

®

IBM Software Group

© 2009 IBM Corporation
September 25, 2012

IBM Debug Tool for z/OS

Program number 5655-W70

Tutorial

© 2012 IBM Corporation

This is the tutorial for IBM Debug Tool for z/OS®, one of the IBM zSeries® problem
determination tools.

DTv12s14UsingTheDebuggerPart3.ppt Page 1 of 36

�

� Making breakpoints conditional
� Variable change breakpoints
� Program entry and exit breakpoints
� Jumping to a statement
� Ending the debugging session

Debug Tool tutorial

Using Debug Tool's terminal interface
�	 Full-screen windows and navigation

�	 Using the debugger
� Stepping through statements and running the program
� Program statement breakpoints
� Monitoring variables

Displaying variables in the log

IBM Debug Tool for z/OS tutorial 2 © 2012 IBM Corporation

This is the third of three sections that describes how to use the debugger.

This section will cover making breakpoints conditional, variable change breakpoints,
program entry and exit breakpoints, jumping to a statement, and how to end the
debugging session.

DTv12s14UsingTheDebuggerPart3.ppt	 Page 2 of 36

Specify a WHEN clause to set a conditional breakpoint

Enter

3 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

Earlier, you saw that an "AT" command can be used to set a breakpoint. For example,
"AT 404" will set a breakpoint at statement 404, and the program would then stop every
time it reaches that statement.

A breakpoint can be made conditional by specifying the "WHEN" option. In this example,
the command: "AT 404 WHEN CUST-ID = '11004'" is entered. That will set a breakpoint at
statement 404, but it will only stop if the condition is true. Notice that in this program,
statement 404 comes after a statement that reads a record from a file. Setting a
conditional breakpoint like this is a good way to allow the program to run until a specific
data value is encountered.

A semi-colon, and "go" command is also specified to the run the program, and Enter is
pressed.

DTv12s14UsingTheDebuggerPart3.ppt Page 3 of 36

A C line command clears a
statement break oint

The program stopped the next time it reached statement
404 and the WHEN condition was true

p

A C line command clears a
statement breakpoint

Enter

4 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

The program ran until it reached statement 404 and the condition was true. In this
example, it reached the statement several times when the condition was not yet true, but
did not stop until it was.

A "C" line command is typed on the statement, and Enter is pressed.

DTv12s14UsingTheDebuggerPart3.ppt Page 4 of 36

Result of the C line command

The breakpoint was cleared

IBM Debug Tool for z/OS tutorial 5 © 2012 IBM Corporation

The "C" line command cleared the statement breakpoint.

DTv12s14UsingTheDebuggerPart3.ppt Page 5 of 36

Specify a WHEN option to make a breakpoint conditional

� If a WHEN option is coded, it is evaluated each time the breakpoint is
encountered
�	 The breakpoint triggers only if the condition is true

� Breakpoint syntax with WHEN:
�	 AT breakpoint-specification WHEN condition

�	 Examples:
� AT 200 WHEN CUSTOMER-ID = '12345'
� AT 300 WHEN ACCOUNT-BALANCE > 1000

IBM Debug Tool for z/OS tutorial 6 © 2012 IBM Corporation

You can specify a "when" option to make a breakpoint conditional. The "when" condition
is checked each time the breakpoint is encountered, but the program pauses only if the
condition is true.

The syntax of a when option is: "AT" then the breakpoint specification, such as a
statement number, then "when", followed by a simple condition.

DTv12s14UsingTheDebuggerPart3.ppt	 Page 6 of 36

Using Debug Tool's terminal interface
� Full-screen windows and navigation

� Using the debugger
� Stepping through statements and running the program
� Program statement breakpoints
� Monitoring variables
� Displaying variables in the log
� Making breakpoints conditional
� Variable change breakpoints
� Program entry and exit breakpoints
� Jumping to a statement
� Ending the debugging session

Debug Tool tutorial

7 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

Next, you will see how to set breakpoints to pause the program based on the value of a
variable.

DTv12s14UsingTheDebuggerPart3.ppt Page 7 of 36

A Find command with the MONITOR option can be used
to find a variable in the monitor

Enter

8 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

A "find" command with a "MONitor" option can be used to locate a monitored variable.
Here, the monitor window is positioned so that the NUM-CUSTFILE-RECS variable can
be seen.

