

© 2010 IBM Corporation

IBM Tivoli Network Manager IP Edition V3.8

Enhancing discovery with pattern matching

Welcome to the IBM Education Assistant module for Tivoli Network Monitoring IP Edition
Version 3.9. This module is about using pattern matching to enhance discovery data.

enhancing_discovery_with_pattern_matching.ppt Page 1 of 21

Objectives

� After you complete this module, you should be able to:
– Identify the file that is used to run custom discovery stitchers
– Use a simple discovery stitcher to add information to a network discovery using pattern

matching

2 Enhancing discovery with pattern matching © 2010 IBM Corporation

After you complete this module, you should be able to:

Identify the file that is used to run custom discovery stitchers

Use a simple discovery stitcher to add information to a network discovery using
pattern matching

enhancing_discovery_with_pattern_matching.ppt Page 2 of 21

© 2010 IBM Corporation3 Enhancing discovery with pattern matching

Customizing discovery informationCustomizing discovery information

Section

Many IBM Tivoli® Network Manager users want to add business information to the network
entities discovered by the software. This module demonstrates one example of how to
customize discovery information.

enhancing_discovery_with_pattern_matching.ppt Page 3 of 21

© 2010 IBM Corporation 4 Enhancing discovery with pattern matching

Building the scratchTopology

fullTopology.entityByNeighbor

workingEntities.finalEntity

workingEntities.containment

Main Nodes

Local
Neighbors:

Containment

Remote
Neighbors:

Connectivity

scratchTopology.entityByName

master.entityByName

MODEL

DISCO

FinalPhase CreateAndSendTopology

CreateScratchTopology

SendTopologyToModel

The PostScratchProcessing
stitcher enables you to
customize topology data before
it is sent to the MODEL service

In general, there are three principal steps for performing a network discovery.

1.The finders find devices on the network.

2.The agents interrogate devices on the network to determine the types of entities and the
connectivity between them. Each chassis, interface, or logical interface is an entity in the
discovery database.

3.The stitchers populate databases with information about the chassis and interface
entities. They also populate information about the things contained within entities (such as
a card inside of a chassis), and the connectivity between entities.

A FinalPhase stitcher runs to build the final topology. The discovery service (DISCO)
creates a scratch topology. This topology is sent to the MODEL service, and the
master.entityByName table serves as the complete topology record.

The CreateAndSendTopology stitcher is a final phase stitcher that has three main
steps:

1.It builds the entities.

2.It builds the layers or connections between the entities.

3.It calls other stitchers to build a scratch topology and then send that topology to
the MODEL service.

If you want to add custom discovery data, you can modify the PostScratchProcessing
stitcher. This stitcher can modify the scratch topology before it is sent to the MODEL
service. You can create custom modular stitchers to perform specific topology enrichment
tasks and call these stitchers from the PostScratchProcessing stitcher.

enhancing_discovery_with_pattern_matching.ppt Page 4 of 21

© 2010 IBM Corporation5 Enhancing discovery with pattern matching

Using pattern matchingUsing pattern matching

Section

One example of enriching discovery data using a custom stitcher is to derive information
using pattern matching on some field in the discovery data.

enhancing_discovery_with_pattern_matching.ppt Page 5 of 21

Pattern matching

� A customer is using a consistent naming schema:
<DeviceType>-<continent >-<country>-<city>-<numeric>

� Examples:
– r-eu-uk-lon-001 — Router, Europe, United Kingdom, London
– s-na-us-nyc-002 — Switch, North America, USA, New York City
– f-eu-uk-lon-001 — Firewall, Europe, United Kingdom, London
– r-as-ch-bej-003 — Router, Asia, China, Beijing

6 Enhancing discovery with pattern matching © 2010 IBM Corporation

Consider the example of a customer using a consistent naming schema. In the example
shown here, a customer has a naming schema that reveals characteristics about a device.
This naming schema includes the device type, continent, country, and city in which the
device is located. The device name also ends with a numeric field to differentiate it from
the same type of devices at the same location. In this case, you can build a custom
stitcher to extract information from the naming schema.

