
IPASv1_FailoverAndRecoveryScenarios.ppt

This presentation covers failover and recovery scenarios, both from workload and system

perspective.

Page 1 of 25

IPASv1_FailoverAndRecoveryScenarios.ppt

This presentation covers the workload and the system failover and recovery scenarios.

Few examples of high availability are covered along with some discussion on disaster

recovery.

Page 2 of 25

IPASv1_FailoverAndRecoveryScenarios.ppt

This slide covers some basic definition. High availability (HA) is required when applications

cannot undergo an unplanned outage for more than a few seconds or minutes at a time,

but can tolerate those short periods of not being available often, or can be down for a few

hours for scheduled maintenance. This is short of what is defined as Continuous

availability which does not allow or tolerate any outage.

There are 2 scenarios to consider for HA. One is the HA features internal to the rack or

intra-rack. The other is the HA features across rack or inter-rack. The next few slides will

explore some of these scenarios

Disaster recovery is the ability to very quickly reconstruct and start the applications in an

alternate physical site if the primary data center has some catastrophic loss and cannot

continue to run the application for an extended period. It is the process of bringing the

servers and applications in a priority order to support mission critical application at an

alternate site. The alternate site need not be the same physical size as the primary data

center since its role is to quickly get the mission critical application up and running.

This presentation covers the High availability scenarios and some recovery scenarios for

consideration.

Page 3 of 25

IPASv1_FailoverAndRecoveryScenarios.ppt

This section covers the workload failure and recovery scenarios for the different

deployment models in PureApplication™ System.

Page 4 of 25

IPASv1_FailoverAndRecoveryScenarios.ppt

This slide discusses the failover and recover scenario of WebSphere Application Server

running in virtual application deployment model. The basic assumption for WebSphere

applications running in virtual application model is that the application is considered non-

persistent. This means the application can run on any instance of WebSphere and there is

no dependency that the state is locked in a specific instance. This means, in case of a

failure of a WebSphere instance, PureApplication System can provision another

WebSphere instance in another virtual machine.

If a WebSphere Application server fails within a virtual machine, and the VM is still

running, PureApplication System will monitor WebSphere process failures and will restart

WebSphere once a day to prevent spinning of middleware. If scaling is enabled,

PureApplication System will start another instance if SLA is not satisfied. There is no

action needed by the deployer. At some point, the deployer can determine the cause of the

failure using the standard troubleshooting methods. However, if the VM itself fails,

PureApplication System detects VM failure and will re-spin another VM, assigning a new

IP address. If scaling, routing or caching policies are enabled, PureApplication System will

link the instance to the appropriate Shared services. Again, there is no action required by

the deployer. PureApplication System handles the recovery.

Best practice is to have scaling enabled so that PureApplication System can manage the

recovery to satisfy the SLAs required by the application.

Page 5 of 25

IPASv1_FailoverAndRecoveryScenarios.ppt

This slide discusses the failover and recover scenario of WebSphere Application Server

without Intelligent Management Pack, running in virtual system deployment model. Virtual

system WebSphere Application Server failure and recovery is handled by the built-in

capabilities of the middleware and normal troubleshooting and debug practices need to be

followed. PureApplication System does not monitor the WebSphere processes within the

virtual machines in the virtual system deployment model. If WebSphere application server

node in Network Deployment topology goes down, the Node agent will restart WebSphere

node. This is normal WebSphere function. If Node Agent or Deployment Manager fails,

you will have to follow normal WebSphere debug procedures to determine and fix the

failure. The deployer can look at WebSphere log files, log into the VM and restart

WebSphere, debug from within the VM or look at the monitoring data for potential cause of

failures. If the VM running WebSphere fails, PureApplication System detects the VM

failure but there is no VM recovery. Deployer can try to restart the VM from the

PureApplication System workload console, add additional nodes by cloning the deployed

instance, while they debug the root cause of the failure.

Page 6 of 25

IPASv1_FailoverAndRecoveryScenarios.ppt

This slide discusses the failover and recover scenario of WebSphere Application Server
with Intelligent Management Pack, running in virtual system deployment model. Intelligent
Management pack provides dynamic clustering capability from the WebSphere Virtual
Enterprise product. This capability allows WebSphere to provision additional servers to
satisfy SLAs, or when excess capacity is present, remove some servers and still maintain
the SLAs when the load goes down.

