
In this training module, you learn how to use ObjectServer key performance indicator

measurements to monitor system performance. You also learn how to limit the impact of

alert table size on system performance.

objsvr_kpi.ppt Page 1 of 20

When you complete this module, you can perform these tasks:

- Name the seven ObjectServer key performance indicators

- Enable and use the stats_trigger trigger group to monitor connections

- Monitor the volume of events and deduplications with the alerts.status table KPI

- Monitor the amount of processing time and memory of the ObjectServer process

- Measure memstore usage in the catalog.memstores table

- Analyze the profiler report to determine both the comprehensive and individual impact of

triggers on granularity

objsvr_kpi.ppt Page 2 of 20

To ensure that IBM Tivoli® Netcool/OMNIbus is performing well, you can monitor several

key performance indicators. You can also monitor key performance indicators to check on

ObjectServer performance. When using the key performance indicators, first establish a

baseline on the system. The system baseline is the KPI measurements of system

resources being used under their normal operational load. These KPIs are used to indicate

the possibility of system performance changes as a direct result of changes in the system

resource utilization workload. Comparing the baseline KPI measurements to current KPI

measurements determines whether the system is experiencing a higher-than-normal

resource utilization workload.

objsvr_kpi.ppt Page 3 of 20

The number of rows in alerts.status, alerts.journal, and particularly, the alerts.details tables

can affect ObjectServer performance. Only use the alerts.details table when alerts.status

is not large enough to hold all information for a specific alarm or during rules file

development. Try to keep the alerts.details table below 5,000 rows. Details statements in

probe rules files are used to generate records into the alerts.details table. The statement

details ($*) record each token as one row into alerts.details. If you have details($*) set in

your rules file, for each event in alerts.status table, there can be approximately 10 to 50

rows in the alerts.details table. Details can be disabled by commenting out any details ($*)

statements in all your probe rules files, restarting all probes, and clearing the current

records in the details table (delete from the alerts.details table).

objsvr_kpi.ppt Page 4 of 20

Another key performance indicator is the volume of events in alerts.status, including new

inserts and deduplications. Deduplication triggers prevent the number of rows from

increasing, but still take processing time in the ObjectServer. The ObjectServer Tally field

indicates the number of deduplications.

objsvr_kpi.ppt Page 5 of 20

The number of ObjectServer connections is another key performance indicator. The

maximum permitted number of connections is determined by the ObjectServer

Connections property, with a default of 30. The Connections property of the ObjectServer

should always be increased when the server is first brought into a production environment.

Only a finite number of connections can be made to an ObjectServer. The maximum

number of connections is 1024. An error is logged in the ObjectServer log when the

allowed number of connections is exceeded. Connections can be monitored through

stats_triggers in the master.stats table.

objsvr_kpi.ppt Page 6 of 20

Row count on alerts.status, alerts.journal, alerts.details, volume of alerts.status and the

number of connections can be monitored through enabling the stats_triggers trigger group.

Ensure that stats_triggers is enabled. The stats_triggers group uses triggers to gather

several statistics and metrics in the default ObjectServer configuration. To enable

stats_triggers log in to the OMNIbus Administrator desktop client. Edit the trigger group

and ensure the Enabled check box is checked.

objsvr_kpi.ppt Page 7 of 20

Triggers in the stats_triggers group count the current events, inserts, deduplications, and

client connections. A new row is logged to the master_stats table with this information by

default every five minutes.

objsvr_kpi.ppt Page 8 of 20

The microprocessor usage of the ObjectServer process is a key performance indicator. If

the ObjectServer is under heavy load, this is reflected in microprocessor usage.

Microprocessor usage might spike as the ObjectServer processes a particular SQL

statement, but the average usage over time should remain stable. If microprocessor usage

increases, the profiler report and trigger statistics logs show the source of the heavy load.

objsvr_kpi.ppt Page 9 of 20

Memory usage of the ObjectServer process is another key performance indicator. The

memory usage of the process increases proportionally to increases in the number of rows

in the alerts.status table, alerts.details table, and the alerts.journal table (or any additional

tables you have defined), increases in the number of connections, and increased usage by

clients. Memory usage should remain stable over time. Any increases should correspond

to increases in the number of table rows or additional client SQL commands.

objsvr_kpi.ppt Page 10 of 20

The last ObjectServer key performance indicator is memstore usage for the ObjectServer

database. To monitor the memstore, inspect the content of the catalog.memstores table.

