
WASv6_JDBC_Mediator.ppt Page 1 of 20

®

IBM Software Group

© 2004 IBM Corporation

Updated January 25, 2005

IBM® WebSphere® Application Server V6

JDBC™ Mediator

This presentation, will focus on providing an overview of the JDBC Mediator.



WASv6_JDBC_Mediator.ppt Page 2 of 20

IBM Software Group

2

JDBC Mediator © 2004 IBM Corporation

Goals

�Provide an overview of the JDBC Mediator

�Provide code sample of using the JDBC Mediator

�Highlight some JDBC Mediator limitations

The primary goal of this presentation is to provide an overview of the JDBC Mediator.  
Additionally, this presentation will provide a code sample that highlights the JDBC 
Mediator API and close with several remarks regarding current limitations to the JDBC 

Mediator.



WASv6_JDBC_Mediator.ppt Page 3 of 20

IBM Software Group

3

JDBC Mediator © 2004 IBM Corporation

Agenda

�Overview

� JDBC Mediator APIs

� Limitations

�Summary and References

The agenda for this presentation is to start by looking at an overview of the JDBC 
Mediator.  After an overview of this SDO based technology, you will see a simple code 
sample that is intended to highlight the JDBC Mediator API.  Finally, the presentation will 

close with some remarks about some of the current limitations to the JDBC Mediator.



WASv6_JDBC_Mediator.ppt Page 4 of 20

IBM Software Group

4

JDBC Mediator © 2004 IBM Corporation

OverviewOverview

Section

The next section will provide an overview of the JDBC Mediator.



WASv6_JDBC_Mediator.ppt Page 5 of 20

IBM Software Group

5

JDBC Mediator © 2004 IBM Corporation

JDBC Data Mediator: Introduction

�Provides an SDO Data Mediator for data sources 
that are accessed using JDBC

�Simplifies Web application development by 
providing an easy way to access data

�Particularly powerful when integrated in a development 
environment

�Supports all relational databases supported by the 
WebSphere Application Server runtime

The JDBC Data Mediator is responsible for providing SDO support to relational databases.  
Typically data access in most web applications is done using either direct access to the 
data base using JDBC, or with Entity EJBs.   However, the learning curve and 

development overhead for these technologies can be limiting for a set of potential J2EE 
based development projects.  The goal of the JDBC Data Mediator is to provide an easy 
way for applications to access data in a relational database without developing a lot of low 

level code.   This technology is particularly powerful when it is integrated in a development 
environment to enable rapid application development for projects that access JDBC 
resources.  

The JDBC Mediator support provides a set of programming APIs.  The JAR files needed 

to utilize this technology are included with the WebSphere Application Server V6 runtime 
environment.  These APIs are available for developers to use outside of the IBM Rational 

Application Developer V6 tool environment.  However, the IBM Rational Application 
Developer V6 has extensive support for the JDBC Mediator to help enable developers to 

access JDBC resources more easily.



WASv6_JDBC_Mediator.ppt Page 6 of 20

IBM Software Group

6

JDBC Mediator © 2004 IBM Corporation

JDBC Data Mediator: High-level Functions

Mediator provides schema information 

associated with the Data Graph

Get schema

Retrieves next or previous page of data 

based on page size and last element 

fetched

Get next or previous page of 

data

Mediator updates changes from Data 

Graph to the data source

Apply Changes to Data Source

Mediator queries backend and creates 

Data Graph from Result Set

Get a Data Graph

Client provides metadata and 

connection.  Note: Query information is 

specified at this time

Create JDBC Mediator

DescriptionFunction

This slide highlights several common use cases for the JDBC Mediator.  The following is a 
summary of each:

Create JDBC Mediator: In order to create a JDBC mediator the client provides metadata 
and a connection to the backend data source.  In addition to this, the client may also 

include an ECore schema and a String that represents a particular SQL query.  The last 
option is used when the client is using generated static DataObject APIs 

Get Data Graph:  The client also needs to be able to request a data graph from the 
mediator based on the query that was used to initialize the mediator. In this scenario, the 
mediator queries the database, and transforms the resulting JDBC ResultSet into a 

DataGraph representation.  If there are any errors that occur during the database query, 
this results in exceptions being thrown.

