

IBM Software Group

®

IBM Java ™ Native Memory

1: Monitoring and debugging processes

© 2009 IBM Corporation

Updated July 20, 2009

This presentation is the first of three covering the native heap and will cover monitoring the
process address space to see if the heap is filling and how to use the tools to find out what
is using the space and allocating the memory.

You might find it useful to read an overview of process address space for operating
systems before listening to this presentation. You can find such an overview in the IBM
Java Information Center.

1-IntroAndDetermining.ppt Page 1 of 16

IBM Software Group

2

Monitoring and debugging processes © 2009 IBM Corporation

Monitoring and debugging memory

� Introduction to the OutOfMemoryError (OOM) debugging process

� Determining whether the problem is in the native or Java heap

This presentation is a short introduction on how to debug process OutOfMemory (OOM)
errors. OutOfMemory errors can look the same in the Java heap and the native heap, so
you will see how to determine in which section of memory the OutOfMemory error
occurred.

1-IntroAndDetermining.ppt Page 2 of 16

IBM Software Group

3

Monitoring and debugging processes © 2009 IBM Corporation

Overview of OutOfMemory problem determination

Native Heap OutOfMemory

Java Heap OutOfMemory

This flowchart is the overview of the OutOfMemory problem process for Java 5 and Java
6.

You can follow the flow from the OutOfMemory error to the yellow boxes, which are

resolution points.

Starting in top-left with the OutOfMemory error box, which is number 20, you must collect

MustGather. MustGather is an invented word for the collection of files that is useful to IBM

to debug your problem.

If you have a javacore file, it can be used to determine if you ran out of memory on the

Java Heap or the Native Heap.

In Java 5 SR2 and earlier, you could also have run out of class loaders.

If the problem was in the native heap, you drop down into the blue box at the bottom.

If you do not have the Javacore, use the last VerboseGC cycle or process address space

monitoring.

Top half of this diagram is all Java Heap OOM, and the blue at the bottom is Native Heap

OOM error.

It is much the same diagram for 142, which is not covered here.

1-IntroAndDetermining.ppt Page 3 of 16

IBM Software Group

4

Monitoring and debugging processes © 2009 IBM Corporation

Determining the source of the OutOfMemory
error
� Typically, on the policy of elimination:

� If the Java heap is not exhausted, the native heap could be the problem.

� This can be determined from any of three diagnostic files:
� Javadump file

� verbose:gc

� Process memory monitoring

� verbose:gc and process memory monitoring can be used to
identify problems before they occur

You can quite accurately tell if the problem is in the Java heap, so it is a process of
elimination to determine if it is a Native heap problem.

The three files mentioned here can help IBM Support find the root of the problem. The
default file is the javadump file, because the other two must be manually activated. You
should always run verbosegc and process memory monitoring, an overview of which is
provided later in this presentation.

1-IntroAndDetermining.ppt Page 4 of 16

IBM Software Group

5

Monitoring and debugging processes © 2009 IBM Corporation

Javacore analysis from an OutOfMemoryError

This slide shows how to analyze the javacore.

First, look for heap exhaustion or excessive Garbage Collection (GC).

Java 5 introduced a function that monitors time spent in garbage collection and if that
takes too long it throws an OutOfMemory error rather than reduce performance further.

You must look for both heap exhaustion and excessive garbage collection, but they look
the same.

If not heap exhaustion or excessive garbage collection, Java 5 has a limit on class loaders
of 8196, which was an artificial limit. This limit was removed in SR3 because there was
demand for more, but if you are using Java 5 SR2 and earlier you need to be aware of this
limit.

Next, check for recognizable stack trace because any section of code can generate an
OutOfMemory error. It is worth searching to find if the error you see is already known
using a search engine or looking in Tech Notes. If not, assume the problem is in the native
memory.

