
© Copyright IBM Corporation 2004 All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 1 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

IBM RATIONAL APPLICATION DEVELOPER 6.0 – LAB EXERCISE

Rapid Application Development with UML and
Annotation Based Programming

What this exercise is about ... 1

Lab Requirements... 2

What you should be able to do ... 2

Introduction ... 2

Exercise Instructions ... 3

Part 1: Setup Development Environment.. 4

Part 2: Planning and Designing Application.. 5

Part 3: Build the WebSphereBank Enterprise Application Project.. 5

Part 4: Adding Enterprise Java Beans to WebSphereBank.. 8

Part 5: Configure Container Managed Relationships ... 12

Part 6: Adding Business Logic to our Enterprise Java Beans .. 15

Part 7: Adding EJB QL Statements... 24

Part 8: Complete Application .. 27

What you did in this exercise .. 29

Solution Instructions.. 30

What this exercise is about

This exercise will highlight how to build a J2EE 1.4 application using the rapid application development
support provided with IBM Rational Application Developer v6.0. Applications which define business
objects with entity beans can be designed visually using UML notations with the UML editor. The
underlying Java artifacts will be created as the objects and relationships are created in the editor. Another
feature available for rapid application development is annotation based programming. In J2EE artifacts,
tags based on the proposed XDoclet specification may be used to define the different parts and specify
deployment information in a single file. Developers can focus on defining the details and creating the
business logic rather than managing all of the resources and searching for the correct location in the
deployment descriptor to specify the correct information. The application you will build in this exercise,
using UML and annotations, will demonstrate several key concepts associated with the Enterprise
JavaBean specification. Specifically, you will become more familiar with Container-Managed Persistence
(CMP) entity EJBs and using the EJB Query Language to retrieve business data.

© Copyright IBM Corporation 2004. All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 2 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

Lab Requirements

List of system and software required for the student to complete the lab.

• IBM Rational Application Developer v6.0 with embedded WebSphere Application Server v6.0 Test
Environment installed

• Lab source files (Labfiles60.zip) must be extracted to the root directory (i.e., C:\)

What you should be able to do

At the end of this lab you should be able to use IBM Rational Application Developer v6.0 to:

• Create enterprise beans compliant to the EJB 2.1 specification with the UML editor

• Configure a relationship between two CMP Entity EJBs with the UML editor

• Define EJB QL statements using annotations

• Import a WAR file and add the Web Project to an existing EAR Project

• Export an EAR file

Introduction

You will begin this exercise by building a small banking application which features Container-Managed
Persistence (CMP) with IBM Rational Application Developer v6.0. Using the UML editor, you will start by
creating an entity bean with Container-Managed Persistence which represents a bank account. The UML
editor provides a UML view into the contents of the account entity bean. When artifacts are created in the
UML editor, the Java artifacts are created. During creation, annotation tags can be used in defining the
different parts of the Enterprise JavaBean.

You will also create a second CMP EJB that will represent a customer in the banking application. The
Customer and Account beans are associated through a Container Managed Relationship. This relationship
is a One-To-Many unidirectional relationship where the Customer bean will include behavior to access the
Accounts that are owned by that Customer. The relationship can also be established using the UML
editor.

With the Account bean created, you will create a session enterprise bean which will use the local interface
of the entity bean to perform a transfer of funds between accounts. The Transfer session bean will be
generated with remote and local interfaces.

References between the different beans will also be defined through the UML editor.

After defining the references, you will then define the business logic by adding the appropriate Java
methods. To promote these methods to the correct local or remote interfaces, annotation tags can be
used. You will also add several query functions to the Customer EJB using EJB QL with annotation tags.

With the business logic of your application created, you will next add a web module and an application
client module to your J2EE 1.4 application. The web module contains several servlets which use the local
interface of the session bean to transfer funds, while the application client will use the remote interface to
perform the same transfer operation. With your J2EE 1.4 application complete, you will export the
application as an Enterprise Archive (EAR) file.

The following diagram highlights the WebSphereBank Application.

© Copyright IBM Corporation 2004. All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 3 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

Exercise Instructions

Because these instructions are not operating-system specific, the directory locations will be specified in the
lab instructions using symbolic references, as follows:

The following sections list the instructions for this lab.

Reference Variable Windows Location AIX/UNIX Location

<LAB_FILES> C:\Labfiles60 /tmp/Labfiles60

<RAD_HOME> C:\Program Files\IBM\Rational\SDP\6.0

© Copyright IBM Corporation 2004. All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 4 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

Part 1: Setup Development Environment

____ 1. Start IBM Rational Application Developer v6.0.

__ a. Select Start > Programs > IBM Rational > IBM Rational Application Development V6.0 >
Rational Application Developer.

__ b. When prompted enter <LAB_FILES>\IRAD_UMLandAnnotations\workspace for your
workspace.

__ c. Click OK.

NOTE: If the Auto Launch Configuration Change Alert window appears click the Yes button to change
the auto launch eclipse instance to use when opening IBM Rational Software Development Platform in
the future.

____ 2. When IBM Rational Application Developer v6.0 opens, click the X at the top left corner of the
Welcome page.

u

© Copyright IBM Corporation 2004. All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 5 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

Part 2: Planning and Designing the Application

Before starting any enterprise application, careful planning and thorough design should be performed. There
are many strategies and design patterns for building applications. One set of guidelines for application
development is the Rational Unified Process (RUP). RUP is a software engineering process that provides a
disciplined approach to assigning tasks and responsibilities within a development organization. Its goal is to
ensure the production of high-quality software that meets the needs of its end users within a predictable
schedule and budget. IBM Rational Application Developer includes a library of RUP information which
developers can conveniently access as they develop J2EE enterprise applications.