DTv12s14UsingTheDebuggerPart3.ppt Page 8 of 36

An AT CHANGE variable command sets a change
breakpoint

Enter

F9

9 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

A command in the format: "AT CHANGE variable-name" sets a change breakpoint that
will trigger when the named variable changes value. This differs from a statement
breakpoint, in that it could happen anywhere in the program, not just on a specific
statement.

In this example, the command "AT CHANGE NUM-CUSTFILE-RECS" is entered to set
the breakpoint, and then the F9 key is pressed to run the program.

DTv12s14UsingTheDebuggerPart3.ppt Page 9 of 36

A change breakpoint stops after
the statement that changes the
contents of the variable

Stopped at the change breakpoint
for variable NUM-CUSTFILE-RECS

A change breakpoint stops after
the statement that changes the
contents of the variable

10 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

The change breakpoint caused the program to pause when the variable changed value.
The program is paused after the statement that caused the change. By default, a change
breakpoint will stop when the named variable changes from any value to any other value.

DTv12s14UsingTheDebuggerPart3.ppt Page 10 of 36

Tip: Keywords in commands can
be abbreviated to the fewest
characters that differentiate them
from other keywords

A CLEAR AT CHANGE variable command clears
a change breakpoint

Enter

Tip: Keywords in commands can
be abbreviated to the fewest
characters that differentiate them
from other keywords

11 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

You can use a "clear" command to clear a change breakpoint. The command: "clear at
change num-custfile-recs" clears the change breakpoint for the named variable. You can
set and clear change breakpoints for different variables.

DTv12s14UsingTheDebuggerPart3.ppt Page 11 of 36

Change breakpoints

� AT CHANGE variable-name
�	 Sets a change breakpoint

�	 The program will stop when the variable's value changes with subsequent
GO or RUNTO commands

�	 Example:
� AT CHANGE CUST-ID

� AT CHANGE variable-name WHEN condition
�	 Sets a conditional change breakpoint

�	 The program will stop when the variable's value changes with GO or
RUNTO commands, and the condition is true

�	 Examples:
� AT CHANGE CUST-ID WHEN CUST-ID = '12345'
� AT CHANGE CUST-ID WHEN ACCT-BAL > 1000

� CLEAR AT CHANGE variable-name
�	 Clears a change breakpoint

IBM Debug Tool for z/OS tutorial 12 © 2012 IBM Corporation

Use the command "AT CHANGE variable-name" to set a change breakpoint. The
breakpoint will trigger when the variable's value changes, regardless of where that
happens in the program.

You can make a change breakpoint conditional by specifying a "when" option. With a
"when" option, the program will pause when the variable's value changes, but only if the
condition is true.

To remove a change breakpoint, use the command syntax "CLEAR AT CHANGE
variable-name".

DTv12s14UsingTheDebuggerPart3.ppt	 Page 12 of 36

Performance tip

� For the best performance, use statement breakpoints instead of
change breakpoints
�	 A statement breakpoint will trigger only when the statement is reached

�	 A change breakpoint makes the debugger check the value of the variable
after every statement executes

� Use change breakpoints if you do not know which statement will
change the variable

� But if you do, set a statement breakpoint after the statement that
causes the change
�	 For example:

AT 805 WHEN CUST-ID = '12345'

will provide much better performance than:

AT CHANGE CUST-ID WHEN CUST-ID = '12345'

IBM Debug Tool for z/OS tutorial 13 © 2012 IBM Corporation

There is a performance consideration when you use change breakpoints. A change
breakpoint differs from a statement breakpoint, in that the debugger must check the value
of the variable after every statement in the program runs. If you are debugging an
especially large program, or a program that runs for a long time, you may want to consider
using statement breakpoints instead of change breakpoints if you can.

If you do not know where in the program a target variable will be changed, then you may
need to use a change breakpoint. But if you do know, you may be able to set a conditional
statement breakpoint after the statement or statements that cause the change. That way,
the debugger will only check the value of the variable at one specific place in the program,
instead of after every statement, which is much more efficient.

DTv12s14UsingTheDebuggerPart3.ppt	 Page 13 of 36

Using Debug Tool's terminal interface
� Full-screen windows and navigation

� Using the debugger
� Stepping through statements and running the program
� Program statement breakpoints
� Monitoring variables
� Displaying variables in the log
� Making breakpoints conditional
� Variable change breakpoints
� Program entry and exit breakpoints
� Jumping to a statement
� Ending the debugging session

Debug Tool tutorial

14 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

So far, you have seen how to set breakpoints that trigger at specific statements, or when a
variable's value changes. Next, you will see how to set other types of breakpoints that
trigger when a specific program or subprogram is entered or exited.

