
WASv6_JSF_Details.ppt Page 1 of 24

This presentation will provide an overview of the JavaServer Faces architecture.

WASv6_JSF_Details.ppt Page 2 of 24

The goals for this presentation are to provide and overview of the JavaServer Faces

architecture and to provide examples that showcase various JSF architectural design

points.

WASv6_JSF_Details.ppt Page 3 of 24

This presentation starts with a look at the JSF architecture. The second part of the

presentation will provide examples of JSF concepts.

WASv6_JSF_Details.ppt Page 4 of 24

This section will discuss the JavaServer Faces runtime architecture.

WASv6_JSF_Details.ppt Page 5 of 24

This diagram gives a high level view of some of the important parts that make up a JSF application. This section will
focus on providing an overview of some of the items that are specific to a JSF application. These items are included
above the dashed line in the box entitled “JSF Web Application”. Note from this diagram that the JSF runtime JAR files
and tag libraries are included with the WebSphere Application Server Version 6.0 runtime. Any JAR files and tag
libraries that support JSF custom UI components are packaged with the individual JSF Web Application.

The following is a description of some of the resources that make up a JSF application (in addition to those listed
above):

JSF Page: A JSP page with at least one JSF component (a JSF custom tag). The JSF page is the View component in
the MVC paradigm.

FacesServlet: The FacesServlet is provided by the JSF runtime implementation. This is the controller servlet that
manages all incoming requests for JSF pages and passes these requests to the lifecycle management implementation
of the JSF runtime.

Managed Beans: Managed beans represent the model aspect of the MVC design aspect of JSF. A managed bean is a
Java bean whose state is managed by the JSF Framework

Validators: Validators are java classes that implement methods used to validate UI input. These classes implement the
Validator interface provided with the JSF APIs.

Event Handlers: Event handlers are classes that implement methods to handle certain UI events. These events may
include such things as action events like button clicks, or value changed events which are associated with input
components.

faces-config.xml: The faces-config.xml file contains the configuration necessary for the JSF framework to run a
particular JSF application.

There are several other terms that are important to introduce at this time since they will seen in the remaining part of this
presentation. These terms include:

FacesContext: The FacesContext is a Java object that contains all the information needed to processes a request to a
faces resource. This object is passed between the various phases in the request processing lifecycle, and maybe
updated during this time; for example, to add an error message.

Lifecyle: The Lifecycle is a Java object that is used to manage the request processing lifecycle for a faces request.

WASv6_JSF_Details.ppt Page 6 of 24

There are two standard JSF tag libraries. The first of these tag libraries is the JSF core

tag library. This library includes the core JSF tags that are independent of the renderer

type. The tags in this library are used to register such things as event listeners and

validators for UI components. The second standard JSF tag library is the HTML Basic tag

library. The tags in this group is used to support UI component tags for the standard

HTML renderer. As an example of the components included in this library there are tags

for buttons, text fields, checkboxes, and so on.

In addition to these libraries, there are several tag libraries that are provided to support the

IBM custom UI components. This support is provided with the IBM Rational® Application

Developer V6 product.

WASv6_JSF_Details.ppt Page 7 of 24

The faces-config.xml file is a configuration file used to store the configuration for a specific

JSF application. This configuration file is packaged with the application WAR file.

This slide lists several of the configurable items available in the faces-config.xml file. The

next section will illustrate examples highlighting various JSF features such as navigation,

validators, converters, and so on. When appropriate in these examples, an example of

the appropriate entry in the faces-config.xml will be highlighted.

WASv6_JSF_Details.ppt Page 8 of 24

The FacesServlet is provided by the JSF implementation, and represents the controller

Servlet for the JSF application. The FacesServlet is responsible for managing all

incoming requests and passing these requests to the lifecycle management process.

Because the FacesServlet acts as the controller Servlet, an entry for it must appear in the

web deployment descriptor for the application.

The FacesServlet is responsible invoking the appropriate Lifecycle management methods

to manage the incoming request.

For each HTTP request the FacesServlet:

•Acquires a FacesContext and a Lifecycle instance

•Calls the execute() method on the Lifecycle instance

•Calls the render() method on the Lifecycle instance, and

•Releases the FacesContext instance

During the Lifecycle.execute() call, the majority of the faces processing occurs. A detailed

explanation is included on the next slide. It is during the Lifecycle.render() call that the

response that is returned to the client is generated and passed back to the client browser.