____ 1. View the Rational Unified Process information included with IBM Rational Application Developer

__ a. Select Help > Process Browser.

__ b. The different topics for Getting Started will be displayed. Select the Developer tag, to view the
different topics organized by different roles.

__ c. Click the Scope button, in this dialog, you can filter what content searches should include.

__ d. Close the Process Browser window.

____ 2. The Rational Unified Process is also available within IBM Rational Application Developer. View the
Process Advisor.

__ a. Select Help > Process Advisor.

__ b. The Process Advisor view will open and different topics are displayed.

__ c. Click on the Process Search button which is the left-most button in the Process Advisor view.

__ d. A value can be searched for and a specific scope can be set. Enter EJB into the Search query
field and click Search. The results will be displayed in the Classic Search view.

© Copyright IBM Corporation 2004. All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 6 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

__ e. Right click on the first link under the Tool Mentors, then select Go to File. The topic will be
displayed within the Process Browser.

__ f. Click the Process Search view icon again. Select the dW Search tab. The dW Search tab allows
you to search resources on the web which are hosted at developerWorks.

__ g. If you are connected to the Internet, enter EJB in the Search for field and click the Search
button.

__ h. The results will be displayed again in the Classic Search view. Right click on the first result in
the view and select Go to File.

__ i. A browser will be opened with the document displayed.

© Copyright IBM Corporation 2004. All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 7 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

Part 3: Building the WebSphereBank Enterprise Application Project

____ 1. Create the appropriate Enterprise JavaBean and EAR projects for the application.

__ a. From the menu select File > New > EJB Project.

__ b. For the Name, enter WebSphereBankEJB.

__ c. Click Show Advanced.

__ d. Change the EAR project to WebSphereBankEAR.

__ e. Check the box Add support for annotated Java classes. This will setup Rational Application
Developer to support annotation-based programming in the WebSphereBankEJB project. If the
annotation support is not added at this time, when an enterprise bean is created, it can be added
then.

__ f. Click Finish.

© Copyright IBM Corporation 2004. All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 8 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

Part 4: Adding Enterprise Java Beans to WebSphereBank

____ 1. The main business object components of the application can be created using the UML editor.
Create a UML class diagram editor.

__ a. In the Project Explorer open EJB Projects and right click on WebSphereBankEJB .

__ b. Select New > Class Diagram from the menu.

__ c. For the File name, enter WebSphereBank.

__ d. Click Finish. The UML editor for the project will be displayed.

____ 2. Create the Account entity bean.

__ a. From the Palette view, click CMP 2.x Entity Bean and click in the UML editor.

© Copyright IBM Corporation 2004. All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 9 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

__ b. The Create an Enterprise Bean wizard will be started. For the Bean name, enter Account.

__ c. For the Default package, enter com.ibm.websphere.samples.bank.ejb.

__ d. Click the box for Generate an annotated bean class. This option will create the bean class with
the appropriate annotation tags.

__ e. Click Next.

__ f. Check the Remote Client View and Local Client View check boxes.

__ g. Select the id:java.lang.Integer entry in the list of CMP attributes and click Remove.

__ h. Click the Add button next the CMP attributes list.

__ i. Create the following 3 CMP attributes for the Account bean. To add an individual CMP attribute
click Apply, and continue to the next attribute. When all of the attributes have been added click
Close.

Name Type Key (select Key Field check box)

accountNumber int YES

accountType int NO

balance float NO

NOTE: Make sure to check the box next to Promote getter and setter methods to remote
interface and Promote getter and setter methods to local interface for the non-key fields.
Also, for the key field check the box next to Key field.

__ j. Click Finish. The Account bean will be displayed in the UML editor and created in the Enterprise
JavaBean project.

____ 3. Create the Customer entity bean.

__ a. From the Palette, click CMP 2.x Entity Bean again and click in the UML editor.

__ b. Enter Customer for the Bean name.

__ c. Insure com.ibm.websphere.samples.bank.ejb is set for the Default package field and click
Next.

© Copyright IBM Corporation 2004. All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 10 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

__ d. Check the Remote Client View and Local Client View check boxes.

__ e. Select the id:java.lang.Integer entry in the list of CMP attributes and click Remove.

__ f. Click the Add button next to the CMP attributes list.

__ g. Create the following 4 CMP attributes for the Customer bean. To add an individual CMP
attribute click Apply, and continue to the next attribute. When all of the attributes have been
added click Close.

Name Type Key (select Key Field check box)

customerNumber long YES

lastName java.lang.String NO

firstName java.lang.String NO

taxID java.lang.String NO

NOTE: Make sure to check the box next to Promote getter and setter methods to remote interface
and Promote getter and setter methods to local interface for the non-key fields. Also, for the key field
check the box next to Key field.

__ h. Click Finish to create the Customer entity bean.

____ 4. Create the Transfer Stateless Session Bean.

__ a. From the Palette, click Session Bean and click in the UML editor.

__ b. Enter Transfer for the Bean name.

__ c. Insure com.ibm.websphere.samples.bank.ejb is set for the Default package field.

__ d. Click Next.

__ e. Check the Remote Client View and Local Client View check boxes.

__ f. Click Finish to create the Transfer bean.

__ g. Save the UML editor.

____ 5. Open the CustomerBean.java file.

__ a. From Project Explorer view, expand EJB Projects > WebSphereBankEJB > ejbModule >
com.ibm.websphere.samples.bank.ejb.

