
WASv6_SDO.ppt Page 1 of 26

®

IBM Software Group

© 2004 IBM Corporation

Updated January 25, 2005

IBM® WebSphere® Application Server V6

Service Data Objects (SDO)

This presentation, will focus on providing an overview of Service Data Objects.

WASv6_SDO.ppt Page 2 of 26

IBM Software Group

2

Service Data Objects © 2004 IBM Corporation

Goals

�Provide an overview of Service Data Objects
(SDO)

�Highlight the benefits of using SDO

�Provide an overview of SDO Core APIs

The goals for this presentation are to provide an overview of Service Data Objects and to
highlight the benefits of using SDO.

WASv6_SDO.ppt Page 3 of 26

IBM Software Group

3

Service Data Objects © 2004 IBM Corporation

Agenda

�Overview

�Current problem with access to various data sources

�Service Data Objects (SDO)

�SDO Architecture

�Summary and References

The agenda for this presentation is to start by looking at an overview of the motivation and
goals of the SDO architecture. The second part of the presentation will focus on providing
an overview of the SDO architecture.

WASv6_SDO.ppt Page 4 of 26

IBM Software Group

4

Service Data Objects © 2004 IBM Corporation

OverviewOverview

Section

The next section will provide an overview of the SDO architecture.

WASv6_SDO.ppt Page 5 of 26

IBM Software Group

5

Service Data Objects © 2004 IBM Corporation

Current Data Access Challenges

� Many different models/APIs

for data and metadata
retrieval and representation

�Relational Databases (JDBC),

XML files, JMS, Web Services

(JAX-RPC), Enterprise

Information Systems (EIS)

� Lack of support for
standard application

patterns

�Transfer Object

�Optimistic concurrency

�Pagination of large data-sets

Access APIs

Data APIs

Metadata Access APIs

Metadata APIs

Client Data
Base

EIS

…
…

Access APIs

Data APIs

Metadata Access APIs

Metadata APIs

Access APIs

Data APIs

Metadata Access APIs

Metadata APIs

XML
File

The Java™ 2 Enterprise Edition (J2EE) platform and supporting JSRs provide a wide range of programming
models and APIs. Because of this, J2EE developers are faced with a wide range of data model and access
APIs to represent and retrieve data from a variety of backend data sources. This situation requires that
developers become experts in many different data access technologies. Furthermore, not all of these
technologies provide functionality that is rich enough to easily support many of the standard application
patterns encountered in a typical J2EE application. Some examples of common application patterns that
lack standard support are:

Transfer Object Pattern: This pattern is used to minimize the amount of network traffic that results from
making several calls to remote methods for each attribute that is needed by a client. Instead of making
several access calls, an object called a transfer object can be returned from a single remote call. This
transfer object encapsulates the set of attributes needed by the client.

Optimistic Concurrency: With a disconnected programming model (such as a typical web-based
application), it is not uncommon to employ an optimistic concurrency approach. The primary assumption
with optimistic concurrency control is that data conflicts are infrequent.

Pagination of large datasets: Anyone who has developed an application that queries a back end data store
for information knows that an important problem that needs to be addressed is how to page through a large
set of data. Almost every application that queries a data store needs to know how to page through the data
(particularly when data is displayed on a GUI) when the result set of the query is large.

WASv6_SDO.ppt Page 6 of 26

IBM Software Group

6

Service Data Objects © 2004 IBM Corporation

Consequences of Current Data Access Challenges

�Programmers focus on learning technologies,
rather than solving business problems

�Programmers do a lot of low-level coding

�Tools do not offer an easy development experience
for J2EE application developers

The fact that there is a wide variety of APIs and data models used to access data in a
J2EE application creates a situation where programmers spend a fair amount of time
learning data access technologies rather than focusing on solving the business problem at

hand. Combined with this the fact that there is a lack of standardized support for common
application patterns, application developers typically need to do a fair amount of low level
programming to develop their business applications. It should not be surprising that these

same data access challenges also make it difficult for tool providers to build development
environments that make it easy to build J2EE applications.

