
Page 1 of 29

This presentation introduces Lotus Expeditor Client for Devices Version 6.1.

Page 2 of 29

The agenda of this presentation is to provide an overview of Lotus Expeditor Client for

Devices release, along with describing the Client Runtime Java Configurations, the Device

Architecture, the currently supported devices, the newly added features in the device

release, prerequisites, how to install and configure your device, and finally design and

debug considerations.

Page 3 of 29

The Lotus Expeditor Client Release includes two configurations. One is desktop; the other

is device. Both releases have some components in common, like Database Sync,

Enterprise Management Agent, Lotus Expeditor micro broker, Web Container, Transaction

Container, MQe, and Web Services. These are mainly targeted for end-to-end Client

Services solutions. More information about the desktop configuration is available in a

separate presentation.

Page 4 of 29

jclDevice is a customized Java Runtime Environment that provides several extra packages

in addition to CDC/Foundation 1.1. These packages were added to support some

advanced Client Services on devices, like Web Container, logging, and JNDI. Although

these extra packages are available to applications, their use is not recommended because

they are included only to support Expeditor components and may not be included in future

releases.

The desktop configuration uses jclDesktop, which includes more packages, but is still a

subset of JSE.

Page 5 of 29

Here we put all of these capabilities and technologies together in one diagram, which
represents the DNA of our client environments.

•The underlying base for all other components are the Java Virtual Machine, Java Class
Library, and OSGi Framework.

•The Platform Management components are the Enterprise Management Agent and the
Application Manager.

•The Access Services include:

• The Lotus Expeditor micro broker, MQ Telemetry Transport, MQe, and JMS for
assured transactional messaging

• JDBC and DB2e for relational database synchronization and local store

• Transaction Container, Web container, and XML parsing for application
execution. This includes EJB, Servlet, JSP, and Web services.

• SyncML Framework and other OSGi services for standardized application
interactions

•The Interaction Services layer includes eSWT, eJFace, and Mobile Extensions

The Expeditor client provides a cohesive and consistent application platform for
intermittently connected systems and devices.

Page 6 of 29

The device platform has a subset of the services in the desktop platform. Some services
are from the J2EE specification, like JSP/Servlet, EJB, JNDI, JMS and JDBC driver.
Others are IBM-provided components like Web Container, Transaction Container, JNDI
provider, MQe, micro broker and DB2 Everyplace.

Page 7 of 29

User interface APIs are subsets of the desktop SWT and JFace components. In addition,
Mobile Extensions provides unique support for mobile devices. This helps abstract the
differences among varied device types. This component is also provided in the desktop
configuration so that embedded applications will function on the desktop runtime as well.

The seamless application launcher simplifies using Java applications on devices by
making them start and act just like native applications.

Page 8 of 29

This diagram shows how components in the client runtime interact with components on
Enterprise servers to provide “Line of Business” data to clients that are not always
connected.

Page 9 of 29

Microsoft Windows Mobile 2003 Second Edition and Windows Mobile 5 are supported. We

recommend that a device have at least 16 MB of file system space and 16 MB of RAM

available. The device runtime is fully tested on Dell Axim (x50v and x51v), HP iPAQ 4700

and 2790, and iMate JASJAR. We also provide a Resource Checker to reveal device

capabilities prior to installing Expeditor. Microsoft Windows XP is supported for

development.

Page 10 of 29

We include an IBM customized Java Runtime Environment – jclDevice, which is based on

JME Foundation 1.1. Eclipse eRCP 1.0 is used as the base runtime platform. Application

Manager is based on the Eclipse Update Manager. Enterprise Management Agent allows

the device to be remotely managed by an administrator. Finally, enhanced provisioning

allows the Enterprise Management Agent to provision features directly from Eclipse

update sites to the device.

Page 11 of 29

eRCP is the base platform used in the device runtime. eRCP is from the Eclipse open

source project and is an embedded version of Eclipse Rich Client Platform. It uses the

RCP application framework model, but reduces the size and function to fit on more

capable devices. The project makes patches to mainline Eclipse code so that the most

basic components are capable of running on a JME Foundation profile. It also adds some

components to better enable application binary compatibility across a broad range of

devices. In addition, the MicroXML parser provides a very small and fast SAX2, DOM2

parser. And importantly in an enterprise environment, eRCP applications are also upward

compatible to RCP running on a desktop.

Page 12 of 29

We provide two ways to manage a device platform: Application Manager and remote

provisioning.

The Application Manager provides an end-user oriented interface for installing and

updating features on the device. Using Application Manager, users can browse update

sites, install new features, upgrade existing features, view features details, and remove

unnecessary features.