Apply Changes to Data Source:  Once the client has updated a data graph with 

modifications/deletes/inserts, the client will need the ability to request from the mediator 
that these changes are persisted to the backend data source.  The mediator is responsible 

for extracting the changes that have been made to the data graph and updating the 
database appropriately.

Get next or previous page:  For large data sets it is often necessary for clients to be able 

page through the data set without obtaining the entire set all at once.  The JDBC mediator 
provides this support automatically, except in the case where the mediator was initialized 
using an explicit SQL query.  



WASv6_JDBC_Mediator.ppt Page 7 of 20

IBM Software Group

7

JDBC Mediator © 2004 IBM Corporation

JDBC Data Mediator: Design Points

�Paging support

�Mediator will fetch next or previous page of data based 
on page size and last element retrieved

�Normalization of Data

55,000SmithSales

40,000MillsSales

50,000KleinSales

20,000JonesSales

SalaryLast NameDepartment
Sales

Jones
20,000

Mills
40,000

Klein
50,000

Smith
55,000

This slide and the next will highlight several important design points of the JDBC Mediator.  
As mentioned on the last slide as part of the use cases listed there, you learned that the 
JDBC provides paging support to allow the mediator to fetch the next or previous page of 

data based upon the page size and the last element retrieved.

Another design point of using SDO and the JDBC mediator is that by nature of the fact 
that it is using DataObjects and a DataGraph to represent the data retrieved from a query, 
you get data normalization automatically.  This slide illustrates this type of data 

normalization with the table and data graph to the right.



WASv6_JDBC_Mediator.ppt Page 8 of 20

IBM Software Group

8

JDBC Mediator © 2004 IBM Corporation

JDBC Data Mediator: Design Points (cont.)

�Connections to data source

�Lifecycle of data source connection is not managed by 
the JDBC Data Mediator

�Client is responsible for recovery or retry of error 

conditions or a concurrency failure 

�Mediator uses an optimistic concurrency control strategy

�Metadata

�Schema information augmented with query details

�JDBC Data Mediator is bound to a single Metadata object

� A new JDBC Mediator instance is required for each query

It is important to understand some of the client responsibilities with respect to using the 
JDBC mediator.  This slide lists some of these considerations.  To begin, the creation and 
management of the connection to the data source is the responsibility of the client.  

Although the JDBC mediator takes care of all the updates/creates/deletes that are 
necessary using an optimistic concurrency strategy, the mediator does not recover or retry 
when an error or concurrency violation occurs.  This information is passed on to the client, 

and the client is responsible for handling appropriately.

It is also important to understand the lifecycle of the mediator itself.  The JDBC mediator 
does not cache metadata objects for the client.  This means that if the client needs to 

make a second request that is a different query or schema, a new JDBCDataMediator 
instance needs to be created.



WASv6_JDBC_Mediator.ppt Page 9 of 20

IBM Software Group

9

JDBC Mediator © 2004 IBM Corporation

JDBC Mediator APIJDBC Mediator API

Section

The next section will provide an overview of the JDBC Mediator APIs.



WASv6_JDBC_Mediator.ppt Page 10 of 20

IBM Software Group

10

JDBC Mediator © 2004 IBM Corporation

JDBC Data Mediator API: Getting Started

�Key Classes

�JDBCMediator

�JDBCMediatorFactory

�ConnectionWrapper

�Metadata

�How to use

�Create ConnectionWrapper instance

�Create MetaData instance

�Use JDBCMediatorFactory to create an instance of the 
JDBCDataMediator

Before looking at a code example let’s start with some key classes associated with the 
JDBC Mediator APIs.  The following is a description of the key classes supporting the 
JDBC Data Mediator:

JDBCDataMediator:  This is the primary class used by the client to operate on data in the 

back end relational database.  This class provides the methods needed by the client to 
query (including paging support), update, delete and create items in the backend 
database.