WASv6_SDO.ppt Page 7 of 26

IBM Software Group

7

Service Data Objects © 2004 IBM Corporation

Solution: Service Data Objects (SDO)

Data
Base

Data
Base

…
…

Access APIs

Data APIs

Metadata Access APIs

Metadata APIs

Access APIs

Data APIs

Metadata Access APIs

Metadata APIs

Access APIs

Data APIs

Metadata Access APIs

Metadata APIs

EJB
Mediator

Custom
Mediator

JDBC
Mediator

SDO Core
APIs

Client

Unified data

representation

across

heterogeneous

data sources

File

SDO was developed to address many of the current data access challenges. The primary goal of the SDO
architecture is to make it easier for application and tools developers to create, view, update, and delete data
that is stored in a variety of backend data stores. As has already been discussed, one of the reasons this is
currently a challenge is that there are a wide variety of APIs and data models that are commonly used for
J2EE application development. The SDO architecture addresses this problem by providing uniform data
access and representation across a wide variety of data sources as well as support for many common
application patterns that are encountered in J2EE application development. The intention is to decrease the
amount of low level code developers need to write in order to create an application, and instead focus on
solving the business problem.

The SDO architecture can be thought of to have two primary parts:

(1) The core set of SDO APIs that define the unified data representation model

(2) Data mediator services (DMS) used to access the data

The picture shown on this slide is intended to emphasize that both the client code and the mediator code
need to know about the SDO core APIs. Basically, the core APIs are used by the client and the mediator to
represent data in a uniform manner. The client will use this core API irrespective of the mediator that is
being used.

NOTE: The current proposal for the SDO architecture (JSR 235) only addresses the APIs that are used to
uniformly represent the data. At this time a mediator specification is not included. For this reason the client
still has to work with a very small set of Mediator APIs. Fortunately the data source-specific code for the
mediator needed consists of steps needed to initialize a particular mediator.

WASv6_SDO.ppt Page 8 of 26

IBM Software Group

8

Service Data Objects © 2004 IBM Corporation

SDO: Design Points

�Unified data access and representation across
heterogeneous data stores

�SDO supports

�Dynamic and static (strongly typed) data APIs

�Disconnected programming model

�Introspection of data

�Change history for data modifications

�Relationship integrity

As discussed on the previous slide, SDO is intended to provide unified data access and representation across heterogeneous data sources. However,
there are also several other significant SDO design points to mention.

Static and Dynamic Data APIs – One of the SDO requirements is that it support both dynamic and static (typed) data APIs. A dynamic API would
typically be needed when the structure of the data is not known until runtime. An example of a dynamic data API is:

dataObject.set(“LASTNAME”, “Smith”);

On the other hand, static data APIs can be easier to work with and represent a familiar programming model for most application developers. The following
is an example of this:

public interface Person {

public String getLastName();

public void setLastName(String name);

…

}

In the client code, the Person object would be used in the following manner:

Person p = …

p.setLastName(“Smith”);

The core SDO APIs provide the dynamic data API. Support for static data APIs comes in the form of code generation tools. However, you should note
that the code generation specification is not currently in the scope of the SDO proposal.

Disconnected Programming Model – A typical web based application uses a disconnected data access pattern. For example, consider a client request
to access a particular web-based GUI. When a web client accesses a page that contains dynamic content, the follow scenario is not uncommon: (1) Client
requests to view a form of data, (2) Servlet or JSP queries/requests data from a data source (Start new transaction, read data, end transaction), and then
renders page data with the information, (3) Client updates data on the form and submits updates to backend, and (4) Servlet or JSP updates data source
based on data submitted (Start new transaction, update data, end transaction). The SDO model has been designed to support this disconnected data
access model. Typically with this type of data access pattern an optimistic concurrency approach is utilized.

