
IPASv1_VSys_Pattern_ScriptPackages.ppt

This presentation covers virtual system script packages. Script packages allow you to

configure the virtual machine by customizing the operating system or middleware within a

deployed virtual machine.

Page 1 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

This presentation covers the life cycle of a script package, including its creation, adding

and defining the order that the script packages will run, and how the scripts are run on the

deployed VMs of the patterns. It will also cover the format of a typical script package.

Page 2 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

The first section shows you the content of a typical script package.

Page 3 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

Script packages are listed in the PureApplication™ System catalog, along with the virtual

image parts that they customize. Script packages are very flexible and can do just about

anything you want, including running operating system commands or middleware

commands like wsadmin for WebSphere Application Server. There are some examples

that come pre-loaded in the PureApplication System catalog. However, you will want to

write scripts to do customization that is specific to your installation. A script package is an

archive file, but can also be a stand-alone script file. The next slide describes the content

of a script package archive file.

Script packages are added to the virtual system pattern part, in other words virtual image,

within a virtual system pattern, using the virtual system pattern editor. They are run on the

deployed virtual machines.

Page 4 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

As part of the script package, you need to specify the working directory where the script is

run and the logging directory where the logs are created. Also, you need to specify the

initial script to be run, its parameters and any environment variables used by the script.

These values can be provided during the import or they can be provided by the script

package owner in a JSON file, named “cbscript.json”. Providing the values in the JSON

file avoids the possibility of errors being introduced when they are provided in the user

interface.

The package contains one or more script files. The script that is specified as the initial

script is run first. It can call other scripts. Scripts can use the pre-defined environment

variables that are available for each part, such as the IP address and host name, or your

script can use environment variables whose values are provided at deployment time.

Only users who have permission to “create catalog content” can import the script

packages.

On a part, such as Deployment Manager, you can add multiple script packages and

specify the order in which they run.

Page 5 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

An example of a script package is shown here. This script package archive file installs a

Java EE EAR file to a WebSphere Application Server cluster.

The file named cbscript.json supplies the parameters that define how the script is run at

deployment time. It contains all the parameters that need to be supplied when you load a

script package into the PureApplication System catalog. When the parameter values are

provided in the cbscript.json file, they are automatically loaded into the user interface,

which avoids data-entry errors. It also makes it easier to move script files from one

PureApplication System to another. Therefore, it is a good practice to include the

cbscript.json file in the package. This file must be in the root of the script package archive.

In this example, the command to be run is wsadmin.sh. This is a command-line

configuration script that is shipped with WebSphere Application Server; therefore the

wsadmin script file is not included in the package. But, you can include your own script file

in the package and specify it as the command to run.

Continuing with the example shown on the slide, the wsadmin script uses the

daytrader_cluster python script file, as specified in the line that begins with

“commandargs”. The EAR file and the other python scripts that are included in the

package are used by the daytrader_cluster python script.

As you can see from the format, the script package is very flexible and allows you to run

any OS or middleware commands.

Page 6 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

In the cbscript.json file, the parameters, which are highlighted on the slide in bold,

correspond to the fields you will see in the user interface for script package definitions.

The “description” field is optional, but recommended, to describe the purpose of the script

package. The “command” field defines the command to be run when the script package is

run. This example script package installs an application into the WebSphere Application

Server instance, by using the wsadmin script. You can also specify the “log” location for

log output. The “location” field tells PureApplication System where to expand the archive

file on the deployed virtual machine. This is important if you need to reference any of the

files included in the archive file, for example in the “commandargs” field. The

“commandargs” field is where you specify the parameters for the command. In this

example, the wsadmin script requires the location of the jython file that it needs to run in

order to perform the application installation. The “timeout” parameter specifies the

maximum amount of time that PureApplication System should wait for this script package

to finish running on the virtual machine. A value of zero means PureApplication System

should wait indefinitely. The last field, “keys”, is where you define additional properties that

are needed by this script. In this example. one of the properties that is needed at

deployment time is the application location. PureApplication System prompts for these

property values during the pattern deployment.

Page 7 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

PureApplication System provides some environment variables that can be used in script

packages. These variables are defined in the /etc/virtualimage.properties file on the

deployed virtual machines. There are two types of variables. The first type is life cycle

variables. These are related to the management of the virtual system. For example, there

might be variables for the locations of the commands for installing services or for starting

and stopping the virtual machine services. The second type of environment variables are

related to a product that is installed on the virtual machine. For example, for WebSphere

Application Server there are variables for the application server installation location, the

profile root location, and the profile, node and cell names.