Just like the last use case, virtual system WebSphere Application Server with IMP failure
and recovery is handled by the built-in capabilities of the middleware and normal
troubleshooting and debug practices need to be followed. PureApplication System does
not monitor the WebSphere processes within the virtual machines in the virtual system
deployment model.

IMP will restart WebSphere or create additional WebSphere dynamic cluster member, if
SLA is not satisfied, based on the settings.

If static cluster is used in WebSphere with IMP enabled, this use case is the same as
WebSphere with no IMP as described in the last slide.

For deployment manager failure, IMP has the capability to support backup deployment
manager, as long as the shared file system is configured, as explained in the WebSphere
Virtual Enterprise information center.

If the VM running WebSphere fails, PureApplication System detects the VM failure but
there is no VM recovery. For dynamic cluster, if the SLA is not satisfied, IMP will start
additional cluster member. Deployer can try to restart the VM from the PureApplication
System workload console, add additional nodes for static clusters by cloning the deployed
instance, while they debug the root cause of the failure.

Page 7 of 25

IPASv1_FailoverAndRecoveryScenarios.ppt

This slide discusses the failover and recover scenario of DB2 running in virtual application

deployment model.

The virtual machine for Database-as-a-Service or DBaaS as part of DB2 virtual application

deployment is considered persistent. It has data and hence a state. This means, in case of

failure, PureApplication System cannot just spin another database instance. Additionally, in

the current release, DBaaS as part of virtual application is not scalable.

PureApplication System does not monitor DB2 failures. Hence, if there is DB2 failure and

the VM is still running, PureApplication System does not attempt to restart DB2. Deployer

will need to look into DB2 logs to identify failure by getting in the VM by way of SSH and if

needed, restarting DB2.

If the VM containing DB2 fails, PureApplication System detects VM failure and will restart

DB2 VM once at the same IP address, since DB2 is considered persistent. If VM does not

come up after 1 retry, deployer will need to create a new DBaaS instance VM and then

restore DB2 data from Tivoli® Storage Manager backup. Hence for use cases where data

loss cannot be tolerated, periodic backups are essential. Deploy SSH into the VM and

start DB2; restart the VM.

Page 8 of 25

IPASv1_FailoverAndRecoveryScenarios.ppt

This slide discusses the failover and recover scenario of DB2 running in virtual system

deployment model. This is similar to traditional DB2 failure scenarios and handled like

normal DB2 failures. Normal DB2 troubleshooting techniques apply. PureApplication

System does not take any special action.

If the DB2 failed but the VM is still running, PureApplication System does not monitor DB2

failures and hence does not attempt to restart DB2. Clients will need to view the DB2 logs,

log into the DB2 VM to fix or restart DB2. Normal DB2 best practice and recovery process

applies to DB2 running in PureApplication System. PureApplication System contains DB2

Enterprise, and DB2 HADR images. For clients needing HADR capability can use the

primary and secondary DB2 HADR virtual image parts.

If the VM containing DB2 instance failed, PureApplication System detects VM failure, but

there is no restart of VM in virtual system. The client will need to look into logs and

determine the failure and restart the VM or create a new VM. Standard DB2

backup/restore will need to be implemented. DB2 HADR can help here where the

secondary DB2 can take over processing the requests.

Page 9 of 25

IPASv1_FailoverAndRecoveryScenarios.ppt

This slide discusses the failover of caching services used by WebSphere applications

running as part of virtual applications.

Caching shared service is provided through a pool of VMs for scale and redundancy. The

number of VMs depends on scaling policy of caching service which includes auto-scaling

based on the percentage cache in use. Caching shared service uses WebSphere eXtreme

Scale (WXS) which is very robust. Internally, Extreme Scale has its own monitors that

monitors the caching shared services.

If a caching shared service fails within a VM and the VM is still running, PureApplication

System restarts caching service. There is no action needed by the deployer. Caching VM

is considered persistent VM. Hence if a VM fails, PureApplication System detects VM

failure and will restart cache service at the same IP address. There is no action needed by

the deployer. If a primary or replica goes down, it is restored and the cache will be

populated. PureApplication System handles the failures.

Page 10 of 25

IPASv1_FailoverAndRecoveryScenarios.ppt

Proxy service supports scaling. Deployer can specify manual or auto scaling. These set of

proxy servers are typically front ended by external load balancer. PureApplication System

does not monitor Proxy shared service failure. If the proxy shared service instance fails

but the VM is still running, PureApplication System does not restart the proxy service.

