

IBM Software Group

®

IBM Java Native Memory

3: Profiling native memory usage

© 2009 IBM Corporation

Updated July 20, 2009

This is the third of three presentations on troubleshooting Java™ memory issues.

3-ProfilingNativeMemoryUsage.ppt Page 1 of 18

IBM Software Group

2

Profiling native memory usage © 2009 IBM Corporation

Profiling native heap exhaustion

�How to profile a native heap out-of-memory error

This presentation covers how to find the cause of an OutOfMemory error having
determined that it is a problem with the native heap.

3-ProfilingNativeMemoryUsage.ppt Page 2 of 18

IBM Software Group

3

Profiling native memory usage © 2009 IBM Corporation

Native heap exhaustion

�Causes of native heap exhaustion:
�Footprint:

� Native heap space = Process address space – Java heap

� If the Java heap is too large, the native heap is limited

�Java heap leak:
� Objects on the Java heap could have backing resources on the native heap

� Small leak of objects of the Java heap could manifest itself as large native
heap increase

�“Standard” memory leak:
� Memory is malloc() allocated with no corresponding free()

There are three main causes of native heap exhaustion.

You need to consider if it could be a footprint issue, which is when the native memory
required is just bigger than is available. If this is the case, you have two options – either
make the Java heap smaller so more space is available for the Native Heap, or, if you
cannot make either smaller, you must remove data or move to 64-bit. If you move to 64
bit, there are more performance considerations and you will use more memory.

The second cause is the case of “iceberg objects” such as a Java heap leak. A Java heap
leak from iceberg objects is when you have small leaking objects on the Java heap with
links to resources on the native heap which could cause the native heap to run out of
memory.

Finally, it could be a standard memory leak where malloc is called but, through coding
error, there is no corresponding free. It is the same as on a Java heap where you are
putting objects in collections and never taking them out.

3-ProfilingNativeMemoryUsage.ppt Page 3 of 18

IBM Software Group

4

Profiling native memory usage © 2009 IBM Corporation

JVM native heap analysis: Java 1.4.2

�Use of dbgmalloc trace option

� Traces calls to malloc() and free()

�Matches allocations without free, including
backtrace

If you have had an OutOfMemory problem and you know it is native heap, how do you
track where it is coming from?

The JVM gives you limited capabilities because it knows only what the JVM is doing. The
JVM cannot know about native code or JNI code.

Monitoring the JVM can save some performance overhead because of its restricted
information, so you might want to check the in-built data first.

To do this in Java 1.4.2, you have the dbgmalloc trace option which traces every malloc
and free made by the JVM itself and matches allocations and frees. This means that the
JVM can identify every allocation that never gets free.

The output includes backtrace, so you can tell which part of the code was requesting it.

3-ProfilingNativeMemoryUsage.ppt Page 4 of 18

IBM Software Group

5

Profiling native memory usage © 2009 IBM Corporation

Backtrace

�Gives a native stack trace for a tracepoint

�Can be triggered on any tracepoint

�Uses existing javacore code

�Not available on Windows® or Linux® IA64

Backtrace can produce native stack trace for any tracepoint (not just malloc and free) and
shows you the last 4 to 6 frames, or however many you request, that got to that point in C
code. This does not work for Java methods, but when running JNI code, the first C
function has same name as the Java method that called it.

3-ProfilingNativeMemoryUsage.ppt Page 5 of 18

IBM Software Group

6

Profiling native memory usage © 2009 IBM Corporation

Calling Backtrace

Called from command line or properties file.
For example:
-Dibm.dg.trc.print=backtrace,hpi

-Dibm.dg.trc.maximal=backtrace,8,tpid(12345)

Example output:
13:21:32.432 0x81ad608 0200A0 > sysMonitorExit(), tid = 0x81ad7e0, mid = 0x8074018
13:21:32.433 0x81ad608 0002C1 - Backtrace:

0x403cdcdb sysMonitorExit /java/jre/bin/libhpi.so
0x4033cb0b xmIsThreadInterrupted

/java/jre/bin/classic/libjvm.so
0x4033ba22 xmSetAsyncEventBehavior

/java/jre/bin/classic/libjvm.so
0x4033bfe5 xmThreadFree /java/jre/bin/classic/libjvm.so

You can call Backtrace using the –Didm.dg.trc option, which is a standard prefix for trace
at Java 1.4.2.

