
IRADv6_ComponentTest.ppt Page 1 of 38

®

IBM Software Group

© 2005 IBM Corporation

Updated March 9, 2005

IBM® Rational® Application Developer V6

Automated Component Testing

This presentation will focus on IBM Rational Application Developer V6 Automated
Component Testing

IRADv6_ComponentTest.ppt Page 2 of 38

IBM Software Group

2

Automated Component Testing © 2005 IBM Corporation

Goals

�Understand Automated Component Test features

� Learn about the various Component Test artifacts

� Learn how to create and execute a component test

This presentation covers the Automated Component Testing function in the IBM Rational
product suite. In this module, you will learn the features that are provided in Automated
Component Testing. You will also learn about the various artifacts used in the testing

process, and how to create and execute a component test, including defining test data and
using test metrics to help guide you in building a comprehensive test plan.

IRADv6_ComponentTest.ppt Page 3 of 38

IBM Software Group

3

Automated Component Testing © 2005 IBM Corporation

Agenda

�Overview

�Component Test Architecture

�Component Testing Process

�Test Data Tables

�Test Metrics

�Troubleshooting

This presentation will also provide an overview of Automated Component Testing,
including the features of Component Testing and the typical process to use when creating
and executing a test. It will also cover the usage of Test Data Tables and how to enter

data for your tests. Test metrics and how they affect your test plans will also be
discussed. Finally it will review some typical problems you might encounter.

There will also be two demonstrations, one showing you how to create and run a basic
Java test, and another showing you how to create a test for a stub.

IRADv6_ComponentTest.ppt Page 4 of 38

IBM Software Group

4

Automated Component Testing © 2005 IBM Corporation

Overview

�Automated Component Testing is a feature in IBM
Rational Application Developer and IBM Rational
Software Architect

�Benefits include speed and quality

�Supports Java, EJB, Web Services

�Compliant with the OMG Testing profile and uses

the JUnit testing framework and the Hyades open
source project

Automated Component Testing is included in IBM Rational Application Developer and IBM
Rational Software Architect. It is not included in the IBM Rational Functional Tester, IBM
Rational Manual Tester, nor the IBM Rational Performance Tester.

Automated component Testing will speed the development of an Enterprise Application by
enabling you to find and fix defects early in the development cycle, and by automating
regression testing. It should also help you improve the overall quality of your application.

Developers can use this feature to create, execute and maintain unit tests for their
Enterprise Application components, including

Java classes

EJBs (1.1, 2.0, and 2.1, both local and remote interfaces)

J2EE and .NET based Web Services

Automated Component Testing is compliant with the Object Management Group
(OMG) UML testing profile, so many of the concepts and the terminology that you
will see here are defined in the modeling specification for the UML testing profile
which you can find at www.omg.org. The UML Testing Profile defines a language
for designing and specifying the artifacts of test systems. OMG is an open
membership, not-for-profit consortium that produces and maintains computer
industry specifications for enterprise applications.

Automated Component Testing uses the JUnit testing framework which is a regression
testing framework that can be found at www.junit.org. It is open source software that is
used by the developer implementing unit tests in Java.

Automated Component Testing uses Hyades which is an open source integrated testing
environment, based on Eclipse that provides standards and tools for the testing process.
You can find out more at www.eclipse.org/hyades.

IRADv6_ComponentTest.ppt Page 5 of 38

IBM Software Group

5

Automated Component Testing © 2005 IBM Corporation

Features

� Testing Guidance

� Use of test patterns

� Data Driven Testing

� Stubbing

� Automated Test Deployment and Execution

� Import existing JUnit tests

� Integrated with Profiling

� Support for re-factoring

� Management of test assets

Automated Component Testing gives several views of the Enterprise Application components to optimize the unit testing phase.

Metrics are provided to help focus testing effort on the right components:

Structural metrics highlight dependencies between components.

Complexity metrics highlight intrinsic component complexity.

Coverage metrics assess the completeness of the tests.

