
Page 1 of 18 

This presentation explains the messaging capabilities in the IBM Lotus Expeditor Client for 

Desktop. 



Page 2 of 18 

The goal of this presentation is to understand the messaging services provided by IBM 

Lotus Expeditor Client for Desktop. 



Page 3 of 18 

The agenda of this presentation is to explain key concepts,  

 

describe the WebSphere MQ Everyplace messaging service,  

 

describe the MQ Telemetry Transport and Lotus Expeditor micro broker messaging 

services,  

 

and to compare these messaging services so you can determine which service best meets 

your requirements. 

 



Page 4 of 18 

Let’s start with an overview of key messaging concepts. 



Page 5 of 18 

Messaging is separated into two main categories: Point-to-point messaging, and Publish and Subscribe 
messaging. 

To take full advantage of the messaging capabilities of the client platform, it is important to understand the 
differences in these two messaging types. 

In Point-to-point messaging, queue managers handle queues that store messages. Applications 
communicate with a local queue manager, and get or put messages to queues. If a message is put to a 
remote queue (a queue owned by another queue manager), the message is transmitted over connections to 
the remote queue manager. In this way, messages can hop through one or more intermediate queue 
managers before reaching their final destination. You can configure queue managers with or without local 
queuing. All queue managers support synchronous messaging operations. A queue manager with local 
queuing also supports asynchronous message delivery. The point-to-point messaging paradigm provides 
one-to-one messaging. In other words, messages are consumed by only one receiver, unlike publish-and-
subscribe where messages are consumed by multiple receivers. 

In Publish and Subscribe messaging the application programming model for a publish and subscribe 
messaging paradigm consists of the following: 

Each message may be consumed by one or more receivers 

Subscribers: Express an interest in messages containing information on a particular subject. 

Publishers: Generate messages containing information about a particular subject. Messages are sent to a 
broker. The publish and subscribe messaging paradigm provides one-to-many messaging. 

Brokers: Act as go-betweens, receiving messages from publishers and comparing them to the needs of 
subscribers. A message is delivered to all subscribers that have expressed an interest in the subject of the 
message. 

Subscriptions: Contain records of registered interest with the Broker from a subscriber. 



Page 6 of 18 

This slide illustrates how point-to-point and publish and subscribe messaging work.  As 
you can see, the client platform provides point-to-point messaging through the Java™ 
Message Service (JMS) with WebSphere MQ Everyplace (MQe), and publish and 
subscribe messaging through the MQ Telemetry Transport (MQTT) and micro broker. 

Let’s explore each of these messaging services in more detail. 



Page 7 of 18 

Next, let’s explore the capabilities provided by the MQ Everyplace messaging service. 



Page 8 of 18 

     Java Message Service (JMS) is the standard Java API for messaging. It supports the two messaging 
categories: point-to-point messaging and publish and subscribe messaging. JMS is defined as part of J2EE. 
It defines a package of Java interfaces, which allows for provider-independence, but does not necessarily 
allow for provider interoperability. The JMS APIs are provided with the client platform.  

     The client platform also includes a point to point JMS provider based on MQe messaging. The MQe 
classes for JMS are a set of Java classes that implement the JMS interfaces to enable JMS programs to 
access MQe systems. 

     WebSphere MQ Everyplace (MQe) is a member of the IBM WebSphere MQ family of business 
messaging products. It exchanges messages with various applications, providing once and once-only 
assured delivery leveraging the point to point message paradigm.  

     MQe provides an integrated set of security features enabling the protection of message data both when 
held locally and when being transferred. With synchronous message delivery, the application puts the 
message to MQe for delivery to the remote queue. MQe simultaneously contacts the target queue and 
delivers the message. After delivery, MQe returns immediately to the application. If the message cannot be 
delivered, the sending application receives immediate notification. MQe does not assume responsibility for 
message delivery in the synchronous case (non-assured message delivery).  