SDO provides a number of features that are built into the core APIs that are included to address several common data access scenarios. First, SDO
provides APIs for metadata so that when an application or framework is working with dynamic Data Objects it is possible to use introspection to determine
the shape of the data. Also, in order to support a optimistic concurrency control, the core SDO APIs include change history information that includes the
new and old value for a data item that has been changed. Finally, in a practical application there are usually relationships between objects, and it is
important that any data access and representation API be able to support integrity of such relationships when objects are deleted (for example). As an
example of relationship integrity, consider a data model where an Employee has a reference to a Department, and the Department has a reference to
each Employee included in the department. If an employee changes departments, then the data objects need to reflect this change. The Employee
should refer to the new Department and be included in the new Department list, and removed from the old Department list.

WASv6_SDO.ppt Page 9 of 26

IBM Software Group

9

Service Data Objects © 2004 IBM Corporation

SDO: Design Points (Continued)

�Designed to integrate well in a tool environment

�Data objects defined/configured using wizards and views

�Tools can integrate utilities for generating static data
access APIs

�Not intended to replace other data access
technologies

�SDO proposal was published jointly by BEA and
IBM as JSR 235

One of the important goals of the SDO architecture is to design a data access
programming model that makes it easier for tools (IDEs) to allow rapid application
development capabilities. The design points mention thus far, including unified data
access/representation, dynamic APIs, and data introspection, all contribute to making
SDO a tool-enabled technology.

It is important to note that SDO is not intended to replace other types of data access
technologies. Rather, SDO is intended to be a layer on top of these technologies to help
provide a uniform way to look at a wide range of heterogeneous data.

The initial draft of the SDO proposal has been submitted as JSR 235 as joint work
between BEA and IBM. It is the intent that as SDO matures it will become the industry
direction.

WASv6_SDO.ppt Page 10 of 26

IBM Software Group

10

Service Data Objects © 2004 IBM Corporation

SDO Comparison with Other Technologies

AnySDO Metadata
API,Java Introspection

AnyBothDisconnectedSDO

N/AJava
introspection

XMLStaticN/AJAX-RPC

N/AJava introspectionXMLStaticN/AJAXB

XPath,
XQuery

XML infosetXMLDynamicN/ADOM and SAX

UndefinedUndefinedRecord-basedDynamicDisconnectedJCA

JDOQLJava
introspection

Relational,
Object

StaticConnectedJDO

EJBQLJava introspectionRelationalStaticConnectedEntity EJB

SQLRelationalRelationalDynamicDisconnectedJDBC
CachedRowSet

SQLRelationalRelationalDynamicConnectedJDBC RowSet

Query

Language

Metadata APIData SourceAPIModelTechnology

This chart was taken from a white paper entitled “Next-Generation Data Programming:
Service Data Objects”. Refer to this document for a complete discussion on the
comparison between SDO and these technologies. This white paper can be found at the

following location: http://www.ibm.com/developerworks/library/j-commonj-sdowmt/

SDO is not intended to replace these data access technologies. At first glance it may
seem as though SDO is a competing technology, while in fact in most cases SDO is a
complimentary technology to the various types of data access, and could be integrated

with these technologies. For each of these technologies an SDO data mediator could be
created to retrieve the data, and the DataObject APIs could be used to represent the data
in a uniform manner. With this scenario, an application developer would not need to

understand the data access APIs for all of the technologies listed on this slide. Instead,
they would only need to know the SDO APIs, and a small set of mediator specific APIs.

WASv6_SDO.ppt Page 11 of 26

IBM Software Group

11

Service Data Objects © 2004 IBM Corporation

SDO: Release Status

�WebSphere Studio Application Developer V5.1.1

�Introduces

� Relational Data Objects

� Relational Data Lists

�Supports relational data mediator only

�WebSphere Application Server V6.0

�Support for SDO naming and packaging

�Externalization of the following APIs

� SDO Core APIs

� JDBC Data Mediator

� EJB Mediator

SDO (formerly WDO) technologies

Tool support available
for both mediators

SDO technology was first introduced in version 5.1.1 of WebSphere Studio Application
Developer. In this release the SDO technology was referred to as WDO, and was a Beta
technology. In version 5.1.1 SDO was introduced in conjunction with JavaServer Faces

(JSF) technology and JSP development in the form of two data components that utilized
an SDO enabled relational (JDBC) mediator. Relational Data Objects are similar to rows
in a database table, but can represent a different schema than the tables they are “bound”

to. Relational Data Lists provide support to display multiple Relational Data Objects.