__ b. Right click on CustomerBean.java and select Open from the menu.

____ 6. When the Customer bean was created, the option to create an annotated bean class was selected.
With this option selected, a number of artifacts for the bean are defined with annotation tags and
generated by the development environment before deployment. Much of the information, which
defines the bean in the deployment descriptor, is also specified with annotation tags. The
development environment is also responsible for setting the correct values in the deployment
descriptor from these tags in order for the bean to be packaged correctly for deployment into a
runtime environment. With annotation tags, a developer can focus attention on a single file rather
than multiple Java source files and deployment descriptors. Inspect the annotations in the
CustomerBean.java file.

© Copyright IBM Corporation 2004. All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 11 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

__ a. If you scroll to the top of the CustomerBean file, you will see a large comment section. In this
section there a number of annotation tags with details about the CustomerBean in general.
Annotation tags can be set at the class, field, or method scope levels. These tags are at the
class scope level. The first tag, @ejb.bean, contains parameters which define the overall bean.
The name of the bean, type of bean, and JNDI name are some of the values.

/**
Bean implementation class for Entity Bean: Customer
*
@ejb.bean
name="Customer"
type="CMP"
cmp-version="2.x"
schema="Customer"
jndi-name="ejb/com/ibm/websphere/samples/bank/ejb/CustomerHome"
local-jndi-name="ejb/com/ibm/websphere/samples/bank/ejb/CustomerHome"
view-type="both"
reentrant="true"
*

__ b. The next two tags, @ejb.home and @ejb.interface, define the name of the files which will be
the local home, local, home, and remote interfaces.

 * @ejb.home
 * remote-class="com.ibm.websphere.samples.bank.ejb.CustomerHome"
 * local-
class="com.ibm.websphere.samples.bank.ejb.CustomerLocalHome"
 *
 * @ejb.interface
 * remote-class="com.ibm.websphere.samples.bank.ejb.Customer"
 * local-class="com.ibm.websphere.samples.bank.ejb.CustomerLocal"
 *

__ c. The last tag, @ejb.pk, defines the class which represents the primary key for the CustomerBean.

 * @ejb.pk
 * class="com.ibm.websphere.samples.bank.ejb.CustomerKey"
 *

__ d. If you select the ejbCreate method from the Outline view or scroll down to the ejbCreate method,
you will see a tag which defines the method to be promoted to the local home interface for the
bean.

 /**
 * ejbCreate
 * @ejb.create-method
 * view-type="local"
 */
 public com.ibm.websphere.samples.bank.ejb.CustomerKey

ejbCreate(long customerNumber) throws CreateException {

__ e. Close CustomerBean.java.

© Copyright IBM Corporation 2004. All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 12 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

Part 5: Configure Container Managed Relationships

____ 1. Establish a relationship between the Customer and Account beans

__ a. Return to the UML Editor.

__ b. From the Palette, click on the drop down arrow next to the 0..1:0..1 CMP Relationship option
and select 0..1:0..* Directed CMP Relationship.

__ c. Click the Customer bean and hold as you drag to the Account bean before releasing. The
relationship will be created.

____ 2. Specify EJB References for the Account, Customer, and Transfer beans. These references are
used for calling the different beans from the different interfaces. The following is a summary of the
references that need to be configured.

© Copyright IBM Corporation 2004. All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 13 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

Bean References

Account ejb/Customer

Customer ejb/Account

Transfer ejb/Account

__ a. From the Palette view, click EJB Reference.

__ b. Click the Account bean and hold as you drag to the Customer bean before releasing.

__ c. When releasing, select Create New EJB local reference.

__ d. Repeat Steps a-b for the Customer and Transfer beans with the appropriate references. These
beans both reference the Account bean.

© Copyright IBM Corporation 2004. All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 14 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

__ e. Save your progress.

____ 3. Verify that the appropriate methods which support the container-managed relationship have been
added to the CustomerBean.

__ a. From Project Explorer view, expand EJB Projects > WebSphereBankEJB > ejbModule >
com.ibm.webspher.samples.bank.ejb, and open the CustomerBean.java file.

__ b. From the Outline view verify that the getAccount() and setAccount(Collection) methods have
been added to the class definition. These were added to support the container-managed
relationship created in the UML editor.

© Copyright IBM Corporation 2004. All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 15 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

Part 6: Adding Business Logic to our Enterprise Java Beans

____ 1. There are several classes that are referenced from within the business logic you are adding to your
EJBs in this section. These class files have been provided for you with this lab in the
BankUtilities.jar file. Import the BankUtilities.jar file into your EJB project.

__ a. From Project Explorer view, expand EJB Projects > WebSphereBankEJB and right click on the
ejbModule folder. Select Import from the context menu.

__ b. From the import wizard, scroll to the bottom and select Zip file and click Next.

__ c. Click the Browse button near the top of the window, and navigate to
<LAB_FILES>\IRAD_UMLandAnnotations\BankUtilities.jar and click Open.

__ d. Verify that you are importing into the WebSphereBankEJB/ejbModule folder, and click Finish.

__ e. You need to also import the BankUtilities into the WebSphereBankEJBClient project. From
Project Explorer view, expand Other Projects > WebSphereBankEJBClient and right click on
the ejbModule folder. Select Import from the context menu.