If using the Print option to go to the standarderror file, use the backtrace keyword. This will
start doing Backtrace for any keyword that you specify.

To do this for memory, you use the backtrace,dbgmalloc command.

The output format is shown on this slide. In this case, it traces sysmonitorexit. When it left
a lock, the thread was freed.

3-ProfilingNativeMemoryUsage.ppt Page 6 of 18

IBM Software Group

7

Profiling native memory usage © 2009 IBM Corporation

JVM Native Heap analysis: Java 5.0 and 6.0

�Using –memorycheck with the callsite option:
�-memorycheck:callsite=1000.

�Causes the program to print the callsite information every
n number of allocations.

�Frees are not factored into this.
�This option is available only in 5.0 or higher VMs.

�Note: Memorycheck knows about the VMs
allocations only; allocations from JNI code are not
covered.

� If process address space increase is not accounted
for, the problem is outside the JVM:
�Use operating system based tools to profile all the

allocations.

For Java 5 and Java 6, you can use the –memorycheck option to do the same sort of trace
using the callsite option. It tracks every allocation and free to produce a report for a piece
of code and checks if you have allocated memory that has not been subsequently freed.

When using the callsite option, the number parameter controls how often the report gets
printed and it will report after a chosen number of allocations.1000 is reasonable for some
applications, but you might need 100,000 for larger applications.

3-ProfilingNativeMemoryUsage.ppt Page 7 of 18

IBM Software Group

8

Profiling native memory usage © 2009 IBM Corporation

Memorycheck output

the sourcefile:linenumber (or assembly function name) of the callsite callsite

num is the allocation ID of the largest allocation in bytes for this callsite largest (bytes/num)

The highest memory consumption by this callsite highwater (blocks/bytes)

The freed information for a particular callsite since the last printout delta free (blocks/bytes)

The allocation information for a particular callsite since the last printout delta alloc (blocks/bytes)

The total of freed information for a particular callsite total freed (block/bytes)

The total allocations for a particular callsite. total alloc (blocks/bytes)

total alloc | total freed | delta alloc | delta freed | high water | largest
blocks| bytes | blocks| bytes | blocks| bytes | blocks| bytes | blocks| bytes | bytes | num | callsite

1 32 0 0 0 0 0 0 1 32 32 1 FinalizerSupport:584
1 65560 0 0 0 0 0 0 1 65560 65560 1 FinalizeListManager:87
3 768 0 0 0 0 0 0 3 768 256 1 allocateClassLoader
3 134 0 0 0 0 0 0 3 134 49 2 classLoaderRegLibrary
4 65104 2 32320 0 0 0 0 3 51560 28088 4 hashtable.c:595
8 10280 2 5856 0 0 0 0 8 10280 4684 4 hashtable.c:159

156 274405 71 4165 4 142 58 1912 139 272010 8232 26 tracewrappers.c:786
9 1680 9 1680 0 0 0 0 3 560 512 3 loadLibraryWithPath
2 30 2 30 0 0 0 0 2 30 17 2 trcengine.c:821
1 4608 0 0 0 0 0 0 1 4608 4608 1 bcverify.c:570
5 20480 5 20480 0 0 0 0 1 4096 4096 1 bcverify.c:2830
1 28 0 0 0 0 0 0 1 28 28 1 MultiCodeCache.cpp:86