In version 6 of WebSphere Application Server the supporting SDO libraries will be
provided with the runtime environment and will support the new naming and packaging of
SDO. There will also be an externalization of the JDBC Data Mediator APIs as well as

EJB Mediator APIs. IBM Rational Application Developer V6 also provides tool support for
both the JDBC Mediator and EJB Mediator SDO technologies.

WASv6_SDO.ppt Page 12 of 26

IBM Software Group

12

Service Data Objects © 2004 IBM Corporation

SDO: Roles

� Expert in Java programming

� Understands the SDO APIs

� Skilled in a particular data access technology

Data Mediator Service

Provider

�Uses SDO APIs and various data mediators

�Expert in Java programming

�Familiar with EMF programming model

Tool / Framework Provider

� Knowledgeable in Java and XSD technologies

� Uses SDO interfaces (in particular DataObject)

� Uses static (generated) SDO APIs

� Program to specific data mediator services

Application Developer

SkillsRole

The audience of developers interested in SDO technology spans several types of
development roles.

Application developers make up the majority of the SDO audience. Application
developers are looking for an easy way to access data without knowing the low level API

details needed to access the data from a variety of data sources. Application developers
will typically use tools and integrated development environments to develop applications.

Developers that work on providing tools are also interested in SDO technologies as a way
to bring Rapid Application Development capabilities to J2EE development. Developers
working on these projects typically need to be familiar with the EMF (Eclipse Model

Framework) programming model, as well as experts in java programming and familiar with
SDO and a particular mediator API.

Finally, in order for SDO to become more widely exploited, there is a need for developers

to develop reusable data mediators for the various types of data sources used by
application developers. These developers are typically skilled in a particular type of data

access technology and will use these appropriate set of APIs (JDBC, for example) to
create the data mediator service .

WASv6_SDO.ppt Page 13 of 26

IBM Software Group

13

Service Data Objects © 2004 IBM Corporation

ArchitectureArchitecture

Section

The next section will provide a detailed look at the SDO architecture.

WASv6_SDO.ppt Page 14 of 26

IBM Software Group

14

Service Data Objects © 2004 IBM Corporation

SDO: Architecture

DataGraph
DataObject

Metadata

Pluggable
Data

Mediator

Data
Source
specific

Access APIs

Data APIs

Metadata Access APIs

Metadata APIs

Data
Source

Client
Create
Read

Update
Delete

SDO Core API

As discussed in the overview section, the SDO architecture is made up of two important
pieces, the SDO core APIs and the data mediator service. The SDO Core API is made up
of the following key interfaces: DataGraph, DataObject, and introspection APIs (See Type

and Property Interfaces). The SDO Core APIs are included in the commonj.sdo package,
and the object model diagram is included in the appendix of this presentation.

The pluggable mediator is currently a data source specific interface that the client uses to
facilitate creating, deleting, viewing, and updating backend data. The client and mediator

use the model defined by SDO core API to pass data back and forth. As shown in this
illustration the client need not know the low level details of accessing data for a particular
type of data source. All that is needed is the SDO Core APIs and a small set of mediator-

specific methods needed to fetch, create, delete, and update back end data.

The specific components that make up the architecture will be discussed in the following

slides.