__ f. From the import wizard, scroll to the bottom and select Zip file and click Next.

__ g. Click the Browse button near the top of the window, and navigate to
<LAB_FILES>\IRAD_UMLandAnnotations\BankUtilities.jar and click Open.

__ h. Verify that you are importing into the WebSphereBankEJBClient/ejbModule folder, and click
Finish.

__ i. There will be some error messages generated in the Problems view. You can ignore these for
now.

____ 2. Add business logic to the Account bean (AccountBean.java). There are several methods you will
add. First, there are two basic methods available for adding or subtracting funds from an account.

__ a. From Project Explorer view, expand EJB Projects > WebSphereBankEJB > ejbModule >
com.ibm.websphere.samples.bank.ejb and open AccountBean.java file.

__ b. At the top of the class, add TimedObject to the class definition. This will allow for a timer to be
associated with the Account bean.

public abstract class AccountBean implements EntityBean, TimedObject
{

__ c. Add the add(), subtract() and Timer methods to the AccountBean class. The code for this is
included in <LAB_FILES>\IRAD_UMLandAnnotations\snippets\snippet1.txt. Copy all of the
code included in this file into the AccountBean class under the line private
javax.ejb.EntityContext myEntityCtx;.

__ d. The first statements you added are declarations for objects used in the business logic. The
bundle is an object with messages available for the application and the
CUSTOMER_JNDI_NAME is used for lookups of the CustomerBean.

private ListResourceBundle bundle = (ListResourceBundle)
ResourceBundle.getBundle("com.ibm.websphere.samples.bank.ejb.AccountR
esourceBundle");
private final static String CUSTOMER_JNDI_NAME =
"java:comp/env/ejb/Customer";

© Copyright IBM Corporation 2004. All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 16 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

__ e. Review the code for the add() and subtract() methods.

 public float add(float amount) {
 setBalance(getBalance() + amount);
 return getBalance();
 }

 public float subtract(float amount) throws
InsufficientFundsException {
 if (getBalance() < amount) {
 throw new
 InsufficientFundsException(bundle.getString("insufficientFunds"));
 }
 setBalance(getBalance() - amount);
 return getBalance();
 }

__ f. Review the code for the Timer methods.

public void myCreateTimer(double percent) throws
javax.ejb.EJBException {

 TimerService timerService = null;

 try {
 timerService = getEntityContext().getTimerService();
 } catch (Exception e) {
 e.printStackTrace();
 throw new javax.ejb.EJBException(e.getMessage());
 }
 if (timerService != null) {
 try {
 Timer timer = timerService.createTimer(10000, 10000,

new Double(percent));
 } catch (Exception e) {
 e.printStackTrace();
 throw new javax.ejb.EJBException("Failed to create

Timer.");
 }
 } else {
 throw new javax.ejb.EJBException("Failed to get Timer

Service.");
 }

 }

public void myCancelTimer() throws javax.ejb.EJBException {
 TimerService timerService = null;

 try {
 timerService = getEntityContext().getTimerService();
 } catch (Exception e) {
 e.printStackTrace();
 throw new javax.ejb.EJBException(e.getMessage());
 }
 if (timerService != null) {
 try {
 Timer timer = (Timer)

timerService.getTimers().iterator().next();
 timer.cancel();
 } catch (Exception e) {
 e.printStackTrace();
 throw new javax.ejb.EJBException("Failed to cancel

Timer.");
 }

© Copyright IBM Corporation 2004. All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 17 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

 } else {
 throw new javax.ejb.EJBException("Failed to get Timer

Service.");
 }

 }

public void ejbTimeout(Timer timer) {
 try {
 double percent = ((Double) timer.getInfo()).doubleValue();
 percent = percent / 100.0;
 double currentbalance = getBalance();
 add((float) (currentbalance * percent));
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

__ g. Add the following ejbCreate and ejbPostCreate methods to AccountBean.java just before the
closing bracket for the class definition. For your convenience, this code can be found in
<LAB_FILES>\IRAD_UMLandAnnotations\snippets\snippet2.txt.

public com.ibm.websphere.samples.bank.ejb.AccountKey
ejbCreate(int accountNumber, int type, float balance,
long customerNumber) throws javax.ejb.CreateException {

 setAccountNumber(accountNumber);
 setAccountType(type);
 setBalance(balance);
 return null;
 }

public void ejbPostCreate(int accountNumber, int type, float

initialBalance, long customerNumber) throws
javax.ejb.CreateException {

 try {
 AccountLocal thisAccount = (AccountLocal)
getEntityContext().getEJBLocalObject(); // get this object's local
interface
 InitialContext initCtx = new InitialContext();
 CustomerLocalHome customerHome = (CustomerLocalHome)
initCtx.lookup(CUSTOMER_JNDI_NAME);

 CustomerLocal customer =
customerHome.findByPrimaryKey(new CustomerKey(customerNumber)); //get
the customer
 customer.addAccount(thisAccount); //add this account
 } catch (Exception e) {
 e.printStackTrace(); //for debugging
 throw new CreateException(e.getMessage()); //throws
create exception - something went wrong
 }
 }

__ h. At this point there may be a number of errors indicating that the appropriate import statements
have not been included in the AccountBean class definition. An easy way to add these import
statements is to right click anywhere in the editor area, and from the context menu choose
Source > Organize Imports or press Ctrl+Shift+O.

