

LanguageWare Resource Workbench 7.2

Create parsing rules

© Copyright International Business Machines Corporation 2011. All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule

Contract with IBM Corp.

© 2011 IBM Corporation

Introduction

■ Course overview
– How to create parsing rules?
– What types of parsing rules can be created, and what are their uses?
– Best practices

■ Target audience:
– All audiences

■ Prerequisites:
– Install LW
– Creating custom dictionaries and parsing rules database
– Create UIMA pipeline configuration
– Run an annotator configuration file.

■ Version Release Date: LRW 7.2, ICA 2.2, released October, 2010

© 2011 IBM Corporation 2

Module objectives

After this module you will be able to:

■ Understand phrase and aggregate parsing rules

■ See how you can create annotations using parsing rules

■ See the results of the annotations.

© 2011 IBM Corporation 3

–

–

–

Module roadmap

•	 Create parsing rules.

How do rules work?

What are the different parsing rules types and what are their
characteristics?

How to create rules?

• Summary and best practices
• Sample exercises

© 2011 IBM Corporation 4

Introduction to parsing rules

■ General
– Parsing rules is a powerful feature that create annotations over textual

patterns.

– Parsing rules are created and stored in a Parsing Rules Database. This

database is then built into a Parsing rules file that can be used in a UIMA
Pipeline to analyze text and annotate items of interest.

– Parsing rules use the JFST (Java ™ Finite State Transducer) technology, and
translate it into a user friendly, intuitive and easy to modify tree-like charts that
the user can modify without having to deal directly with the JFST grammar.

– You can create parsing rules by dragging and dropping text fragments into the
create rules pane, selecting match criteria, and adding annotations. All this
without having to do any coding.

© 2011 IBM Corporation 5

Parsing rules - Different types in a nutshell

■ There are three different types of rules:
– Phrase rules: Rules that use textual patterns using custom dictionary entries

and different parts-of-speech, in addition to some previously created
annotations. The scope of these rules is sentence boundary.

– Aggregate rules. The scope of these rules is not limited with sentence or
paragraph boundaries. They are more powerful and have a larger cover than
the Phrase rules.

– Entities rules: Rules that create annotations over the highest level annotations
created with other types of rules.

© 2011 IBM Corporation 6

How to create parsing rules?

■	 Rules are usually written by dragging and dropping a section of text onto the Parsing rules
Editor as an example. This section of text will already have been annotated by the UIMA
Pipeline, and the Parsing rules Editor will use those annotations to display the pattern of
annotations in the text.

■	 The editor is used to generalize the pattern so that it will match other similar occurrences of
the same concept. Once you have identified the pattern that will be matched by the rule, you
can then define one or more new annotations that will be created over all or some of the text
identified by the rule.

■	 The rules are stored in the rules database, and when it is compiled/built, the .jar file is
updated and it is re-run automatically on the text, so you can see the newly created
annotations in the outline.

■	 The next section will guide you trough a simple example of creating a phrase rule.

© 2011 IBM Corporation 7

Let the modeling begin

■ Use a sample text containing the following two sentences with some people names:
– Amine works for IBM Ireland.
– John Doe, the CEO of Automatics Inc., has said in his speech that the company is

looking for new investors.

■ Use the UIMA pipeline configuration file developed earlier, with the following criteria:
– Language Stage: Set it manually to English
– Lexical stage: English Built-in dic and FirstName dictionary. The First Name dictionary

contains two enties: “Amine” and “John”.
– Parsing rules stage: MyRules.jar.

© 2011 IBM Corporation 8

Creating your first phrase rule

■	 Make sure you run the annotator on a text
and check that you get the annotations in
the outline.

■	 Open the Parsing rules database (double
click the database link in the
LanguageWare® Explorer, or right click it
and select open). This will open two
perspectives:

© 2011 IBM Corporation 9

■ The database viewer: this shows you the content of the database. It will be
populated every time you add/modify/delete a rule.

© 2011 IBM Corporation 10

■ The rule creation pane: in this pane you will drag the fragment of text to create a
rule, make the selection of the match criteria for the tokens, create annotations...

© 2011 IBM Corporation 11

■	 Select the fragment of the text that will be used as a pattern to be matched. In this example,
you will create a parsing rule that finds people names.

■	 A person Name is usually written in upper case, and the basic pattern consists of a first
name followed by a family name.

■	 It is easier to have a dictionary of first names, this is not the case for Family names. So use
the dictionary of first names that contains already two entries: “Amine” and “John”.

■	 So the pattern that you will use to find a person name will be a First Name followed by a
word in upper case. This is represented by “John Doe” in the sample text.

■	 Select this fragment, drag it, and drop it into the “Create Parsing Rules” pane. Open on the
right side.

■	 You should see an analysis tree that describes the syntactic and grammatical information
related to the components of the fragment of text under analysis.

© 2011 IBM Corporation 12

 © 2011 IBM Corporation 13

■	 The selection tab allows you to select the
match criteria for the pattern in terms of
syntactic and grammatical attributes of the
tokens (components of the pattern).

