

®

IBM Software Group

© 2009 IBM Corporation
September 25, 2012

IBM Debug Tool for z/OS

Program number 5655-W70

Tutorial

© 2012 IBM Corporation

This is the tutorial for IBM Debug Tool for z/OS®, one of the IBM zSeries® problem
determination tools.

DTv12s19UsingTheGUIPart2.ppt Page 1 of 32

Using Debug Tool's graphical user interface

� Starting the debugger

� Debug perspective views and navigation

� Using the debugger
� Stepping through statements and running the program

� Program statement breakpoints
� Monitoring variables

� Making breakpoints conditional
� Watch breakpoints
� Program entry and exit breakpoints

� Ending the debugging session

� Loading program debug files
� Loading sysdebug, listings, dwarf, and source files

� Loading LANGX files

Debug Tool tutorial

2 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

In this section you will see how breakpoints can be made conditional, how to set watch
breakpoints, how to set breakpoints that will stop when a program or sub-program is
entered, and how to end a debugging session.

DTv12s19UsingTheGUIPart2.ppt Page 2 of 32

2

1

Begin by creating a breakpoint

RT
click 1

2
click

3 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

To define a conditional breakpoint, right-click in the white area of the breakpoints view.
Then select "add breakpoint", and select the type of breakpoint that you want to add. In
this example a statement breakpoint is created.

DTv12s19UsingTheGUIPart2.ppt Page 3 of 32

2

1

Breakpoint is set for statement 404,
onl when CUST ID 11004

click

2

1

click

Specify an expression to set a conditional breakpoint

y - = ‘ ’

Breakpoint is set for statement 404,
only when CUST-ID = ‘11004’

IBM Debug Tool for z/OS tutorial 4 © 2012 IBM Corporation

Specify the statement where the breakpoint will be set, in this case "404", and click "next".
In the second screen add a conditional expression. This expression specifies that CUST­
ID must equal a specific value before the breakpoint can trigger. If CUST-ID does not
match the value when statement 404 runs, the breakpoint will not trigger. Click Finish.

DTv12s19UsingTheGUIPart2.ppt Page 4 of 32

Resume to run the program
until the break oint is tri ered

Indicates that the
break oint is conditional

click

Run the program

p gg

Resume to run the program
until the breakpoint is triggered p

Indicates that the
breakpoint is conditional

5 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

The breakpoint was added, and appears in the breakpoints view, and is shown to be
conditional. Click “resume” to run the program.

DTv12s19UsingTheGUIPart2.ppt Page 5 of 32

Adding CUST ID to the monito
allows the value to be shown

The breakpoint triggered the next time
the program reached statement 404
and the condition was true

The program stopped the next time it reached statement
404 and the condition was true

- rAdding CUST-ID to the monitor
allows the value to be shown

The breakpoint triggered the next time
the program reached statement 404
and the condition was true

IBM Debug Tool for z/OS tutorial 6 © 2012 IBM Corporation

The program ran until it the next time that it reached statement 404 and the condition was
true. Notice that CUST-ID, shown in the monitors view, has the right value to trigger the
conditional breakpoint. In this example statement 404 ran several times when the
condition was false, but it did not stop there until it was true.

DTv12s19UsingTheGUIPart2.ppt Page 6 of 32

Enter an expression to make a breakpoint conditional

� If an expression is entered, it is evaluated each time the breakpoint is
encountered
�	 The breakpoint triggers only if the condition is true

� Expression syntax:
�	 Examples:

� CUSTOMER-ID = '12345'
� ACCOUNT-BALANCE > ‘1000’

IBM Debug Tool for z/OS tutorial 7 © 2012 IBM Corporation

Specifying an expression makes a breakpoint conditional. An expression has a variable
name, an operator (<, >, =), and a comparator, which could be either a value or another
variable.

DTv12s19UsingTheGUIPart2.ppt	 Page 7 of 32

Using Debug Tool's graphical user interface

� Starting the debugger

� Debug perspective views and navigation

� Using the debugger
� Stepping through statements and running the program

� Program statement breakpoints
� Monitoring variables

� Making breakpoints conditional
� Watch breakpoints
� Program entry and exit breakpoints

� Ending the debugging session

� Loading program debug files
� Loading sysdebug, listings, dwarf, and source files

� Loading LANGX files

Debug Tool tutorial

8 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

Next, you will see how to set breakpoints that watch variables.

DTv12s19UsingTheGUIPart2.ppt Page 8 of 32

1

2

Create a “Watch” breakpoint

RT
click 1

2
click

9 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

So far, you have seen how to set statement breakpoints. But there are other types of
breakpoints. A "watch" breakpoint triggers when a variable's value changes. To add a
watch breakpoint, right click in the breakpoints view, select “add breakpoint”, and then
“watch”.