NOTE: You may be prompted to choose the appropriate Timer class. You should choose javax.ejb.Timer.

© Copyright IBM Corporation 2004. All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 18 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

____ 3. Since you added a number of methods to the bean, you will need to promote these methods to the
correct interface (Home, Local Home, Remote, or Local). With annotation-based programming, the
promotion can be performed easily by adding in the correct tags to the methods in the bean Java
source file.

__ a. In the Outline view, select ejbCreate(int, int, float, long).

__ b. In the Javadoc comment above the method, add the tag @ejb.create-method below the method
name. You can use Content Assist to help select the correct tag. Press Ctrl+Space Bar after
typing the @ and select the tag from the list.

__ c. On the line below the @ejb.method tag, set the parameter viewtype to “local”. This will
promote this create method to the local home interface.

/**
* ejbCreate
* @ejb.create-method
* view-type="local"
*/
public com.ibm.websphere.samples.bank.ejb.AccountKey ejbCreate(int
accountNumber, int type, float balance, long customerNumber) throws
javax.ejb.CreateException {

__ d. The following table summarizes the other methods you added to AccountBean, and indicates
which methods should be promoted to the Local and/or Remote interfaces. In the Javadoc
above each of the different methods, add the correct annotation to promote the method.
(Remember to use Content Assist).

Promote local only

* @ejb.interface-method
* view-type="local"

Promote remote only

* @ejb.interface-method
* view-type="remote"

Promote to both local and remote

* @ejb.interface-method
* view-type="both"

Method Local Remote view-type

add YES YES “both”

subtract YES YES “both”

myCreateTimer YES NO “local”

myCancelTimer YES NO “local”

getAccountNumber YES NO “local”

__ e. Save and Close the AccountBean.java file.

© Copyright IBM Corporation 2004. All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 19 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

NOTE: There will still be errors in the Problem view that you will fix when you add the business logic for
the Customer bean.

____ 4. Add business logic to the Transfer bean (TransferBean.java). There are several methods you will
add. First, there are two basic methods available for getting the balance for an account and
transferring funds. In addition to this, there is another method that is used internally called
getAccountHome.

__ a. Open the TransferBean.java file.

__ b. Add the code snippet included in the
<LAB_FILES>\IRAD_UMLandAnnotations\snippets\snippet3.txt file to the top of the
TransferBean class as indicated below by the arrow.

public class TransferBean implements SessionBean {
private SessionContext mySessionCtx;

private AccountLocalHome accountHome = null;
private final static String ACCOUNT_JNDI_NAME =
"java:comp/env/ejb/Account";

public float getBalance(int acctId) throws FinderException,
EJBException {
 AccountKey key = new AccountKey(acctId);
 AccountLocal fromAccount;
 try {
 fromAccount = accountHome.findByPrimaryKey(key);
 return fromAccount.getBalance();
 } catch (ObjectNotFoundException ex) {
 throw new FinderException("Account " + acctId + " does not
exist.");
 } catch (FinderException ex) {
 throw new FinderException("Account " + acctId + " does not
exist.");
 } catch (Exception r) {
 throw new EJBException();
 }
}

public void transferFunds(int fromAcctId, int toAcctId, float amount)
throws EJBException, InsufficientFundsException, FinderException {

 AccountKey fromKey = new AccountKey(fromAcctId);
 AccountKey toKey = new AccountKey(toAcctId);
 AccountLocal fromAccount, toAccount;
 try {
 fromAccount = accountHome.findByPrimaryKey(fromKey);
 } catch (ObjectNotFoundException ex) {
 throw new FinderException("Account " + fromAcctId + " does
not exist.");
 } catch (FinderException ex) {
 throw new FinderException("Account " + fromAcctId + " does
not exist.");
 } catch (Exception r) {
 throw new EJBException();
 }

 try {
 toAccount = accountHome.findByPrimaryKey(toKey);
 } catch (ObjectNotFoundException ex) {
 throw new FinderException("Account " + toAcctId + " does not
exist.");

© Copyright IBM Corporation 2004. All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 20 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

 } catch (FinderException ex) {
 throw new FinderException("Account " + toAcctId + " does not
exist.");
 } catch (Exception r) {
 throw new EJBException();
 }

 try {
 toAccount.add(amount);
 fromAccount.subtract(amount);
 } catch (InsufficientFundsException ex) {
 mySessionCtx.setRollbackOnly();
 throw new InsufficientFundsException("Insufficient fund in "
+ fromAcctId);
 } catch (Exception r) {
 throw new EJBException();
 }
}

private AccountLocalHome getAccountHome() throws RemoteException {
 try {
 InitialContext initCtx = new InitialContext();
 Object objref = initCtx.lookup(ACCOUNT_JNDI_NAME);

 return(AccountLocalHome) objref;
 } catch (NamingException ne) {
 ne.printStackTrace();
 throw new RemoteException("Error looking up AccountHome
object: " + ne.getMessage());
 }
}

__ c. The accountHome member will need to be initialized with a handle to the Account bean. Add the
following code to the ejbCreate method. For convenience, the code is provided in the
<LAB_FILES>\IRAD_UMLandAnnotations\snippets\snippet4.txt file. Copy this code in
between the open and close brackets of the ejbCreate method.

 public void ejbCreate() throws CreateException {

 try {
 accountHome = getAccountHome();
 } catch (Exception e) {
 e.printStackTrace();
 throw new EJBException("Error getting accountHome: " +

e.getMessage());
 }
 }

__ d. Add the appropriate import statements. To do this, right click in the editor area and from the
context menu choose Source > Organize Imports or Ctrl+Shift+O.