Use test patterns to automatically generate unit tests.

Alleviates the need to write test scripts from scratch.

Helps you define more complex and complete unit tests.

Data Driven Testing

Data is externalized from the script into a Test Data Table (TDT).

Accelerates the creation and maintenance of tests, and allows you to re-use test scenarios with multiple sets of data.

Automates the regression testing process.

Stubbing

Stubbing allows you to replace one or more components with user defined stubs.

Enables you to test earlier in the development cycle, even if not all the components are ready.

Allows you to run tests without having to set up a database.

Automated Test Deployment and Execution

Using Automated Component Testing, you get complete automation of regression testing, eliminating the need to manually review the test
results.

You also get automatic deployment of test components including EJBs and Web Services on the application server.

You can import existing JUnit tests, and automatically extracted data from the script for insertion into the Test Data Table.

Integration with Profiling allows you to engage any of the profiling features during test execution, such as code coverage measurement, or performance
profiling.

Support for refactoring means you can update method signatures or method names and component tests will automatically be updated to reflect these
changes.

Management of test assets provides

Integration with a repository of your choice, including ClearCase or CVS.

Integration with ClearQuest, enabling you to submit defects or feature requests directly from a test report. This requires installation of the
ClearQuest plug-in.

IRADv6_ComponentTest.ppt Page 6 of 38

IBM Software Group

6

Automated Component Testing © 2005 IBM Corporation

Test Artifacts

�Test project

�Test suite

�Test case

�Test behavior

�Test data table

�Test run

The test project contains your component tests and test runs. You create this first to store
the rest of the test artifacts.

The test suite is a collection of test cases in a component test. Each time you run the
Component Test wizard, it will add a test suite to the Test Suite folder in the test project.

A test case defines the application components being tested.

The test behavior is the Java code that is created automatically by the tool which defines

your test cases. This may also be called the test script.

The test data table is where you place the input and output values for the test case.

A test run is the execution of the component test, and it contains the test results with

verdicts.

IRADv6_ComponentTest.ppt Page 7 of 38

IBM Software Group

7

Automated Component Testing © 2005 IBM Corporation

Test Perspective

Java projects

Test project

Test cases

Test Data Table

Test behavior

Test results

Most testing is done from the Test Perspective.

The test navigator view shows you the list of test artifacts, including the Java projects and
Test projects.

There are several data views including the test data table, stub data table and test data

comparator. This example shows the Test Data table.

The component test editor is used to manage properties of a test suite.

The Java editor is used to edit your test behavior files.

The test run editor is used to view the results of the test execution.

Java files and some test folders are not displayed in the Test Navigator so you might want

to add the Package Explorer to the Test Perspective. You could also add the test views to

the Java perspective.

IRADv6_ComponentTest.ppt Page 8 of 38

IBM Software Group

8

Automated Component Testing © 2005 IBM Corporation

Automated Component Testing: Demonstration

�Open the Test Perspective

�Create a Test project

�Create a Component Test

�Update the Test Data Table

�Run the test

�Check the verdict

Click the Show Me icon for a demonstration that will show you how to perform Automated
Component Testing. This demonstration will show opening the Test Perspective, creating
a test project, creating a component test, adding data to the Test Data table, running the

test, and checking the verdict.

IRADv6_ComponentTest.ppt Page 9 of 38

IBM Software Group

9

Automated Component Testing © 2005 IBM Corporation

Testing Process

�Create the test project

�Create the test suite with test cases, stubs and
scripts

�Supply the test data via the test data tables

�Run the test

�Analyze test results

This slide shows you the basic process of component testing, which also maps closely to
what you saw in the demonstration.

First, you create the test project which will hold your test artifacts. Then you create the
component tests or stubs for your test cases. Next, you add your input data and expected

values to the test data tables.

After you run a test, you use the test data comparator to check for verdicts. You can also
generate HTML reports of the test run results. To do this, use menu option File > Export >
Component test HTML report.