1-IntroAndDetermining.ppt Page 5 of 16

IBM Software Group

6

Monitoring and debugging processes © 2009 IBM Corporation

Javacore analysis
1- Check “Current Thread Details”:

� Native Method implies allocation to native heap

� Java Method implies allocation to Java heap

2- Check “MEMINFO” subcomponent:
� Heap Space Free and Allocated shows free bytes in hex

� Other sections show VM native memory usages

3- Check “GC History”:
� Garbage Collection (GC) Flight Recorder shows state of garbage collection

To see what an OutOfMemory error looks like in Javacore, look at current thread details.
This is a good indicator of resources being exhausted

Using Meminfo, you can learn whether the Java heap is exhausted, or whether certain
memory pools are large.

The final way is to look in the GC history. Some of this history is tracked, although not all
of it is on by default, which is sent to a javadump. Only 100 records at most will be listed in
the javadump, which is approximately 4 or 5 garbage collection cycles.

1-IntroAndDetermining.ppt Page 6 of 16

IBM Software Group

7

Monitoring and debugging processes © 2009 IBM Corporation

Javacore analysis: current thread details
� Java heap:
Current Thread Details

"main" (TID:0x000C4600, sys_thread_t:0x0003696C, state:R, native ID:0x00000E48)
at java/lang/StringBuffer.ensureCapacityImpl(StringBuffer.java:397)
at java/lang/StringBuffer.append(StringBuffer.java:246)
at memmonster.run(memmonster.java:9)
at memmonster.main(memmonster.java:18)

� Native heap
Current Thread Details

"Worker-4" (TID:0x74D48600, sys_thread_t:0x002A989C, state:R, native ID:0x00000164)
at java/lang/ClassLoader.defineClassImpl(Native Method)
at java/lang/ClassLoader.defineClass(ClassLoader.java:223(Compiled Code))
at internal/baseadapt/DefaultClassLoader.defineClass(DefaultClassLoader.java:161(Compiled
at baseadaptor/loader/ClasspathManager.defineClass(ClasspathManager.java:501(Compiled Code)

..

� Class loaders:
Current Thread Details

"RMI RenewClean-[9.26.49.199:46506]" (TID:0x0000000167D6CA00, sys_thread_t:0x0000000164697208,
at com/ibm/oti/vm/VM.initializeClassLoader(Native Method)
at java/lang/ClassLoader.<init>(ClassLoader.java:114)
at sun/reflect/ClassDefiner$1.run(ClassDefiner.java:60)
at java/security/AccessController.doPrivileged(AccessController.java:191)
at sun/reflect/ClassDefiner.defineClass(ClassDefiner.java:57)

..

Here are some examples of current thread details from the javacore.

There are three different problem types:

The first is Java heap exhaustion. From the red highlighted text, you can see that the
method running is ensureCapacity. Because it is a Java method, then you know that this
allocation is using the Java Heap.

The second is running defineClass and loading a new class. Because that is a native
method, it is allocating on the native heap.

It is a fairly safe assumption that if it is a Java method, it is using the Java heap, and if it is
a native method, it is using the native heap.

The third is the special case for class loaders in the native heap when it has hit the
artificial limit, so that is why you need to search for that stack trace. If nothing turns up, it
will be Java or native heap,

1-IntroAndDetermining.ppt Page 7 of 16

IBM Software Group

8

Monitoring and debugging processes © 2009 IBM Corporation

Javacore analysis: MEMINFO section
0SECTION MEMINFO subcomponent dump routine

NULL =================================

1STHEAPFREE Bytes of Heap Space Free: 16f0c3d0

1STHEAPALLOC Bytes of Heap Space Allocated: 25957c00

NULL

1STSEGTYPE Internal Memory

NULL segment start alloc end type bytes

1STSEGMENT 000000015FE8EED8 000000017DA71C50 000000017DA81C3C 000000017DA81C50 01000040 10000

.. ..

1STSEGTYPE Object Memory

NULL segment start alloc end type bytes

1STSEGMENT 0000000111DF47C8 0700000000000000 0700000025957C00 0700000025957C00 00000009 25957c00

NULL

1STSEGTYPE Class Memory

NULL segment start alloc end type bytes

1STSEGMENT 000000013ACF02A8 00000001609D4090 00000001609D4478 00000001609D5750 00020040 16c0

.. ..