JDBCMediatorFactory: This class is used to obtain a new instance of a 
JDCBDataMediator object.

ConnectionWrapper: Wrapper class that encapsulates the connection to the backend 
database.  This class contains a flag indicating if the mediator is responsible for managing 

current transaction, or if the transaction is managed by the client using the data mediator.

Metadata: This class encapsulates schema and augmented query information.  

Both the ConnectionWrapper and Metadata objects are instantiated by the client and 

passed to the JDBCMediatorFactory to create a JDBCDataMediator

The basic steps needed by client code to utilize the JDBC Data Mediator APIs is to (1) 

Create a connection and ConnectionWrapper instance for the backend database, (2) build 



WASv6_JDBC_Mediator.ppt Page 11 of 20

IBM Software Group

11

JDBC Mediator © 2004 IBM Corporation

JDBC Data Mediator Example

ConnectionWrapper connWrapper = 
ConnectionWrapperFactoryImpl.soleInstance.createConnectionWrapper(conn);

MetadataFactory factory = (MetadataFactory) MetadataFactory.eINSTANCE;
Metadata metadata = factory.createMetadata();
Table customersTable = metadata.addTable("CUSTOMERS");
metadata.setRootTable(customersTable);
customersTable.addStringColumn(“CUSTOMERNAME");
Column customerID = customersTable.addStringColumn("CUSTOMERID");
customerID.setNullable(false);
customersTable.setPrimaryKey(customerID);

Filter filter = factory.createFilter();
filter.setPredicate("CUSTOMERS.CUSTOMERID = ?");
FilterArgument arg = factory.createFilterArgument();
arg.setName("CUSTOMERID");
arg.setType(Column.STRING);
filter.getFilterArguments().add(arg);
customersTable.setFilter(filter);

Relational Schema
CUSTOMERS(CUSTOMERID,CUSTOMERNAME,EMAIL,PHONE,ADDRESS,CITY,STATE,ZIP)

java.sql.Connection

Build Metadata

Build query information

Include query information with Metadata

This slide and the next lists a code example to illustrate the use of the JDBC Mediator 
API.  The relational schema for this example is listed at the top of this code example and 
indicates that there is a table called CUSTOMERS that has a key column called 

CUSTOMERID.  The major points in this code sample are (1) creating the 
ConnectionWrapper with an existing java.sql.Connection, (2) building the Metadata object 
that will be passed to the JDBC Mediator, and (3) build query information and include 

information with the Metadata.



WASv6_JDBC_Mediator.ppt Page 12 of 20

IBM Software Group

12

JDBC Mediator © 2004 IBM Corporation

JDBC Data Mediator Example (cont.)

JDBCMediatorFactory mFactory = JDBCMediatorFactoryImpl.soleInstance;
mediator = mFactory.createMediator(metadata, connWrapper);

DataObject parameters = mediator.getParameterDataObject();
parameters.setString(0, "PBW0001");

DataObject customersRoot = mediator.getGraph(parameters);

customersRoot.set(“CUSTOMERNAME”, "PlantsByWebSphere”);

mediator.applyChanges(customersRoot.getDataGraph());

Relational Schema
CUSTOMERS(CUSTOMERID,CUSTOMERNAME,EMAIL,PHONE,ADDRESS,CITY,STATE,ZIP)

Create Mediator 
from Metadata and
ConnectionWrapper

Build query arguments

Run query and
get DataGraph

Update data source

Update DataGraph

This slide is a continuation of the code sample started on the previous slide.  At the top of 
this code snippet the JDBC Mediator is created from the JDBCMediatorFactory by passing 
in the metadata and connectionWrapper instances.  Once the mediator has been 

instantiated, you can use the mediator to build query arguments and call the getGraph() 
method to have the JDBC Mediator query the database and return the appropriate result 
in the form of a root data object.

This example further shows how to use the DataObject APIs to update the data graph, 

and then use the applyChanges() method of the JDBC Mediator to persist the changes on 
the backend data source.



WASv6_JDBC_Mediator.ppt Page 13 of 20

IBM Software Group

13

JDBC Mediator © 2004 IBM Corporation

LimitationsLimitations

Section

The next section will list some of the current limitations of the JDBC Mediator.