IRADv6_ComponentTest.ppt Page 10 of 38

IBM Software Group

10

Automated Component Testing © 2005 IBM Corporation

Test Project

� Test Project Wizard

�Automatically creates folders

Run and Test Suite

�Identify the test scope – may

be modified later using

project properties

� All component tests will go

into the folder Test Suite

� All runs will go into folder
Run unless you modify the

launch configuration

The Test Project will contain your test artifacts, including the component tests, execution
results and test behavior scripts. Use the Project Wizard to create your test project. The
wizard automatically creates the Run folder and Test Suite folder. All component tests will

go into the Test Suite folder. All test executions will go into the Run folder, unless you
modify the launch configuration and select a different folder.

The wizard will prompt you to define the scope of the project, so you can pick the Java
projects that you want to have associated with this test project. You can change the

scope later using the project properties dialog.

This example shows a test project called Tests. In the Run folder there are two test

executions, and in the Test Suite folder there are two test suites created.

IRADv6_ComponentTest.ppt Page 11 of 38

IBM Software Group

11

Automated Component Testing © 2005 IBM Corporation

Test Suite

� The folder Test Suite

contains your component
test suites

� Use the Component Test
wizard to create a new

component test

� Do not use the Test Artifact
menu option for creating
artifacts for Automated

Component Testing

The Test Suite folder contains your component test suites, which you create using the
Component Test wizard.

This example shows the Test Suite folder which contains two test suites.

To start the Component Test wizard, use the context menu in the Test Navigator. This
slide shows the context menu. You should not select the ‘Test Artifact…’ menu item for

creating your Automated Component tests. That option is primarily used for creating tests
using the JUnit testing framework.

IRADv6_ComponentTest.ppt Page 12 of 38

IBM Software Group

12

Automated Component Testing © 2005 IBM Corporation

Test Suite Editor

Click here to
edit the test

behavior

Use these tabs
to add/remove
test cases or

stubs for this
test

Here is an example of the Test Suite Editor. It has a link to the behavior file, so you can
click it to bring up the Java editor on the behavior file. You can also edit your test cases
and stubs that are defined for the test. In this example you see that there are two test

cases and no stubs defined. Use the tabs or the More buttons to edit them.

IRADv6_ComponentTest.ppt Page 13 of 38

IBM Software Group

13

Automated Component Testing © 2005 IBM Corporation

Test Case

� Defines the components to

be tested

� The first test case is
created using the

Component Test wizard

� There is one method in the

test behavior for each test
case

� Context menu to add a test

case to a component test

A test case defines the components to be tested. In this example you see one test case
defined for one test suite and two test cases defined in another test suite. All of these are
stored in the Test Suite folder in the test project.

You create the first test case using the Component Test wizard. This wizard automatically

creates a test script which will contain one method for each test case.

After you have created a test case, you might want to add another test case to a
component test. To do this, bring up the test behavior script, and then use the context
menu in the test behavior editor. Here is an example of the context menu, showing that

you can then add a scenario- based test or a method-level test.

The third example shows the test suite editor which lists all the test cases in the test suite,
along with their descriptions.

IRADv6_ComponentTest.ppt Page 14 of 38

IBM Software Group

14

Automated Component Testing © 2005 IBM Corporation

Test Behavior

� Java code defining the test

� Automatically created but

you can modify it

� There is one behavior for
each test suite

� One method for each test

case

The Test Behavior artifact is the Java code that defines the test. The Component Test
Wizard creates this for you automatically, but you can modify it.

There is one behavior for each test suite, and one method in the behavior file for each test
case.

This example shows you the test suite SubTwoNumbersTest which contains two methods

for the two test cases in the suite. Notice that the behavior is implemented as a subclass
of the JUnit TestCase class.

Also, the behavior file is stored in the Behavior folder in the test project, but this folder is

not viewable using the Test Navigator. Add the Package Explorer to the Test Perspective

is you wish to see them. However, even without the Package Explorer, you can access
the behavior file using a link in the Test Suite editor.