For each row, compare the value of the UsedBytes column with the values of the SoftLimit

column and the HardLimit column. Memstores are containers that are maintained by the

ObjectServer. They contain ObjectServer data and tables in memory. Memstores have a

finite size. You must ensure that the memstores do not become full, otherwise they do not

allow any more data to be inserted. Once a memstore soft limit is exceeded, an error is

logged to the ObjectServer log file. The ObjectServer shuts down once the hard limit is

exceeded.

objsvr_kpi.ppt Page 11 of 20

The ObjectServer property Granularity specifies the update interval for Insert, Delete,

Update, and Control (IDUC) notifications to clients. The default granularity period is 60

seconds. It is not recommended to change the default. The ObjectServer is designed to

service all client and trigger requests within the granularity period.

objsvr_kpi.ppt Page 12 of 20

Profile statistics are also logged to the file shown under the first bullet in this slide. The

profiler report shows a breakdown of the time spent for each client connection and the

total time spent by client type, for each granularity period. You can use the profile log file to

analyze how the ObjectServer time is spent during each granularity period and calculate

the percentage of time used. For example, if the granularity period is set to sixty seconds

and the total time spent for all the connections during a particular period was 30 seconds,

you can calculate that the ObjectServer spent fifty percent of its available time running

SQL commands from client connections. Profiler report logging is enabled by default in

IBM Tivoli Netcool/OMNIbus V7.3.1. In earlier versions of IBM Tivoli Netcool/OMNIbus the

ObjectServer property Profile had to be manually set to TRUE in order to create the

profiler report log.

objsvr_kpi.ppt Page 13 of 20

The goal is that the profiler report “total time in the report period” plus the trigger statistics

“time for all triggers” is less than the ObjectServer granularity period of sixty seconds.

Current total time in the report period of 29.980000s indicates that approximately fifty

percent of the ObjectServer Granularity period is taken to service client connections. That

does not include the current time for trigger load. To troubleshoot, you must identify the

highest-used clients in the report period. In this example, an event list client with two

connections was taking 19 seconds of the period. High probe clients can indicate an event

flood or large number of either status or details inserts. High event lists or WebGUI clients

can indicate inefficient filters. High usage of ObjectServer gateway clients can indicate

either a transfer of many events or a resync.

objsvr_kpi.ppt Page 14 of 20

Trigger statistics are also logged to the file shown under the first bullet in this slide. The

trigger statistics log file shows the amount of time that each trigger has used in the last

profiling period. You can use this log file for either automation debugging or to determine

which triggers are slow due to slow-running SQL queries.

objsvr_kpi.ppt Page 15 of 20

Here is an example trigger statistics log. Individual trigger statistics are logged for each

trigger. Trigger time should normally be in the subseconds. The time for all triggers is

logged every 60 seconds. In this example, all of the triggers combined consume 29.78

seconds of the 60-second granularity period.

objsvr_kpi.ppt Page 16 of 20

Again, the goal is that the profiler report “total time in the report period” plus the trigger

statistics “time for all triggers” is less than the ObjectServer granularity period of sixty

seconds.

The current profiler report total time in the report period of 29.980000s plus trigger

statistics time for all triggers of 29.789663s indicates that the ObjectServer is at one

hundred percent utilization of the sixty second granularity period. To troubleshoot

performance, identify the highest usage triggers. Typically any single trigger over five

seconds is considered a high usage trigger. In this case, the two triggers

enrich_and_correlate, and generic_clear which are running high.

High generic_clear or deduplication triggers can indicate high event throughput or a high

number of resident events.

Ensure best practices are used in creating custom triggers.

Ensure trigger execution time is kept to a minimum. No other writes can be performed in

the ObjectServer when a trigger is executed.

objsvr_kpi.ppt Page 17 of 20

To monitor the ObjectServer key performance indicators, the stats_trigger trigger group

will track the number of rows in the alerts tables, the number of inserts and deduplications

on alerts.status, and the number of client connections. Use system monitors to track

microprocessor and memory usage of the nco_objserv process. Use the ObjectServer

catalog.memstores table to monitor memstore usage. Use the profiler and trigger statistics

logs to gauge ObjectServer granularity.

objsvr_kpi.ppt Page 18 of 20

Now that you have finished this training module, you can accomplish these tasks:

- Name the seven ObjectServer key performance indicators

- Enable and use the stats_trigger trigger group to monitor connections

- Monitor the volume of events and deduplications with the alerts.status table KPI

- Monitor the amount of microprocessor and memory of the ObjectServer process

- Measure memstore usage in the catalog.memstores table

- Analyze the profiler report to determine both the comprehensive and individual impact of

triggers on granularity

objsvr_kpi.ppt Page 19 of 20

objsvr_kpi.ppt Page 20 of 20

