
IPASv1_VSys_Pattern_Addons.ppt

This presentation covers the virtual system add-on support.

Page 1 of 39



IPASv1_VSys_Pattern_Addons.ppt

Virtual machine add-ons provide a mechanism to include advanced customizations in your 

virtual system patterns. Additionally, add-ons support customizing virtual hardware in your 

deployed virtual machines. You will see defining add-ons, deploying add-ons and the command 

line interface support for add-ons. 

Page 2 of 39



IPASv1_VSys_Pattern_Addons.ppt

The overview section introduces concepts and terminology for virtual machine add-ons and 

explains the default add-ons that come pre-loaded on IBM PureApplication™ System. 

Page 3 of 39



IPASv1_VSys_Pattern_Addons.ppt

Add-ons are specialized scripts that customize virtual machine configuration. Add-ons provide 
fine tuning for hardware and operating system configuration. Initial configuration for add-ons is 
provided in the administrative console from the Catalog > Add-Ons menu. You can use default 
add-ons, or create and clone new ones. 

Add-ons are generally scripts that can apply to all VMs independent of the middleware or 
software on the VM. 

After creating an add-on, it can be dropped onto a topology pattern part from the Patterns 
window. When the pattern is deployed, you provide the customization parameters for the add-
ons to customize the hardware and operating system configuration.

There are four add-on types – disk, network, user, and raw disk. 

The disk add-on adds a virtual disk to the virtual machine and optionally formats the file system 
and mounts the disk. 

The network add-on adds a virtual network interface controller, or NIC, to the virtual machine. 
The default NIC add-on defines and initializes a new network interface. NIC add-ons must be 
deployed with environment profiles. 

The user add-on defines an additional user on the virtual machine. The default add-on script 
runs a simple add user command. No additional account configuration is performed.

Finally, the raw disk add-on adds a virtual disk to the virtual machine, the disk is added raw 
without partitions or formatting. 

The disk and NIC add-ons are not available for use with patterns that deploy to IBM PowerVM®

hypervisors.

Page 4 of 39



IPASv1_VSys_Pattern_Addons.ppt

To provide user interface consistency, add-ons have been implemented modeling script 

packages. 

Add-ons can be viewed, modified, or cloned from the Workload console “Add-ons” menu option.

Page 5 of 39



IPASv1_VSys_Pattern_Addons.ppt

There is a section in the pattern editor palette called Add-ons that allows you to drag an add-on 

onto the parts in a pattern. Like script packages, add-ons have custom configuration parameters 

that are configured either during pattern creation or at deployment time.

Page 6 of 39



IPASv1_VSys_Pattern_Addons.ppt

The overview section introduces concepts and terminology for virtual machine add-ons and 

explains the default add-ons that come pre-loaded on IBM PureApplication System.

Page 7 of 39



IPASv1_VSys_Pattern_Addons.ppt

The user add-on creates a user account in the operating system with a user name and 

password, if one is specified. No additional configuration is done. IBM PureApplication System 

provides a defaultadduser.zip package that can be downloaded and customized. You can 

perform additional actions on the user account, for example, granting access to a specific portion 

of the file system or changing user permissions.

One use for this add-on is to ensure the user account is created and accessible before user-

level script packages run. This is important if you require the user to be created and you are not 

using explicit script package ordering. 

Notice the add-on interface mimics the script package interface. All the parameters are identical 

except the TYPE parameter near the top.

The TYPE parameter is unique to add-ons and is assigned when the add-on is created. This 

field cannot be changed after the creation of the add-on. In the case of the user add-on, no 

hardware definition operations are required.

Page 8 of 39



IPASv1_VSys_Pattern_Addons.ppt

The disk add-on creates a new virtual disk of size “DISK_SIZE_GB” and formats it to file system 

format specified in the “FILESYSTEM_TYPE” parameter. The default is ext3. The disk is 

mounted at the file system location in the “MOUNT_POINT” parameter. Notice that the Type field 

for disk add-on is assigned the value “Disk.” 

At the hardware definition level, the disk is defined using the size specified in the 

“DISK_SIZE_GB” parameter, the default is 10 gigabytes. Remember this process is internal to 

the appliance, run at deployment time, and not exposed to the user. The add-on package script 

formats and mounts the disk. You can customize the add-on package by downloading the 

defaultadddisk.zip script and altering it to fit your environment. 

One possible scenario for this add-on is to use a Logical Volume Management, or LVM. The 

default implementation script needs to be customized to define an LVM.