IRADv6_ComponentTest.ppt Page 15 of 38

IBM Software Group

15

Automated Component Testing © 2005 IBM Corporation

Test Data Table

� Defines the inputs and outputs for the test

� There is one test data table for each test case

The Test Data Table defines the inputs and outputs for the test. You will edit this table
and add the inputs and the expected outputs for the test. The outputs are really the
expected values that will be used as verification points, which are used to provide a

verdict. This example tests a method which subtracts two numbers and returns a result.
So in the test data table, the input values are 5 and 3, and the expected result of the
subtraction is 2.

Click inside a method in the test behavior to show the table corresponding to the test case

represented by the clicked method. If the table is not visible, use the context menu in the
behavior and select Component Test > Show Data Table

IRADv6_ComponentTest.ppt Page 16 of 38

IBM Software Group

16

Automated Component Testing © 2005 IBM Corporation

Test Run

� Contains the results of the execution of a test

� Default location is in the folder Run in the test project

Test run editor

Test runs

The test run contains the results of the execution of a test. The default location is in the
Run folder in the test project.

This example shows the test run editor which shows the test suite and the verdict. The
verdict is also given in the Test Navigator at each level with icons so that a pass verdict is

indicated with the green checkmark and the fail verdict is indicated with the red error icon.

Notice that under a run node, there are several levels of nodes. The first one is the test

suite, then the test case, then the data set, and finally the individual tests. There may be
more than one individual test if the test includes multiple data sets, or if it uses ranges or
sets in the test data table.

IRADv6_ComponentTest.ppt Page 17 of 38

IBM Software Group

17

Automated Component Testing © 2005 IBM Corporation

Test Data Comparator

� Shows the actual results of each method invocation in

the test case

The Test Data Comparator shows the actual results of each method invocation in the test
case. Passing results are listed in green, and failing verification points are highlighted in
red. Exceptions are highlighted only if not expected.

In this example, the routine subtracts two numbers and returns the result. The test case

supplied numbers 5 and 3 as inputs, and the expected output was entered as a 1. The
method actually returned a 2, so this is listed as an exception. In fact, the method worked
properly. It is the test data that is in error.

This is accessed by opening the test run folder, then drilling down to an individual test and

then double clicking on the individual test.

IRADv6_ComponentTest.ppt Page 18 of 38

IBM Software Group

18

Automated Component Testing © 2005 IBM Corporation

Running A Test

� Run an individual test case or full test suite

� Use launch configurations to manage the run

�Specify tests to run in the ‘Test’ tab

�Specify Run folder in the ‘Execution Results’ tab

You can run an individual test case or you can run the entire test suite. Just click on the
artifact of choice in the Test Navigator, the bring up the context menu and click the Run
option.

If you want to run the test immediately, the you can select Run > Component Test, and the

launch configuration is created for you automatically.

If you want to create and edit the launch configuration then select ‘Run…’ in the context
menu. Then you can pick the tests to run on the Test tab, and you can also pick the Run
folder on the ‘Execution Results’ tab.

IRADv6_ComponentTest.ppt Page 19 of 38

IBM Software Group

19

Automated Component Testing © 2005 IBM Corporation

Progress Of A Test Run

� The test runs as a batch process

� Click here to open the Progress view

� Click the red ‘Cancel Task’ icon to stop the test

The component test runs as a batch process, so you can see the status in the lower right
hand corner of the window. If you want to see the details of the batch run, then click on
the progress icon and you will open up the Progress view where you can watch the test

results. You can also cancel it if you desire.

IRADv6_ComponentTest.ppt Page 20 of 38

IBM Software Group

20

Automated Component Testing © 2005 IBM Corporation

Creating Tests For Java Components

� Java component test patterns

�Method-level testing

�Scenario-based testing

�Tests for abstract classes, interfaces, superclasses

When creating tests for basic Java components, there are several testing patterns that you can

choose from in the wizard.

Method-level testing

Use method level testing to test an individual method.

In this case, one test case is created for each method under test.

