
IRADv6_WRD_ABP.ppt Page 1 of 23

This presentation will focus on an overview of the annotation-based programming support

included with IBM Rational® Web Developer and IBM Rational Application Developer.

This new feature allows developers an easier and faster way to develop Java™ 2

Enterprise Edition (J2EE) applications.

IRADv6_WRD_ABP.ppt Page 2 of 23

The main goals of this presentation start by describing the value of annotation-based

programming for developers building J2EE applications. Describing the different tags

which are used in annotation-based programming is also a goal. The final goal is to

understand the level of support for annotation-based programming within IBM Rational

Web Developer and IBM Rational Application Developer.

IRADv6_WRD_ABP.ppt Page 3 of 23

This presentation will cover the features of annotation-based programming. In this

presentation, an overview of annotation-based programming and the details behind it will

be covered, specifically looking at the tags which are supported and the annotation

processor which generates the appropriate code and deployment information based on the

annotations.

IRADv6_WRD_ABP.ppt Page 4 of 23

This section will provide an overview of annotation-based programming.

IRADv6_WRD_ABP.ppt Page 5 of 23

Annotation-based programming (ABP) is the technology of allowing the developer to add

additional metadata into the source code of their application and then using that additional

metadata to derive the artifacts necessary to run the application in a J2EE environment.

The goal of annotation-based programming is to minimize the number of artifacts that the

developer has to create, maintain, and understand, thereby simplifying the development

experience. For example, consider a stateless session Enterprise JavaBean. With

annotation-based programming, the developer would simply create a single Java source

file containing the bean implementation logic and indications as to which methods should

be made public on the interfaces of the Enterprise JavaBean. A few additional tags would

be needed to indicate the desire to deploy the class as an EJB . With this single artifact

containing tags, the home and remote interface classes can be created along with a

stateless session implementation wrapper class. Deployment information can also be

created in the ejb-jar.xml deployment descriptor as well as WebSphere-specific binding

data and all of the remaining artifacts necessary to produce a compliant J2EE application.

All the developer has to deal with is the single Java artifact.

IRADv6_WRD_ABP.ppt Page 6 of 23

This section will discuss the details of annotation-based programming.

IRADv6_WRD_ABP.ppt Page 7 of 23

Annotation-based programming is comprised of two components. The first component is

the actual tags which a developer may use. These tags follow the syntax as defined by the

XDoclet open source project. The tags are placed in Javadoc-style comments and are

easily recognizable as related to annotation-based programming. The artifacts which

contain the tags may be created with a simple text editor, however working with the tags in

a development environment such as IBM Rational Web Developer or IBM Rational

Application Developer is much more productive. The different artifacts and deployment

information can be quickly generate as part of the build process without any additional

steps by the developer. The second component of annotation-based programming is the

annotation processor that provides the mechanics of processing the tags and generating

the correct artifacts and deployment information. IBM Rational Web Developer or IBM

Rational Application Developer contain a annotation processor for processing the tags.

Annotations take the form of Javadoc-style comments in the Java source file. The

annotation is entered using an @-tag in the comment block of the source code.

Annotations can be placed on class, field, or method declarations.

IRADv6_WRD_ABP.ppt Page 8 of 23

The annotation tag processor included with IBM Rational Web Developer and IBM

Rational Application Developer is actually a feature of the WebSphere Rapid Deployment

which is part of WebSphere Application Server V6.0. The WebSphere Rapid Deployment

feature is designed to ease the deployment and installation of applications into

WebSphere Application Server. With WebSphere Rapid Deployment, a directory can be

setup where J2EE artifacts ,such as enterprise applications, Web modules , EJB JAR files,

or individual Java files may be placed, and from there automatically packaged, deployed,

and installed into WebSphere Application Server V6.0. As part of the packaging and

deploying steps, if any artifact has annotation tags, the appropriate artifacts and

deployment information must be generated first. WebSphere Rapid Deployment includes

an annotation tag processor to support this scenario. The WebSphere Rapid Deployment

feature is actually based on Eclipse and is executed in a headless manner (non-GUI) as

applications are installed packaged, deployed, and installed into WebSphere Application

Server V6.0. Because it is already based on Eclipse, it is easily included with the

Application Server Toolkit and also IBM Rational Web Developer and IBM Rational

Application Developer.