WASv6_SDO.ppt Page 15 of 26

IBM Software Group

15

Service Data Objects © 2004 IBM Corporation

SDO: DataObject

� Data is held in a disconnected, source-independent format
defined by the DataObject interface

� Data access APIs are

�Dynamic (generic)

�Static and strongly typed (generated)

� Includes a reference to metadata

� Holds primitive data or multi-valued fields

� Supports relationship integrity

� Supports getting/setting values in DataObject graph using
an XPATH expression

Metadata

DataGraph
DataObject

The most fundamental component in the SDO architecture is the DataObject. It is used to
store structured data in a source independent and disconnected manner. DataObjects
may hold primitive or multi-valued fields (including other DataObjects). Through the

DataObject interface, data is held as a set of properties that can be accessed by the
property index, name, or a Property object. In the case of using a property’s name
(string), there is support for passing a string that represents the XPATH location path to

get or set a particular DataObject. There are a number of accessor methods for several
common primitive types and common Java objects (like java.util.Date). The accessor
methods defined for the DataObject interface make up the dynamic API. A DataObject
also includes a reference to the corresponding metadata that is accessed through the
getType() method. This method returns a commonj.sdo.Type object that contains a list of

commonj.sdo.Property objects for the DataObject.

As mentioned previously the DataObject API supports both dynamic and static APIs. The
dynamic APIs are automatically provided with the DataObject interface. In the case of

static DataObject APIs, utilities are required to provide the code generation for these
classes.

WASv6_SDO.ppt Page 16 of 26

IBM Software Group

16

Service Data Objects © 2004 IBM Corporation

SDO: DataGraph

� Represents a basic unit of data transfer between client and

data store

� Encapsulates set of DataObjects

�Contains a root DataObject

�References metadata from DataObjects

� All other DataObjects are reachable by traversing the

references from the root DataObject

� Contains change information

�Indicates which DataObjects have been added, updated,

or deleted

Metadata

DataGraph
DataObject

The DataGraph interface is another important component in the SDO core API. A
DataGraph object is the basic unit of transfer between a client and a mediator (or another
component). The DataGraph contains a root DataObject. All other Data objects that are

included in the DataGraph can be reached by traversing the references from the root
DataObject. Metadata is also available via references from DataObjects included in the
graph.

All other DataObjects are reachable by traversing the references from the root DataObject.

DataGraphs are responsible for including change information that is provided to enable
mediators to uphold an optimistic concurrency control. The reason for this is that
DataGraphs are independent of any connection to the data source. The change

information is included to communicate to the data mediator which DataObjects have been
updated or deleted from the datagraph.

WASv6_SDO.ppt Page 17 of 26

IBM Software Group

17

Service Data Objects © 2004 IBM Corporation

SDO: Data Mediator Service

�Created for specific data store

�JDBC Mediator, EJB Mediator, etc.

�Responsible for populating DataGraph

�Queries and updates the data store

�Implements an optimistic concurrency strategy for
updates

�Stateless with respect to the DataGraph

Client

M
e

d
ia

to
r

The data mediator is the component in the SDO architecture that is responsible for
facilitating data access between the client and a particular back end data source. It is
expected that there will be a mediator for a wide range of data source types. A data

mediator is created with backend specific metadata, but the basic interaction between any
mediator and a client is similar.

The data mediator is responsible for communicating with the data source and performing
updates and queries. During this process the mediator is responsible for creating and

populating a DataGraph with DataObjects that reflect the result of a particular query.
Likewise, a mediator may also provide the ability to create an empty DataGraph that may
be used to insert new DataObejcts by a client that will then be passed back to the

mediator to create this data in the data source.

It is important to note that the data mediator is stateless with respect to the DataGraph.

Since the DataGraph includes the change information, this is enough for the mediator to

employ an optimistic concurrency control strategy in order to determine if a concurrency
violation has occurred.

WASv6_SDO.ppt Page 18 of 26

IBM Software Group

18

Service Data Objects © 2004 IBM Corporation

Summary and ReferenceSummary and Reference

Section

The next section will provide a summary and references for this SDO Overview
presentation.

WASv6_SDO.ppt Page 19 of 26

IBM Software Group

19

Service Data Objects © 2004 IBM Corporation

SDO: Usage Scenarios

� JDBC Mediator

�Integrates well with JSF/JSP to provide J2EE RAD
capabilities

�EJB Mediator

�Transfer Object pattern for CMP EJB DMS

�Integrates with current EJB and JSF tools

This slide lists several usage scenarios for the SDO technology. This presentation did not
discuss the technical details regarding the JDBC and EJB mediators, however, this
information has been provided in another presentation.

