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Introduction 

■ Module overview 
– Some thoughts around modeling 
– Some lessons learned from various customer/Demo work 
– It’s not really a complete how to 
– May not even be best practice 
– Description of how they fit together and the logic behind them 
– Some questions to ask yourself when modeling to help with using these methods 

■ Target audience: 
– All audiences 
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Module objectives 

After this module you will be able to: 

■	 Start thinking about data modeling 

■	 Start learning how to use LanguageWare Workbench to create annotators and data 
extraction models 
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Module roadmap 

– Data modeling 
• What is modeling? 
• Some thoughts about modeling good practices and methods? 
• Some lessons learned from various customer/Demo work 
• Some questions to ask yourself when modeling to help with using these 

methods. 

– Summary and best practices 
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Before you start modeling 

■	 LanguageWare is a very powerful, adaptable language processing engine 

■	 BUT it is not a silver bullet that will solve every problem in one go 

■	 Do not try to stretch a model to make it solve every problem. This may be possible, but 
hacks or over-fitting a model make maintainability a nightmare 

■	 When modeling if you run into a brick wall ask yourself if the problem might be easier solved 
by pre/post processing…if so try to push it out to those stages 

© 2011 IBM Corporation 5 



  

   

          

              

            
    

                  
        

             
 

             
 

Where do you start?
 

■	 Start at both ends of the problem and work towards the middle 

■	 Every subject matter/Text Analytics task has an abstract notion of how the information fits 
together 

■	 Think about any Centralized Type-system, ontology or taxonomy that describes or defines 
what you want to extract 

■	 Use this to define the start and end points of your model, i.e. the initial dictionaries, and the 
final annotations/feature structures you want, and what features they have/need 

■	 Consider how the smallest functional elements of the model combine to form more 
meaningful units 

■	 Consider how the abstract notions can be “broken apart” or are composed of smaller 
meaningful chunks 
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Where do you start?
 

Most abstract concepts/classifications applicable to the subject matter/task 
Final annotations/feature structures 

The most basic simple named concepts for the subject 
matter 

Least 
Abstract 

Most 
Abstract 

Least 
Concrete 

Most 
Concrete 

Conceptual 
Model 

Initial dictionaries 
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Filling in the middle ground 

■	 Once the end points are defined fleshing out the model is a matter of 
– Composing the simple (dictionary) elements to create more meaningful units using rules 
– Decomposing the abstracted end points to provide basic logic to drive rules development 

■	 To move upwards in the model ask “how can I combine these things into something else?” 
and then write that rule 

■	 To move downwards in the model ask “What is this made up of?” and then write that rule 

■	 In both cases when deciding on the format of a rule ask “What sort of things are usually 
found near this?” 

– If those things are already defined in the model, rules logic will fill the gap 
– If not, additional trigger word/phrase dictionaries, or interim annotations might be needed 

■	 This will not guarantee a complete model but gives a good structure which should be easily 
maintained and extended 
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The bigger picture
 

Most abstract concepts/classifications applicable to the subject matter/task 

The most basic simple named concepts for the subject matter 

Interim concepts Compound concepts 
Disambiguated/Promoted 

concepts 

Complex/Abstract concepts 

Task specific concepts 

Triggers Triggers 

Triggers Triggers 

Triggers 

Level 
0 

Level 
1 

Level 2 

Level 3 
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Types of dictionaries and rules 

■	 Modeling in this way gives rise to 2 types of dictionary distinguished by both their 
usage and the type of “thing” they recognize 

■	 Likewise 3 types of rule can be distinguished based on their function and the 
function of the annotations they create 

■	 These rule and dictionary types are only general guidelines, but can be good for 
helping to separate and define the work done by the various resources 
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Two types of dictionaries 

■ Type 1 – A list of things that are classified in the same way 
– Enumerable lists of “things” 
– Basic concepts with a semantic type (such as FirstName, Organization, Location..) 
– Eg. Town names, Car Manufacturers 
– Used predominantly at lower levels 

■ Type 2 – Stuff that’s found in the vicinity of interesting stuff 
– Hard to classify as a single semantic type. Corresponds to the notion of a “trigger” or an 

“indicator”, that appears in the vicinity of important entities(example inc and & Co for 
companies)... 