Page 8 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

This slide shows a small subset of the environment variables that are available for use by

your scripts. The first two are examples of the life cycle variables. The others are some of

the more common ones for WebSphere Application Server deployments. The values are

specific to each deployment. Some values do not change, however, such as the

installation root.

Page 9 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

The values for some properties, such as host name and IP address, are not known before

deployment. A script running on one virtual machine might need the value for one of these

properties for another virtual machine. For example, the script that configures the JDBC

resource for a database needs to know the host name or IP address of the database

virtual machine. PureApplication System allows the script to reference the variables for

other virtual images in the pattern by using the part name.

Each part has a unique name that can be found by clicking the properties icon of the part,

as shown on the slide. The value in the Name field is the part name. For example, the part

name for the deployment manager part is DMGRPart. Referencing a property associated

with that part can be done using the syntax that is shown on the slide. Note that this

syntax does not support the use of the space character in the part name, such as Core

OS.

PureApplication System will substitute the property values before running the script. This

is very useful in a multi-part pattern where many of the properties like host name and IP

address are not known until deployment time.

Page 10 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

Listed here are some pre-defined properties. The network-related properties are host

name, domain, IP address, net mask, and primary and secondary DNS of the deployed

virtual machine. The locale-related properties are the language, country and encoding that

are used in the VM. The middleware-related properties are specific to the middleware that

is installed on the virtual machine. For WebSphere Application Server, some of the

properties are cell name, node name and augment list.

These pre-defined properties allow any script in the pattern get the network, locale and

middleware properties of any deployed virtual machine for a part in a pattern.

Some examples of how to access these properties are shown here.

Page 11 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

Now that you have seen what goes into a script package archive, this next section will

cover adding a script package to the catalog.

Page 12 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

To add a script package to the PureApplication System catalog, in the Workload console,

go to Catalog > Script Packages and click the green plus sign to add a new script

package. You are prompted for the script name. Then the next screen is where you will

provide all the details about the script package. The first thing you should do is upload the

script package using the Browse and Upload buttons.

Page 13 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

Once you push the Upload button, there is an indicator that the package is being

uploaded. You can see this indicator inside the red box with the number one

If the script package contains a cbscript.json file, the rest of the fields are populated with

the values that are specified in that file. If the script package does not contain a

cbscript.json file, you will have to enter values in those fields manually.

Page 14 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

The Environment section corresponds to the ‘keys’ section of your cbscript.json file. This is

where you define any environment variables that to your script package needs at run time.

You can provide a default value for each of the environment variables.

The next field is ‘Working directory’. This is where the script package is extracted and run

on your deployed virtual machine.

’Logging directory’ specifies the location of the logs that are generated by the scripts.

Page 15 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

The ‘Executable’ property specifies the command to run when the script package is run.

The ‘Arguments’ property lists the arguments to be passed to that command. The example

shown here is the wsadmin command. Note that pasting the arguments for the wsadmin

command into the Arguments field often leads to translation problems that cause the

command to run incorrectly. It is best to either put these parameters in a cbscript.json file

or type them here manually.

The ‘Timeout’ property specifies the maximum time that the script should be allowed to

run. If script does not complete in the specified time, then PureApplication System will

treat it as an error and stop execution. A timeout value of 0 indicates that there is no time

limit.

The ‘Executes’ property allows you to specify when the script package is run. The default

value is ‘at virtual system creation’. Other options are ‘at virtual system deletion’ and ‘when

I initiate it’. An example of a script that might run at virtual system deletion is one that

releases resources or locks that the middleware on the virtual machine might have

obtained on external resources. In order for this script to run, the virtual machine must be

running at the time that the virtual system is deleted. If you select ‘when I initiate it’, then

there will be an ‘Execute now’ option in the script package section of the virtual machine.

This option is handy for debugging your scripts. There is no limit on the number of times a

script can be run using ‘Execute now’.

Page 16 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

Any patterns and instance deployments currently in the cloud that include this script

package are listed in these sections. A script package cannot be deleted from the catalog

if it is included in a pattern or instance.

The ‘Access granted to’ section shows the owner of the script package and allows the

owner to give fine-grained read or edit access to other users and groups.

The last field is the comment field, which allows the owner and editors to add comments

for documentation purposes.

Page 17 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

This section describes how to add script packages to a pattern and specify the order in

which they should run.

