
IBM Confidential
v6_SWG_Beta.ppt Page 1 of 31

®

IBM Software Group

© 2004 IBM Corporation

Updated January 24, 2005

IBM® WebSphere® Application Server V6

Java™2 Enterprise Edition (J2EE) 1.4

Servlet 2.4 and JSP 2.0 Features

IBM Confidential
v6_SWG_Beta.ppt Page 2 of 31

IBM Software Group

2

IBM Confidential Presentation Title © 2004 IBM Corporation

Goals

�Understanding the new features of Serlvet 2.4 and
JSP 2.0

�Servlet 2.4 has a few enhancements and clarifications
to the prior version 2.3

�JSP 2.0 helps to develop more simplified JSP pages as
compared to JSP 1.2

IBM Confidential
v6_SWG_Beta.ppt Page 3 of 31

IBM Software Group

3

IBM Confidential Presentation Title © 2004 IBM Corporation

Agenda

� Servlet 2.4

�RequestDispatcher

�Filters

�Listeners

�ServletRequest

�Sessions

� Internationalization

� JSP 2.0

�Expression Language

�Functions

�Custom Tags

�Deployment Descriptor

IBM Confidential
v6_SWG_Beta.ppt Page 4 of 31

IBM Software Group

4

IBM Confidential Presentation Title © 2004 IBM Corporation

Servlet 2.4Servlet 2.4

Section

IBM Confidential
v6_SWG_Beta.ppt Page 5 of 31

IBM Software Group

5

IBM Confidential Presentation Title © 2004 IBM Corporation

Servlet 2.4 Enhancements

� Request dispatcher sends additional info with forward()
calls

�Target Servlet can retrieve some key attributes of the originating
HTTP request

� Filters can be activated more selectively

�Only on requests that come from clients, on forwarded requests, or
both

�Deployment descriptor option

� Listeners can be defined to monitor request events
�Request created, destroyed, attributes modified

� Internationalization enhancements

� HTTP 1.1 support required for Servlet 2.4

Request Dispatcher

Servlet 2.4 adds five new request attributes to provide extra information during a RequestDispatcher
forward() call. Servles that have been invoked by another servlet using the forward method of
RequestDispatcher, have access to the path of the original request. One exception to this is a servlet
obtained by using the getNamedDispatcher method.

Filters

This indicates the filter should be applied to requests directly from the client as well as forward requests.
Adding the INCLUDE and ERROR values also indicates that the filter should additionally be applied for
include requests and <error-page> requests. Different combinations of these values can be specified. If you
don't specify any <dispatcher> elements, the default is REQUEST. Theres a new <dispatcher> element in
the deployment descriptor with possible values REQUEST, FORWARD, INCLUDE, and ERROR. You can
add any number of <dispatcher> entries to a <filter-mapping>

Listeners

Servlet 2.3 introduced the idea of context and session listeners, classes that could observe when a context or
session was initialized or about to be destroyed, and when attributes were added or removed to the context
or session. Servlet 2.4 expands the model to add request listeners, allowing developers to observe as
requests are created and destroyed, and as attributes are added and removed from a request.
Internationalization

Also in Servlet 2.4, the ServletResponse interface (and the ServletResponseWrapper) adds two new
methods:

setCharacterEncoding(String encoding)

getContentType()

In the servlet set the locale and the character encoding of a response. The locale is set using the
ServletResponse.setLocale method, and communicated to the client using the Content-Language header.
The character encoding can be set explicitly using the ServletResponse methods setCharacterEncoding and
setContentType, or implicitly using the ServletResponse.setLocale method, and is communicated to the
client using the charset parameter of the Content-Type header.

IBM Confidential
v6_SWG_Beta.ppt Page 6 of 31

IBM Software Group

6

IBM Confidential Presentation Title © 2004 IBM Corporation

Request Dispatcher Overview

�Request Dispatcher receives requests from the
client and sends them to any resource(servlet,JSP)

�An advanced forward() target servlet needs to
know the true original request URI

�The new attribute provides extra information
required during a RequestDispatcher forward() call

When you code the forward() method in a servlet, the servlet container changes the target
servlet's path environment as if it were the first servlet being invoked. The methods
getRequestURI(), getContextPath(), getServletPath(), getPathInfo(), and getQueryString()
all return information based on the URI (Uniform Resource Identifier) passed to the
getRequestDispatcher() method. However, sometimes an advanced forward() target
servlet might like to know the true original request URI. Servlet 2.4 adds five new request
attributes to provide extra information during a RequestDispatcher forward() call.