However, if you have multiple proxy defined either through auto scaling, additional proxy

servers can start based on SLA. In the meantime, you can troubleshoot the problem and

try to restart the VM. Since the proxy service is considered persistent, if the VM containing

the proxy service fails, PureApplication System detects VM failure and will restart proxy

service at the same IP address.

As a best practice, you can either use fixed IP address for the proxy services VM or have

a separate smaller pool of IP group for proxy service. These set of IP addresses can then

be given to the front end load balancer to spray the requests. One way to achieve this is to

have a separate environment profile just for proxy service and then use that for

deployment of proxy shared services.

Page 11 of 25

IPASv1_FailoverAndRecoveryScenarios.ppt

This slide covers the custom image failover and recovery. Custom image can be created

using IBM Composition and Construction tool or using the PureApplication System extend

and capture function. Details of tool and the extend/capture function is discussed in a

separate presentation.

If you use one of the IBM supplied images for base virtual image as the base image for

creating a custom image, it includes ITM OS agent to monitor the base OS. All failover and

recovery functions will have to be handled by you in the image. PureApplication System

does not monitor, re-spin or re-start the VM or any custom software within the VM.

Page 12 of 25

IPASv1_FailoverAndRecoveryScenarios.ppt

This section covers the system hardware failover and recovery scenarios.

Page 13 of 25

IPASv1_FailoverAndRecoveryScenarios.ppt

PureApplication System has built-in hardware redundancies for failover. Both the

management node and the virtualization node have redundant backup servers that are

continuously kept in sync with each other. PureApplication System has a floating IP

address that is used to access the PureApplication System management functions. If one

of the management nodes goes down, the floating IP address is automatically assigned to

the backup server and thereby requiring no change by the clients to access the

management function.

For the network controllers, there are redundant switches and cabling. Failure of 1 of the

switch leads to reduced bandwidth, however, the rack continues to function.

For the storage controllers, each controller has 2 canisters that can service all the traffic to

the storage. If one of them fails, the other one handles the I/O. For storage, both SSD and

HDD, they are configured in RAID5, plus 1 spare. Hence it tolerates 2 concurrent drive

failures without data loss.

If a compute node fails, PureApplication System will try to move the virtual machine to

another compute node that has free resource to accept the VM. The VM is moved within

the compute nodes belonging to the same cloud group. This is called rebalance or

workload evacuation. If limited resources available on other nodes to handle the extra

load, the virtual machines are started based on their priorities. Appropriate messages and

events will be displayed for virtual machines that can not be moved due to lack of space in

other compute nodes.

Page 14 of 25

IPASv1_FailoverAndRecoveryScenarios.ppt

The next section covers some high availability scenarios.

Page 15 of 25

IPASv1_FailoverAndRecoveryScenarios.ppt

Here, you first consider some of the high availability features inside the single rack. IBM

PureApplication System has built-in high availability features inside the single rack and is

carefully designed to not have a single point of hardware failure within the rack. For

example, a standard golden topology WebSphere and DB2 virtual system deployments

running entirely inside the rack is protected from failure by any one piece of hardware like

Compute Node, storage, TOR switch, etc.

For DB2 HA/DR deployments, if the primary database fails, the secondary DB2 is used to

serve the requests.

As an example, when a compute node goes down, several steps happen. The WebSphere

middleware detects the failure of the JVM and seamlessly routes the traffic to the other

cluster members within the WebSphere cell. PureApplication System will detect the

Compute Node failure and move the WebSphere VM to another Compute Node , which

will eventually then be rejoined back into the cluster by the plug-in and start taking traffic

again. The placement algorithms of PureApplication System are intelligent enough that, in

most cases, it tries very hard never to place two cluster members on a single compute

node if the configuration of the cloud group and the availability of compute resources

within the cloud group allow that. However, intra-rack HA does not help if the entire rack

fails due to some catastrophic conditions in the data center. That is where inter-rack HA

comes into picture. That's where you can again take advantage of standard facilities in

WebSphere, DB2 and middleware to provide this level of high availability as well.

Page 16 of 25

IPASv1_FailoverAndRecoveryScenarios.ppt

Here, you consider some of the high availability features across multiple racks. In this

case, the standard middleware high availability features are used to support high

availability across racks. Many IBM middleware like WebSphere, DB2, and others comes

baked with high availability features that can be exploited in the same way it is done

traditionally, outside PureApplication System.