DTv12s14UsingTheDebuggerPart3.ppt Page 14 of 36

Run to a subroutine call in the program

Enter

15 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

But first, here is a simple example of how you follow the logic of an application from one
program to another. In this example, a program named SAM1 is running. You can tell
because the program name is displayed in the header, which is the very top line on the
screen, and it is also displayed in the title line just above the source window.

An "R" line command is entered to run the program until it reaches statement 312.

DTv12s14UsingTheDebuggerPart3.ppt Page 15 of 36

You can STEP into a subprogram or function

F2

16 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

The program ran to 312, which is a "CALL" statement that will pass control to another
program named SAM2. It has not yet executed that statement.

To follow the logic into the subprogram, all you have to do is step into the "CALL"
statement. Sitting on the "CALL", the F2 key is pressed to step.

DTv12s14UsingTheDebuggerPart3.ppt Page 16 of 36

F2
F2

After stepping into a subprogram

F2

17 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

That stepped into the subprogram, SAM2.

There are two cases when you are sitting on a "CALL" statement and step. Either the
subprogram has been compiled for use with the debugger, or not. For example, in the
case of an Enterprise COBOL subprogram, if it is compiled with the "TEST" compiler
option, then it has been compiled for the debugger. If it has been compiled with
"NOTEST", then it has not been compiled for use with the debugger.

In the example shown, the subprogram is compiled for use with the debugger, so the
debugger stepped into it. If this program had not been compiled for the debugger, then the
"STEP" command would run the subprogram, but the debugger would not pause in it. The
debugger would pause at the next statement after the "STEP" statement in the higher
level program.

In this example, the F2 key is pressed several times to step through statements in the
subprogram.

DTv12s14UsingTheDebuggerPart3.ppt Page 17 of 36

You can STEP out of a subprogram or function

F2

18 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

After stepping many times, the last statement in the subprogram is reached. F2 is pressed
to step again.

DTv12s14UsingTheDebuggerPart3.ppt Page 18 of 36

At the exit of the subprogram

F2

19 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

Notice that the header indicates that the subprogram, SAM2, is exiting. F2 is pressed to
step again.

DTv12s14UsingTheDebuggerPart3.ppt Page 19 of 36

Returned to the calling program

20 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

After stepping, the subprogram returned control back to the higher level program. The
debugger paused at the next logical statement, which is the statement after the CALL.

Now you have seen one way to follow program logic into a subprogram that has been
compiled for use with the debugger. You can step directly into it, and step out of it back to
the calling program.

DTv12s14UsingTheDebuggerPart3.ppt Page 20 of 36

An AT ENTRY name command sets an entry breakpoint
for a program or routine

Enter

21 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

But in a complex application, it can be cumbersome to have to step into any subprogram
that you want to debug. So there is a simpler way to pause when a specific subprogram in
entered – an "entry" breakpoint.

The command "AT ENTRY SAM3" sets an entry breakpoint that will trigger when
subprogram SAM3 is entered. SAM3 could be a program called by the current program, or
it could be further down in the call chain. A semi-colon and a "GO" command is also typed
into the command line, and Enter is pressed.

DTv12s14UsingTheDebuggerPart3.ppt Page 21 of 36

After stopping at an AT ENTRY breakpoint

22 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

The breakpoint triggered when the SAM3 program was entered. It is paused at the entry
of the subprogram. An entry breakpoint is an easy way to run the application until it
reaches to a specific program.

DTv12s14UsingTheDebuggerPart3.ppt Page 22 of 36

Entry and exit breakpoints

� AT ENTRY program-name
�	 Sets a program entry breakpoint that will stop when program-name is

entered with subsequent GO or RUNTO commands

�	 A frequently used command option:
� AT ENTRY * sets an entry breakpoint for all programs

�	 Considerations:
� With most compilers, program-name must be compiled for debugging for the

entry breakpoint to trigger
•	 Exceptions include debugging in disassembly mode

� If program-name is not known to the debugger (not yet loaded), the load
module name is assumed to be the same as the program name

• If that is not the case, fully qualify the program. For example:
• AT ENTRY load-module-name ::> program-name

� CLEAR AT ENTRY program-name
�	 Clears an entry breakpoint

IBM Debug Tool for z/OS tutorial 23 © 2012 IBM Corporation

Use an "AT ENTRY program-name" breakpoint to pause when the named program is
entered. You can also use the command "AT ENTRY *" to stop when any subprogram is
entered, regardless of the name.