Scenario-based testing

Use scenario based testing to test a sequence of methods.

In this case, one test case is created for the sequence of methods under test.

Tests for abstract classes, interfaces, superclasses

Use this option to create an abstract test.

These tests cannot be run until they are made concrete with an implementing class.

When you create the abstract test, there will be one test behavior for the abstract test but no

test suite. When implemented, there will be a test suite containing the test case and the

behavior for each implementation of the abstract test.

You can make the abstract test concrete at the time you create the abstract test if there are

implementing classes available. Or you can make them concrete at a later time. To do it at

a later time, just start the Java Component Test wizard and pick the abstract test pattern.

IRADv6_ComponentTest.ppt Page 21 of 38

IBM Software Group

21

Automated Component Testing © 2005 IBM Corporation

Creating Tests For Java Component Stubs

�Used to guarantee behavior of a called component
to ensure isolating the component under test

�Example: MyClass1 calls MyClass2

�Create a stub for MyClass2

�Create a test suite for MyClass1

�Add the stub for MyClass2 to the test suite for MyClass1

A stub is defined as a class that provides a replacement implementation for the
actual classes that the code you are testing interacts with.

You use a stub to guarantee the behavior of a called component to ensure
component isolation under test.

For example, if MyClass1 calls MyClass2, you would create a stub for MyClass2,
create a test suite for MyClass1, and add the stub to the test suite for MyClass1.
Then, when you run the test for MyClass1, MyClass 2 is not called, but the stub is
used instead to create return values.

A stub is defined by behavior and data.

The behavior is stored in the stub folder of the test project, viewable in the
Package Explorer but not the Test Navigator.

Use the stub data table to simulate the stubbed class by specifying the input
and return values of the methods in the stubbed class.

After creating the stub, add it to the test suites that require it.

Test cases that call the stubbed method will automatically use the stubs defined in the
suite.

IRADv6_ComponentTest.ppt Page 22 of 38

IBM Software Group

22

Automated Component Testing © 2005 IBM Corporation

Creating Tests For Enterprise Java Beans

�EJB test patterns

�Life cycle testing

�Business methods testing

�Session facade testing

�EJB session bean stubs

�For stubbing the behavior of your session beans

�Use the stub data table to define the inputs and outputs

You can also create component tests for Enterprise JavaBeans. You can create tests for
session beans and entity beans, and you can test them using their local or remote
interfaces. You can also create stubs for your session beans.

When you run the EJB test wizard, you can choose from several test patterns.

You can choose lifecycle testing for stateless session beans, stateful session beans
and entity beans.

Test scenarios include creation, finding, setting state, checking state, and removal
of EJBs.

You can also test the business methods for your EJBs. Just like Java component
testing, you use the test data table to define your input data and expected results.

In session facades, a session bean wraps a subsystem of entity beans. When you
use the EJB component test wizard, you will be prompted to select methods to test
for the façade and also for the entity beans behind the façade.

Just like Java component test stubs, you can create stubs for your EJB session
beans. You will create the stub behavior for the stubbed EJB, and also enter your
data in the stub data table, and finally add the stub to the test suites that you want
to use them.

Session bean stubs are supported only on WebSphere Application Server V5
servers in this release. Entity bean stubs are not yet supported but will be in a later
release.

IRADv6_ComponentTest.ppt Page 23 of 38

IBM Software Group

23

Automated Component Testing © 2005 IBM Corporation

Creating Tests For Web Services

�Testing a Web service client

�Testing a Web service server

Automated Component Testing also supports Web services. You can test a Web service
client or a Web service server.

To test a Web service client:

Create a stub for the service using the Web Service Component Stub Wizard.

Use the WSDL to automatically create the stub behavior in the Stub folder.

Set up responses for client requests in the Stub Data Table.

Create a test behavior and test data table for the client.

Replace the service URL in the client with the service stub URL.

To test a Web service server:

Create a test suite for the service using the Web Service Component Test wizard.