     With asynchronous message delivery, the application puts the message to MQe for delivery to a remote 
queue. MQe immediately returns to the application. If the message can be delivered immediately, or moved 
to a suitable staging post, it is sent. If not, it is stored locally. Asynchronous delivery provides once and once-
only assured delivery. After the message is provided to MQe, control is returned to the application. MQe next 
takes responsibility for assured delivery of the message. Delivery occurs in the background allowing the 
application to carry on its processing.  

     MQe also has the ability to exchange messages with WebSphere MQ host queue managers and brokers. 
To do this, configure a MQe queue manager with bridge capabilities. Without the bridge, a queue manager 
can communicate directly only with other MQe queue managers. However, it can communicate indirectly 
through other queue managers in the network that have bridge capabilities.  

     MQe secures messages using encryption, non-repudiation, authentication, and compresses messages to 
reduce transmission costs. 



Page 9 of 18 

This slide shows topologies supported by WebSphere MQ Everyplace. 



Page 10 of 18 

Next, let’s cover the capabilities provided by the MQ Telemetry Transport and the micro 

broker messaging service. 

 



Page 11 of 18 

MQ Telemetry Transport (MQTT) is an open protocol designed for resource-constrained 

devices and networks, providing publish and subscribe messaging over TCP/IP.  

 

Clients operate in conjunction with a suitable message broker, such as the micro broker, 

WebSphere Business Integration Message Broker, or WebSphere Business Integration 

Event Broker, which are responsible for the syndication of messages.  

 

As a wire protocol, no device API is mandated; rather, the implementations expose a 

simple semantic including: connect/disconnect, publish, and subscribe/unsubscribe.  

 

Provision is made for assurance of message delivery using one of three levels of service; 

fire and forget, at most once, and exactly once.  

 

By minimizing the requirement on network bandwidth, it is practical to use MQTT in wide 

area networks, which typically have lower link speeds than wired networks. This facilitates 

not only using MQTT for the collection of data, but also for the presentation of data on 

handheld devices.  

 



A Java client implementation of the MQTT wire protocol is provided to simplify 

MQTT client programming. For more information, see the URL: 

http://www.mqtt.org. 

 

Page 11 of 18 



Page 12 of 18 

The micro broker is a very small footprint, 100% Java message broker, capable of running 

in resource-constrained environments. It is suitable for embedding in applications and 

solutions that have a need for messaging, notification and event services. Micro broker 

supports the publish and subscribe messaging paradigm. It provides a messaging 

infrastructure, which enables lightweight messaging clients to communicate with each 

other, on one host or across a network, and with enterprise brokers through its bridging 

capabilities. 

Micro broker uses the MQ Telemetry Transport (MQTT) protocol over TCP/IP and, 

optionally, uses a DB2e database to provide persistent storage of publications and state 

information.  The Micro broker also provides a “Bridge” to transform and route messages 

to WebSphere Business Integration Message Brokers or WebSphere MQ, thus enabling 

connection to an Enterprise Service Bus. 

 



Page 13 of 18 

This slide shows topologies supported by the micro broker. 

Green ovals indicate JVM boundaries 

Orange ovals indicate machine boundaries 



Page 14 of 18 

Finally, let’s compare these messaging services to help you determine which service best 

meets your requirements. 



Page 15 of 18 

Use this table to help you decide which messaging service meets your requirements.  

However, note that this table is not an exhaustive comparison of the two products. See the 

product documentation for more complete information about these products. 

 



Page 16 of 18 

This slide covers some additional notes regarding messaging. 

MQe permits only a single QueueManager to be defined per JVM.  Applications that define 

their own queue manager infrastructure cannot co-exist with other applications that do the 

same. 

Avoid non Latin 1 characters in Queue Manager and Queue information 

Micro Broker permits only a single broker instance per JVM 

Topics are limited to ‘ASCII’ character subset of UTF8 

 



Page 17 of 18 