1STSEGTYPE JIT Code Cache

NULL segment start alloc end type bytes

1STSEGMENT 0000000168CFD020 000000018AFC8850 000000018AFC8850 000000018B7C8850 00000068 800000

.. ..

1STSEGTYPE JIT Data Cache

NULL segment start alloc end type bytes

1STSEGMENT 0000000111E77BD8 0000000179300F50 00000001795817F4 0000000179B00F50 00000068 800000

The second way is to look at the MEMINFO section in the Javacore.

The top of the example shows the heap space; how much was freed and allocated.

The numbers are displayed in hex and so you need to translate to decimal and perform a

shift so it is in megabytes rather than bytes. This tells you how much memory was free at

that point in time. If this value is small, you have probably run out of Java heap.

There are also pools of memory that the VM itself uses.

Memory used for JIT Code Cache is byte code that is converted to assembler and stored

for running at higher speed .

JIT Data Cache is also memory stored for that purpose.

Object Memory is the Java heap again and is listed twice, the other place being in the

summary.

1-IntroAndDetermining.ppt Page 8 of 16

IBM Software Group

9

Monitoring and debugging processes © 2009 IBM Corporation

Javacore analysis: MEMINFO section

� Heap free/allocated
� 385 MB free from a 630 MB heap

� Virtual Machine memory segments
� Internal Memory: other usage (thread structs, and so on.)

� Object Memory: the Java heap

� Class Memory: off Java heap class memory

� JIT Code Cache: JIT compiled code

� JIT Data Cache: JIT data

This slide gives you the details of the discussion on the last slide.

If 385 MB is free, you can assume that you have not run out of Java heap.

Next is a list of the sections on the previous slide and what they mean.

1-IntroAndDetermining.ppt Page 9 of 16

IBM Software Group

10

Monitoring and debugging processes © 2009 IBM Corporation

Javacore analysis: garbage collection history
GC History

17:32:08:745434927 GMT j9mm.81 J9AllocateIndexableObject() returning NULL! 100016 bytes requested for
object of class 10E94108
17:32:08:745387931 GMT j9mm.53 - GlobalGC end: workstackoverflow=0 overflowcount=0 weakrefs=88 soft=0
phantom=0 finalizers=22 newspace=0/0 oldspace=26576/268435456 loa=0/0
17:32:08:745368743 GMT j9mm.61 Class unloading end
17:32:08:745352892 GMT j9mm.60 Class unloading start
17:32:08:745342046 GMT j9mm.59 Compact end
17:32:08:499160734 GMT j9mm.58 Compact start
17:32:08:499155728 GMT j9mm.57 Sweep end
17:32:08:495968298 GMT j9mm.56 Sweep start
17:32:08:495963014 GMT j9mm.55 Mark end
17:32:08:484417686 GMT j9mm.54 Mark start
17:32:08:484404060 GMT j9mm.52 - GlobalGC start: weakrefs=88 soft=5 phantom=0 finalizers=22
globalcount=15 scavengecount=0
17:32:08:484373470 GMT j9mm.53 - GlobalGC end: workstackoverflow=0 overflowcount=0 weakrefs=88 soft=5
phantom=0 finalizers=22 newspace=0/0 oldspace=15144/268435456 loa=0/0
17:32:08:484350945 GMT j9mm.59 Compact end
17:32:08:475764182 GMT j9mm.58 Compact start
17:32:08:475759176 GMT j9mm.57 Sweep end
17:32:08:471208843 GMT j9mm.56 Sweep start
17:32:08:471203559 GMT j9mm.55 Mark end
17:32:08:456559232 GMT j9mm.54 Mark start
17:32:08:456543937 GMT j9mm.52 - GlobalGC start: weakrefs=88 soft=5 phantom=0 finalizers=22
globalcount=14 scavengecount=0

The third way to be considered is the garbage collection history, which contains a lot of the
same data as in verbosegc, but in a different format.