NOTE: You may be prompted to choose the appropriate ObjectNotFoundException class. You should
choose javax.ejb.ObjectNotFoundException.

__ e. The methods you just added need to be made available to Local and Remote interfaces. To
promote these methods to the Local and Remote interface specify the correct annotation tags.
Locate and select the method in the Outline view and add the appropriate tag above the method
in the editor.

Promote to both local and remote

* @ejb.interface-method
* view-type="both"

© Copyright IBM Corporation 2004. All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 21 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

Method Local Remote view-type

getBalance YES YES “both”

transferFunds YES YES “both”

__ f. Save and Close the TransferBean.java file.

NOTE: There will still be errors in the Problem view that you will fix when you add the business logic for
the Customer bean.

____ 5. Add business logic to the Customer bean (CustomerBean.java). There are three basic methods
available: First, there is one for adding an account to the collection of accounts associated with a
Customer (addAccount), another method is available for retrieving the Collection of owned
accounts (getOwnedAccountNumbers), and finally a method that is used to retrieve the list of
accounts owned by a particular Customer (getAccountsList). You will also add new ejbCreate
and ejbPostCreate methods.

__ a. Open the CustomerBean.java file.

__ b. You will find the code that you are to add to the CustomerBean class in the
<LAB_FILES>\IRAD_UMLandAnnotations\snippets\snippet5.txt file. This file includes the 4
methods discussed above. Add this code to the top of the CustomerBean class, as indicated by
the arrow below.

public abstract class CustomerBean implements EntityBean {
private javax.ejb.EntityContext myEntityCtx;

public void addAccount(AccountLocal anAccount) { //added for CMR
 if (anAccount != null)
 getAccounts().add(anAccount);
}

public Vector getOwnedAccountNumbers() { //returns all the acct
numbers to the client - for CMR verification
 Vector allAccountNumbers = new Vector();
 Collection allAccounts = getAccounts();
 Iterator iterator = allAccounts.iterator();
 while (iterator.hasNext()) {
 AccountLocal account = (AccountLocal) iterator.next();
 Long acctNumber = new Long(account.getAccountNumber());
 allAccountNumbers.add(acctNumber);
 }
 return allAccountNumbers;

}

 public Collection getAccountsList() {

 ArrayList list = null;
 try {
 Collection allAccounts = getAccounts();

 Iterator it = allAccounts.iterator();
 while (it.hasNext()) {
 if (list == null)
 list = new ArrayList();

 AccountLocal account = (AccountLocal) it.next();

© Copyright IBM Corporation 2004. All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 22 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

 long acctNumber = (new
Long(account.getAccountNumber())).longValue();
 int acctType = account.getAccountType();
 float balance = account.getBalance();
 AccountData data = new AccountData(acctNumber,
balance, acctType);
 list.add(data);
 }

 } catch (Exception e) {
 e.printStackTrace();
 }
 return list;
 }

public com.ibm.websphere.samples.bank.ejb.CustomerKey
ejbCreate(CustomerKey customerKey, String name, String lname, String
taxID) throws javax.ejb.CreateException {
 setCustomerNumber(customerKey.getCustomerNumber());
 setFirstName(name);
 setLastName(lname);
 setTaxID(taxID);
 return null;
}

public void ejbPostCreate(CustomerKey customerKey, String name,
String lname, String taxID) throws javax.ejb.CreateException {
}

__ c. Add the appropriate import statements. To do this, right click in the editor area and from the
context menu choose Source > Organize Imports.

NOTE: You may be prompted to choose the appropriate Iterator class. You should choose
java.util.Iterator. Also note there may still be some errors indicated in the CustomerBean class, but these
errors will be addressed in the following steps.

__ d. Since you added the ejbCreate(CustomerKey, String, String, String) method, you will need to
promote this method to the Local Home interface. In the Outline view, select
ejbCreate(CustomerKey, String, String, String). Add the appropriate annotation tag above
the method to promote the method.

/**
 * ejbCreate
 * @ejb.create-method
 * view-type="local"
 */
 public com.ibm.websphere.samples.bank.ejb.CustomerKey
ejbCreate(CustomerKey customerKey, String name, String lname, String
taxID) throws javax.ejb.CreateException {

__ e. The following table summarizes the methods you added in Step 5a, and indicates which methods
should be promoted to the Local and/or Remote interfaces. To promote these methods to the
Local and Remote interface specify the correct annotation tags. Locate and select the method in
the Outline view and add the appropriate tag above the method in the editor.

Promote local only

* @ejb.interface-method
* view-type="local"

Promote remote only

* @ejb.interface-method
* view-type="remote"

© Copyright IBM Corporation 2004. All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 23 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

Method Local Remote view-
type

addAccount YES NO “local”

getOwnedAccountNumbers NO YES “remote”

getAccountsList NO YES “remote”

__ f. Save and Close the CustomerBean.java file.

© Copyright IBM Corporation 2004. All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 24 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

Part 7: Adding EJB QL Statements

EJB QL can be used to search for CMP entity beans and to search across relationships. Using annotations,
find and select methods can be easily defined.