WebSphere Rapid Deployment does not include any development support for using the

tags, although the tags can be specified with a simple text editor. IBM Rational Web

Developer and IBM Rational Application Developer provide tight integration in the form of

content assist to help developers specify the correct tags as well as wizards which will

generate artifacts with tags.

IRADv6_WRD_ABP.ppt Page 8 of 23

IRADv6_WRD_ABP.ppt Page 9 of 23

When you generate either a servlet or Enterprise JavaBean, you now have the option to

generate with annotation tags. This allows a developer to work with one source file for a

specific artifact. In this scenario, using the IBM Rational Application Developer EJB

creation wizard, you create a Session Enterprise JavaBean and choose to generate

annotations for the Enterprise JavaBean. As a developer, you work with this single

resource and as changes are made and the file is built, the appropriate artifacts are

generated and the deployment descriptor information is updated. The generated artifacts,

like the interface files, will be stored in a new directory called gen/src (generated source).

The bean file, which contains all of your business logic, will still be under the Java Source

directory just like previous releases of the WebSphere Studio products. By generating

annotations for the specific bean, you now have to work with only a single file. Making

updates to the annotations of that file will generate the necessary artifacts and deployment

descriptor as needed.

IRADv6_WRD_ABP.ppt Page 10 of 23

As stated earlier, XDoclet is a popular open-source project that supports annotation-based

programming. The XDoclet model processes annotations as part of the build process,

when all annotations are read and all artifacts are regenerated. There is much functional

overlap between annotations in XDoclet and in IBM Rational Web Developer and IBM

Rational Application Developer. The processing model however, is very different as

WebSphere Rapid Deployment and the Rational products support an on-demand

processing of the annotations. Once all of the tags are identified which have changed, the

appropriate artifact or deployment information will be generated rather than generating

artifacts from all of the tags which may have not changed. Due to this reason, WebSphere

Rapid Deployment does not directly leverage code from the XDoclet project. WebSphere

Rapid Deployment and the IBM Rational products have adopted the tag syntax used by

XDoclet in places where XDoclet already defines a set of tags, such as for J2EE

applications. This will allow people who understand XDoclet to be immediately familiar

with annotation-based programming, and it will allow source code compatibility between

WebSphere Rapid Deployment, the IBM Rational products and XDoclet tools. When

XDoclet 2.0 is released with tags for J2EE 1.4, support will be updated to support these

tags and generate the appropriate code and deployment descriptors.

IRADv6_WRD_ABP.ppt Page 11 of 23

In terms of creating or generating resources from annotation tags, there are three types of

tag definitions that are supported for generation; EJB, Web, and Web Services. The first

two types of tags have content assist built within IBM Rational Web Developer and IBM

Rational Application Developer. For EJB resources, the type of EJB can be specified

along with the interfaces, methods promoted to those interfaces, primary key information

for entity beans, references, and other things such as EJB QL queries. For Web

resources, servlets, filters, listeners, and references can be specified along with things

such as security roles. For the Web Service tags, there is currently no content assist

support within IBM Rational Web Developer or IBM Rational Application Developer,

however Web Services may be selected to be created with tags. With the Web Service

tags, the service endpoint interface, SOAP bindings and EJB bindings can be specified.

The tags syntax itself is derived from XDoclet and the complete list of supported tags is

included in the Information Center and Help of the IBM Rational products.

IRADv6_WRD_ABP.ppt Page 12 of 23

Besides those XDoclet tags which are specific for J2EE, there are WebSphere specific

tags which are also supported within IBM Rational Web Developer and IBM Rational

Application Developer. These tags which begin with the @websphere string are for

specifying mapping information for database columns and foreign key information when

establishing container-managed relationships. There are other tags (@ws.*) for support of

Service Data Objects (SDO). These tags are available for specifying a session bean

façade wrapper for a container-managed persisted entity bean. There are additional tags

for specifying a value-object to hold the attributes of a entity bean accessed through the

session bean façade wrapper and to indicate which attributes may be contributed to the

value-object. Finally, you can define an EJB QL query with tags which will return a set of

value-objects. Again, the complete list of supported tags is included in the Information

Center and Help.