WASv6_SDO.ppt Page 20 of 26

IBM Software Group

20

Service Data Objects © 2004 IBM Corporation

SDO: Summary

� Programming model specification

� Unifies data access/representation across heterogeneous data

stores

� Facilitates standard application development patterns

� Enables tools to be built more easily by providing a standard data

model

� An option, not a replacement for other data access

technologies

� WebSphere version 6 provides the following mediators

� JDBC

� EJB

SDO is a new programming model specification that is aimed at providing a unified data
representation across heterogeneous data stores. This technology facilitates standard
application patterns, and enables tools to be built more easily by providing a standard data

model.

It is important to note that SDO is not intended to be a replacement for other types of data
access technologies, rather it is expected SDO will be used in conjunction with these
technologies.

Although it was not discussed in this presentation, there are several important data
mediators that are available with WebSphere Application Server V6. These mediators

include the JDBC and EJB mediators. These mediators are discussed in another
presentation.

WASv6_SDO.ppt Page 21 of 26

IBM Software Group

21

Service Data Objects © 2004 IBM Corporation

References

�Developer Works:
�http://www.ibm.com/developerworks/library/j-commonj-sdowmt/

WASv6_SDO.ppt Page 22 of 26

IBM Software Group

22

Service Data Objects © 2004 IBM Corporation

Appendix: Service Data ObjectsAppendix: Service Data Objects

Section

WASv6_SDO.ppt Page 23 of 26

IBM Software Group

23

Service Data Objects © 2004 IBM Corporation

SDO: Object Model

DataMediatorService

ChangeSummary

DataGraph

11Type

name : String

uri : String

instanceClass : Class

Property

name : String

many : boolean

containm ent : boolean

default : Object

0..*0..*

11

Sequence

0..*0..*

DataObject

0..10..1

11

0..*0..*

0..*0..*+type +type

+container

+root

+properties

This diagram was taken from the Service Data Objects specification. This document,
along with the details of the SDO Java APIs can be found at the following location:
http://www.ibm.com/developerworks/library/j-commonj-sdowmt/

WASv6_SDO.ppt Page 24 of 26

IBM Software Group

24

Service Data Objects © 2004 IBM Corporation

SDO Example

Department

name : String
num : int

Course

title : String
num : int

Student

lastName : String
id : int

0..*

0..*

+ courses

+ students

Model

//Use Data Mediator to get data graph
//Then get root DataObject
DataObject root = dataGraph.getRootObject();

DataObject dept = root.getDataObject(“department”);

//Get the first course in the data graph
List courses = (DataObject) dept.getList(“courses”);

DataObject course = dept.get(0);

//Access a student in the first course
List students = course.getList(“students”);

DataObject student = (DataObject) students.get(1);

//Same as above code snippet, but using XPATH
String xpath = “courses.0/students.1”;

DataObject studentWithXPATH = dept.getDataObject(xpath);

//Another XPATH example
xpath = “courses[num=567]/students[id=555]”;

DataObject studentWithXPATH = dept.getDataObject(xpath);

WASv6_SDO.ppt Page 25 of 26

IBM Software Group

25

Service Data Objects © 2004 IBM Corporation

SDO Example (Continued)

Department

name : String
num : int

Course

title : String
num : int

Student

lastName : String
id : int

0..*

0..*

+ courses

+ students

Model

//Make data modifications
dept.setString(“name”, “Computer Science”);

//Creating a new DataObject
DataObject newStudent =

course.createDataObject(“students”);

newStudent.set(“lastName”, “Smith”);

newStudent.set(“id”, “556”);

//Deleting a DataObject from the DataGraph
student.delete();

WASv6_SDO.ppt Page 26 of 26

26

IBM Software Group

Service Data Objects

Trademarks, Copyrights, and Disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS MQSeries Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice. Any statements regarding IBM's
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program
Product in this document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2004. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

Template Revision: 11/02/2004 5:50 PM

© 2004 IBM Corporation

