
IRADv6_JSF_Client.ppt Page 1 of 25

This presentation will focus on Faces Client Components.

IRADv6_JSF_Client.ppt Page 2 of 25

The goal of this presentation is to highlight the Faces Client Components architecture and

provide an overview of the Faces Client Components.

IRADv6_JSF_Client.ppt Page 3 of 25

The agenda is to start by looking at the architecture for the faces client components and

look at the specific client components.

IRADv6_JSF_Client.ppt Page 4 of 25

This section will discuss the architecture of the Faces Client Components.

IRADv6_JSF_Client.ppt Page 5 of 25

Before beginning a discussion of the Faces Client framework and how it works, this

presentation will first look at some of the motivating factors that have lead to the

development of this technology.

Most people would agree that the current state of Web UI technology is in many ways a

step backward from the more traditional thick client applications in terms of usability. One

of the most noticeable differences is that Web UIs are typically not as responsive or

interactive. The reason for this stems from the fact that each user interaction typically

results in a full page refresh (round trip request/response to the server). This situation

gives rise to a performance gap that is noticeable by users. Additionally, from both the

user and developer points of view, the number of UI components that can be used to

develop Web UIs is generally lacking when compared to thick clients.

Unfortunately, there has not yet been any one technology that has been able to address

these challenges. Other solutions still have issues that can be viewed as prohibitive for

some development teams.

IRADv6_JSF_Client.ppt Page 6 of 25

One of the primary goals for the Faces Client Framework is improve the responsiveness

and interactability of Web UIs. To make this happen, Web pages must be designed so

that they last longer on the client side and reduce the number of full page refreshes (round

trips back to the server). The idea is to create pages that contain all of the data necessary

for the client to work with, and only go back to the server when absolutely necessary (for

example, on updates, refresh views, etc).

As an example, consider a Web based UI where there is a table of data and the user

needs to be able to sort the data in the table for an arbitrary column. In this scenario, the

user will select the column to be sorted at runtime, and might choose ascending or

descending order. Typically this sort action would require a request back to the server to

do the sorting and then return the data back to the browser to be redrawn. With client-

side data caching that is provided with the Client framework, the data can be sorted right

on the page without returning to the server.

IRADv6_JSF_Client.ppt Page 7 of 25

The client framework is built upon traditional Web technologies, and as a result,
development teams can start incorporating this technology without a significant
architectural change to their applications.

The key point about the client framework and how it enables pages to last longer without
needing to make more trips to the server is that it actually creates an MVC program right
inside the browser page that is built upon an advanced usage of Javascript. To make this
all work, the pages must contain a working set of data along with all of the necessary UI
controls right in the browser page. The thing that makes this different from traditional Web
pages is that rather than embedding the data as text in the html tags, as with early data
binding, the data is sent back to the browser in a structured format such that it can be
reused by the various components on the client side, referred to as late data binding. The
client data is shared among the various UI components on the page.

Finally, in order to make this technology more accessible to a broader range of
developers, it is being designed to provide JSF support to enable rapid application
development.

IRADv6_JSF_Client.ppt Page 8 of 25

This graphic is intended to show what happens when a request is submitted for a page that has been built
using one or more of the Faces client components. The Faces Client Components are a set of JSF
components that are available starting in WebSphere Studio Application Developer V5.1.2. These
components help developers rapidly build applications that exploit the new components that provide client-
side data caching. JSF client components represent the development model that is intended to be used by
the majority of developers using this technology. Because of this, the above diagram shows a request
lifecycle that includes the JSF architecture.

(1) Page request is submitted.

(2) Because this page is a faces page, it goes to the faces servlet and begins the faces request processing
lifecycle. For more information on this see JSR 127

(3) During the render response phase of the Faces lifecycle, some interesting things happen with respect to
the client framework. The faces client components (at the time of rendering) need to generate the JS
fragments that will be sent back to the browser in order to create the necessary MVC program inside the
browser.

(4) Like any other JSF page, the JSP typically contains JSF components, HTML, and Javascript. If the page
contains one or more of the Faces Client components, some things need to happen in order to ensure the
data gets formally structured before it is sent back to the browser. Emitters (Java-based classes) are used
to generate the Javascript fragments that are needed to support the client-side runtime, components, and
data structures. The Emitters are called indirectly through the use of the JSF components. In order for the
data emitter to generate the appropriate client side data to represent your server-side it uses a set of Client
Data Mediators that are used to help generate the appropriate JS code.

(5-6) Once the JS fragments are generated, they are aggregated together and the complete response is
sent back to the browser.