Devices can also be remotely managed by an enterprise administrator. The Enterprise

Management Agent and Device Management server provide an efficient way to manage a

large number of devices without client interaction. As soon as a device registers to the

Device Manager server, the Device Manager server is able to deploy “jobs” to the device

to manage it. A system administrator can easily use the Device Manager server to deliver

numerous jobs on specific devices, such as to install/uninstall eclipse features, OSGI

bundles, or even native files. However, remote provisioning does not support some jobs

for native applications that it does for Java applications, such as: inventory collection,

native application management, and install/uninstall handlers. Administrators can also

arrange for bulk jobs to groups of devices.

Page 13 of 29

This slide displays some screen captures of the Application Manager. The main screen on

the left lists the basic functions. The selection screen on the right shows the contents of

an update site and allows users to select features and see related information.

Page 14 of 29

Some of these components existed in the previous version but are now supported at a

higher version. JSR 169, the Embedded Transaction Container, and JNDI are brand new

for Lotus Expeditor.

Page 15 of 29

JSR 169 does not provide Driver Manager, which could result in some trouble for legacy

JDBC 2.0 applications. Developers need to rewrite these JDBC 2.0 segments to use Data

source instead.

Page 16 of 29

Lotus Expeditor provides two different Web server models: the basic Web Server model is

the Http Service, which is an implementation of the OSGi specification for Http Service,

and the advanced Web Server model, which is the Web Container. The Http Service

model implements an HTTP 1.0 Web server with a Java Servlet 2.1 engine. The Http

Service model is recommended if you only need basic http service and do not need the

advanced Web Container. The Web Container implements the JSP 1.2 and Servlet 2.3

engines, and it also provides support for configuring multiple HTTP and HTTPS transport

channels.

Page 17 of 29

This slide illustrates how eRCP applications seamlessly integrate with the native desktop.

Shortcuts to eRCP applications are created and placed under the Programs -> Lotus

Expeditor folder. Users can directly launch each application by simply tapping the icon

instead of having to launch a workbench and then choosing what to launch from the

workbench.

Applications will also appear in the running programs list like native applications.

Page 18 of 29

Here we will introduce the GUI that supports eRCP applications on devices. eSWT stands for embedded Standard
Widget Toolkit. It implements a subset of APIs from SWT. Some APIs were removed to make the eRCP size more
reasonable for devices.

eSWT Core is the minimum subset of SWT that a device must provide. It contains fundamental user interface elements,
including low-level graphics, events, and basic widget infrastructure.

The eSWT Expanded library is also a subset of the SWT. Its purpose is to provide more advanced SWT widgets and
layouts that include:

- An Embedded browser that allows the user to visualize and navigate through HTML documents inside an eRCP
application.

- A Table widget to provide fancier presentation of the items in a list.

- A Tree widget that shows the structure or hierarchy of related items.

- More layouts to provide optimal use of the screen space.

- Additional image support by the Imageloader in the Expanded library, such as JPEG, GIF, and PNG files.

The widgets in the eSWT Expanded library may be optionally implemented on different devices. eRCP applications
should check if these widgets can be instantiated before attempting to use them.

Mobile Extensions are not a subset of SWT. This package implements widgets to enhance the user experience on
mobile devices. It also provides functions that abstract varied device hardware differences so that programming an
application that can run on multiple devices is not difficult. This is covered on the next slide. The entire Mobile
Extensions package is optionally provided, but it is likely to be present on all mobile devices. All eSWT and Mobile
Extensions widgets are available on Windows Mobile devices.

eJFace is a subset of JFace. It wraps eSWT widgets, providing a set of components and help utilities to simplify the
development of eSWT-based applications.

Page 19 of 29

Let’s briefly discuss the Mobile Extensions package in a bit more detail, since it is an essential part of

creating generic applications.

Mobile Extension includes optimized widgets for an improved user input experience. This includes the Text

Extension widget which records previously typed text that the user has specified. When the user wishes to

input the same string, the Text Extension provides completion text; saving the user from typing every

character again.

The Date Editor provides many different formats of the Date-Time combination and a calendar for the user to

directly pick a date instead of having to type it in. The default format of the Date Editor changes with the

locale of the mobile device.

The Constrained Text widget enables the programmer to put a constraint on a Text field, such as URL,

Phone number, and E-mail. This prevents the user from inputting the wrong format or incorrect information.

For better handling of device features we have the Mobile Device class which enables application

programmers to manipulate the behavior of the Virtual keyboard on the device. It is reasonable to set the

virtual keyboard to always be off for a mobile device that already has a keyboard in order to save precious

screen space for other widgets.

The Screen class provides useful information about each screen in the mobile device. The information

includes the size of the screen, the orientation of the screen, and whether the screen is a touch screen. The

programmer may decide which widgets are better to use for an application depending on the constraints of

each screen.