____ 1. Create a find method for locating the appropriate Customer when with a specified last name.

__ a. Open CustomerBean.java.

__ b. At the top of the class, tags can be entered for defining finder methods. At the end of the
comment section, add the following tag and parameters using Content Assist to define a query
which will return a collection of customers with a particular lastname passed as a parameter.
The query statement can also be copied from the file
<LAB_FILES>\IRAD_UMLandAnnotations\snippets\snippet6.txt.

*
* @ejb.finder
* signature="java.util.Collection findByLastName(java.lang.String
name)"
* query="SELECT OBJECT (c) FROM Customer c WHERE c.lastName LIKE ?1
ORDER BY c.lastName"

__ c. The signature parameter specifies the actual signature for the method which is added to the
home and local home interfaces of the bean. The query parameter contains the query which is
placed in the ejb-jar.xml deployment descriptor.

____ 2. Add an ejbSelect method to the CustomerBean that will select accounts by balance for a particular
Customer.

__ a. Scroll to the bottom of the class.

__ b. Add the following method declaration to the class.

public abstract java.util.Collection ejbSelectAccountsByBalance (long
customerNumber, float balance) throws javax.ejb.FinderException;

__ c. Above the method, add the following tag and parameters using Content Assist. The query
statement text area can be copied from the file
<LAB_FILES>\IRAD_UMLandAnnotations\snippets\snippet6.txt.

/**
* @ejb.select
* query="SELECT a.accountNumber FROM Customer c, IN(c.account) a
WHERE c.customerNumber = ?1 AND a.balance > ?2"
*/

____ 3. Add an ejbSelect method to the CustomerBean that will select return the number of accounts owned
by a particular customer.

__ a. Beneath the method you just added add another method declaration.

public abstract int ejbSelectAccounts(long customerNumber) throws
javax.ejb.FinderException;

__ b. Above the method, add the following tag and parameters using Content Assist. The query
statement text area can be copied from the file
<LAB_FILES>\IRAD_UMLandAnnotations\snippets\snippet6.txt

/**
* @ejb.select
* query="SELECT COUNT(a) FROM Customer c, IN(c.account) a WHERE
c.customerNumber = ?1"
*/

© Copyright IBM Corporation 2004. All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 25 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

____ 4. Because select methods cannot be directly exposed to the client, you will need to add two methods
that expose the ejbSelect methods. In this simple example, you need business logic methods that
expose the results so a web module can use them.

__ a. Open the snippet of code provided in
<LAB_FILES>\IRAD_UMLandAnnotations\snippets\snippet6.txt

__ b. Cut and paste the getAccountsByBalance and the getAccountsCount methods provided in
<LAB_FILES>\IRAD_UMLandAnnotations\snippets\snippet6.txt, at the bottom of the
CustomerBean class in the Java editor.

public Vector getAccountsByBalance(float minimumBalance) {
final String methodName = "getAccountByBalance";

try {
Vector v = new Vector();
Collection c = ejbSelectAccountsByBalance(getCustomerNumber(),
minimumBalance);
Iterator iterator = c.iterator();
while (iterator.hasNext()) {

v.add(iterator.next());
}
return v;
} catch (javax.ejb.FinderException e) {
e.printStackTrace();
}
return null;
}

public int getAccountsCount() {
final String methodName = "getAccountsCount";

int c = 0;
try {
c = ejbSelectAccounts(getCustomerNumber());

} catch (javax.ejb.FinderException e) {
e.printStackTrace();
} catch (Exception e) {
e.printStackTrace();
}
return c;
}

__ c. The methods you just added need to be made available to Local and Remote interfaces. To
promote these methods to the Local and Remote interface specify the correct annotation tags.
Locate and select the method in the Outline view and add the appropriate tag above the method
in the editor.

Promote remote only

* @ejb.interface-method
* view-type="remote"

Promote to both local and remote

* @ejb.interface-method
* view-type="both"

 Promote both

© Copyright IBM Corporation 2004. All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 26 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

Method Local Remote view-type

getAccountsByBalance NO YES “remote”

getAccountsCount YES YES “both”

____ 5. Save and Close the CustomerBean.java file.

____ 6. Review the deployment descriptor code.

__ a. In the Project Navigator view, expand EJB Projects > WebSphereBankEJB.

__ b. Open the Deployment Descriptor.

__ c. On the Overview tab, select Customer under the Enterprise JavaBeans section.

__ d. The Bean tab should be displayed and the Customer bean selected. On the upper right section,
scroll down to the list of Queries. Notice the find and two select methods you created have been
registered in the deployment descriptor.

__ e. Close the EJB Deployment Descriptor editor.

© Copyright IBM Corporation 2004. All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 27 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

Part 8: Complete Application

____ 1. Remove the Cloudscape mappings generated when the entity beans were created. These
mappings are incorrect and can only be recreated after removing the generated mappings.

__ a. Expand EJB Projects > WebSphereBankEJB > ejbModule > META-INF > backends.

__ b. Delete the CLOUDSCAPE_V51_1 folder. This will delete the mappings.

____ 2. Verify that there are no errors listed in the Problems view. You should only see informational
messages listed.

____ 3. Specify the JNDI name for the CMP connection factory binding used by the entity beans for
database persistence.

__ a. Open the EJB Deployment Descriptor.

__ b. From the deployment descriptor editor, select the Overview tab.

__ c. Scroll to the bottom and underneath the section JNDI-CMP Connection Factory Binding enter
jdbc/Bank for the JNDI name and verify that the container authorization type is
Per_Connection_Factory

__ d. Save and Close the EJB deployment descriptor.

____ 4. Import the WebSphereBankWeb module.

__ a. Select File > Import from the menu.

__ b. Select WAR File from the list and click Next.

__ c. Click the Browse button and navigate to
<LAB_FILES>\IRAD_UMLandAnnotations\WebSphereBankWeb.war. Click Open.

__ d. The Web Project should be set to WebSphereBankWeb, and select the EAR project:
WebSphereBankEAR from the dropdown. Verify that the Add module to an EAR project
check box is selected and click Finish.