enhancing_discovery_with_pattern_matching.ppt Page 6 of 21

© 2010 IBM Corporation 7 Enhancing discovery with pattern matching

Solution workflow

When making multiple types of enrichments to discovery data, it is best to use a modular
design. You can put each discovery enrichment methodology into a separate custom
stitcher. This new custom stitcher can be called from the PostScratchProcessing stitcher.
After running the new custom stitcher from the PostScratchProcessing stitcher, you can
view the discovery log file in the $NCHOME/log/precision directory for errors.

enhancing_discovery_with_pattern_matching.ppt Page 7 of 21

© 2010 IBM Corporation8 Enhancing discovery with pattern matching

Creating the custom pattern matchingCreating the custom pattern matching
stitcherstitcher

Section

Begin by creating a custom stitcher. Name the stitcher to indicate its basic function. For
this example, the stitcher is named HostPatternMatching because it will apply pattern
matching to discovered host names.

enhancing_discovery_with_pattern_matching.ppt Page 8 of 21

Initializing variables

� When declaring integer variables, initialize with zero

� When declaring string variables, initialize with NULL
int count=0;

text host = NULL;

text domainPattern = NULL;

9 Enhancing discovery with pattern matching © 2010 IBM Corporation

***In the example of a customer using a consistent naming schema, you can begin by
creating a HostPatternMatching stitcher. In any stitcher that you write, always initialize
integer variables with a value of zero. Initialize all text variables with the value of NULL.
Topology string variables that will be populated by the stitcher should have a default value
set to “unknown.” This way, if a value for an entity cannot be determined, the value will be
shown as “unknown.”

enhancing_discovery_with_pattern_matching.ppt Page 9 of 21

Setting default values to UNKNOWN

ExecuteOQL("UPDATE scratchTopology.entityByName

SET ExtraInfo->m_DeviceType = 'UNKNOWN',

ExtraInfo->m_Continent = 'UNKNOWN',

ExtraInfo->m_Country = 'UNKNOWN',

ExtraInfo->m_City = 'UNKNOWN'

WHERE EntityType=1 OR EntityType=8;");

10 Enhancing discovery with pattern matching © 2010 IBM Corporation

***In this example, the stitcher is used to populate information about device type,
continent, country, and city. This information will be used to create custom network
partition map views. Because the network map only shows chassis entities, only records
for chassis entities need to be modified by the stitcher. An entity type of 1 or 8 refers to a
chassis entity. Only entities with these values will be modified by the custom
HostPatternMatching stitcher.

enhancing_discovery_with_pattern_matching.ppt Page 10 of 21

Populating a RecordList

� Populate a RecordList called NameData with all the chassis node names by using a
RetrieveOQL statement

// get all main nodes with DNS or system names

RecordList NameData = RetrieveOQL("

SELECT EntityName FROM scratchTopology.entityByName

WHERE EntityName LIKE '[a-zA-Z]' and

(EntityType=1 OR EntityType=8);");

11 Enhancing discovery with pattern matching	 © 2010 IBM Corporation

**After initializing variables, the custom HostPatternMatching stitcher must first get a list
of all chassis devices. Chassis devices have an EntityType of 1 or 8. To get this list, use
the RecordList keyword followed by the name of the list you want to create and then a
query language statement to retrieve the data you want. This example also checks the
EntityName to verify that the name contains alphabetic characters. This verification
ensures that entities that have only an IP address for the EntityName will not be
processed by this stitcher.

enhancing_discovery_with_pattern_matching.ppt	 Page 11 of 21

Defining a pattern

� Use the foreach statement to process each record in NameData

� Declare and specify a pattern, such as domainPattern

� Determine the number of records that match the pattern

� Initialize a count to be used for looping through matching records until all records have been
evaluated

12 Enhancing discovery with pattern matching	 © 2010 IBM Corporation

Because this example stitcher uses a name list, the stitcher must process each item in the
list by looping through the list until all records have been evaluated. To do this, the stitcher
uses a foreach statement. The stitcher will then compare each host name in the
RecordList to the pattern that you specify. It returns a number of records in the recordlList
that match the specified pattern. This count is decremented as each record is processed.
After all records have been processed, the stitcher exits the foreach statement.