IBM Confidential
v6_SWG_Beta.ppt Page 7 of 31

IBM Software Group

7

IBM Confidential Presentation Title © 2004 IBM Corporation

Request Dispatcher - New Features

�New attributes to the RequestDispatcher forward()
method

�javax.servlet.forward.request_uri

�javax.servlet.forward.context_path

�javax.servlet.forward.servlet_path

�javax.servlet.forward.path_info

�javax.servlet.forward.query_string

� If forward() happens through a Named Dispatcher
call, the original path elements are not changed.

Inside a forwarded servlet getRequestURI() will return the path to the target servlet,
however to get at the original path, in the application you can request
request.getAttribute("javax.servlet.forward.request_uri").

If forward() occurs through a getNamedDispatcher() call, the above attributes are not set
because the original path elements are not changed.

IBM Confidential
v6_SWG_Beta.ppt Page 8 of 31

IBM Software Group

8

IBM Confidential Presentation Title © 2004 IBM Corporation

Filters Overview

Servlet

Process
Response

Process
Response

Process
Response

Process
Request

Process
Request

Process
Request

Filter 1 Filter 2 Filter n

Block
Request

Block
Request

Block
Request

Request

Response

Request

R
es

po
ns

e

A filter is an object that can transform the header
and content of a request or a response

A filter is a reusable piece of code that can transform the content of HTTP requests,
responses, and header information. Filters differ from other web components because
they do not create their own response. Filters do not generally create a response or
respond to a request as servlets do, rather they modify or adapt the requests for a
resource, and modify or adapt responses from a resource.

The main tasks that a filter can perform are as follows:

•Modify the request or response

•Block the request and send the response directly

•Interact with external resources.

Applications of filters include authentication, logging, image conversion, data compression,
encryption, tokenizing streams, and XML transformations.

IBM Confidential
v6_SWG_Beta.ppt Page 9 of 31

IBM Software Group

9

IBM Confidential Presentation Title © 2004 IBM Corporation

Filters – What’s new in v2.4

Request

Filters
Web Resource Web Resource

Forward /
Include

Filters Web Resource Web Resource

Filters

Response

Request

Response

Web Container

Web Container

Servlet v2.4

Servlet v2.3

Forward /
Include

Ability to configure filters that are invoked under Request Dispatcher with forward() and include() calls

Previous versions of the servlet specification did not make it clear whether a filter should
be invoked with a RequestDispatcher or whether filters could be invoked using forward() or
include() calls.

Servlet 2.4 gives an ability to configure filters that are invoked under Request Dispatcher
with forward() and include() calls.

This can be done by using the new <dispatcher> element(s) in the deployment descriptor

IBM Confidential
v6_SWG_Beta.ppt Page 10 of 31

IBM Software Group

10

IBM Confidential Presentation Title © 2004 IBM Corporation

Filters - New Features

�The new <dispatcher> element(s) in the
deployment descriptor

�The possible values that can be used are
REQUEST, FORWARD, INCLUDE, and ERROR

� If the <dispatcher> element is not specified
REQUEST is the default

<filter-mapping>

<filter-name>Customer Filter</filter-name>

<url-pattern>/customers/*</url-pattern>

<dispatcher>FORWARD</dispatcher>

<dispatcher>REQUEST</dispatcher>

</filter-mapping>

<filter-mapping>

<filter-name>Account Filter</filter-name>

<servlet-name>CustomerServlet</servlet-name>

<dispatcher>INCLUDE</dispatcher>

</filter-mapping>

Here is an example of defining filter using the dispatcher elements.

If the request comes directly from the client, it is indicated by a <dispatcher> element with
value REQUEST, or by the absence of any <dispatcher> elements.

If the request is being processed under a request dispatcher representing the Web
component matching the <url-pattern> or <servlet-name> using a forward() call, then it is
indicated by a <dispatcher> element with value FORWARD or if it is by using an include()
call, then the <dispatcher> element will be INCLUDE.

If the request is being processed with the error page mechanism matching the <url-
pattern>, then it is indicated by a <dispatcher> element with the value ERROR.