3 36 1 12 1 12 0 0 2 24 12 1
MultiCodeCache.cpp:1992

1 4096 0 0 0 0 0 0 1 4096 4096 1 MultiCodeCache.cpp:2262
15 3780 2 914 0 0 0 0 13 3450 1112 3 vmprops.c:359
164 7902132 157 7851956 39 2969472 92 5047644 65 2735816 106264 140 vmthread.c:605
4 68 4 68 0 0 0 0 1 17 17 1 trcengine.c:1007
1 256 1 256 0 0 0 0 1 256 256 1 trcengine.c:576
1 1940 1 1940 0 0 0 0 1 1940 1940 1 trcengine.c:508
1 1940 1 1940 0 0 0 0 1 1940 1940 1 trcengine.c:577
17 4352 17 4352 0 0 0 0 1 256 256 1 zipsup.c:518
140 571200 0 0 0 0 0 0 140 571200 4080 1 zipcache.c:435
379 24256000 379 24256000 11 704000 11 704000 1 64000 64000 1 zipsup.c:1858
17 542514 17 542514 0 0 0 0 1 65536 65536 2 zipsup.c:525
1 94 1 94 0 0 0 0 1 94 94 1 zipsup.c:828

Here is sample memorycheck output.

On the far right is callsite – in Java 5 and Java 6 this tells you file and line in the file which
did the allocation.

The interesting values are those for Total Alloc Bytes, Total Freed Bytes and High Water
Bytes.

High Water is the largest amount of memory allocated for this particular callsite. If this
value is growing over time, that pool of memory is growing over time.

If the High Water value matches Total Alloc, you know you have never freed anything,
which is a memory leak

If you are freeing data in the memory pool and it is growing over time, this could be
legitimately growing to a larger size, but the cap for it could be bigger than you can allow,
which might be a footprint issue.

This could mean that the code which should be freeing it cannot free the memory fast
enough.

To summarize, if the High Water value is growing over time, the collection is getting
bigger. If you are not freeing anything at all, it is a memory leak. And if you are not freeing
enough, you need to find out why; and that could be a footprint issue.

3-ProfilingNativeMemoryUsage.ppt Page 8 of 18

IBM Software Group

9

Profiling native memory usage © 2009 IBM Corporation

OS-based native heap analysis

� The operating system based tools can profile all
allocations:
�Gives a more complete picture

�Results in reduced performance

� The quality and the method that tools use vary
between operating systems

The content in the VM can be deployed quickly because it is already built, but it does not
measure anything. This is both an advantage and disadvantage. It is an advantage
because there is less performance overhead, and a disadvantage because it could not find
a problem at all because the problem is outside the VM code.

There are many ways of profiling all allocations, and this is mainly based on the operating
system tools because it is the operating system doing the allocations. The quality of tools
and method varies between platform.

3-ProfilingNativeMemoryUsage.ppt Page 9 of 18

Activate tracing of the malloc subsystem

Where the options have the following meanings:

Report outstanding allocations with the specified stack depth, in this case 3 stack_depth

trace

output

report_allocations

IBM Software Group

10

Profiling native memory usage © 2009 IBM Corporation

AIX: MALLOCDEBUG trace
� AIX® provides a debug extension directly into the malloc subsystem:

� Activates trace points in the allocation routines themselves
� Records allocations that are not subsequently freed

� Activated using the following environment variable:
� MALLOCDEBUG=[trace,output:malloc.out,report_allocations,verbose,st

ack_depth:3]

�

� Notes:
1. The stack depth of 3 provides only a limited stack trace. However, the use of larger

numbers with a Java application might lead to crashes because the debug malloc facility
does not understand the stack frames used for JIT-compiled code.

2. Some of these options are available only in AIX 5.3

Report outstanding allocations when the application stops

Specify tracing to a log file, in this case malloc.out

An AIX equivalent tool is mallocdebug trace.

This is an in-built debug extension in the malloc subsystem of the operating system.

Inside malloc and free routines there are tracepoints that record any allocation not
subsequently freed and the stacktrace for that allocation.

You can activate it using an environment variable. For Java, it is trace,output:[File name to
trace to],report_allocations (which generates the allocation) ,verbose (gives you more
information and recommended to use it), stack_depth:3 (how much trace back that you
want. In this case for Java got to set it to three because traceback in mallocdebug does
not understand Java methods, so when the debug tool leaves C code and reach Java
method it does not just not print them – it crashes, prevented by setting to three and
means data you get often is not that good).