__ e. If the Confirm Perspective Switch window appears, click Yes.

__ f. You should see a number of errors displayed in the Problems view. To resolve these errors,
right-click on one of the errors and select Quick Fix.

__ g. A box of possible solutions will be displayed. Select Add project ‘WebSphereBankEJBClient’
to build path of ‘WebSphereBankWeb’. Click OK.

____ 5. Import the FindAccounts and GetAccounts Application Client modules.

__ a. Select File > Import from the menu.

__ b. Select App Client JAR File from the list and click Next.

__ c. Click the Browse button and navigate to
<LAB_FILES>\IRAD_UMLandAnnotations\FindAccounts.jar and click Open.

__ d. The Application Client project should be set to FindAccounts, and the EAR project should be
WebSphereBankEAR. Verify that the Add module to an EAR project check box is selected
and click Finish.

© Copyright IBM Corporation 2004. All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 28 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

__ e. If the Confirm Perspective Switch window appears, click Yes.

__ f. You should see a number of errors displayed in the Problems view. To resolve these errors,
right-click on one of the errors and select Quick Fix.

__ g. A box of possible solutions will be displayed. Select Add project ‘WebSphereBankEJBClient’
to build path of ‘WebSphereBankWeb’. Click OK.

__ h. Repeat Steps 5a-g above for the GetAccounts application client module. For this module you
will import the file: <LAB_FILES>\IRAD_UMLandAnnotations\GetAccounts.jar.

____ 6. Export WebSphereBank EAR file.

__ a. Click on File > Export and select EAR File from the list. Click Next.

__ b. Select WebSphereBankEAR from the drop down menu for the Enterprise Application project.

__ c. Browse to <LAB_FILES>\IRAD_UMLandAnnotations and enter WebSphereBank for the
name of the EAR file. Click Save.

__ d. Check the Export source files and Include project build paths and meta-data files check
boxes and click Finish.

© Copyright IBM Corporation 2004. All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 29 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

What you did in this exercise

In this exercise you built a simple J2EE 1.4 banking application which highlights several important
concepts associated with the EJB specification. Using rapid application development techniques such as
UML and annotation based programming, IBM Rational Application Developer v6, eases the development
effort. By providing a visual development and a simplified format with annotations, developers can quickly
and easily build J2EE applications.

© Copyright IBM Corporation 2004. All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 30 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

Solution Instructions

____ 7. Import the WebSphereBank application into Rational Application Developer for testing.

__ a. Select File > Import...

__ b. Select EAR file and select Next.

__ c. Select Browse... and navigate to
<LAB_FILES>\IRAD_UMLandAnnotations\solution\WebSphereBank.ear and select Open.

__ d. For the Project name, enter WebSphereBank.

__ e. Click Finish.

____ 8. Add Java Build Path to clean up errors. If you select the Problems tab, you will notice a list of
errors and warnings.

__ a. Right click on an error and select Quick Fix.

__ b. A list of available fixes will appear. Select Add project ‘WebSphereBankEJB’ to build path of
‘WebSphereBankWeb’ and select OK. The errors should disappear.

____ 9. Explore the WebSphereBankEJB project, and the various EJBs developed in this lab.

© Copyright IBM Corporation 2004. All rights reserved

2004 December, 17 IBM Rational Application Developer 6.0 – Lab Exercise Page 31 of 31

 IRADv6_BuildingWebSphereBankUMLAnnotationLab.doc

Trademarks and Disclaimers

The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States,
other countries, or both:

IBM iSeries OS/400 Informix WebSphere
IBM(logo) pSeries AIX Cloudscape MQSeries
e(logo)business xSeries CICS DB2 Universal Database DB2
Tivoli zSeries OS/390 IMS Lotus

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
Microsoft, Windows, Windows NT, and

the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both. Intel,
ActionMedia, LANDesk, MMX, Pentium and ProShare are

trademarks of Intel Corporation in the United States, other countries, or both. UNIX is a registered trademark of The Open Group in
the United States and other countries. Linux is a registered trademark of Linus Torvalds. Other company, product and service names
may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice.
This document could include technical inaccuracies or typographical errors. IBM may make improvements and/or changes in the
product(s) and/or program(s) described herein at any time without notice. Any statements regarding IBM's future direction and intent
are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM
products, programs, or services does not imply that IBM intends to make such products, programs or services available in all
countries in which IBM operates or does business. Any reference to an IBM Program Product in this document is not intended to
state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's
intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS
DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no
responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the
agreements (e.g., IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under
which they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot
confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations
or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or
copyrights. Inquiries regarding patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer
examples described are presented as illustrations of how those customers have used IBM products and the results they may have
achieved. The actual throughput or performance that any user will experience will vary depending upon considerations such as the
amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed.
Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set
forth in GSA ADP Schedule Contract and IBM Corp.