Use the WSDL to automatically create a test client in the JavaSource folder of the

test project.

Set up input and expected return values in the Test Data Table.

IRADv6_ComponentTest.ppt Page 24 of 38

IBM Software Group

24

Automated Component Testing © 2005 IBM Corporation

Test and Stub Data Tables

� One for each test case

� One row per object or expression

� One column per test data set

� Automatic synchronization with test script

� Test data can be expressions, primitives, strings, sets or

ranges

� Test data can be defined for variables, method parameters,
method return value, method exception, simple objects,

attributes for complex objects

Test Data Tables (TDT) and Stub Data Tables are used to provide inputs and expected outputs of the

components under test.

There will be one TDT for each test case.

There will be one row in the TDT for each object or expression in the test script.

Each column in the TDT represents one test data set. For each data set, you will get a separate individual

test result in the Run folder after execution of the test.

There is automatic synchronization with the test script, so the script is automatically modified as you make

changes to the TDT.

Test data can be expressions, primitives, strings, sets or ranges. Test data can be defined for variables,

method parameters, method return value, method exception, simple objects, attributes for complex objects.

When using a set or a range for input values, you create multiple tests from a single data set. Each test

execution run represents one value from the range or set. Therefore you must be careful using this feature,

because you could easily create numerous tests. This is especially true when using more than one set or

range in a dataset, because the number of test executions is equal to the number of possible combinations of

all sets and ranges in the test case.

IRADv6_ComponentTest.ppt Page 25 of 38

IBM Software Group

25

Automated Component Testing © 2005 IBM Corporation

Test Data Table Elements

�Expressions – 10, “myString”, myObj.method()

�Sets – {“item1”,”item2”,”item3”}

�Ranges – [100..1000]/50

�Validation actions

� Initialization points

�Timing constraints

This slide describes elements in a Test Data Table (TDT).

Any valid Java expression that can appear as the source of an assignment statement can be used. This
could include numbers, strings in double quotes, variables, arrays, constructor calls and method calls. Other
examples include true, null, and java.io.InvalidObjectException. For arrays, you can use one dimensional
arrays or multidimensional arrays, and to add elements to the array, each row in the table will represent a
unique element in the array.

A set can be used for defining multiple inputs or outputs in a test. The values can be any data type including
objects.

A range can be used to supply multiple incremental numerical values. In the example, values are generated
starting at 100, incrementing by 50, until a maximum of 1000 is reached.

A validation action is used in a TDT to validate the value of a variable. When you create the validation
action, you pick from a list of variables previously defined in the test script, and then you provide an expected
output value in the TDT.

An initialization point is used to save the value of an object, for later reference in the TDT. When you create
the initialization point, you define a new variable and the value to be assigned to it.

A timing constraint is used to measure the duration of a method call or a sequence of method calls. You will
see two rows in the TDT for it, one to initialize it and the second one to measure the elapsed time. You can
enter a value such as ‘>= 5 seconds’ to check the elapsed time. You can also use milliseconds,
nanoseconds, minutes, hours or days.

IRADv6_ComponentTest.ppt Page 26 of 38

IBM Software Group

26

Automated Component Testing © 2005 IBM Corporation

Defining Attributes for Complex Objects

� In this example, several sets of defining attributes are provided for the

object of class Date

�The first set (set date as long) is from the specialized support for the
class.

�The second set (set properties) is from the properties of the JavaBean.

�The remaining sets are from the available constructors.

For complex objects, you can pick from several different sets of attributes to provide the
value of the object. When you click on the type column in the TDT for a complex object
you will be presented with several options:

The available constructors for the object.

The properties for a JavaBean object.

The specialized Component Testing support for the class.

In this example, you see the different options presented for the date object.

When complex objects are compared in a validation action, the way the object is

initialized determines the way the comparison works. For objects initialized with

constructors, the equals method is used. For objects initialized with properties,
each property is compared. For objects initialized with specialized classes, the
same specialized support is used for comparison.