enhancing_discovery_with_pattern_matching.ppt	 Page 12 of 21

Defining a pattern (continued)

Each set of parentheses becomes a new token ($REGEX1, $REGEX2 . . . $REGEXn)
foreach (NameData){

domainPattern = "^([rsf])-([a-z]+)-([a-z]+)-([a-z]+)-.*";

count = MatchPattern(host, domainPattern); }

– Each set of parentheses is assigned a variable name, $REGEX1, $REGEX2, $REGEX3

– Text in a pattern definition that is not contained within parentheses is not processed

13 Enhancing discovery with pattern matching © 2010 IBM Corporation

In the example shown here, the foreach statement loops through the names in the
NameData record list. The statement evaluates each name in that list against the
specified domainPattern variable. This evaluation establishes a regular expression value
for each set of parentheses in the statement. The first set of parentheses is termed
$REGEX1, the second $REGEX2, the third $REGEX3, and the fourth $REGEX4.

In this example, the hyphen is used to separate the various parts of the host name. The
wildcard at the end of the domainPattern expression tells the stitcher that more
characters will follow the last hyphen. However, because these characters do not appear
inside of a set of parentheses in the definition of the domainPattern variable, they will be
ignored.

The count statement is used here with the MatchPattern keyword to determine how many
records in the record list match the specified pattern.

enhancing_discovery_with_pattern_matching.ppt Page 13 of 21

Looping through records

� The if (count > 0) statement processes all matching records

if (count > 0)
{ ExecuteOQL("UPDATE scratchTopology.entityByName SET

ExtraInfo->m_DeviceType = eval(text, '$REGEX1'),
ExtraInfo->m_Continent = eval(text, '$REGEX2'),
ExtraInfo->m_Country = eval(text, '$REGEX3'),
ExtraInfo->m_City = eval(text, '$REGEX4')
WHERE EntityName = eval(text, '$host');");

} else {Print("DNS name does not match naming convention", host);}}

delete (NameData);

14 Enhancing discovery with pattern matching © 2010 IBM Corporation

The sample code shown here uses an if statement to loop through the record list. This
loop continues until all records have been processed. The query language function
UPDATE modifies records in the scratch topology. Information that you are adding to
discovery is typically added into subfields of the ExtraInfo field in the
master.entityByName database.

This example also illustrates two best practices for custom stitchers. (1) A log message,
using the Print statement, is created for each record that does not match the conditions of
the stitcher code. You can review the log file and determine if any changes are needed to
the stitcher code to properly process discovery data. (2) This code example ends with an
important delete statement. Any time you create a record list, you are creating what a
programmer calls an array. A record list or array must be deleted after it is no longer
needed. This deletion frees up the memory that was used to store that list or array. A
failure to do this results in a memory leak that can eventually cause problems for your
system.

More information about how to create custom discovery stitchers is included in the
workshop or advanced courses for IBM Tivoli Network Manager.

enhancing_discovery_with_pattern_matching.ppt Page 14 of 21

Calling the new stitcher

� Configure the PostScratchProcessing stitcher to run the new stitcher
– Make a domain-specific copy of the PostScratchProcessing file
– Insert the call for the new stitcher before the last two curly braces in

PostScratchProcessing.domainName.stch

StitcherTimeCheck("AddLocationByIP","Beginning HostPatternMatching");

ExecuteStitcher('HostPatternMatching');

StitcherTimeCheck("HostPatternMatching","Beginning AddLookupInformation");

}

}

15 Enhancing discovery with pattern matching © 2010 IBM Corporation

To run the new stitcher automatically during a typical discovery, the stitcher must be called
from the PostScratchProcessing stitcher. Before modifying any installation-supplied IBM
Tivoli Network Manager stitcher, always make a domain-specific copy of the stitcher. Edit
only the domain-specific copy.