For example, taking advantage of the built-in HA features in WebSphere Application

Server, one can provide either of the two different failover topologies. For mechanisms,

either, one can create WebSphere node instances in the "second" rack and federate them

to a deployment manager in the "first" rack, or, one can create two separate cells (one per

rack) and manage load distribution between the cells external to the two racks. Some of

these use cases are covered with more detail later in this presentation.

Page 17 of 25

IPASv1_FailoverAndRecoveryScenarios.ppt

In this high availability intra-rack scenario, referred to as the "single cell" model, you begin
by creating a virtual system pattern that defines a WebSphere network deployment cell. It
consists of a Deployment manager, IBM HTTP Server (IHS) nodes, and WebSphere
Application Server nodes in the first rack named Rack A. You then create a second virtual
system pattern on the 2nd rack, named Rack B, that contained only IHS nodes and
WebSphere Application Server nodes. You can specify the Rack A Deployment Manager
on the Custom node cluster of Rack B and then deploy the Virtual System pattern. This
defines the cell boundary as crossing both the racks. You likewise create a virtual system
pattern for the primary DB2 HADR node in Rack A, and a second virtual system pattern for
the secondary DB2 HADR node in Rack B. Note that in order for this to work, you need to
configure an external load balancer to be aware of all of the IHS instances in the two
racks. You also have to consider HTTP session management across the two racks. The
simplest case in this approach is to enable database session persistence to the shared
database.

In this configuration, you are now tolerant of a complete failure of either rack. If Rack A
fails, then the IHS instances and WebSphere Application Server nodes on Rack B
continues to take requests from the external load balancer, and the DB2 HADR secondary
takes over from the failed primary node.

This model also allows you to provide WebSphere maintenance per rack one at a time,
giving you the ability of WebSphere cluster member running at least on 1 rack while the
other is undergoing maintenance.

Page 18 of 25

IPASv1_FailoverAndRecoveryScenarios.ppt

The case of two geographically separated PureApplication System racks is a bit more

complicated. The communication necessary between the DMgr and its cluster members

(for management, code distribution, and so on) is not efficient over a wide area network,

and so it is not recommended federating cells across long distances as a best practice.

Hence the recommendation to create two cells as opposed to joining all the instances into

a single cell as shown in the last example. This is referred to as "dual-cell" model, you

need to create at least two different cells using a shared database, as shown here.

Using HTTP session replication across two cells through the shared database is possible,

but it is rarely done. In most cases, session affinity is configured in the external load

balancer. For example, requests for a session that was started in a particular cell will

always be routed to that cell. If you can tolerate lost session data in cases of a failover,

you can set up a separate local database for session persistence. The external load

balancer is set up to feed traffic to the full set of IBM HTTP Server instances in both cells.

If either rack fails completely, then the other continues to take traffic uninterrupted.

Page 19 of 25

IPASv1_FailoverAndRecoveryScenarios.ppt

The next section discusses some of the disaster recovery steps.

Page 20 of 25

IPASv1_FailoverAndRecoveryScenarios.ppt

While in this release, there is no automatic process to create another rack for disaster

recovery, there are some steps you can take to create another rack that contains critical

applications either ready to run or already running in standby mode that can then used for

disaster recovery. At the core, you continue to use the normal disaster recovery

mechanism and backup the critical databases. The stand-alone DBaaS or DBaaS as part

of Web Application pattern can be backed up using Tivoli Storage Manager. For DB2 VMs

as part of virtual system patterns can use the standard backup mechanism supported by

DB2.

You create the same users and groups and ACLs, cloud configurations in the backup rack.

Or, you can create the minimum set of user/groups, ACLs, cloud configuration in the

backup rack. You then export the critical virtual application and virtual system patterns.

The exported patterns can then be imported to the secondary rack. One can use an

external sprayer to forward the request. When the initial rack is down, the sprayer can

forward the request to the backup system.

Page 21 of 25

IPASv1_FailoverAndRecoveryScenarios.ppt

The next section covers the summary and references.

Page 22 of 25

IPASv1_FailoverAndRecoveryScenarios.ppt

This presentation covered the Workload and System failover use cases from the workload

and System failover, along with some aspects of Disaster Recovery.

Page 23 of 25

IPASv1_FailoverAndRecoveryScenarios.ppt

Listed in this slide are helpful references and resources.

Page 24 of 25

IPASv1_FailoverAndRecoveryScenarios.ppt Page 25 of 25