IRADv6_WRD_ABP.ppt Page 13 of 23

Annotations can be added in two ways. The first way is at the time an artifact, such as an

Enterprise JavaBean or Servlet, is created by selecting the checkbox in the wizard to

create the artifact using annotations. A set of basic tags will be used to define the artifacts

and deployment information. The second way is to add tags manually to an artifact which

has been created with annotations. When adding annotation tags, it must begin with an

“@” and in a comment block which starts with /**. Other comment indicators (/* or //) will

prevent the annotation processor from recognizing the tags.

Remembering all of the different tags might be challenging. Built into the Application

Server Toolkit (AST) and IBM Rational Web Developer and IBM Rational Application

Developer is content assist support for the tags. With a hint or the first part of the tag,

contest assist can provide the available tags and parameters that are required for each of

the tags at the current scope level. Additional parameters which are not required can be

specified with content assist as well by providing a hint and then pressing Ctrl+Space

together. For a complete list of parameters for the supported tags, check the Information

Center or Help.

Notice the tags are specified in comments in different places in the Java file. These

different locations are known as scopes for the tags. Certain tags are only available in

certain scopes.

IRADv6_WRD_ABP.ppt Page 14 of 23

For tags in general, they can be placed in one of three locations within the Java source

file. The location is called the scope of the tag. The first scope level is class. The Class

scope tags are added to the class comment. This scope provides information that is

applicable to the Java type or interface as a whole. The second scope is field. The Field

scope tags are added to the comments of a particular field within the class. This scope

provides information that is specific to the referenced field within the class. The last scope

is Method. The Method scope tags are added to the comments of a particular method

within the class. This scope provides information that is specific to the referenced method

within the class.

There is a fourth scope called package. This scope is for any tags which provide

information applicable to the entire Java package, to the module, or to the application as a

whole. Currently there are no tags which are supported with content assist for this level.

IRADv6_WRD_ABP.ppt Page 15 of 23

Besides specific tags placed in certain scopes, there is also the processing of the tags.

Annotations will be processed using a special builder called the AnnotationsProcessor.

The function of the AnnotationsProcessor is to extract the tag data from the Java source

file and enable artifacts to be generated from that data. The extraction phase will utilize a

Java syntax parse tree function that is included with Eclipse. This allows for a fast

mechanism in extracting the tag data. The AnnotationsProcessor will create a structure

containing all of the tag data and class declaration information and then expose an Eclipse

extension point for plugging in a tag handler. A tag handler is what understands how to

process a particular set of tags and generate the appropriate artifacts. After extracting all

of the tag data from the Java source file, the AnnotationsProcessor calls all of the

registered tag handlers for each tag that is encountered. The tag handler then generate

the appropriate artifacts or deployment information for the specified tag.

IRADv6_WRD_ABP.ppt Page 16 of 23

The annotation processor is responsible for processing the tags. It is added to a project’s

list of builders when an artifact is created with annotation tags through the Enterprise

JavaBean (EJB) or Servlet creation wizard. The annotation processor will also be added

to the list of builders if the annotation support option is selected when a enterprise

application (EAR) is imported into the workspace. The annotation processor is placed at

the top of the list of builders by default and should remain at the top although the builders

may be re-sequenced. With the annotation processor at the top, the different artifacts will

be generated before other build operations which may require those resources for things

such as resolving references. The annotation processor is invoked when a build operation

is performed on a project and will generate the different artifacts and deployment

information. “Automatic build when a resource is modified” is enabled by default for a

workspace and when an artifact is modified in a project, the build process will begin by

calling the annotation processor. If automatic build is turned off, when an artifact is

modified there will be no processing of the tags. There is no other way in IBM Rational

Web Developer or IBM Rational Application Developer to invoke the annotation processor

besides through the build process.