The error page mechanism described does not intervene when errors occur when invoked
using the RequestDispatcher or filter.doFilter method. In this way, a filter or servlet using
the RequestDispatcher has the opportunity to handle errors generated.

IBM Confidential
v6_SWG_Beta.ppt Page 11 of 31

IBM Software Group

11

IBM Confidential Presentation Title © 2004 IBM Corporation

Listeners Overview

� Listener objects are defined to monitor and react to
the events in a servlet’s life cycle

�Session Listeners and Context Listeners were
introduced in prior versions

�Servlet 2.4 expanded this idea to introduce
Request Listeners

Servlet

Web Container

Request Listeners

Session Listeners

Context Listeners

Request
Request

Response
Response

New in v2.4

Servlet 2.4 expands the idea of context and session listeners to add request listeners,
allowing developers to observe as requests are created and destroyed, and as attributes
are added and removed from a request.

When a listener method is invoked, it is passed an event that contains information
appropriate to the event. For Example: Methods in the HttpSessionListener interface are
passed an HttpSessionEvent, which contains an HttpSession.

ServletRequestListener can be used to track the request start and end.

IBM Confidential
v6_SWG_Beta.ppt Page 12 of 31

IBM Software Group

12

IBM Confidential Presentation Title © 2004 IBM Corporation

Listeners – New Features

javax.servlet.ServletRequestAttributeListener
javax.servlet.ServletRequestAttributeEvent

Attribute added, removed or
replaced

javax.servlet.http.HttpSessionAttributeListener
javax.servlet.http.HttpSessionBindingEvent

Attribute added, removed or
replaced

javax.servlet.ServletContextAttributeListener
javax.servlet.ServletContextAttributeEvent

Attribute added, removed or
replaced

javax.servlet.ServletRequestListener
javax.servlet.ServletRequestEvent

Created and destroyed
Request

javax.servlet.http.HttpSessionListener
javax.servlet.http.HttpSessionActivationListener
javax.servlet.http.HttpSessionEvent

Creation, invalidation, activation,
passivation and timeout

Session

javax.servlet.ServletContextListener
javax.servlet.ServletContextEvent

Initialization and destruction
Context

Listener Interface and Event ClassEventObject
S

e
rv

l e
t

2
.4

S
e

rv
le

t
2

.3

A ServletRequestListener is to observe as the request
objects are created and destroyed in a web container.

A ServletRequestListener can be implemented by the developer interested in getting
notified of requests coming in and out of scope in a web component. A request is defined
as coming into scope when it is about to enter the first filter in the Filter chain that will
process it, and as going out of scope when it exits the last filter in its filter chain.

A ServletRequestAttributeListener can be implemented by the developer interested in
being notified of request attribute changes. Notifications will be generated while the
request is within the scope of the web application in which the listener is registered. A
request is defined as coming into scope when it is about to enter the first servlet or filter in
each web application, as going out of scope when it exits the last servlet or the first filter in
the chain.

IBM Confidential
v6_SWG_Beta.ppt Page 13 of 31

IBM Software Group

13

IBM Confidential Presentation Title © 2004 IBM Corporation

Servlet Request Listener APIs

javax.servlet.ServletRequestAttributeListener

public void attributeAdded(ServletRequestAttributeEvent srae)
Notification that a new attribute was added to the servlet request.

public void attributeRemoved(ServletRequestAttributeEvent srae)
Notification that a new attribute was removed from the servlet request.

public void attributeReplaced(ServletRequestAttributeEvent srae)
Notification that an attribute was replaced on the servlet request.

javax.servlet.ServletRequestListener
public void requestInitialized(ServletRequestEvent re)

The request is about to come into scope
public void requestDestroyed(ServletRequestEvent re)

The request is about to go out of scope

IBM Confidential
v6_SWG_Beta.ppt Page 14 of 31

IBM Software Group

14

IBM Confidential Presentation Title © 2004 IBM Corporation

ServletRequest Overview

�ServletRequest provides client request information

�Methods introduced in prior version have been
clarified in Servlet 2.4

�getServerName()

� Returns the host name of the server to which the request was sent

�getServerPort()

� Returns the port number to which the request was sent.

�Exposes the HTTP HOST header details
("host:port")

The preexisting methods getServerName() and getServerPort() have been clarified to
expose the HTTP HOST header details ("host:port") . getServerName() will return host
part of the header and getServerPort() will return port in host header.