IRADv6_JSF_Client.ppt Page 9 of 25

To begin building using the Faces client components, you must create a new Faces JSP

file like you normally would for any other Faces page. The only difference is that when

you are creating the faces page you must be sure to select the appropriate model from the

drop down list on the first page of the New Faces JSP File wizard. For a page that will

include Faces client components you will need to select “Basic with client-side data

caching” from the drop down list.

Next, you will define some page data exactly as you would for any other faces page.

IRADv6_JSF_Client.ppt Page 10 of 25

After defining page data, you now must define the client data. To do this, use a new view

called “Client Data”. By default, this is located to the right of the Page Data view in the

Web perspective. When you create a new client data you must select the server-side data

(page data) that the client data is associated with. Once you have done this, the tool does

quite a bit of work behind the scenes to generate the appropriate meta-data and mediators

needed to build the client-side data structures.

The following is a definition of the artifacts that get generated during this phase:

ECore file contains the core model definition

EMap file is specific to the client framework. The purpose of this file is to Map application

classes to EMF EClass definitions, and Map EMF EClass definitions to client side EClass

definitions

Mediators (generated classes): Automatically generated using the EMap and ECore

files. The job of the mediator is to take application data (Java class instances) and

transform them into JS fragments that will be embedded in the Web page sent back to the

browser.

The tool first creates the ECore file. From this definition, the EMap file is generated, and

then using both the ECore and EMap files, the various mediators are created.

IRADv6_JSF_Client.ppt Page 11 of 25

Once the client data has been built, you are ready to start adding Faces Client

components to your page and binding these components to the appropriate client data.

IRADv6_JSF_Client.ppt Page 12 of 25

There are several important scalability and performance limitations that should be

considered before using the client components. Since the data is cached in the client

browser, there is a limit to the amount of data that can be handled within the browser

before performance begins to degrade. Generally speaking, the client components cannot

handle more than roughly 1000-1500 objects at a time, and this is dependent upon the

size of the objects. The performance problems are caused by the time it takes to transmit

the data to the browser, and the processing time to handle the data within the browser.

Another limitation of the data grid and tree view is that other components cannot be

embedded in the cell of a Data Grid or the node of a Tree.

IRADv6_JSF_Client.ppt Page 13 of 25

This slide lists some of the important properties that can be enabled to facilitate

troubleshooting problems with the Faces Client Components.

IRADv6_JSF_Client.ppt Page 14 of 25

The next section will provide an overview of each client component.

IRADv6_JSF_Client.ppt Page 15 of 25

There are four components included in the Faces Client Components drawer on the

Palette. These include the Data Grid, Graph, Tree view, and Web Service.

IRADv6_JSF_Client.ppt Page 16 of 25

This graphic highlights many of the features provided by the Data Grid component.

In addition to these features, there is support for adding client side JavaScript that can

respond to user actions such as (1) Highlighting, selecting, and unselecting a row. For

example, on row highlight you can specify that the client data for that cell be bound to

another client-side component. (See: onhighlight, onselect, and onunselect)

Limitations:

Can not include other JSF components in the data grid cells.

IRADv6_JSF_Client.ppt Page 17 of 25

The Data Grid component supports handling several client side events. This event

handling code is implemented using JavaScript, and snippets of JavaScript can be added

to the page from the Quick Edit view.

IRADv6_JSF_Client.ppt Page 18 of 25

This graphic highlights many of the features that are provided by the Tree View

component.

In addition to these features, there is support for adding client side JS that can respond to

user actions such as (1) highlighting, selecting, and unselecting a node. For example, on

a node highlight you can specify that the client data for that node be bound to another

client-side component. (See: onhighlight, onselect, and onunselect)

Limitations:

Can not make nodes act a a link.

IRADv6_JSF_Client.ppt Page 19 of 25

Like the Data Grid component, the Tree view component also provides handling of several

client side events.

IRADv6_JSF_Client.ppt Page 20 of 25

This slide provides a summary of the Graph Component. The Graph is a macromedia

flash based component that provides the ability to build pages that include graphical data

in the form of a Bar, Line, or Pie graph. There are a number of configuration options

available as shown on this slide.

IRADv6_JSF_Client.ppt Page 21 of 25

The Web Service client component provides the ability to bind client-side data to a Web

Services call. In this scenario, input and output controls are bound as client data. In the

case of the Web Service client component, the call to the Web Service does not result in a

full page refresh.

IRADv6_JSF_Client.ppt Page 22 of 25

The next section will provide a summary and references for this presentation.

IRADv6_JSF_Client.ppt Page 23 of 25

In summary, this presentation has focused on the architecture for the Faces Client

Components and an overview of each of these components.

IRADv6_JSF_Client.ppt Page 24 of 25