Go to the end of the stitcher file. Insert the ExecuteStitcher command to call the new
custom stitcher near the end of the PostScratchProcessing stitcher file, just before the
final two curly braces. You can also add a StitcherTimeCheck statement, which writes to
the discovery log file, showing the completion of the previous stitcher and the beginning of
your custom stitcher. By bracketing the command that runs your stitcher with time check
statements, you can see error messages or messages indicating successful completion of
your stitcher in the discovery log file.

enhancing_discovery_with_pattern_matching.ppt Page 15 of 21

Running the new stitcher

� Run a new discovery

� Alternatively, you can run the CreateAndSendTopology stitcher again manually
ncp_oql -domain domainName -username admin
–password ‘password’ -service Disco -query “insert into
stitchers.actions values (‘CreateAndSendTopology’);”

16 Enhancing discovery with pattern matching © 2010 IBM Corporation

After the PostScratchProcessing stitcher has been modified and saved, you can verify
successful stitcher processing in one of two ways. You can run a new full discovery of the
network. However, if you have recently run another discovery, there is no need to find and
interrogate all network devices again. Instead, you can run a query to restitch the network
topology. Use a query like the example shown here, substituting your domain name and
password. By inserting the value CreateAndSendTopology into the stitchers.actions
table, that stitcher is run if the DISCO process is running.

enhancing_discovery_with_pattern_matching.ppt Page 16 of 21

Verifying successful stitcher processing

� Run a query on the topology data to see the new fields
ncp_oql -domain domainName -username admin -password ‘password'
service MODEL -query "select * from master.entityByName where

EntityType=1;“

17 Enhancing discovery with pattern matching © 2010 IBM Corporation

After running a new discovery or restitching the network discovery, you can verify
successful stitcher processing by running a query to see if the data is correctly populated.
Run a query similar to the example shown here, substituting your correct domain name
and password. This example query limits results to chassis entities because those entities
are the only entities that are modified by the new custom HostPatternMatching stitcher.

enhancing_discovery_with_pattern_matching.ppt Page 17 of 21

Verifying successful stitcher processing (continued)

EntityName='r-eu-pl-waw-001';

Address=['','','10.20.18.148'];

EntityType=1;

IsActive=1;

Status=0;

ExtraInfo={

m_DNSName='r-eu-pl-waw-001';

m_IpAddress='10.20.18.148';

m_BaseName='r-eu-pl-waw-001';

m_AddressSpace=NULL;

m_AccessProtocol=1;

m_Location='Dallas';

m_DeviceType='r';

m_Continent='eu';

m_Country='pl';

m_City='waw';

};

18 Enhancing discovery with pattern matching © 2010 IBM Corporation

The query returns results showing the newly added fields. In the example, you can see the
device type, continent, country, and city information has been added for this chassis entity.
If your query does not return successful results, check the discovery log file for messages
about syntax errors. Correct those errors and rerun the CreateAndSendTopology
stitcher.

enhancing_discovery_with_pattern_matching.ppt Page 18 of 21

Summary

� This module has shown you how to:
–	 Identify the file used to run custom discovery stitchers
–	 Use a simple discovery stitcher to add information to a network discovery using pattern

matching

� For more information about stitcher language constructs, consult chapter 4 of the IBM Tivoli
Network Manager 3.8 Language Reference

19 Enhancing discovery with pattern matching	 © 2010 IBM Corporation

This module has shown you how to:

Identify the file used to run custom discovery stitchers

Use a simple discovery stitcher to add information to a network discovery

For more information about stitcher language constructs, consult chapter 4 of the IBM
Tivoli Network Manager 3.8 Language Reference.

enhancing_discovery_with_pattern_matching.ppt	 Page 19 of 21

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better meet your
needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_enhancing_discovery_with_pattern_matching.ppt

This module is also available in PDF format at: ../enhancing_discovery_with_pattern_matching.pdf

20 Enhancing discovery with pattern matching © 2010 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

enhancing_discovery_with_pattern_matching.ppt Page 20 of 21

 Trademarks, disclaimer, and copyright information

IBM, the IBM logo, ibm.com, and Tivoli are trademarks or registered trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other IBM trademarks is
available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2010. All rights reserved.

21 © 2010 IBM Corporation

enhancing_discovery_with_pattern_matching.ppt Page 21 of 21