IBM Confidential
v6_SWG_Beta.ppt Page 15 of 31

IBM Software Group

15

IBM Confidential Presentation Title © 2004 IBM Corporation

ServletRequest – New features

New APIs to get at low-level IP connection details

Returns the IP port number of the interface on which the request was
received

getLocalPort()

Returns the IP address of the interface on which the request was
received

getLocalAddr()

Returns the host name of the IP interface on which the request was
received

getLocalName()

Returns the IP source port of the client or last proxy that sent the
request

getRemotePort()

DescriptionMethod

With the combination of existing methods, these new methods provide a way to get at low-
level IP connection details and helps determine how the connection got routed.

The getRemotePort() method, combined with the preexisting getRemoteAddr() and
getRemoteHost() methods, exposes the client side of the IP connections. The new
getLocalPort(), getLocalAddr(), and getLocalName methods exposes the IP’s from which
the request was received.

IBM Confidential
v6_SWG_Beta.ppt Page 16 of 31

IBM Software Group

16

IBM Confidential Presentation Title © 2004 IBM Corporation

<session-config>
<session-timeout>0</session-timeout>

</session-config>

Sessions – New Features

� Session timeout is specified in the deployment descriptor

� The container will define its own timeout, if it is not specified
in deployment descriptor

�WebSphere Application Server default is 30 minutes

� The value specified in the deployment descriptor will
override the value specified by WebSphere Application
Server

<session-config>
<session-timeout>60</session-timeout>

</session-config> Will never timeout

Timeout after 60 minutes

Avoid setting a session timeout avoid setting it too low. Ensure that the user has ample
time to complete the online forms. In the example, Session will be timed out after 60
minutes

IBM Confidential
v6_SWG_Beta.ppt Page 17 of 31

IBM Software Group

17

IBM Confidential Presentation Title © 2004 IBM Corporation

Internationalization – New Features

� In Servlet 2.3, charset is defined by using
setContentType()

�There is no direct way to tell the browser what character
encoding to use

� Servlet 2.4 solves this by adding two new methods in
ServletResponse interface

�setCharacterEncoding(String)

�getContentType()

setContentType(“text/html”);
setCharacterEncoding(“UTF-8”);

setLocale(locale);
setContentType(“text/html; charset=UTF-8”);

v2.3

v2.4

In prior versions, the ServletRequest had these methods but in Servlet 2.4, the
ServletResponse interface adds two new methods:

•setCharacterEncoding(String)

•getContentType()

setCharacterEncoding(String c) – To set the response's character encoding. This
method provides an alternative to passing charset in setContentType(String) or passing a
Locale to setLocale(Locale). One can now avoid setting of charset via setContentType(
)call.

For example, application can avoid setting the charset via the awkward
setContentType("text/html; charset=UTF-8") call. Application can do
setContentType("text/html”); followed by setCharaterEncoding(“UTF-8”) or a setLocale();
This method can be called repeatedly to change the character encoding. This method has
no effect if it is called after getWriter has been called or after the response has been
committed.

getContentType() - Returns the response's content type. The content type proper must
have been specified using setContentType() before the response is committed. This will
include a charset parameter set by either setContentType(), setLocale(), or
setCharacterEncoding(). If no content type has been specified, this method returns null.

The other preexisting methods are setContentType(String), getCharacterEncoding()

IBM Confidential
v6_SWG_Beta.ppt Page 18 of 31

IBM Software Group

18

IBM Confidential Presentation Title © 2004 IBM Corporation

Internationalization – New Features

<locale-encoding-mapping-list>

<locale-encoding-mapping>

<locale>en</locale>

<encoding>ISO-8859-1</encoding>

</locale-encoding-mapping>

<locale-encoding-mapping>

<locale>ja</locale>

<encoding>ISO-2022-JP</encoding>

</locale-encoding-mapping>

</locale-encoding-mapping-list>

� Deployment descriptor is used to assign locale-to-charset
mappings outside the servlet code

EnglishEnglish

JapaneseJapanese

New ElementNew Element

New ElementNew Element

A new <locale -encoding-mapping-list> element in the deployment descriptor is to let the
deployer assign locale-to-charset mappings outside the servlet code.Default is English
ISO-8859-1

