
This presentation covers the topic of how to upload directly to the docstore and use a

class file that has a Java™ API implementation. In this method, you do not need

Integrated development environments such as Rational® Software Architect to develop

your application. Also note that this method is to be used for testing purposes only as in

production environments there are typically multiple extension point implementations

that need to be deployed and that is done best through a single JAR file with all the

bundled classes.

JavaAPI_UploadDocstore2.ppt Page 1 of 14

Before going into details, there is some terminology that you need to be aware of. The

official name of the product or application that is referenced in this presentation is IBM

InfoSphere Master Data Management for Collaboration Server and is referred to as

InfoSphere MDMCS.

The term $TOP is an environment variable that points to the installation directory of the

product.

WAS_HOME is the directory where the WebSphere Application Server is installed and

API refers to Java Application Programming Interface.

JavaAPI_UploadDocstore2.ppt Page 2 of 14

The Java API provides a Java interface that exposes a set of classes and methods. You

can use these to write Java code that can access application entities directly, without

the need for custom scripts. There are over 20 components for various entities such as

extension points, items, catalogs, and categories that are supported.

The Java API has three parts. The Java API interface, which is used for development,

the Java API implementation, which is used at run time, and the Java API reference

documentation.

The Java API interface is a set of Java interfaces that document all the classes and

methods that are available to you. This API is shipped as a .jar file called

ccd_javaapi2.jar in the javaapi folder of the InfoSphere MDMCS installation directory.

The Java API implementation refers to the application internal code that provides the

functionality that is documented in the Java API interface. A Java class that uses the

Java API interface automatically uses this internal code when deployed.

The Java API reference documentation provides explanations for some common

classes and methods that are available in the Java API interface. For a complete

technical reference with detailed explanations of the classes and methods that are

available in your InfoSphere MDMCS instance, see the InfoSphere MDMCS Javadoc.

This document is generated from the InfoSphere MDMCS code and is shipped as a

compressed file called ccd_javaapi2doc.zip in the javaapi folder of the InfoSphere

MDMCS installation directory. To read the documentation, extract this file to a directory

and open the index.html file from that directory in a web browser.

JavaAPI_UploadDocstore2.ppt Page 3 of 14

There are components that are required for writing Java API-based code. You need

access to a running IBM InfoSphere MDMCS installation.

You need IBM or Sun JDK and the version of the JDK depends on the version of the

InfoSphere MDMCS being used. The JDK version to be used starts from 1.5.

The tools.jar file from JDK is required to be present in the class path of the product.

Client connectivity to the database, which is being used by the IBM InfoSphere MDMCS

instance and database-specific client libraries. For Oracle, ojdbc5.jar or ojdbc6.jar is

required on the class path of the project. For DB2®, db2jcc.jar and

db2jcc_license_cu.jar are required on the class path.

JavaAPI_UploadDocstore2.ppt Page 4 of 14

When programming through the Java API, the pattern that is typically followed is obtaining a
context, obtaining a manager from the context, obtaining a Java API entity object, and
modifying the object and saving it.

Regarding obtaining a context to access IBM InfoSphere MDMCS entities and methods, the
Java code must first obtain a PIMContext. You can obtain a PIMContext in two ways. You can
obtain a fresh context by providing the user name, password, and company information to the
API. For example, PIMContextFactory.getContext. This method is used when you are writing
stand-alone Java API applications or unsecured web services.

If the Java API code is running in an already authenticated context, for example, an extension
point implementation class that runs within the InfoSphere MDMCS application or a secure web
service, where authentication information was provided when the web service was started, you
can obtain the existing context through the API, PIMContextFactory.getCurrentContext(). Using
this approach removes the over head of creating extra contexts.