Page 9 of 39



IPASv1_VSys_Pattern_Addons.ppt

The raw disk add-on initializes the disk by invoking the hypervisor-level APIs to define the new 

device. This process is internal to the appliance and runs at deployment time. The disk is not 

formatted or mounted. 

As with the disk add-on, the raw disk add-on creates a new virtual disk of size “DISK_SIZE_GB” 

but the disk is not formatted nor mounted. The default size is 30 gigabytes and the file system is 

raw. The Type field for raw disk add-on is assigned the value “Disk.” 

You can customize the raw disk add-on package by downloading the defaultaddrawdisk.zip 

script and altering it to fit your environment. 

Page 10 of 39



IPASv1_VSys_Pattern_Addons.ppt

The network interface controller, or NIC, add-on defines and initializes a new network interface. 

NIC add-ons must be deployed using environment profiles. The rationale for requiring 

environment profile usage is to enable network isolation. Having two different NICs allows 

network isolation for two different applications in the same application server, for example, one 

managing internet server traffic and the other managing internal intranet server traffic.

Unlike the other add-ons, there are no environment variables associated with the NIC add-on 

package. The default script package can be downloaded from IBM PureApplication System and 

is called defaultaddnic.zip. The IP and network information for the add-on NIC is selected the 

same way as the default NIC that is included in all the virtual machines. If you are not using IP 

pinning in your environment profile, the placement algorithm will choose the network information. 

If you are using IP pinning, then you will set the IP address for the add-on NICs at deployment 

time.

IBM PowerVM hypervisors do not support NIC add-ons. 

Page 11 of 39



IPASv1_VSys_Pattern_Addons.ppt

Here is an example of the virtual part configuration page that you must fill out at deployment. If 

your environment profile specifies deployer-assigned IP addresses, then you are required to 

provide the IP addresses for all NICs. The first IP address section is for “virtual machine 1 

network interface 0” and will correspond to the eth0 interface inside the virtual machine. This is 

the default NIC address and is always present. 

The second highlighted section of IP information is for the add-on NIC. This will correspond to 

eth1 in the deployed virtual machine. You are required to provide this information for each NIC 

that you have added. 

If you are not using IP pinning in your environment profile, then you are not required to provide 

the IP addresses and the IP assignment will happen using the standard placement algorithm.

Page 12 of 39



IPASv1_VSys_Pattern_Addons.ppt

Once a system is deployed, you can view the NIC information on the virtual systems page, 

under the virtual machine hardware and network section. The network interface 0 field is the 

eth0 interface in the virtual machine and corresponds to the default NIC. The network interface 1 

field is the add-on NIC and corresponds to eth1. 

Page 13 of 39



IPASv1_VSys_Pattern_Addons.ppt

Although add-ons and script packages have very similar configuration steps, there are some 

notable differences. While script packages have multiple execution-time options that are 

specified by the user, such as deploy time, delete time, or user initiated, add-ons do not. Add-

ons only run at deployment time. You do not specify the order of execution of the add-ons in the 

pattern editor. However, add-ons always run before any user-supplied script package. The add-

on definition has a special TYPE field that triggers the appropriate hypervisor-level API calls to 

be invoked to create the relevant hardware for disk or NIC creation. 

Finally, although the interface for add-ons mimics script packages, they are their own entities 

and are located in different locations in the user interface. Both have different command sets.

Page 14 of 39



IPASv1_VSys_Pattern_Addons.ppt

This section will discuss step-by-step instructions for defining add-ons in the appliance. 

Page 15 of 39



IPASv1_VSys_Pattern_Addons.ppt

Before discussing default implementation customization, it is important to remember there are 

two levels of add-on implementation. The first is the deployment logic used to provision new 

hardware. This is transparent to you and is not customizable. This is for disk or NIC creation. 

The second is the deployment logic used to configure the provisioned resources. This piece of 

the configuration is customizable. IBM PureApplication System exposes the add-on script 

packages for each pre-loaded add-on. There is one script package per add-on that can be 

downloaded from the administrative console and used as a starting point for customization. You 

can modify the default add-on script package and upload it to your own add-on, resulting in a 

customized add-on implementation. The default script packages are documented to assist you 

during the customization process. 

Page 16 of 39



IPASv1_VSys_Pattern_Addons.ppt

The next few pages step through an example of the default implementation package for the disk 

add-on. Each add-on has its own default implementation package.

The format for the add-on implementation package is the same as for script packages, each 

package contains a cbscript.json file and the script itself. On this page you will examine the 

cbscript.json file. 

You will notice the cbscript.json file uses the same general format as script packages, with the 

exception of the TYPE parameter. Again, the TYPE parameter is specific to add-ons. If the add-

on has additional environment variables, they are listed here as keys. These keys are exposed 

at deployment time.