The SWT Mobile Extensions plug-in for win32 desktops allows Expeditor for Devices applications to run on

both the Device runtime and the Desktop runtime.

Page 20 of 29

This slide shows the hierarchy of basic SWT widgets and how Mobile Extensions widgets

extend it. The widgets shaded in yellow are the Mobile Extension widgets.

Page 21 of 29

On a Windows Mobile device, J9 and jclDevice require around 4.6 MB. eRCP 1.0 requires

around 5 MB. Device Agent needs 1 MB. The optional Web Container needs 0.9 MB and

other optional Client Services require 3.8 MB. To sum up, the Expeditor footprint ranges

from 11 to 16 MB. Note that most Windows Mobile devices use a compressed file system

and so actual flash consumption may be considerably less.

The RAM requirements range from 10 to 16 MB depending on how many components are

actively running and what languages are installed. Additional resources are required for

applications.

Page 22 of 29

To run Lotus Expeditor Client on your Windows Mobile device, you need to have at least

12 MB of free file system space, 12MB free memory and 10 MB free virtual address space.

However, to install more features and applications after Expeditor is installed requires

additional file system space and memory.

Note that there are significant limitations in the Windows Mobile memory architecture

which may restrict the execution of large applications. Windows Mobile has a per process

memory usage limit which can be reached even though there is more than enough

memory available within the device. This limitation is more likely to be encountered on

Asian language devices since they use more memory resources.

Page 23 of 29

Since some devices are not capable of running the entire Expeditor for Devices runtime,

you initially install only a “core” runtime, which contains only the minimal set services. The

rest of Expeditor is provided as optional features in an update site. The core runtime

specifically contains the Eclipse eRCP runtime, the Enterprise Management Agent,

Application Manager, and Support Assistant.

You have several choices for installing the Expeditor core runtime:

 - You can run setup on the desktop. This installs Expeditor on a connected

device. This is best done when there is a one-to-one relationship between the desktop

machine and the device.

 - You can open a browser on the device and browse to the installation cab

file, then click on it to start the installation.

 - You can also copy the cab file to a storage card, then click on it from File

Explorer.

For other applications and optional Expeditor components, you can either install using

Application Manager or the Device Manager system. This depends on what your strategy

is for deploying applications.

Page 24 of 29

Out of memory conditions can happen more frequently on devices than on desktops. Here

are some hints for how to manage your device’s memory.

• Don’t install everything you think you may someday need. Only install the applications

you need today.

• When you no longer need an application, uninstall it.

• You can close running applications not currently being used. To close them, go to Start

> Settings > System > Memory > Running Programs.

• Sometimes, re-launching an application may work if it doesn’t start on the first try. This

is because on an “out of memory” condition. The operating system may ask other

applications to close, thereby freeing additional resources.

Page 25 of 29

Designing an application for devices is a bit different than designing one for desktop

systems.

You might want to use multiple bundles to increase modularity; however, the more bundles,

the more drag on startup performance. Therefore, it is best to keep the number of bundles

limited.

If you add DLLs onto a device that does not have good virtual memory resources, you are

likely to get “Out of storage” errors.

For logging, it is recommended you use OSGi logging. If you have legacy code that uses

Java Logging, you may still use this code for now and change it later.

Page 26 of 29

Here are best practices for designing Rich GUI applications:

It is best to use flow-based layouts. Layouts automatically position each widget using the

available screen space. The layout will re-position each widget in case of a change in

screen size or screen orientation to best display each widget and avoid having them

clipped.

Don’t position widgets using absolute coordinates. There is a considerable chance that

moving the same application from device to device will cause widgets to be clipped or not

even show up on the screen.

Even though layouts help considerably in adapting the user interface to different screen

sizes, we also suggest you check if the available screen size is large enough to contain

the computed layout. If it is not, then scroll bars should be added to make all the widgets

available for the user. We also encourage checking for aspect ratios which restrict layouts

or allow for additional contents to be displayed.

Page 27 of 29

This slide describes some debug issues you might encounter.

Firstly, make sure your applications are compiled against Java 1.4. Java 5.0 compiled

code will work in the Expeditor runtime.

We also provide the same Expeditor device runtime for Win32 development platform; most

debug can be done there.

If you want to test user input and how the device user interface will look on the device,

then you can either deploy the application to the device or try a device emulator. To deploy

your applications, you need to go through either application manager or Device Manager

server. As a shortcut, if you have an older version application already installed on the

device, you can simply overlay the plug-in with the newer one.

For a non-GUI application, logging is a good way to do debug.

You can get a console version of J9 from \utils\DebugPackage.zip on the Client Runtimes

CD. This will allow you to access the OSGi console and manipulate plug-ins directly.

Page 28 of 29