IRADv6_ComponentTest.ppt Page 27 of 38

IBM Software Group

27

Automated Component Testing © 2005 IBM Corporation

Defining Attributes: Example for ‘Set
Properties’
� After selecting ‘Set properties’ for the Date variable, the

Test Data Table is populated with the properties for the
bean.

Here is the result of selecting ‘Set properties’ for a date object. Notice that each property
is listed on a separate row in the TDT. This makes it easy to set the value of each of the
properties in the TDT.

IRADv6_ComponentTest.ppt Page 28 of 38

IBM Software Group

28

Automated Component Testing © 2005 IBM Corporation

Test Metrics

� Displayed in the wizard for creating component tests

� An aid to assist you in selecting components to test

Test metrics are displayed in the wizard when creating a new component test. These are
used as an aid to measure the impact of the test and to help you define a test strategy.
There are three categories of metrics which will be described on the next slides.

In this example, you see the default metrics. To add more, click on the Options button.

The yellow color coding is used to indicated the cells that are above average for their

respective columns.

IRADv6_ComponentTest.ppt Page 29 of 38

IBM Software Group

29

Automated Component Testing © 2005 IBM Corporation

Test Metrics: Architecture

� Level

�Fan in

�Fan out

�External use

Level - indicates the level of class dependency, for example,

0 – references no other classes in the test scope

1 – references one or more level 0 classes

2 – references one or more level 1 classes

…

Fan in - the number of public methods and attributes of a class.

Fan out - the number of outside references to methods and attributes in a particular class.

External use - the number of classes with references to methods and attributes of the

measured class.

IRADv6_ComponentTest.ppt Page 30 of 38

IBM Software Group

30

Automated Component Testing © 2005 IBM Corporation

Test Metrics: Component Complexity

�Attributes

�Methods

�Statements

�Nesting level

�V(g) – maximum cyclomatic number

Attributes - the count of attributes in a class.

Methods - the count of methods in a class.

Statements - the count of statements in a class excluding comments.

Nesting level – the maximum nesting of structures in a class, for example,

1 – no nesting

2 – if (…) { if (…) {} }

…

V(g) – the maximum cyclomatic complexity of any method in the class. For a method,
count one for each decision point (if, for, while, case statement), and add one (for the
entry point of the method).

IRADv6_ComponentTest.ppt Page 31 of 38

IBM Software Group

31

Automated Component Testing © 2005 IBM Corporation

Test Metrics: Coverage

� Line(%)

�Tests

Line(%) – the percentage of the number of lines in the class that are covered by test runs
in the workspace. To enable this you must run your tests with profiling using the profiling
set for method and line coverage.

Tests – the number of times the class is referenced in test cases in the workspace.

IRADv6_ComponentTest.ppt Page 32 of 38

IBM Software Group

32

Automated Component Testing © 2005 IBM Corporation

Profiling a Component Test

� Use Profile menu

� Select your profiling set

� Review results

It is easy to use profiling while you run your component tests, so you can have all the
usual profiling features at your disposal. It is not required that you use profiling, but you
should if you plan on using the line percentage test metric. If you do not use profiling, this

test metric will be zero.

To use profiling, select a test suite in the Test Navigator, then bring up in the context
menu. The example above shows the profile menu. If you have already set up your
profiling sets in a configuration, you can select Profile > Component Test. If not, select

Profile > Profile…, and you will see the Profile dialog as above. This looks like the normal
Run configuration dialog that you have seen for Component Testing, except with the

addition of the Profiling tab, where you can select the profiling sets. This example shows

the selection of Method and Line Coverage Information, which will ensure that the line

percentage test metric is calculated. When you run this profile, the perspective is
switched to the Profiling and Logging Perspective where you can see the results of the
profiling sets that you have selected.

IRADv6_ComponentTest.ppt Page 33 of 38

IBM Software Group

33

Automated Component Testing © 2005 IBM Corporation

Preferences

� Advanced Options

� Data Tables

� Test Generation

Use the Advanced Options page to enable or disable statements in data tables. If you
enable statements such as if, for and while, then the variables used in those statements
will be represented by rows in the data tables and you will be able to set input and output

values for them. If you do not enable them, you will not be able to set values for variables
used in the statements.