WASv6_JDBC_Mediator.ppt Page 14 of 20

IBM Software Group

14

JDBC Mediator © 2004 IBM Corporation

JDBC Data Mediator: Limitations

�Recursive foreign key relationships not supported

�Multi-table graphs

�Filters are applied before result sets are joined

�Filters for one table can not depend on another table

�Order bys are done on the final result set

�Generated with a single query, joined by equijoins 

�Must designate root table to control ordering on a join

�Filters are combined with an “AND”

This slide lists some of the current limitations of the JDBC Mediator.  These limitations are 
listed in greater detail on the WebSphere Application Server V6 information center.



WASv6_JDBC_Mediator.ppt Page 15 of 20

IBM Software Group

15

JDBC Mediator © 2004 IBM Corporation

JDBC Data Mediator: Limitations (cont.)

� Long running cursors not possible

�Queries with very large result sets not 
recommended

Resulting from 
disconnected 
architecture

The limitations described on this slide are a limitation resulting from the fact that the JDBC 
Mediator and SDO are built on a disconnected architecture as described in the SDO 
overview presentation.  These limitations are due primarily to performance considerations.



WASv6_JDBC_Mediator.ppt Page 16 of 20

IBM Software Group

16

JDBC Mediator © 2004 IBM Corporation

Summary and ReferenceSummary and Reference

Section

The next section will provide a summary for the JDBC Mediator.



WASv6_JDBC_Mediator.ppt Page 17 of 20

IBM Software Group

17

JDBC Mediator © 2004 IBM Corporation

JDBC Mediator: Summary

� Provides a SDO data mediator for JDBC data 
sources

� Integrated with IBM Rational Application 
Developer V6

� Relational Record

� Relational Record List

In this presentation you learned about the SDO-based JDBC Mediator.  This technology is 
a new feature in the WebSphere Application Server V6 runtime environment and is also 
supported in IBM Rational Application Developer V6.  Specifically, the JDBC Mediator 

functionality is available as the Relational Record and Relational Record List data source 
for JSF and JSP page development.



WASv6_JDBC_Mediator.ppt Page 18 of 20

IBM Software Group

18

JDBC Mediator © 2004 IBM Corporation

References

�Developer Works: 
�http://www.ibm.com/developerworks/library/j-commonj-sdowmt/



WASv6_JDBC_Mediator.ppt Page 19 of 20

19

IBM Software Group

JDBC Mediator *IBM Confidential* Application 

Trademarks, Copyrights, and Disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS MQSeries Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both. 

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both. 

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.  

UNIX is a registered trademark of The Open Group in the United States and other countries. 

Linux is a registered trademark of Linus Torvalds.  

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication.  Product data is subject to change without notice.  This document could include technical inaccuracies or 
typographical errors.  IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice.   Any statements regarding IBM's 
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.  References in this document to IBM products, programs, or 
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business.  Any reference to an IBM Program 
Product in this document is not intended to state or imply that only that program product may be used.  Any functionally equivalent program, that does not infringe IBM's intellectual 
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind.  THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER 
EXPRESS OR IMPLIED.  IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall 
have no responsibility to update this information.   IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement, 
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers 
of those products, their published announcements or other publicly available sources.  IBM has not tested those products in connection with this publication and cannot confirm the 
accuracy of performance, compatibility or any other claims related to non-IBM products.  IBM makes no representations or warranties, express or implied, regarding non-IBM products and 
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights.  Inquiries regarding patent or copyright 
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY  10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment.  All customer examples described are presented as illustrations of 
how those customers have used IBM products and the results they may have achieved.  The actual throughput or performance that any user will experience will vary depending upon 
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed.  Therefore, no assurance 
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2004.  All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

Template Revision: 11/02/2004 5:50 PM



WASv6_JDBC_Mediator.ppt Page 20 of 20

This Page Intentionally Left Blank

20

JDBC Mediator © 2004 IBM Corporation

IBM Software Group