IBM Confidential
v6_SWG_Beta.ppt Page 19 of 31

IBM Software Group

19

IBM Confidential Presentation Title © 2004 IBM Corporation

JSP 2.0JSP 2.0

Section

IBM Confidential
v6_SWG_Beta.ppt Page 20 of 31

IBM Software Group

20

IBM Confidential Presentation Title © 2004 IBM Corporation

Expression Language (EL)

�EL is a simple language

� Identified by ${ }

�EL expressions can be used in places where
developers previously used java expressions

�New API’s added - javax.servlet.jsp.el

In a JSP page, using java scriptlets

<input type=“text” name=“CustomerName” value= “<%=request.getParameter(“custName”)%>” >

same can be written in EL as

<input type=“text” name=“CustomerName” value=${param.custName} >

Expression Language (EL) was initially defined by the Java Server Pages Standard Tag
Library (JSTL) 1.0 specification, but now it is incorporated in the JSP 2.0 specification.
Expression Language is a simple language.

IBM Confidential
v6_SWG_Beta.ppt Page 21 of 31

IBM Software Group

21

IBM Confidential Presentation Title © 2004 IBM Corporation

Expression Language (EL)

� EL is based on relational, logical and arithmetic operations
and a set of implicit objects

� The EL provides the following operators:
�Arithmetic:

+, -, *, / , % and mod

�Logical:

and, &&, or, ||, not, !

�Relational:

==, eq, !=, ne, <, lt, >, gt, <=, ge, >=, le

Comparisons can be made against other values

� Several implicit objects like pageContext, pageScope,
requestScope, sessionScope, applicationScope, param,
paramValues etc

${4 + 6}

<c:if test="${pgBean.abc < 10}" >
...

</c:if>

EL can be used in
•Relational operations like ==, eq, !=, ne, <, lt, >, gt, <=, ge, >=, le.
•Logical operations like and, &&, or, ||, not, !
•Arithmetic operations like +, - (binary), *, / and div, % and mod, -(unary)

•Several implicit objects like pageContext, pageScope, requestScope, sessionScope,
applicationScope, param, paramValues etc.

IBM Confidential
v6_SWG_Beta.ppt Page 22 of 31

IBM Software Group

22

IBM Confidential Presentation Title © 2004 IBM Corporation

Expression Language - Example

<c:forEach var="item" items="${sessionScope.shopcart.items}">
<tr>

<td align="right">
<c:out value="${item.quantity}"/>

</td>
</tr>

</c:forEach>

<jsp:useBean id=“pgBean" class=“com.ibm.samples.pageBean" scope="page">
<jsp:setProperty name=“pgBean" property=“acctNum" value="${accountNumber}" />
</jsp:useBean>

….
<tr><td>Account Balance is ${pgBean.balance} </td></tr>

. . . .
</html>

An expression language makes it possible to easily access application data stored in
JavaBeans components.

IBM Confidential
v6_SWG_Beta.ppt Page 23 of 31

IBM Software Group

23

IBM Confidential Presentation Title © 2004 IBM Corporation

Activation/Deactivation of EL

� By default the JSP container

�Deactivates the EL expressions for a J2EE 1.3 application

�Activates the EL expressions for a J2EE 1.4 application unless
the developer specifically deactivates

� Deactivation/Activation can be done in two ways by
application or by page

�JSP code

<%@page isELIgnored=“false” %>

�Deployment descriptor
<jsp-config>

<jsp-property-group>

<el-ignored> true</el-ignored>

</jsp-property-group>

</jsp-config>

For a J2EE 1.3 application the JSP container treats the $ sign as a character and not as
an Expression Language but if it is J2EE 1.4 application it treats the $ sign as an
Expression Language. In the next slide you will see how to manually deactivate the
expression language.

In a JSP page one can specify whether to activate or deactivate an expression language.
This can be done only for a J2EE 1.4 application.