DTv12s19UsingTheGUIPart2.ppt Page 9 of 32

2

1

S ecif the variable

A Watch breakpoint triggers
when a specified variable changes

click 1

p ySpecify the variable

2 click

10 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

The “Add a Watch Breakpoint” dialog is displayed. At the top of the first screen enter the
variable or expression that is to be watched, and click Next. The second screen has
optional parameters that allow you to specify a frequency and optionally make the watch
breakpoint conditional by entering an expression. In this example, the frequency is not
changed and no expression is entered. Click "finish".

DTv12s19UsingTheGUIPart2.ppt Page 10 of 32

Click the Variables tab to view the
variable value

Watch breakpoint for variable NUM-CUSTFILE-RECS
has been added

Click the Variables tab to view the
variable value

11 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

The watch breakpoint was added, and is displayed in the breakpoints view.

DTv12s19UsingTheGUIPart2.ppt Page 11 of 32

The current value of
the variable is 1

Click Resume to run until
the breakpoint is triggered

Run the program

click

The current value of
the variable is 1

“ ”Click “Resume” to run until
the breakpoint is triggered

12 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

Here, the variables view is selected, which is displaying the watched variable. The resume
button is clicked.

DTv12s19UsingTheGUIPart2.ppt Page 12 of 32

The breakpoint triggered when
the variable value changed

The watch breakpoint triggered
when the variable changed

The breakpoint triggered when
the variable value changed

13 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

The watch breakpoint triggered. Notice that the value of the variable changed, and that the
program is stopped at the next statement to run after the statement that changed the
variable.

DTv12s19UsingTheGUIPart2.ppt Page 13 of 32

Watch breakpoints

� Watch breakpoint
�	 Sets a breakpoint to trigger when a variable value changes

�	 The program will stop when the variable's value changes with a
subsequent Resume or Run-to-Location

� Watch breakpoint with an expression
�	 Sets a conditional watch breakpoint

�	 The program will stop when the variable's value changes with Resume or
Run-to-Location, and the condition is true

�	 Examples:
� CUST-ID changes and CUST-ID = '12345'
� CUST-ID changes and ACCT-BAL > 1000

IBM Debug Tool for z/OS tutorial 14 © 2012 IBM Corporation

A watch breakpoint will trigger when a variable value changes. Optionally, watch
breakpoints can be made conditional by specifying an expression.

DTv12s19UsingTheGUIPart2.ppt	 Page 14 of 32

Performance tip

� For the best performance, use statement breakpoints instead of watch
breakpoints
�	 A statement breakpoint will trigger only when the statement is reached

�	 A watch breakpoint makes the debugger check the value of the variable
after every statement

� Use watch breakpoints if you do not know which statement will change
or use the variable

� But if you do, set a statement breakpoint after the statement that
causes the change
�	 For example:

Statement breakpoint on 805 with expression CUST-ID = '12345'
will provide much better performance than:

Watch breakpoint on CUST-ID with expression CUST-ID = '12345'

IBM Debug Tool for z/OS tutorial 15 © 2012 IBM Corporation

When a watch breakpoint is set, the debugger must check the value of the watched
variable after every statement runs. Keep this in mind when setting breakpoints, because
it affects the performance of the debugger. If you have long running programs, and want
to optimize the debugger's performance, there may be a better performing alternative.

If you know where in a program a target variable will be used, then you can set a
statement breakpoint instead. Specify a conditional expression to check the value of the
variable you want to watch at the right statement. Then the program will stop at the
statement when the variable has a target value. This performs much better, since the
debugger only checks for the condition when the specific statement runs, rather than
checking if the variable changed after every statement.

DTv12s19UsingTheGUIPart2.ppt	 Page 15 of 32

Using Debug Tool's graphical user interface

� Starting the debugger

� Debug perspective views and navigation

� Using the debugger
� Stepping through statements and running the program

� Program statement breakpoints
� Monitoring variables

� Making breakpoints conditional
� Watch breakpoints
� Program entry and exit breakpoints

� Ending the debugging session

� Loading program debug files
� Loading sysdebug, listings, dwarf, and source files

� Loading LANGX files

Debug Tool tutorial

16 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

So far, you have seen how to set statement and watch breakpoints. Next, you will see how
to set breakpoints that trigger when a specific program or subprogram is entered.

DTv12s19UsingTheGUIPart2.ppt Page 16 of 32

Ste into

You can step into a subprogram or function

click p­Step-into

17 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

But first, here is a simple example of how you can follow the logic of an application from
one program to another. A program named SAM1 is running. You can tell because the
program name is highlighted in the debug view, and it is also displayed in the tab of the
source view.