– Anything from pronouns/prepositions to sub sentential units 
– Not always the same type of “thing” 
– Usually short lists 
– Eg. street, avenue, “was awarded to,” inc., corp., 
– Used throughout a model for promotions, disambiguations and rule structure 
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Three types of rules 

■ Type 1 – Disambiguation and promotion rules 
– Useful for confirming and overriding dictionary matches 
– Mapping into generic container types to drive more abstract rules 
– Create confirmed annotations 
– Used throughout the model but should become less frequent as things get more abstract 
– Annotations created by these rules are usually useful to more complex/abstract rules or to the end 

user/consumer 

■ Type 2 – Rules that create something useful, an end type, a feature of an end type 
– Combining simple elements 
– Constructing complex annotations 
– Creating feature structures 
– Used at higher and lower levels of abstraction 
– Annotations created by these rules are usually useful to the end user/consumer 

■ Type 3 – Rules which manipulate annotations creating task specific concepts 
– Combines simple and/or complex elements for a specific task 
– Driven more by the task at hand than semantics 
– Can provide insight that can be used to drive disambiguation/promotion rules, eg. spotting sections, 

lists 
– Used mainly in the middle ground 
– Annotations created by these rules are usually useful only to the model and just drive rules 
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Abstraction at the lowest level 

■	 Proved very useful in customer engagements 

■	 Can help reduce the number of dictionaries needed, hence reduces the rules 
workload…hopefully makes the whole model much simpler 

■	 Keep similar things together, and ask “Can the distinctions be described as differing values 
of the same/similar features?” 

© 2011 IBM Corporation 13 



  

      

                
  

 
  

        
            

      

      
     

                
  

            
      

             
               

       

Abstraction at the lower levels (Dictionaries) – Example 

■	 Example, we are interested in how people feel about the condition of a car in a 
Sentiment Analysis model. 

– NegativeCarConditionSentimentIndicators: “dented” “scratched” “filthy” etc 
– PositiveCarConditionSentimentIndicators: “gleaming” “pristine” “like new” etc 
– Rules then have to work on both dictionary types 
– Introducing a new sentiment (indifference or unsafe) requires creating a new dictionary 

type and new rules to support it 

■	 Taking an abstracted approach to the data 
– CarConditionIndicator has an attached sentiment feature: “dented[neg]” “gleaming[pos]” 

“scratched[neg]” “pristine[pos]” etc 
– Rules work on a single dictionary type and extract the feature which is passed up to 

inform higher level annotations 
– Introducing a new sentiment means simply adding the appropriate vocabulary to the 

dictionary with the associated sentiment feature value 
– Introducing a new feature (eg: interior or exterior) to add granularity to higher 

annotations is simply a matter of updating the dictionary and passing that feature up in 
rules, i.e. no new rules should be needed 
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Module roadmap 

– Data Modeling 
•	 What is Modeling? 
•	 Some thoughts about Modeling good practices and methods? 
•	 Some lessons learned from various customer/Demo work 
•	 Some questions to ask yourself when modeling to help with using these 

methods. 

– Summary and best practices 

© 2011 IBM Corporation 15 



  

   

              
           

             
             

  

                   
                
         

            
            

             
    

Summary and best practices
 

■	 The more abstract the concepts the better: Granularity can be achieved through features or 
through further annotations. This also allows you to write rules on “superclass” type 
annotations 

■	 Features/Structures of higher annotations should be dictionary driven to as large an extent 
as possible: Updating the contents of complex annotations then becomes a matter of 
updating the dictionary 

■	 If something needs to be a feature of an annotation you create in a rule, ask yourself can it 
be a feature associated with a dictionary type?: This makes it easier to abstract the problem, 
and also makes the features available as tests for rules 

■	 Where multiple dictionaries are used to contribute to the same annotation (eg. 
Mesh/SnoMed Diseases) or where in context disambiguation is to be used (eg. negation), 
write rules on a container type into which the dictionary types are promoted/disambiguated 
using context and other triggers 
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Contacts 

■	 If you have any questions, comments or suggestions, contact us using the 
LanguageWare email address EMEALAN@ie.ibm.com or on the developerWorks® 

Forum. 
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