On the left are microsecond-accurate time stamps, so you know exactly when the events
occurred. You can calculate the duration of the event using the start and end time stamps.

The important section to look at to determine if you ran out of Java heap is the text
highlighted in red at the top.

In this case, you see J9allocateindexableobject returned null. This means that the
J9allocateindexableobject function was used to allocate an object on the Java heap and,
because it failed, null was returned. The object it was trying to allocate was 100,000 bytes,
so 100 KB, and it was requested for an object of class 10E94108.

To find out which class this is referring to, you must look in the javadump because all
loaded classes are at the end of the javadump file along with the class name. The class
number displayed is the address where it was loaded to in memory.

1-IntroAndDetermining.ppt Page 10 of 16

IBM Software Group

11

Monitoring and debugging processes © 2009 IBM Corporation

Javacore analysis: garbage collection history
GC History
18:41:16:388207799 GMT j9mm.101 - J9AllocateIndexableObject() returning NULL! 1048592 bytes requested for

object of class 00164790 from memory space '' id=00000000
18:41:16:388047632 GMT j9mm.84 - Forcing J9AllocateIndexableObject() to fail due to excessive GC
18:41:16:387446239 GMT j9mm.82 - Excessive GC raised!
18:41:16:387414206 GMT j9mm.53 - GlobalGC end: workstackoverflow=0 overflowcount=0 weakrefs=2 soft=0

phantom=0 finalizers=20 newspace=0/0 oldspace=1737904/268435456 loa=0/0
18:41:16:387120612 GMT j9mm.59 - Compact end
18:41:16:360574373 GMT j9mm.58 - Compact start
18:41:16:360562674 GMT j9mm.57 - Sweep end
18:41:16:356781894 GMT j9mm.56 - Sweep start
18:41:16:356677437 GMT j9mm.55 - Mark end
18:41:16:352318662 GMT j9mm.54 - Mark start
18:41:16:352301392 GMT j9mm.52 - GlobalGC start: weakrefs=2 soft=0 phantom=0 finalizers=20

globalcount=99 scavengecount=0

The output here is the same as on the previous slide, but the second highlighted red line
shows the text “forcing J9allocateindexableobject to fail”, so the JVM decided that too
much time had been spent in the garbage collection cycle and that it was in a state of
“excessive GC”, which forced the next allocation to fail.

These are the three ways that you can use to decide whether the failure was Java heap or
Native heap, and you should confirm this by looking at other areas to check your decision.

1-IntroAndDetermining.ppt Page 11 of 16

IBM Software Group

12

Monitoring and debugging processes © 2009 IBM Corporation

Verbose GC

�Activated using command-line options:
�-verbose:gc
�-Xverbosegclog:[DIR_PATH][FILE_NAME],X,Y

where:
[DIR_PATH] is the directory where the file should be written
[FILE_NAME] is the name of the file to write the logging to
X is the number of files
Y is the number of GC cycles a file should contain

� For OutOfMemoryErrors, look at the last
verbose GC entry.

�However, monitoring -verbose:gc helps you to
see where memory leaks might occur.

Sometimes a javadump is not generated, and, in this case, verbosegc can tell you if you
ran out of Java heap and process memory monitoring can tell you if ran out of native heap.
It is sensible to make sure you check your decision with more data to ensure that you are
looking at right area.

Verbosegc can be activated with –verbose:gc on the command line. The output is sent to
the native standard error log by default, but you can specify a file to send it to using the –
Xverbosegclog option.

If you turn on –Xverbosegclog without turning on –verbose:gc, -Xverbosegclog forces –
verbosegc to be enabled.

The parameters X and Y are the number of files and number of cycles, so you can have a
circular buffer of files to ensure that you keep the data about the most recent cycles. If you
are logging to file, some messages will still go to the standard error file, mainly data about
verbose:gc itself.