WASv6_JSF_Details.ppt Page 9 of 24

This slide provides a detailed view of the JSF Request processing lifecycle. This diagram can be found in the JSF
specification referenced at the end of this presentation. The following is a description of each step in the request phase:

Restore view

The primary task during this phase is to restore or create the UI component tree and store this information as the
viewRoot property on the FacesContext. If the page being requested is being accessed for the first time during the
current session, then the UI component tree will be created. However, if this page has already been accessed then the
component tree is rebuilt from state information stored by the server.

Apply Request Values

During the Apply Request Values phase the current state of each component in the UI tree is updated with information
included with the incoming request. Recall that this information comes in the form of parameters, cookies, headers, and
so on. During this phase, these values are stored in the UI component and not on a business model object (this comes
later). During this phase conversions are preformed and events that have been queued are handled. If any conversion
errors occur during this process, these messages will be queued in the FacesContext. If any of the methods called
during this phase to convert values or handle events calls responseComplete() on the FacesContext lifecycle processing
is ended for this request. If any methods all renderResponse(), the remaining phases in the lifecycle are skipped and
the faces response is rendered.

Process Validation

During the Process Validation phase all registered validators (zero or more) for each UI component is called to check for
validation errors. If a validation error does occur, error messages can be queued in FacesContext and the valid
property on the particular UI component is set to false.

Update Model Values

During this phase, business objects (model objects) are updated with the values stored on the UI component tree in the
Apply Request changes.

Invoke Application

During the Invoke Application phase, application level events are handled. Examples of such events includes pressing
a submit button on a form or clicking a command link.

Render Response

The primary task during the Render Response phase is to send a response to the client for the appropriate rendering. It
is also during this phase that the state of the UI component tree is saved on the server in user session data for later
requests.

WASv6_JSF_Details.ppt Page 10 of 24

The next section will highlight some JavaServer Faces architectural details.

WASv6_JSF_Details.ppt Page 11 of 24

The following section will provide a number of examples that highlight many of the

important JSF architecture details. Before jumping into these examples, it is important to

discuss a basic set of JSF development steps so that you will better under stand some of

the examples included in this section.

The first step to developing a JSF application is to create one or more JSF pages. Each

page will generally include a number of input and output components and usually at least

one command component of some sort, like a submit button. Also important in JSF

development is creating managed beans. The data encapsulated in the managed bean

will be used to bind to the various UI components on the JSF page. All UI components

included on a JSF has many attributes associated with the component that can be set to

define the configuration for those components. Generally a JSF page will include one or

more event listener to act on various user events. Finally, if your application includes more

than one JSF page, you will likely need to define one or more navigation rules in the

faces-config.xml file.

WASv6_JSF_Details.ppt Page 12 of 24

The JSF framework provides support for creating and handling UI events. There are

several points in the request processing lifecycle. Although the JSF framework provides

an API for developers to build their own Events and Listeners to fit into the JSF

framework, there are two standard events and corresponding listeners already provided

with the JSF runtime. These events and listeners are listed on the table shown on this

slide. In the next several slides, there are examples of the ActionEvent associated with a

command button.

WASv6_JSF_Details.ppt Page 13 of 24

Each UI component included on a JSF page is typically bound to a particular data property

associated with a business object on the server side. A value of a particular UI component

is bound to this business object property through a value binding expression. A value

binding expression is a way to allow attributes of a JSF UI component to be bound

dynamically to a specific data source. The syntax of a value binding expressions are

similar to Expression Language (EL) expressions defined in JSP 2.0.

The example on this slide illustrates a input component whose value is bound to a

property (orderNumber) on a managed bean (receiveOrder). The value binding

expression is the “value” attribute on the h:inputText tag. The example also highlights the

managed bean definition found in the faces-config.xml file.

WASv6_JSF_Details.ppt Page 14 of 24

A method binding expression is used when you want to bind a particular property to the

output returned from the invocation of a specified method on a managed bean during

request processing. Not all attributes on JSF components accept method binding

expressions, and those that do are listed on the following slide. It is important to note that

attributes that do accept method binding expressions must conform to a specific method

signature.