Use the Data Tables page to set the styles of cells in your data tables, including font and
color.

Use the Test Generation page to set the default values for your generated tests, including

the names of your tests and packages. For Web Services you can also specify the

runtime as IBM WebSphere or Apache Axis.

IRADv6_ComponentTest.ppt Page 34 of 38

IBM Software Group

34

Automated Component Testing © 2005 IBM Corporation

Supported Application Servers

Application Server WTE WAS WTE WAS WAS/WTE .Net

Version 5.02 (?) 5.02 (?) 5.1 5.1 6.0 4.1 5.0 2003

Test Web Services ���� ���� ���� ���� ���� ���� ���� ����

Stub Web Services ���� ���� ���� ���� ���� ���� ���� N/A

Test EJBs Remote Interfaces ���� ���� ���� ���� ���� N/A N/A N/A

Test EJBs Local Interfaces ���� ���� ���� ���� ���� N/A N/A N/A

Stub EJBs Session ���� ���� ���� ���� ���� N/A N/A N/A

Stub EJBs Entity BMP ���� ���� ���� ���� ���� N/A N/A N/A

Stub EJBs Entity CMP 1.1 ���� ���� ���� ���� ���� N/A N/A N/A

Stub EJBs Entity CMP 2.0, 2.1 ���� ���� ���� ���� ���� N/A N/A N/A

Apache Tomcat

This charts shows which application servers are supported in this release for each major
function in Automated Component testing.

The check marks indicate support in the current release.

The x’s indicate not currently supported.

IRADv6_ComponentTest.ppt Page 35 of 38

IBM Software Group

35

Automated Component Testing © 2005 IBM Corporation

Troubleshooting

� Check the version of the application server on which the

tests/stubs are deployed.

� Check if the Agent Controller (RAC) has been properly
setup and is running

If you are having trouble, ensure that you have installed the Rational Agent Controller.
See the appendix of this presentation for more information.

Also check to see that your server is supported.

Use the preference “Keep temporary run project after test execution”, and check that the
project compiles successfully.

The folder names for these projects are similar to .cta_exec_200408031149199290

where the timestamp matches the time on the run results in the Test Navigator.

Check for an error indicator on the folder in the Profiling or Resource Perspective.

IRADv6_ComponentTest.ppt Page 36 of 38

IBM Software Group

36

Automated Component Testing © 2005 IBM Corporation

Reference

�Help > Help Contents > Testing applications >
Testing Java and enterprise application
components

Check the Help Contents in the tool to find more detailed information about Automated
Component Testing.

IRADv6_ComponentTest.ppt Page 37 of 38

IBM Software Group

37

Automated Component Testing © 2005 IBM Corporation

Installing Rational Agent Controller

� Run launchpad.exe in the folder <install files directory>\disk1

� Select ‘Install Agent Controller’ on the main menu

� When prompted for the Java runtime, specify <Install

directory>\eclipse\jre\bin\java.exe

� e.g., C:\IBM\RADBeta6.0\eclipse\jre\bin\java.exe

� When prompted for the location of the WebSphere Application Servers

V5.1 and V5.0, leave both blank if using the integrated V6 server

� After installation, a service is created called ‘Hyades Data Collection

Engine’, and it is automatically started

� To remove RAC, use Add/Remove Programs and select ‘IBM Rational

Agent Controller’

This slide provides details on installing Rational Agent Controller.

This concludes this presentation covering Automated Component Testing.

IRADv6_ComponentTest.ppt Page 38 of 38

38

IBM Software Group

Automated Component Testing © 2005 IBM Corporation

Trademarks, Copyrights, and Disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS MQSeries Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice. Any statements regarding IBM's
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program
Product in this document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2004. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

Template Revision: 11/02/2004 5:50 PM