The next statement to run is line 312, which is a "CALL" statement that will pass control
to another program named SAM2. It has not yet executed the CALL statement. To follow
the logic into the subprogram, click “Step-into”.

DTv12s19UsingTheGUIPart2.ppt Page 17 of 32

Ste throu h the ro ra

SAM2 is added to the program stack

The location is at SAM2 initialization

After stepping into a subprogram

click
p g p g mStep through the program

SAM2 is added to the program stack

The location is at SAM2 initialization

18 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

That stepped into the subprogram, SAM2.

There are two cases when you are sitting on a "CALL" statement and step. Either the
subprogram has been compiled for use with the debugger, or not. For example, in the
case of an Enterprise COBOL subprogram, if it is compiled with the "TEST" compiler
option, then it is compiled for the debugger. If it has been compiled with "NOTEST", then it
is not.

In this example, the subprogram is compiled for use with the debugger, so it steps in. If
this program had not been compiled for the debugger, then "STEP" would run the
subprogram, but the debugger would not display it. The debugger would pause at the next
statement after the "CALL" statement in the higher level program.

"Step-into" is clicked several times to step through the program.

DTv12s19UsingTheGUIPart2.ppt Page 18 of 32

Ste out of the ro ram

You can STEP out of a subprogram or function

click
p p gStep out of the program

19 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

After stepping or running through the program, the last statement in the subprogram is
reached. "Step-into" is clicked again.

DTv12s19UsingTheGUIPart2.ppt Page 19 of 32

SAM2 returned, and you now back in SAM1

The Source view shows SAM1 code

Returned to the calling program

SAM2 returned, and you now back in SAM1

The Source view shows SAM1 code

20 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

After stepping, control is returned back to the higher level program. The debugger paused
at the next logical statement, which is the statement after the CALL. Now you have seen
one way to follow logic into a subprogram, step in and step out.

DTv12s19UsingTheGUIPart2.ppt Page 20 of 32

1
2

Create an entry breakpoint

RT
click 1 click

2

21 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

But it can be cumbersome to have to step into every subprogram that you want to debug.
So there is a simpler way to pause when a specific subprogram in entered – an "entry"
breakpoint. To set an entry breakpoint, right click in the Breakpoints view, and select “Add
Breakpoint” and then “Entry”.

DTv12s19UsingTheGUIPart2.ppt Page 21 of 32

1

2

Fill in the Function or Entr oint name

Create an entry breakpoint

click 1

y pFill in the Function or Entry point name

2 click
22 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

The “Add an Entry Breakpoint” pop-up appears. If the sub program has not been called
yet, then it may not be loaded in memory. If that is the case, click the check box labeled
“Defer breakpoint until executable is loaded”. If you are not sure, check the box anyway.
The breakpoint will still trigger if the module already happens to be loaded. Enter the full
names of the load module, CSECT or program name, and entry point name, and click
"next".

On the next page, you can optionally specify a frequency or an expression to make the
breakpoint conditional. Click "finish".

DTv12s19UsingTheGUIPart2.ppt Page 22 of 32

The entry breakpoint has been added
Deferred: The breakpoint is deferred
until the source is loaded

Click Resume to run the
program until the breakpoint is
triggered

Create an entry breakpoint

click

The entry breakpoint has been added
Deferred: The breakpoint is deferred
until the source is loaded

“ ”Click “Resume” to run the
program until the breakpoint is
triggered

IBM Debug Tool for z/OS tutorial 23 © 2012 IBM Corporation

The breakpoint is added, and appears in the breakpoints view. Click “resume” to" run the
program.

DTv12s19UsingTheGUIPart2.ppt Page 23 of 32

The program stopped at the entry
to SAM3

After stopping at the entry breakpoint

The program stopped at the entry
to SAM3

24 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

The breakpoint triggered when the program was entered. It is paused the at the entry, and
you can follow the logic by stepping in.

DTv12s19UsingTheGUIPart2.ppt Page 24 of 32

Entry breakpoints

� Entry breakpoint
�	 Will stop when a named subprogram is entered with a subsequent

Resume or Run-to-Location

�	 Another option:
� Stop at all function entries sets an entry breakpoint for all programs

� Right-click the program in the debug view to see this option

�	 Considerations:
� With most compilers, the entered program must be compiled for debugging for

the entry breakpoint to trigger
•	 Exceptions include debugging in disassembly mode

� Defer the breakpoint if the program is not already loaded

IBM Debug Tool for z/OS tutorial 25 © 2012 IBM Corporation

An entry breakpoint gives you an easy way to run the application until it reaches a specific
program. With most compilers, the subprogram must be compiled for debugging for the
entry breakpoint to trigger. Do not forget to click the “Defer breakpoint until executable is
loaded” check box when setting the breakpoint, if you are not sure that the module is
already in memory.