With most compilers, the subprogram must be compiled for debugging for the entry
breakpoint to trigger. An exception is when you are debugging in disassembly mode.

If the named program is not known to the debugger (meaning that it has not yet been
called or loaded), then the load module name is assumed to be the same as the program
name. If the program and load module have different names, then you must fully qualify
the name, and the syntax is shown in the example.

Use a "CLEAR AT ENTRY program-name" command to clear an entry breakpoint.

DTv12s14UsingTheDebuggerPart3.ppt	 Page 23 of 36

Entry and exit breakpoints

� AT EXIT program-name
�	 Sets a program exit breakpoint

�	 The program will stop when exiting program-name with GO or RUNTO
commands

�	 Considerations:
� Same as for entry breakpoints

�	 Tip: set an exit breakpoint on the main program for a last chance to
examine variables before the application ends

� CLEAR AT EXIT program-name
�	 Clears an exit breakpoint

IBM Debug Tool for z/OS tutorial 24 © 2012 IBM Corporation

Exit breakpoints are similar to entry breakpoints, but they trigger when a program is
being exited, instead of when it is entered.

The command "AT EXIT program-name" will set a breakpoint that will pause when the
named program is exited. Consider setting an exit breakpoint on the main program, as this
gives you a last chance to examine program variables before the application ends.

Use a "CLEAR AT EXIT program-name" command to clear an exit breakpoint.

DTv12s14UsingTheDebuggerPart3.ppt	 Page 24 of 36

Using Debug Tool's terminal interface
� Full-screen windows and navigation

� Using the debugger
� Stepping through statements and running the program
� Program statement breakpoints
� Monitoring variables
� Displaying variables in the log
� Making breakpoints conditional
� Variable change breakpoints
� Program entry and exit breakpoints
� Jumping to a statement
� Ending the debugging session

Debug Tool training sections
Page 3 of 5

25 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

Next, you will see how to alter the flow of a program by jumping to a statement.

DTv12s14UsingTheDebuggerPart3.ppt Page 25 of 36

All other statements
are ski ed.

JUMPTO changes the program flow
by passing control directly to another statement

Enter

pp

All other statements
are skipped.

26 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

In this example, statement seventy-five is the current statement, and should be the next
to run. A "jumpto 73" command is entered to pass control directly to statement seventy-
three.

DTv12s14UsingTheDebuggerPart3.ppt Page 26 of 36

JUMPTO passes control directly to
a statement. All other statements
are ski ed. No data is chan ed.

Result of JUMPTO
Statement 73 will be the next to run

pp g

JUMPTO passes control directly to
a statement. All other statements
are skipped. No data is changed.

F2

27 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

After entering the jumpto command, no statements ran. But now seventy-three is the
current statement, and will be the next to run. A "jumpto" command does not change any
variable values. The "step" function key is pressed.

DTv12s14UsingTheDebuggerPart3.ppt Page 27 of 36

After a step

28 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

The statement that was "jumped" to ran, and the program will continue from this point.

DTv12s14UsingTheDebuggerPart3.ppt Page 28 of 36

JUMPTO and GOTO commands

� JUMPTO statement-number
�	 Jump to (pass control to) a statement and stop there

�	 All other statements are skipped

�	 No data is changed

�	 statement-number will be the next to run

� GOTO statement-number
�	 Equivalent to: JUMPTO statement-number ; GO

�	 Jumps to statement-number and runs

� Consider using JUMPTO or GOTO:
�	 To re-run a block of statements after modifying variables

�	 To pass control out of a loop or procedure

�	 To skip statements

� These commands are not available with some compilers when
optimization is used

IBM Debug Tool for z/OS tutorial 29 © 2012 IBM Corporation

Use a "jumpto" command to alter the flow of a program. "Jumpto" passes control directly
to the statement number you specify, and stops there. All other statements are skipped,
and no data is changed..

Another, similar command is "goto". It is the same as a jumpto command followed by a
go. The difference is that "jumpto" will wait for you to continue running the program after
the jump, whereas "goto" will not wait. The program continues running immediately. With a
"goto", the jump is done, but the next thing the debugger will display is the next breakpoint
that is encountered, wherever that is.