Be aware of these performance overheads:

A test was done at IBM to check overheads of verbose:GC. GC cycles were set up to last
100ms, which is a reasonable time but not a long time. The overhead was found to add
about 3% to the duration of a GC cycle. If 100ms happens every 3 - 4 seconds, then 3% of
3% will represent a very small number. If GC cycles are minutes apart, the extra few
milliseconds it is costing you to run –verbose:gc is negligible. The advantage of being able
to resolve performance problems and OOM problems outweighs the overhead. It is good
practice to log to a file so that you can restrict the file size as needed.

1-IntroAndDetermining.ppt Page 12 of 16

IBM Software Group

13

Monitoring and debugging processes © 2009 IBM Corporation

- Verbose:gc analysis

� Can determine native or Java heap exhaustion from the
last GC cycle:

<af type="tenured" id="11" timestamp="Sun Jul 31 19:03:16 2005" intervalms="47.826">
<minimum requested_bytes="5242896" />
<time exclusiveaccessms="44.526" />
<nursery freebytes="655360" totalbytes="786432" percent="83" />
<tenured freebytes="4304552" totalbytes="267386880" percent="1" />
<gc type="global" id="12" totalid="73" intervalms="47.904">

<compaction movecount="11571" movebytes="16320456" reason="compact to meet allocation"
/>
<refs_cleared soft="0" weak="0" phantom="0" />
<finalization objectsqueued="0" />
<timesms mark="17.205" sweep="10.251" compact="52.208" total="79.717" />
<nursery freebytes="785168" totalbytes="786432" percent="99" />
<tenured freebytes="4435600" totalbytes="267386880" percent="1" />

</gc>
<gc type="global" id="13" totalid="74" intervalms="0.030">

<compaction movecount="12133" movebytes="262762572" reason="compact to meet
allocation" />
<refs_cleared soft="0" weak="0" phantom="0" />
<finalization objectsqueued="0" />
<timesms mark="21.701" sweep="9.644" compact="590.093" total="621.504" />
<nursery freebytes="785168" totalbytes="786432" percent="99" />
<tenured freebytes="4435616" totalbytes="267386880" percent="1" />

</gc>
<tenured freebytes="4435616" totalbytes="267386880" percent="1" />
<time totalms="745.990" />

</af>

Java 5 and Java 6 use verbose:gc analysis. To see if the heap was exhausted since the
last gc cycle, see the text highlighted in red.

The first red section of text, requested_bytes, is the size of object that it is trying to
allocate.

The two values in red at the end, beginning with freebytes, are the amount of free space
after the gc, and then the amount of free space after allocation.

If the requested size in bytes is bigger than the first freebytes value, not enough resources
were freed up to do request.

If the two values at the bottom are different, the object was allocated after the gc cycle. If
the values are the same, the allocation failed.

1-IntroAndDetermining.ppt Page 13 of 16

IBM Software Group

14

Monitoring and debugging processes © 2009 IBM Corporation

Verbose:gc analysis

� If the requested_bytes > freebytes value for the tenured heap after
the GC cycle is complete, the Java heap is exhausted:
<minimum requested_bytes="5242896" />

<tenured freebytes="4435616" totalbytes="267386880" percent="1" />

� If requested_bytes < freebytes value, the Java heap is not
exhausted.

This slide gives you the details of the discussion on the last slide.

That is the end of the introduction about debugging OutOfMemory errors. The next
presentation in this series is about monitoring the memory usage to look for OutOfMemory
exceptions in the native heap.

1-IntroAndDetermining.ppt Page 14 of 16

IBM Software Group

15

Monitoring and debugging processes © 2009 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_1-IntroAndDetermining.ppt

This module is also available in PDF format at: ../1-IntroAndDetermining.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

1-IntroAndDetermining.ppt Page 15 of 16

IBM Software Group

16

Monitoring and debugging processes © 2009 IBM Corporation

Trademarks, copyrights, and disclaimers
IBM, the IBM logo, ibm.com, and the following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

Current

If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of other IBM
trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Java, JVM, and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any statements regarding IBM's future direction
and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or services does not imply
that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program Product in this
document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be
used instead.

THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products
are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License
Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other claims related
to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2009. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

1-IntroAndDetermining.ppt Page 16 of 16