Page 17 of 39



IPASv1_VSys_Pattern_Addons.ppt

There is a script package associated with each add-on implementation package. 

Shown here is the first part of the add-on script. 

For this example, the disk add-on, the script initially searches for the uninitialized disk that the 

appliance created. The amount of space required was specified in the DISK_SIZE_GB 

parameter. 

Page 18 of 39



IPASv1_VSys_Pattern_Addons.ppt

Once the disk space has been found, the script continues by partitioning the disk, formatting the 

file system, and mounting the file system at the mount point. 

The file system type and the mount point are parameters specified in the add-on cbscript.json 

configuration file. The file system type given must be valid for the –t parameter of the mkfs 

command. These can vary across images and patterns based on the virtual machine 

configuration.

Page 19 of 39



IPASv1_VSys_Pattern_Addons.ppt

The first option to create a new add-on is to clone an existing one. From the administrative 

console select Catalog-> Add-ons. A list of valid add-ons is displayed on the left. From the add-

on list, select the add-on you want to clone, click the clone button and provide a name for your 

new add-on.

Since the default add-ons are locked and cannot be modified, you must make a copy of the add-

on before you can customize for your environment.

Page 20 of 39



IPASv1_VSys_Pattern_Addons.ppt

When an add-on is cloned, all the configuration parameters from the original add-on are carried 

forward. Shown here is an example of a cloned user add-on. 

The newly cloned add-on is unlocked and ready to be modified. The add-on package files can 

be downloaded, modified for your environment, and uploaded to your cloned add-on. Once the 

modified add-on package files have been uploaded, click the refresh button in the administrative 

console to view your changes. 

The environment variables are populated from the cbscript.json file, but can be modified 

manually from the administrative console. All manual modifications will override the values from 

the cbscript.json file.

Page 21 of 39



IPASv1_VSys_Pattern_Addons.ppt

You can create a new add-on by selecting the green plus sign from the Add-ons page. You must 

specify the name of your add-on and the type. There are three types to choose from, disk, NIC, 

or user. The type you choose will determine the underlying hardware-level definition actions that 

the add-on performs.

Page 22 of 39



IPASv1_VSys_Pattern_Addons.ppt

This section will discuss step-by-step instructions for deploying add-ons in the appliance. 

Page 23 of 39



IPASv1_VSys_Pattern_Addons.ppt

In order to deploy the add-on you just created, you must add it to your pattern. There is a new 

section in the pattern editor palette for add-ons. 

As with script packages, you drag the add-on from the palette on the left to the pattern part on 

the right.

Page 24 of 39



IPASv1_VSys_Pattern_Addons.ppt

Once the add-on has been added to your pattern, you have the option to configure any 

environment parameters associated with that add-on. Click the pencil icon located in the add-on 

graphic and customize the values to represent your environment. Once a value is entered, you 

have the option to lock the parameter for your add-on. Shown here are the parameters for the 

default disk and user add-ons. 

The NIC add-on does not have any configurable parameters. The network information is 

assigned according to the placement algorithm for the deployment target. 

Notice that each add-on has a different graphical representation: a disk device for the disk add-

on, a network card for the NIC add-on, and a person for the user add-on. 

Finally, notice in the palette editor that the add-ons are located above the user-defined script 

packages. In the example above, the add disk and add user add-on icons are located above the 

HTTP server script package. This graphical representation is a reminder that the add-ons are 

invoked before the user-defined script packages.

Page 25 of 39



IPASv1_VSys_Pattern_Addons.ppt

In this example, you are deploying a single server that contains a user add-on and a disk add-

on. The parameters for the add-ons are exposed in the deployment dialog. For the user add-on, 

you must specify a user name, in this case addon_user, and a password.

For the disk add-on, you provide a disk size, a file system format, and a mount point. In this 

case, you are creating a 7-gigabyte disk with the file system format “xfs”, mounted at /my_fs.

These add-on parameter values are referenced in the rest of the examples in this section.

Page 26 of 39



IPASv1_VSys_Pattern_Addons.ppt

When you create an add-on from scratch, there are no default parameters and no default 

implementation package. The add-on configuration is truly empty. The add-on must be 

customized before use. 

Once you have configured your add-on, the add-on can be locked – that is, marked read-only -

and published. 

Page 27 of 39



IPASv1_VSys_Pattern_Addons.ppt

During the deployment process, add-on script packages are executed. The virtual system history 

lists each step as it runs. Shown here is the history for the invocation for the disk and user add-

on script packages. 