Regarding obtaining a manager from the context, after the context is available, you can retrieve
from the context a Java API manager object that corresponds to the entity. For example, a
manager for the catalog can be obtained by using the Java API. CatalogManager ctgManager =
context.getCatalogManager();

Regarding obtaining a Java API entity object, after manager for an entity is obtained from the
context, you can access the entity itself. For example, a catalog object can be obtained from the
catalog manager by using the Java API. ctgManager.getCatalog with the catalog name as the
input parameter.

Regarding modifying the object and saving it, the entity object that you obtained from the
manager class can be modified by using the APIs that are available within the object itself. After
the modifications are done, save them to the database with the save() method. For example, a
catalog object that is obtained from the catalog manager can be modified and saved by using
the Java API. addSecondaryHierarchy with hierarchy as a parameter.

JavaAPI_UploadDocstore2.ppt Page 5 of 14

Extension points are the various points within InfoSphere MDMCS where you can

modify the behavior by running some user-defined business logic.

In order to implement the extension points using the Java API, you need to develop and

extend a set of predefined interfaces that are supplied with InfoSphere MDMCS.

There are steps to be used when using Java API-based extension points. First, develop

an extension point class to provide custom code for a particular method. Next, to

make the extension point class available to InfoSphere MDMCS, load the .class file

to the document store or make it available using a JAR file in the classpath of the

InfoSphere MDMCS instance. Finally, before InfoSphere MDMCS can invoke a

specific extension point, the Java-based extension point implementation class needs

to be registered from the corresponding extension point of the InfoSphere MDMCS

user interface. You provide a URL for invocation of extension points.

JavaAPI_UploadDocstore2.ppt Page 6 of 14

This slide displays a simple example of a Java API program. This extension class is a

workflow extension class and has custom logic in the IN function of the workflow

wherein it is setting the value of one of the attributes to a blank.

JavaAPI_UploadDocstore2.ppt Page 7 of 14

This is another simple example of a Java API program for a post processing function

implementation. Here, a PIMInternalException is thrown when trying to check out an

item from the catalog to a workflow.

JavaAPI_UploadDocstore2.ppt Page 8 of 14

There are more details on the first step, which is to write custom code for your

extension point class. Write your Java program into a sample directory such as “test”

within the product’s installation directory. For example, $TOP/test. It is a good idea to

source the compat.sh so that all variables including some of the old environment

variables such as $TOP, $CCD_DB, and $JAVA_RT are also added. Next, compile the

program. This generates the class file.

JavaAPI_UploadDocstore2.ppt Page 9 of 14

Next, upload the generated class file from $TOP/test, that is path1 to the docstore path,

that is path2. In this example, the class file is being uploaded to the company Trigo.

The last step is to create a Post Processing script on the catalog from the UI. In the

screen capture that is displayed on this slide, you see the script being created with

name as Test_PP. Put in this line to invoke the Java API.

This program ensures that whenever an item is checked out to a workflow from a

catalog, the Java API implementation class within the Post Processing script creates an

exception to the UI.

This is just a simple implementation. You can customize it further to work with your

requirements.

JavaAPI_UploadDocstore2.ppt Page 10 of 14

Sometimes Java needs to be loaded from the WebSphere Application Server

installation directory. You can then compile the program with the command as displayed

on this slide.

JavaAPI_UploadDocstore2.ppt Page 11 of 14

Before opening a PMR and contacting product Support, have a detailed problem

description including the use case, expected output, and the result that is seen now.

Also, useful for further diagnosis is to upload the relevant code so that Support can also

use the same code to reproduce the issue generically. Attach to the PMR the

pimSupport output that includes the logging for when the issue was reproduced. The

pimSupport script gives the product logs and configuration files. The command to run is

displayed on this slide.

Finally, provide Support the business impact of this issue on your application or project.

JavaAPI_UploadDocstore2.ppt Page 12 of 14

For reference, this slide displays links that you might find useful.

JavaAPI_UploadDocstore2.ppt Page 13 of 14

JavaAPI_UploadDocstore2.ppt Page 14 of 14