The table shows the meanings of the parameters in this command.

Some features are available only for AIX 5.3, such as the ability to send the result to a file
before that it gets dumped to standard error. A restriction is that the tool writes only when
the application finishes, so you either need to exit the application or kill it to get the data.
The command is available on all AIX levels that are currently supported, but it is better at
5.3.

3-ProfilingNativeMemoryUsage.ppt Page 10 of 18

IBM Software Group

11

Profiling native memory usage © 2009 IBM Corporation

MALLOCDEBUG output
Allocation #1111: 0x3174BC68

Allocation size: 0x400
Allocation traceback:
0xD02F4370 malloc
0x31791258 Java_com_ibm_jtc_demos_LeakyJNIApp_nativeMethod
0x301A477C ??

Allocation #1112: 0x3174C078
Allocation size: 0x400
Allocation traceback:
0xD02F4370 malloc
0x31791258 Java_com_ibm_jtc_demos_LeakyJNIApp_nativeMethod
0x301A477C ??

Allocation #1113: 0x3174C488
Allocation size: 0x400
Allocation traceback:
0xD02F4370 malloc
0x31791258 Java_com_ibm_jtc_demos_LeakyJNIApp_nativeMethod
0x301A477C ??

� The JVM makes a number of allocations that are never freed:
�The memory is required for the lifetime of the process, so process close down

is used to release the memory
�Ignoring the first 1000 entries will remove most of these entries

� Ability to combine allocations with the same stack trace not currently
provided:
�You can download a script to group all the same allocations together from

Developer Works:
http://www.ibm.com/developerworks/aix/library/au-mallocdebug.html?ca=dgr-lnxw82MALLOCDEBUG

Here is the sample mallocdebug output.

It lists every outstanding allocation at the end, showing the location it was allocated, the
size of it, and the traceback.

The JVM makes large numbers of allocations that it will never free, because those
allocations will be used for the entirety of the process. The operating system automatically
releases all the memory that has not been freed when the program exits anyway.

It is normal to see about a thousand entries from the JVM, so you can ignore anything with
an allocation number under 1000. The later ones will be more relevant for diagnosing the
leak.

The command currently lists all the individual allocations, even if they are the same.

The link at the bottom of the slide is to an article on Developer Works which contains a
script that groups all the same allocations to give you the total size of the address.

Because the functionality is built into malloc, the profiling overhead is lower compared to
other tools.

3-ProfilingNativeMemoryUsage.ppt Page 11 of 18

IBM Software Group

12

Profiling native memory usage © 2009 IBM Corporation

Linux: Valgrind

� There are several memory profilers available for the Linux
operating system.

� These fall roughly into four categories:
�Pre-processor level
�Linker level
�Runtime-linker level
�Emulator-based

� Valgrind is an emulator-based tool:
�Straightforward and easy-to-use
�Provides a full stack trace for code paths that are leaking memory
�Performance overhead is high (can be 10x)

� Example use:
valgrind --trace-children=yes --leak-check=full java -Djava.library.path=.

com.ibm.jtc.demos.LeakyJNIApp 10

For Linux, there are many profilers available, which fall roughly into four categories. Some
are at pre-processor level, so you must compile them in. Others are at link-time level, so
you need to re-link your library, which means you need access to the source and object
files.

The runtime-linker level tools link at runtime and do not require a recompile, but do need to
use lD preload. Others are emulator based.

Valgrind is straightforward to use and user friendly, but has a higher overhead. It is good
for running on a test system if you can reduce load, but can result in up to 10x
performance reduction. Because it is an emulator, you run Valgrind and then Valgrind runs
your application on top of it.

An example is at the bottom. Children=yes means that if your process forms a child
process it will follow that as well, which is the way Java starts. The launcher starts another
process so children=yes must be on. You must also do full checking using check=full and
then add the command line that you are running, in this case:
com.ibm.jtc.demos.LeakyJNIApp.