The generated artifacts can be modified at any time, however, when the annotation

processor runs again on the source object which contains the tags which caused the

artifact to be generated, any changes will be overwritten. Modifying generated artifacts

should be avoided.

For deployment information which is generated from tags, these values can not be

modified without disabling the annotation support for the source artifact which

caused the values to be created. When an Enterprise JavaBean (EJB) or

Servlet is created with annotations through the creation wizard, a special

comment, which is only recognized by the Application Server Toolkit (AST),

IBM Rational Web Developer, and IBM Rational Application Developer, will be

placed in the deployment descriptor near the definition of the object. This

comment is used by the editor to prevent accidental modification of the

generated values. If there is an attempt to change a generated deployment

value, the editor will warn the user that changes to the value will disable the

annotations support for the particular artifact. The user can accept the

warning and change the value, however the annotation processor will no

longer generate artifacts or deployment information for the artifact. Normal

means of updating the generated artifacts and deployment information can be

used.

IRADv6_WRD_ABP.ppt Page 16 of 23

IRADv6_WRD_ABP.ppt Page 17 of 23

As stated earlier, generated artifacts are placed in a folder named gen/src in the project.

If the artifact is in an Enterprise JavaBean or EJB project which has a EJB client JAR file

associated with it, the different interface files will be generated in a folder named gen/src in

the EJB client JAR project. For artifacts in Web projects, the generated files will be placed

in a gen/src folder as well. While the name of the folder appears to be gen/src in the

view, it is implemented as a gen directory containing a src directory on the file system.

This structure may be important for ANT tasks and other custom build operations.

IRADv6_WRD_ABP.ppt Page 18 of 23

As mentioned earlier, annotation tag processing and thus annotation support for an artifact

can be disabled by manually updating a deployment descriptor value which was created

from a tag. The deployment descriptor editor will prevent an accidental change of a

generated value, by warning the user that a change will disable the annotation support for

an artifact. If the user accepts the warning and changes a value, the user will then be

responsible for modifying any of the deployment information generated for the artifact as

well as maintaining the artifacts which were generated and placed in the gen/src folder.

When the annotation support is disable for an artifact, the tags will remain in the file and all

generated artifacts will also remain. Any new tags which are added or existing tags

changed will have no affect and will be ignored. Within the source file, a comment is

added at the top of the class which is recognized by the annotation processor to skip

annotation processing on the file when the annotation processor runs on the project.

IRADv6_WRD_ABP.ppt Page 19 of 23

If annotation support is disable for an artifact, annotation processing can be re-enabled by

removing the comment which causes the annotation processor to skip the artifact when

processing the project. If the comment is removed, on the next build operation, all of the

tags will be recognized and the appropriate artifacts will be generated and deployment

information will be created. Any changes made to the artifacts or deployment information

which are not specified in the tags will be overwritten or lost. Currently there is no way to

capture changes and settings from artifacts and deployment descriptors and generate

tags.

Although annotation processing can be disabled and re-enabled for an artifact, the

recommendation is to remain in annotation mode for as long as possible and once and if

the switch is made to normal maintenance and management, to not re-enable annotation

processing. Switching back to annotations from normal mode will loose information and

can lead to other inconsistencies within the workspace.

Annotation processing can also be disabled by deselecting the annotation processor in the

list of builders in the project properties. This will disable generation for all artifacts enabled

with annotation tags.

IRADv6_WRD_ABP.ppt Page 20 of 23

This final section provides the summary to the presentation.

IRADv6_WRD_ABP.ppt Page 21 of 23

In this presentation, the benefits of annotation based programming were covered as it can

reduce the number of artifacts a developer must manage. The different tags which are

available and have annotation processing support were discussed along with the tight

integration with IBM Rational Web Developer and IBM Rational Application Developer

which simplify the use of annotation tags and annotation processing.

IRADv6_WRD_ABP.ppt Page 22 of 23