The example on this slide shows a method binding expression used with the action

attribute of a command button. For this example, there is a managed bean called

receiveOrder defined in the faces-config.xml file, and the Java class represented by this

managed bean includes a method called processOrder. As you will learn on the next

slide, methods used in a method binding expression for the action attribute must take no

parameters and return a string.

WASv6_JSF_Details.ppt Page 15 of 24

This slide lists the standard component properties that accept method binding
expressions.

You were introduced to the action property in the previous example. This property can be
associated with a command component. In this case, the action property action specifies
the value returned when a command component is clicked. The method bound to this
property is called during the “Invoke Application” phase of the request processing lifecycle.
The string result that is returned by this method is bound to the action property and is
used in conjunction with the Navigation handler to decide what to do based on the return.
An example of this will be shown later on in this section.

The actionListener and valueChangedListener are properties that can be set on particular
UI components to register methods to handle an ActionEvent or ValueChangedEvent,
respectively. If you choose to use this approach, then there is no need to write your own
Listener class to implement these methods. In this case you can simply add these
methods to a managed bean class and use the method binding expression.

The validator property can be used to specify a validation method without needing to
implement the Validator interface. This can be used on input components to validate
input. The following three examples illustrate the use of the validation, and in particular
there is an example of using the validator property along with a method binding
expression.

WASv6_JSF_Details.ppt Page 16 of 24

The JSF framework provides support for validating user input during the “Process
Validations” lifecycle phase. There are two types of validators. These validators include:

Standard: The JSF runtime comes with a set of standard classes and tags to do several
common validation tasks for UI input components.

Custom: Custom validators are implemented by application developers. To build these
validators, you must implement the javax.faces.validator.Validator interface, or provide a
validator method as part of a managed bean and use the validator property as discussed
on the previous slide.

This slide provides an example of some of the standard validators that are available with
the base JSF implementation.

WASv6_JSF_Details.ppt Page 17 of 24

This examples shows how to set a custom validator using a method binding expression
defined on an inputText component. In this example, there is no need to add any validator
configuration in the faces-config.xml file. The only thing that needs to be done is to
include the validator attribute with a method binding expression on the inputText field and
also add the appropriate method to the managed bean referenced in the method binding
expression. Note that the method that is added to the managed bean must match the
method signature shown above.

WASv6_JSF_Details.ppt Page 18 of 24

This examples shows another alternative to using a custom validator. Here you provide a
class that implements the javax.faces.validator.Validator interface. In this case, rather than
using the validator property on the inputText component, the <f:validator> tag is used to
specify the custom validator. Unlike the last example, in this case it is necessary to add a
validator configuration item in the faces-config.xml file. Note that it is also possible to
define a custom tag to represent your custom validator and use this in place of the
<F:validator> tag.

WASv6_JSF_Details.ppt Page 19 of 24

The conversion model is a way to convert user input from the presentation view to the

model view. These two views typically work with a different form of the data. The model

will often deal with Java objects, while the view may need a particular way to display the

data (like a string). Converters are used to transform data between the model and

presentation views. A converter is attached to a UI component that is a value holder of

some sort.

The JSF runtime includes a standard set of converter implementations. In addition to this,

there is also support for developing a custom converter by implementing the

javax.faces.convert.Converter interface. Custom converters are defined in the faces-

config.xml file.

WASv6_JSF_Details.ppt Page 20 of 24

Navigation rules are specified in the faces-config.xml file. At runtime, these rules are

selected based on the current page (from-view-id) and the return values from method

bindings specified for the action component property on a command UI component

(command button or command link).

It is important to point out that there are two types of navigation rules. These navigation

types are:

Global: Application wide navigation rule indicated when <from-tree-id> is omitted, and

Page-specific: A navigation rule that only applies when the request page matches the

<from-tree-id> element

WASv6_JSF_Details.ppt Page 21 of 24

The next section will provide a summary and references for this presentation.

WASv6_JSF_Details.ppt Page 22 of 24

In summary, this presentation has focused on providing an overview for the JavaServer

Faces framework. This technology is intended to be incorporated with tool support to

enable rapid application development to J2EE web development.

The JSF framework is based upon a Model-View-Controller based design paradigm, and

also includes an event driven model that provides an easy framework for to handle user

events when building web based applications.

The JSF framework is extremely flexible and includes many extension points for adding

such things as validators, event handlers, and converters.

WASv6_JSF_Details.ppt Page 23 of 24