The value in the JSP overrides the value in the deployment descriptor

IBM Confidential
v6_SWG_Beta.ppt Page 24 of 31

IBM Software Group

24

IBM Confidential Presentation Title © 2004 IBM Corporation

Functions

�Expression language (EL) allows to define a
function

� It can be invoked in an expression

�Functions are defined using the same mechanisms
as custom tags

�Advantage of using functions over tags is that it is
a simple class file

IBM Confidential
v6_SWG_Beta.ppt Page 25 of 31

IBM Software Group

25

IBM Confidential Presentation Title © 2004 IBM Corporation

Functions Example - Add two numbers

public class AddFunction {
public static int addMethod(String x, String y){

int a=0;
int b=0;
a=Integer.parseInt(x);
b=Interger.parseInt(y);
return a+b;

}
}

<function>
<name>addMethod</name>
<function-class>AddFunction</function-class>
<function-signature>

int addMethod(String, String)
</function-signature>

</function>

<%@ taglib uri="/WEB-INF/tld/addfunction.tld" prefix=‘af' %>
<HTML>

….
The total amount is ${af:addMethod(amt1, amt2)}

</HTML>

Java class

Tag Library Descriptor

JSP

IBM Confidential
v6_SWG_Beta.ppt Page 26 of 31

IBM Software Group

26

IBM Confidential Presentation Title © 2004 IBM Corporation

Custom Tags Overview

�Custom Tags are a set of java classes which are
reusable

�Reduce repeated code and eases maintenance

�Replace the java scriptlets in the JSP with tags

�If you modifies the tag class file, the change is reflected in
all the areas where the tag is used

�Dynamic attributes can be passed to a custom tag

IBM Confidential
v6_SWG_Beta.ppt Page 27 of 31

IBM Software Group

27

IBM Confidential Presentation Title © 2004 IBM Corporation

Custom Tags – New Features

� Prior versions had classic tag handlers

� JSP 2.0 has introduced new type of tag called Simple Tag Handler

� Simple Tag Handler is instantiated by the Container, it is executed and
then discarded

� Simple Tag Handlers are never cached and reused by the JSP
container

SimpleTag

SimpleTagSupport

RepeatHandler

doTag()

RepeatHandler

doStartTag()
doInitBody()

doAfterBody()
doEndTag()

BodyTag

BodyTagSupport

Tag

J
S

P
 2

.0

C
la

s
s
ic

 ta
g

 h
a

n
d
le

r

IterationTag

TagSupport

javax.servlet.jsp.tagext.SimpleTag

Simple Tag Handlers differ from Classic Tag Handlers in that instead of supporting
doStartTag() and doEndTag(), the SimpleTag interface provides a simple doTag()
method, which is called once and only once for any given tag invocation.

All tag logic, iteration, body evaluations, etc. are to be performed in this single method.
Thus, simple tag handlers have the equivalent power of BodyTag, but with a much
simpler lifecycle and interface. The setters for each attribute defined for this tag are
called by the container.

IBM Confidential
v6_SWG_Beta.ppt Page 28 of 31

IBM Software Group

28

IBM Confidential Presentation Title © 2004 IBM Corporation

JavaServer Pages Tag Libraries (JSTL)

� JavaServer Pages Tag Libraries (JSTL) contains a
set of commonly required tags

� JSTL 1.1 requires JSP 2.0 container (J2EE 1.4
platform)

� JSTL 1.1 uses JSP 2.0 Expression Language

�JSTL 1.0 had its own Expression Language

�Added functions for the use in Expression
Language

IBM Confidential
v6_SWG_Beta.ppt Page 29 of 31

IBM Software Group

29

IBM Confidential Presentation Title © 2004 IBM Corporation

Summary and ReferencesSummary and References

Section

IBM Confidential
v6_SWG_Beta.ppt Page 30 of 31

IBM Software Group

30

IBM Confidential Presentation Title © 2004 IBM Corporation

Summary

�New enhancements to the Servlet specification
provide new capabilities around Filters, Life-cycle
listeners, Internationalization, and Request
dispatcher objects

� JSP specification now standardizes support for an
expression language based on JavaServer Tag
Library as well as a new simple tag handler

IBM Confidential
v6_SWG_Beta.ppt Page 31 of 31

IBM Software Group

31

IBM Confidential Presentation Title © 2004 IBM Corporation

Summary and Reference

�Specifications for

�JSP 2.0: http://www.jcp.org/en/jsr/detail?id=152

�Servlet 2.4: http://www.jcp.org/en/jsr/detail?id=154

IBM Confidential
v6_SWG_Beta.ppt Page 32 of 31

32

IBM Software Group

IBM Confidential Presentation Title © 2004 IBM Corporation

Trademarks, Copyrights, and Disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS MQSeries Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice. Any statements regarding IBM's
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program
Product in this document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2004. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

Template Revision: 11/02/2004 5:50 PM