3-ProfilingNativeMemoryUsage.ppt Page 12 of 18

IBM Software Group

13

Profiling native memory usage © 2009 IBM Corporation

Valgrind output
==20494== 65,536 (63,488 direct, 2,048 indirect) bytes in 62 blocks are definitely
lost in loss record 42 of 45
==20494== at 0x4024AB8: malloc (vg_replace_malloc.c:207)
==20494== by 0x460E49D: Java_com_ibm_jtc_demos_LeakyJNIApp_nativeMethod (in

/libleakyjni.so)
==20494== by 0x535CF56: ???
==20494== by 0x46423CB: gpProtectedRunCallInMethod (in /usr/jre/bin/libj9vm23.so)
==20494== by 0x46441CF: signalProtectAndRunGlue (in /usr/jre/bin/libj9vm23.so)
==20494== by 0x467E0D1: j9sig_protect (in /usr/jre/bin/libj9prt23.so)
==20494== by 0x46425FD: gpProtectAndRun (in /usr/jre/bin/libj9vm23.so)
==20494== by 0x4642A33: gpCheckCallin (in /usr/jre/bin/libj9vm23.so)
==20494== by 0x464184C: callStaticVoidMethod (in /usr/jre/bin/libj9vm23.so)
==20494== by 0x80499D3: main (in /usr/jre/bin/java)
==20494==
==20494== LEAK SUMMARY:
==20494== definitely lost: 63,957 bytes in 69 blocks.
==20494== indirectly lost: 2,168 bytes in 12 blocks.
==20494== possibly lost: 8,600 bytes in 11 blocks.
==20494== still reachable: 5,156,340 bytes in 980 blocks.
==20494== suppressed: 0 bytes in 0 blocks.
==20494== Reachable blocks (those to which a pointer was found) are not shown.
==20494== To see them, rerun with: --leak-check=full --show-reachable=yes

� The second line of the stack shows that the
memory was leaked by:
�com.ibm.jtc.demos.LeakyJNIApp.nativeMethod() method

The output this tool provides is quite good. In this example, 69 blocks have definitely been
lost. Because you have allocated memory but no longer have a reference to a pointer for
it, you have no way of deleting it so you can definitively identify memory leaks.

It also identifies sections where it thinks memory can be lost; for example when a pointer
might still be around but does not think you will use it. In this case, the value for definitely
lost was 63,957, possibly lost was 8,600, and so on.

At the bottom, you can see it has condensed similar stack traces together and displays the
totals.

The line in red has identified the LeakyJNIApp_nativeMethod function, and you might
remember that JNI methods in the first frame match the name for the Java method, so you
can locate the LeakyJNIApp Java method with that function (nativemethod).

3-ProfilingNativeMemoryUsage.ppt Page 13 of 18

IBM Software Group

14

Profiling native memory usage © 2009 IBM Corporation

Windows: UMDH

�Microsoft provides the UMDH (User-Mode Dump
Heap) tool for debugging native memory growth:
�Records which code path allocated a particular area of

memory
�Provides a way to locate sections of code that allocate

memory that is not freed later
�Usage of UMDH:
�UMDH command takes a snapshot of the current native

heap
� Together with native stack traces of the code paths that allocated memory

�Second snapshot is taken and stack traces for
outstanding memory is produced

�Detailed documentation on Microsoft Web site:
� http://support.microsoft.com/kb/268343

Finally, consider Windows and the tool called UMDH (User-Mode Dump Heap tool), which
is also a useful tool. After you start it, you do not have to run the entire application,
because it tracks where memory is allocated and annotates this with where it was
allocated from, no matter when it is started.

UMDH takes a snapshot of the heap, then takes a second snapshot and runs UMDH as a
difference tool.