■	 You can make the match criteria as general or
as specific as you want. This process is made
simple thanks to check boxes and tree nodes.

■	 In this example:
– The first tree node is a DictFirstName: this

is an annotation coming from the
FirstName custom dictionary .

– The second Node is a Token: this is the
default annotation assigned to any entry
that is not coming from a custom dictionary
or previously created annotation.

■	 In the Token node, the tree shows the different
features (criteria) that can be selected to match
the pattern. According to the selection, my rule
will match every First Name coming from the
FirstName dictionary, followed by an upper
case word.

© 2011 IBM Corporation 14

■	 After the selection is made, move to the
annotation tab. This will allow you to create
an annotation. An annotation can cover the
whole text fragment or a part of it.

■	 In this example, you will create an
annotation Person over this pattern.

■	 Select the two nodes of the tree, right click,
and select Insert Annotation.

© 2011 IBM Corporation 15

■	 This will prompt you to enter the name of the annotation. Make sure the Name of the
annotation starts with an uppercase letter. Click OK

■	 NB: the UIMA prefix used (com.ibm) is the default that was specified when creating the
project.

© 2011 IBM Corporation 16

■ The Person annotation has been added to
the tree;

© 2011 IBM Corporation 17

■	 It is better to use a rule set name to
remember which rule is doing what. This is
also very important for Aggregate rules
(will be covered later in this tutorial).

■ Click the save rule icon (highlighted in
blue).

■	 You can see the rule details in the
database viewer on the next slide

© 2011 IBM Corporation 18

 © 2011 IBM Corporation 19

■	 Compile the Parsing rules Database by right clicking on it and selecting Build LanguageWare
resources, or selecting the database and clicking the icon on the LanguageWare Explorer
tool bar.

■	 The new annotation will appear in the outline (on the right side), and when you select it, the
text that is matched gets highlighted in the document.

© 2011 IBM Corporation 20

■ Select the annotated text (clicking on it either on the outline or in the document), this will
show the details of the highlighted text in the Properties tab.

© 2011 IBM Corporation 21

Make it more general

■	 The rule that you created will only match
the instances of text where there is a
FirstName followed by an upper-cased
word. However, in some cases, you find
only a first name, with no family name.

■	 This means that my rule should be made
more general to cover both patterns. To do
this, specify that the second token is
optional, so if an upper case token is not
found after the first name, the rule will still
match the first name and highlight it as
person.

■	 Working on the same rule, edit the
selection tree, right click the token node,
select Repeat/Occurring zero or one time.

© 2011 IBM Corporation 22

■	 You can see that the icon in front of the
Token node has changed. Each icon has a
different repeat criteria. See the help for
more information about the repeats
options.

■	 Nothing will change in the annotation tab,
because you only changed some match
criteria in the selection tab.

■	 Save the rule and compile/build the
parsing rules database.

© 2011 IBM Corporation 23

■	 Switch to the Outline view, and select the Person Annotation.

■	 The rule now also covers the first name, because you specified that the possible family name
part is optional.

© 2011 IBM Corporation 24

Make it more interesting

■	 Now to introduce the concept of Features created by rules. Features add information to the
components of the annotated text. It gives more granularity to the annotations. They are a
type of (sub-) annotation that is created inside the main annotation.

■	 In this example, you will detail the Person annotation by flagging the first name and the
family name.

■	 In the Annotation Tab, select the DictFirstName node and drag it to the feature node right
underneath the Person annotation. A dialog box will pop over, and you can enter the Feature
Name. Make sure it starts with a lower case letter (UIMA naming conventions). Click OK.

■	 Do the same thing for the token node (drag it into the Features node), and name it

25 © 2011 IBM Corporation

family_name.

■	 You should have something that looks like
the screen capture.

■	 After adding the features, save the rule,
and compile the database.

■	 Go to the outline, and select the Person
annotation, and select the “John Doe”
instance. You will see the information in
the Properties tab (next slide).

© 2011 IBM Corporation 26

 © 2011 IBM Corporation 27

Aggregate rules

■	 Aggregate rules behave differently from other rules. They skip over most annotation types
when trying to match a rule.

■	 Phrase rules only work on a sentence scope, and it will check all tokens/annotations in the
analysis. Aggregate rules are more flexible/powerful; i) you can set the scope to be the
sentence, the paragraph or the whole document; ii) they only see annotations (coming from
dictionaries, parsing rules..), and will skip over other tokens or punctuation.

■	 This will be explained through the following example.

© 2011 IBM Corporation 28

 Creating the aggregate rule

■	 Create a rule (pattern) that matches a relation between a person and a company.

■	 First figure out the best way to cover this pattern.

■	 Looking at the two sentences in the sample document, there is a pattern of a Person name,
followed by a work relation term, and a company name. There are some intervening
punctuation and tokens.