Page 18 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

Adding a script package to a pattern is a drag-and-drop activity that is done in the pattern

editor. There is a ‘Scripts’ category near the bottom of the palette on the left side of the

screen. Click ‘Scripts’ to see the list of available script packages.

Page 19 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

Drag a script package from the palette and drop it onto the appropriate virtual image part

in the pattern on the right side of the screen. The script package will run on that virtual

image part.

In the example shown on this slide, the ‘Install app’ script package is added to the

deployment manager part.

Page 20 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

In the example shown on this slide, three script packages have been added to the

deployment manager part and one script package has been added to the database server.

All of these script packages run ‘at virtual system creation’. You can use the “Ordering”

option, which is circled at the top of the picture, to specify the order in which these script

run.

Page 21 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

Here are some important notes about script package ordering.

The script packages run after all of the virtual machines are started. You cannot specify

that PureApplication System should run a package script on one part before another part

is started.

The order that the script packages will run is defined in terms of constraints. An example

of a constraint is “script package A runs after script package B”. This is similar to the way

you define the order that parts are started. However, there are no default constraints for

script packages, like there are for parts. There is no restriction that all of the script

packages for one part have to run before any script packages for other parts. There is just

one set of constraints that is used to order all of the script packages in the pattern.

Script package ordering only applies, however, to script packages that were added to the

catalog manually. You cannot specify when the internal scripts run. An example of an

internal script is one that was added using ‘Advanced Options’. The ordering also does

not apply to scripts that are defined to be run ‘at virtual system deletion’ or ‘when I initiate

it’. And finally it does not apply to add-ons. Add-on scripts are always run before any script

packages.

Page 22 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

This slide is a continuation of the example and discusses the default script package order,

which is partially based on the part start-up order. If the part start-up order specifies that

the deployment manager part starts before the database server part, then the default

script package order is as shown on this slide. If, instead, the part start-up order specifies

that the database server part starts before the deployment manager part, then the ‘Create

database’ script is first in this order.

There are currently no constraints defined. You will notice that there is just one number,

the number one, next to the ‘Install app’ script package. This indicates that all of the script

packages are considered to be in the same ‘group’. Since there are no constraints, the

script packages in the group can start in any order.

Page 23 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

You can use drag-and-drop functionality to create constraints that determine the order in

which the script packages are run.

In this example, the server needs to be defined before the application is installed.

Therefore, you need to drag the ‘Create Server’ script package and drop it above the

‘Install app’ script package.

Page 24 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

That creates a script package order constraint, as seen in the top left corner of the picture.

Notice the wording of the constraint. The constraint will ensure that the ‘Install app’ script

package runs after the ‘Create server’ script. This constraint is implemented through the

creation of a new group, indicated by the number two next to the ‘Install app’ script

package. The other script packages remain in group one and can still run in any order.

Page 25 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

Next, the ‘Created datasource” script package is moved after the ‘Create database’ script

package.

Page 26 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

This creates a second constraint that says that ‘Create datasource’ will run after ‘Create

database’. But notice that no new group is created. There is no need for a third group

because the first constraint does not involve either of the parts in the second constraint.

Page 27 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

The next slide describes how script packages are run in deployed patterns.

Page 28 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

The script package is transferred to the hypervisor, along with the virtual image, and

extracted into the working directory that you specified. When it is time for the script

package to run, PureApplication System creates an SSH tunnel into the virtual machine

and logs in as the root user. If you want the commands in your script package to run as a

different user, you should switch to that user inside your script using a command like the

one shown on this slide.

For scripts that return an error, which is indicated by a non-zero return code, the error is

displayed in the console and subsequent scripts in the order are not run.

After all your script packages have run, the logs for them are available on the Virtual

Systems page, under the Virtual Machines section. An example is shown on this slide.

Page 29 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

This section provides a summary and some additional references.

Page 30 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

This presentation covered the complete life cycle of a script package. You were shown

how to create a script package and some of the predefined variables that you can use in

your script packages. You learned how to add the script package to the catalog and

specify whether it should run at virtual system creation, deletion or only when you explicitly

initiate it. You were shown how to include your script package in an existing pattern and

specify the order that the script packages should run. Finally you learned how the script

package runs at pattern deployment time.

Page 31 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt

The samples gallery contains examples that can help you get started creating your own

script packages. The URL is shown on this slide.

Page 32 of 33

IPASv1_VSys_Pattern_ScriptPackages.ppt Page 33 of 33