Once complete, the add-on script execution results and log files are available. Expand the virtual 

machine section, scroll to the bottom and you will see the results of your add-on script 

packages. In this case, the green check mark status means that the add-ons ran successfully 

and should be working correctly. If the add-on script packages fail, a red X status indicator is 

displayed. In this case you can open the related log files to view details of the error.

Page 28 of 39



IPASv1_VSys_Pattern_Addons.ppt

Now that the virtual system is deployed and the add-on script packages have started 

successfully, you can go to the virtual machine section of your virtual system and verify that your 

add-ons are working. 

For the user account, log in to an SSH session using the credentials that you specified in the 

user add-on configuration. Shown here is the login for the browser-based SSH console available 

from the IBM PureApplication System user interface. Log in with the user account you created, 

in this case addon_user. Once authenticated, run the whoami command to verify that you really 

are logged in with the add-on user account.

Page 29 of 39



IPASv1_VSys_Pattern_Addons.ppt

To verify the add-on disk configuration, it is important to understand the default configuration. 

For WebSphere Application Server Hypervisor Edition, there are four default disks, one for the 

operating system, one for the application server binary files, one for profiles, and one for the 

HTTP server. The device names and default sizes are shown here. 

The first new disk you create with the disk add-on is created on device /dev/sde. Shown here, 

you can see that /dev/sde exists and is 7 gigabytes in size, which is what was specified during 

the configuration. 

To view the list of all the disk devices, along with their sizes, enter the command: sfdisk –s. This 

validates that your disk exists and it is the correct size.

Page 30 of 39



IPASv1_VSys_Pattern_Addons.ppt

During this configuration, you asked for a 7-gigabyte disk of file system format “xfs”, mounted at 

/my_fs. You have verified you have a 7-gigabyte disk with device name /dev/sde. The mount 

command will list all the mounted disks, not just virtual disks, and display some configuration 

information. Shown here are the results of the mount command. Notice the disk that was created 

is mounted at /my_fs and is of type “xfs”.

Page 31 of 39



IPASv1_VSys_Pattern_Addons.ppt

Finally, navigate to the mount point, in this case /my_fs, enter the df –h command and verify that 

there is 7 gigabytes of usable space. 

Page 32 of 39



IPASv1_VSys_Pattern_Addons.ppt

This section walks through a command line interface example showing how to create and use 

add-ons. 

Page 33 of 39



IPASv1_VSys_Pattern_Addons.ppt

All command line interface operations are based on the deployer.addons object. In the example 

shown here, all lines that start with three greater-than symbols represent commands that run in 

the command line interface. The command shown here creates a new add-on called “CLI add-

on” and is of type DISK_ADDON. The attributes for the disk add-on are then listed.

Page 34 of 39



IPASv1_VSys_Pattern_Addons.ppt

Once the add-on is created, you will need to configure the environment. 

The first command shown here lists the add-on description. Since you did not include a 

description during creation, the initial description is blank. You are able to set the description field 

to “New add-on from the CLI”, re-run the description command and see the newly-defined value 

displayed. 

The myaddon.archive.set(open(‘adddisk.zip’)) command defines the implementation package for 

the add-on. 

Now that you have defined an implementation package for the add-on, all the default parameters 

in the implementation package configuration file are automatically pulled into the add-on 

definition. These come from the cbscript.json file. The environment command displays the 

current values for the disk size, file system and mount point. You can override the default values 

by assigning new values from the command line.

The example shown changes the FILESYSTEM_TYPE to “raw” instead of the default value 

“ext3”. After displaying the current values, notice that the file system type is now raw.

Page 35 of 39



IPASv1_VSys_Pattern_Addons.ppt

Now that you have created and configured an add-on, you will need to add the add-on into a 

pattern. 

The first command shown here, deployer.patterns, creates a new empty pattern. 

The second command selects the virtual images that are used in the pattern.

The third command adds the stand-alone server part from the image to the empty pattern. In this 

example, “standalone” contains a reference to the pattern with a single server part. 

Finally, the scripts command associates the add-ons with the part.

The pattern with the add-on is ready to deploy. 

Page 36 of 39



IPASv1_VSys_Pattern_Addons.ppt

This section summarizes the add-on feature. 

Page 37 of 39



IPASv1_VSys_Pattern_Addons.ppt

This presentation discussed virtual machine add-ons that are included in a pattern to provide a 

mechanism for advanced customizations. There are four supported add-ons, disk, raw disk, NIC, 

and user. You covered defining add-ons, deploying add-ons, and the command line interface 

support for add-ons.

Page 38 of 39



IPASv1_VSys_Pattern_Addons.ppt Page 39 of 39