DTv12s19UsingTheGUIPart2.ppt	 Page 25 of 32

Using Debug Tool's graphical user interface

� Starting the debugger

� Debug perspective views and navigation

� Using the debugger
� Stepping through statements and running the program

� Program statement breakpoints
� Monitoring variables

� Making breakpoints conditional
� Watch breakpoints
� Program entry and exit breakpoints

� Ending the debugging session

� Loading program debug files
� Loading sysdebug, listings, dwarf, and source files

� Loading LANGX files

Debug Tool tutorial

26 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

Next, you will see options available to end a debugging session.

DTv12s19UsingTheGUIPart2.ppt Page 26 of 32

Immediately terminate the application
using action buttons

Terminate: Immediate
termination of the application.
No more program statements
run. RC 0 is returned to the
environment.

Tip: CTRL+F2 is the shortcut

Disconnect: Disconnect
Debug Tool from the
application. The program
continues to run from the
current location without
the debugger.

Termination action buttons

Immediately terminate the application
using action buttons

=

Terminate: Immediate
termination of the application.
No more program statements
run. RC=0 is returned to the
environment.

Tip: CTRL+F2 is the shortcut

Disconnect: Disconnect
Debug Tool from the
application. The program
continues to run from the
current location without
the debugger.

IBM Debug Tool for z/OS tutorial 27 © 2012 IBM Corporation

When you click "resume", the application runs until the next breakpoint is triggered.
However, if the program does not reach or trigger any breakpoints, it will run to
termination. That is one way to end your debugging session, just run the program until it
finishes.

However, you can end a debugging session at any time with the terminate or disconnect
buttons. "Terminate" stops the application immediately. No more statements run, and the
application is given a zero return code. "Disconnect" ends the debugging session, but
allows the application to run normally, continuing from the current statement.

DTv12s19UsingTheGUIPart2.ppt Page 27 of 32

Click the “Terminate” button

CTRL+F2 is the hotkey

Click the “Terminate” button

Click the “Terminate” button

CTRL+F2 is the hotkey

click

28 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

The “terminate” button is clicked.

DTv12s19UsingTheGUIPart2.ppt Page 28 of 32

The debugging session ended

29 IBM Debug Tool for z/OS tutorial © 2012 IBM Corporation

The application was terminated immediately, and the debugging session ended. The
debugger is now ready for the next debugging session to start, if needed.

DTv12s19UsingTheGUIPart2.ppt Page 29 of 32

 1

Right click in the
Debu view

Terminate
and abend

2

Terminate and abend Terminates
the program and forces an abend.

Consider using this option to:
• Capture the abend with IBM Fault
Analyzer for z/OS (if installed)
• Avoid running subsequent steps in
a multi step job
• Roll back database updates

Force an immediate termination with abend

right
click

1

g
Right click in the
Debug view

Terminate
and abend

click 2

-

Terminate and abend Terminates
the program and forces an abend.

Consider using this option to:
• Capture the abend with IBM Fault
Analyzer for z/OS (if installed)
• Avoid running subsequent steps in
a multi-step job
• Roll back database updates

IBM Debug Tool for z/OS tutorial 30 © 2012 IBM Corporation

Another way to end a session is to right click in the white space of the debug view, and
select “Options” and then “Terminate and Abend”. This forces the program to terminate
with an abend. Consider doing this if you want the system to collect a dump. If you have
IBM’s Fault Analyzer product, perhaps you plan to use it to see a detailed analysis. In
some cases, forcing an abend can prevent subsequent steps in a batch job from running.
And in some applications an abend will force changes made to databases to be rolled
back.

DTv12s19UsingTheGUIPart2.ppt Page 30 of 32

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better
meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send email feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_DTv12s17UsingTheGUIPart2.ppt

This module is also available in PDF format at: ../DTv12s17UsingTheGUIPart2.pdf

IBM Debug Tool for z/OS tutorial 31 © 2012 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

DTv12s19UsingTheGUIPart2.ppt Page 31 of 32

 Trademarks, copyrights, and disclaimers

IBM, the IBM logo, ibm.com, z/OS, and zSeries are trademarks or registered trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other IBM trademarks is
available on the web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2012. All rights reserved.

IBM Debug Tool for z/OS tutorial 32 © 2012 IBM Corporation

DTv12s19UsingTheGUIPart2.ppt Page 32 of 32