Consider using a "jumpto" or "goto" to back up and re-run a block of statements after you
have modified variable values. That let's you try some "what-if" scenarios with different
values through the same area of code. It can also be used to pass control out of a loop or
procedure, or to skip statements. But be careful. You can jump to a statement that does
not make logical sense, which can result in logic errors or even abends.

Be aware that these commands are not available with certain compilers when the
compiler's optimization options are turned on.

DTv12s14UsingTheDebuggerPart3.ppt	 Page 29 of 36

Using Debug Tool's terminal interface
� Full-screen windows and navigation

� Using the debugger
� Stepping through statements and running the program
� Program statement breakpoints
� Monitoring variables
� Displaying variables in the log
� Making breakpoints conditional
� Variable change breakpoints
� Program entry and exit breakpoints
� Jumping to a statement
� Ending the debugging session

Debug Tool tutorial

30 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

Next, you will see options available to end a debugging session.

DTv12s14UsingTheDebuggerPart3.ppt Page 30 of 36

Or use F3

A QUIT command ends the debugging session

Enter

Or use F3

31 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

If you are debugging a program, and you issue a GO command, it will pause when the
next breakpoint is triggered. However, if you issue a GO command but the program does
not reach or trigger any of your breakpoints, it will run to termination. That is one way to
end your debugging session - just run the program until it is finished. The application will
end, and the debugging session will be cleared from your terminal.

However, you can end a debugging session at any time by typing "QUIT" on the
command line, and pressing Enter.

DTv12s14UsingTheDebuggerPart3.ppt Page 31 of 36

Enter Y at the prompt to terminate the session

Enter

32 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

You receive the prompt: “Do you really want to terminate this session?”. If you enter Y for
Yes and press Enter, that will immediately terminate the program at its current location
with a zero return code.

DTv12s14UsingTheDebuggerPart3.ppt Page 32 of 36

If you are using the Debug Tool
terminal interface manager (TIM),
this screen is re displayed after the
debugging session ends

The debugging session ended

-

If you are using the Debug Tool
terminal interface manager (TIM),
this screen is re-displayed after the
debugging session ends

33 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

The application terminated, and the debugging session ended. The program was stopped,
and no more statements ran.

DTv12s14UsingTheDebuggerPart3.ppt Page 33 of 36

Quit the debugging session

� QUIT or the default F3 key
�	 Displays the "Do you really want to terminate…" prompt

�	 If Y is entered, the program is terminated at the current location with a
zero return code

� QQ
�	 Same as QUIT, but without the prompt

� Frequently used command options:
�	 QUIT ABEND

� Terminates the program at the current location and forces an abend
� Consider using this option to:

•	 Capture the abend with IBM Fault Analyzer for z/OS (if installed)
•	 avoid running subsequent steps in a multi-step job
•	 roll back database updates

�	 QUIT DEBUG
� Disconnects the debugger and allows the program to run normally

IBM Debug Tool for z/OS tutorial 34 © 2012 IBM Corporation

To terminate an application immediately, use a "QUIT" command or the F3 key. If you
want to avoid the prompt, enter a "QQ" command instead. And there are a couple of other
options.

Use a "QUIT ABEND" command to terminate the program at its current location with an
abend. You might do that if you want the system to collect a dump. If you have IBM’s Fault
Analyzer product, perhaps you plan to use it to see a detailed analysis.

A "QUIT DEBUG" command, however, does something very different. It allows your
application to continue running without the debugger. The debugging engine is
disconnected from the application, and the application is released to run on its own.

At this point in the tutorials, you have seen the basic commands and techniques you need
to know to debug a program. That is the end of this section, using Debug Tool's terminal
interface.

DTv12s14UsingTheDebuggerPart3.ppt	 Page 34 of 36

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better
meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send email feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_DTv12s14UsingTheDebuggerPart3.ppt

This module is also available in PDF format at: ../DTv12s14UsingTheDebuggerPart3.pdf

IBM Debug Tool for z/OS tutorial 35 © 2012 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

DTv12s14UsingTheDebuggerPart3.ppt Page 35 of 36

 Trademarks, copyrights, and disclaimers

IBM, the IBM logo, ibm.com, z/OS, and zSeries are trademarks or registered trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other IBM trademarks is
available on the web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2012. All rights reserved.

IBM Debug Tool for z/OS tutorial 36 © 2012 IBM Corporation

DTv12s14UsingTheDebuggerPart3.ppt Page 36 of 36

