facility.

That is the end of this section, which described starting the debugger for a program
running in batch, triggering the debugger by coding a TEST option in JCL, and displaying
the debugger on Debug Tool TIM terminal.

DTv12s06DebuggingBatchTimTest.ppt	 Page 21 of 23

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better
meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send email feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_DTv12s06DebuggingBatchTimTest.ppt

This module is also available in PDF format at: ../DTv12s06DebuggingBatchTimTest.pdf

IBM Debug Tool for z/OS tutorial 22 © 2012 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

DTv12s06DebuggingBatchTimTest.ppt Page 22 of 23

 Trademarks, copyrights, and disclaimers

IBM, the IBM logo, ibm.com, DB2, IMS, VTAM, z/OS, and zSeries are trademarks or registered trademarks of International Business Machines Corp.,
registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other
IBM trademarks is available on the web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2012. All rights reserved.

IBM Debug Tool for z/OS tutorial 23 © 2012 IBM Corporation

DTv12s06DebuggingBatchTimTest.ppt Page 23 of 23