3-ProfilingNativeMemoryUsage.ppt Page 14 of 18

IBM Software Group

15

Profiling native memory usage © 2009 IBM Corporation

UMDH output
� UMDH produces a difference file containing the following:
// _NT_SYMBOL_PATH set by default to C:\WINDOWS\symbols
//
// Each log entry has the following syntax:
//
// + BYTES_DELTA (NEW_BYTES - OLD_BYTES) NEW_COUNT allocs BackTrace TRACEID
// + COUNT_DELTA (NEW_COUNT - OLD_COUNT) BackTrace TRACEID allocations
// ... stack trace ...
//
// where:
//
// BYTES_DELTA - increase in bytes between before and after log
// NEW_BYTES - bytes in after log
// OLD_BYTES - bytes in before log
// COUNT_DELTA - increase in allocations between before and after log
// NEW_COUNT - number of allocations in after log
// OLD_COUNT - number of allocations in before log
// TRACEID - decimal index of the stack trace in the trace database
// (can be used to search for allocation instances in the original
// UMDH logs).
//
+ 412192 (1031943 - 619751) 963 allocs BackTrace00468

Total increase == 412192

� Looking in one of the snapshots for BackTrace00468 gives:
000000AD bytes in 0x1 allocations (@ 0x00000031 + 0x0000001F) by: BackTrace00468

ntdll!RtlpNtMakeTemporaryKey+000074D0
ntdll!RtlInitializeSListHead+00010D08
ntdll!wcsncat+00000224
leakyjniapp!Java_com_ibm_jtc_demos_LeakyJNIApp_nativeMethod+000000D6

� Leak coming from leakyjniapp.dll module
� Java_com_ibm_jtc_demos_LeakyJNIApp_nativeMethod function.

If you view the difference file, you will see output similar to this.

The bottom line, highlighted in red in the first sample output, is the important bit telling you
that 412 KB was allocated that was not released by backtrace00468.

To find out about backtrace00468, go to either of the snapshots and find backtrace00468
to view the stack trace. This tells you that it was for LeakyJNIApp_nativeMethod again for
this example, and you can check the owning module if the function name does not give it
away. From this, you can see the function identified is nativeMethod, which is the
nativeMethod method in Java.

Because you do not need to start UMDH when you start the application, you can run it
only when you think there is something that is worth investigating, which means there is no
performance overhead through most of the application.

You can also stop the tool without stopping the application.

3-ProfilingNativeMemoryUsage.ppt Page 15 of 18

IBM Software Group

16

Profiling native memory usage © 2009 IBM Corporation

Other native profiling tools

� There are also several native profiling products:
�Rational® Purify® (all platforms)

�Rootcause (AIX)

�ZeroFault (AIX)

�Glowcode (Windows)

�However, these all have a license fee associated
with them.

There are several products available to do profiling. Purify should work on all platforms,
Rootcause and zeroFault on AIX, and Glowcode on Windows. All of these require a
license and license fee.

The tools previously mentioned in this presentation are all free ones: UMDH, Valgrind, and
MallocDebug on AIX.

That concludes the set of presentations on the introduction to debugging OutOfMemory
errors and Native Heap exhaustion.

3-ProfilingNativeMemoryUsage.ppt Page 16 of 18

IBM Software Group

17

Profiling native memory usage © 2009 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_3-ProfilingNativeMemoryUsage.ppt

This module is also available in PDF format at: ../3-ProfilingNativeMemoryUsage.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

3-ProfilingNativeMemoryUsage.ppt Page 17 of 18

IBM Software Group

18

Profiling native memory usage © 2009 IBM Corporation

Trademarks, copyrights, and disclaimers
IBM, the IBM logo, ibm.com, and the following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

AIX Purify Rational

If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of other IBM
trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Rational is a trademark of International Business Machines Corporation and Rational Software Corporation in the United States, Other Countries, or both.

Microsoft, Windows, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Java, JNI, JVM, and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any statements regarding IBM's future direction
and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or services does not imply
that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program Product in this
document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be
used instead.

THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products
are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License
Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other claims related
to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2009. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

3-ProfilingNativeMemoryUsage.ppt Page 18 of 18