■	 As a good practice, always think about creating a custom dictionary when you need to match
words/phrases, instead of using string matching in the rule (by checking the “lemma” or
“value” criteria in the tree). The advantages of this approach can be noticed on two levels:

– i) expandability: the words or phrase list can be expanded and developed at later stages,
and more entries can be added without having to create a rule for each instance.

– ii) performance: it's better than having regular expressions to match the strings in the
rules, as regular expressions greatly affect performance.

© 2011 IBM Corporation 29

■	 First, create two new custom dictionaries
(See the ‘create custom dictionary’
section):

– a dictionary for Company names
(Company, with Type
DictCompany), and add the entries
“IBM” and “Automatics Inc.” to it.

– a dictionary for the Person Company
relation (PersonCompanyTrigger,
with Type
DictPersonCompanyTrigger), and
add the entries “CEO of” and “works
for” to it.

© 2011 IBM Corporation 30

■ Build the dictionaries and add them to the Lexical stage of the UIMA pipeline configuration,
and save it.

© 2011 IBM Corporation 31

■ Run the Annotator configuration on the text, and switch to the outline view, the new types
should appear and you can see them highlighted in the text.

© 2011 IBM Corporation 32

■	 To create an aggregate rule, open the
Parsing rules database, and change the
rule type to Aggregate in the Create
parsing rules view (as shown in the screen
capture).

■	 If the rule editor is not empty, click the
erase button (beside the save rule

button)

■	 Note that a new field appeared replacing
the “Input text” for Phrase rules: Rule
scope (set by default to “sentence”).

© 2011 IBM Corporation 33

■	 The same drag-and-drop mechanism is used for aggregate rules. Select the fragment of
text that contains the pattern you want to match, drag it to the “Create Parsing Rules”
pane. This is the output you should see.

© 2011 IBM Corporation 34

■	 The selection of the components of the
tree should not be changed; that is, the
pattern that you want to match is a Person
annotation, followed by a Person Company
trigger and finally a company name.

■	 As explained before, the aggregate rule
will not see the elements intervening
between the annotations.

■	 Make sure you define the rule set, this is
useful in the ordering of the rules. See the
help for more information about “Rules
ordering” for aggregate rules.

© 2011 IBM Corporation 35

■	 Switch to the annotation Tab, select the
three elements, then right click, and select
insert annotation.

■	 Specify the annotation name:
PersonCompany in the dialog box that
pops up, and click OK

© 2011 IBM Corporation 36

■	 Also create features for this annotation by
dragging the sub-annotations into the
features node and name them as follows:

– Person => person
– DictPersonCompanyTrigger => relation
– DictCompany => company

■ Save the rule (click the icon) and
build/compile the Parsing rules database

© 2011 IBM Corporation 37

■	 Switch to the outline and see the new PersonCompany annotation. You can notice that two
instances have been highlighted, so the rule matched the second sentence as the aggregate
rule does not see the intervening elements..

© 2011 IBM Corporation 38

■	 Aggregate rules scope can be changed to
cover a paragraph, or the entire document
by setting the scope of the aggregate rule
as shown in the screen capture.

© 2011 IBM Corporation 39

–

–

–

Module roadmap

•	 Create parsing rules.

How do rules work?

What are the different parsing rules types and what are their
characteristics?

How to create rules?

• Summary and best practices
• Sample exercises

© 2011 IBM Corporation 40

Module summary

You have completed this module and can:

■ Create Annotations using Phrase rules

■ Create Annotations using Aggregate rule

■ Create Features

■ See the result in the Outline and the Properties views.

See the LanguageWare help for more tips and advanced use cases.

© 2011 IBM Corporation 41

Best practices

■	 This Module covered two types of parsing rules: Phrase and Aggregate rules.

■	 Before starting to create rules, try to figure out the annotations you want to find, and the
intermediary elements (indicators and triggers) that may be used to make the job easier.

■	 For string matching, it is best to create a dictionary for the Type (even if it contains only one
entry).

■	 Make sure you specify the rule set for every rule. Group the rules by sets so they fire when
appropriate and they do not break each other.

© 2011 IBM Corporation 42

–

–

–

Module roadmap

•	 Create parsing rules.

How do rules work?

What are the different parsing rules types and what are their
characteristics?

How to create rules?

• Summary and best practices
• Sample exercises

© 2011 IBM Corporation 43

Practice exercises

■	 Create some rules in the "IdentifyQuestion" database to identify the questions in
the "SampleQuestion" document.

© 2011 IBM Corporation 44

Contacts

■	 If you have any questions, comments or suggestions, contact us using the
LanguageWare email address EMEALAN@ie.ibm.com or on the developerWorks®

forum.

© 2011 IBM Corporation 45

 Trademarks, copyrights, and disclaimers

IBM, the IBM logo, ibm.com, developerWorks, and LanguageWare are trademarks or registered trademarks of International Business Machines Corp.,
registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other
IBM trademarks is available on the web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Java, and all Java-based trademarks and logos are trademarks of Oracle and/or its affiliates.

Other company, product, or service names may be trademarks or service marks of others.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2011. All rights reserved.

© 2011 IBM Corporation

