
WASv7_RADJPATools.ppt

This presentation describes the Java™ Persistence API (JPA) and the tools available in

Rational® Application Developer V7.5 to do JPA development.

Page 1 of 24

WASv7_RADJPATools.ppt

The first section of this presentation provides an overview of the Java Persistence API and

the JPA tools that are available in the Rational Application Developer workbench. The rest

of the presentation covers these development tools in more detail, including how to work

with JPA projects, general JPA development tools; like how to create entities from tables

and using the new specialized views in the workbench. Finally, how to configure and

connect to databases for application testing.

Page 2 of 24

WASv7_RADJPATools.ppt

This section includes an overview of the Java Persistence API and JPA development tools

in Rational Application Developer.

Page 3 of 24

WASv7_RADJPATools.ppt

The Java Persistence API is a standard framework that provides persistence and object-

relational mapping as a part of the EJB 3.0 specification. It is a Java standard that

provides many of the benefits of alternative persistence frameworks, with the added

benefit of portability to any EJB 3.0 compliant container, without having to install any extra

libraries. It allows you to persist plain-old Java objects to a relational database – a much

simpler approach than using container-managed persistence (CMP) in EJB 2.1. In JPA,

Entities are plain-old Java objects, just like other components in EJB 3.0. An entity

typically represents a table in a relational database, and each instance of an entity is a

row. Entities are concrete classes, not abstract classes like Entity Beans in EJB 2.1. You

do not need to generate deployment code, which speeds deployment, and you do not

have to implement any particular interfaces. Another benefit is that all object-relational

mapping information is specified in a standard fashion, using Java annotations or XML

files. In earlier versions of the EJB specification, there was not a standard way to provide

this information, which meant each vendor’s implementation was different, and led to a

reliance on vendor-specific tools. JPA can also be used without an EJB container, that is,

in a Java Standard Edition (SE) environment.

Page 4 of 24

WASv7_RADJPATools.ppt

With extensible frameworks and tools, you can perform many tasks that are associated

with accessing data for a multi-tier enterprise application. You can work with JPA

properties in either the JPA Details view or the Annotations view, so that you don’t need to

keep both views open at once. For clarity, the Annotations view distinguishes between

implied and specified annotation attributes. Like in Java EE 5 application development,

deployment descriptors in JPA applications are optional – the programming model for the

JPA relies on using annotations to specify information about how the Java object will map

to a database table. However, deployment descriptors can still be used in a JPA

application, and the workbench provides deployment descriptor editors to work with those

files. In order to minimize the complexity of mapping between JPA entities and tables, you

can use wizards to create and automate initial mappings. You can also receive

programming assistance from the tools through dynamic problem identification.

Page 5 of 24

WASv7_RADJPATools.ppt

This section describes how to create and work with JPA projects.

Page 6 of 24

WASv7_RADJPATools.ppt

While the JPA is a part of the Java EE 5 specification, you can also create stand-alone

JPA projects. You can do this either using the JPA project creation wizard or by modifying

an existing Java project. In the project creation wizard, you need to choose a project name

and specify which target runtime to use for testing.

Page 7 of 24

WASv7_RADJPATools.ppt

After choosing the project name and runtime, you can configure additional options

associated with the JPA facet. This is the same panel that you see if you go in and edit the

project properties later. From here, choose which JPA platform to use. You also have the

option of adding a connection to a database. If you do not create a database connection at

project creation time, you need to do so later, before you can test your application. You

have the option of choosing a specific JPA implementation library to use with your project.

If you are using a WebSphere® Application Server V7 runtime and choose to use the

implementation provided by the server, then you are using an implementation based on

Apache OpenJPA. Deployment descriptors are optional in a JPA project, but you can

choose to create the persistence.xml and orm.xml files at project creation time, if needed.

Page 8 of 24

WASv7_RADJPATools.ppt

You can also convert a Java project into a JPA project, using Quick Fixes that are

available in the Java editor. When you type a JPA annotation into a plain old Java object

(POJO), the resulting compilation errors have Quick Fixes for adding the required JPA

facet and an appropriate runtime environment (if available) to your project. For example,

adding the @Entity annotation to the beginning of a Java class indicates that you want to

store that class’s fields to a database. The development environment automatically

recognizes this as a JPA annotation and includes the appropriate fixes in the Quick Fix

menus.

Page 9 of 24

WASv7_RADJPATools.ppt

The JPA Development perspective in the Rational Application Developer workbench

includes database-related tools and specialized JPA views to assist in JPA application

development and testing. The JPA Structure view provides a tree display of the data in a

JPA class. Highlight a JPA construct in the JPA structure view to see the configuration

details for that item in the JPA Details view. This view provides detailed information on the

attributes of a JPA entity, including the name of the table it’s being mapped to and all of the

attributes of the mapping. Many of the JPA attributes do not need to be specified in your

application and have context-appropriate default values; you can see these default values

in the JPA Details view. The JPA Development perspective also includes the Data Source

Explorer, which you can use to work with data source connections for application testing.

Page 10 of 24

WASv7_RADJPATools.ppt

This section describes general JPA development tools available in Rational Application

Developer V7.5.

Page 11 of 24

WASv7_RADJPATools.ppt

You can generate JPA entity beans from existing database tables; this is called bottom-up

mapping. In order to create an entity, you need to configure a database connection for

your project and that database needs to contain a table to use to generate the entity. If you

have not configured a database connection for your project, you can do so on the

Database Connection panel after launching the Generate Entities process for your project.

From there, either choose the appropriate existing connection or configure a new

connection. Then, select the table to use to create the entity. The development tools will

automatically generate a class based on the table structure, and the class will include the

appropriate data members and accessor methods. After generating the entity, create a

primary key element in the class by using either the Configure JPA Entities tools or by

adding the @ID annotation manually to the primary key field in the class.

Page 12 of 24

WASv7_RADJPATools.ppt

In the JPA Development perspective, the JPA Details view is integrated with the

Annotations view. From this view, you can browse through all of the JPA annotations in

your application and configure their attributes. As with other Java EE 5 constructs, in the

JPA, annotations take the place of information that was previously provided only in

deployment descriptors, and the programming model makes assumptions about what the

default attributes should be. For example, if you do not specify a table name to store your

JPA entity, the programming model assumes that the class name is the same as the table

name. You can see and override these annotation attributes from these views.

Page 13 of 24

WASv7_RADJPATools.ppt

The JPA details view also provides a dropdown menu to configure JPA mapping types and

parameters. You can specify the column and table in the database that holds the

information and the way that the mapping will happen. For example, you can choose

which element is the primary key, if a mapping is one-to-one, one-to-many, or a variety of

other mapping types. All of the available types are listed in the mapping menu, and you

can read more about them in the product documentation.

Page 14 of 24

WASv7_RADJPATools.ppt

JPA Manager Beans are service beans that act as façades or controllers over a particular

JPA entity. They encapsulate and abstract all of the data access code for creating,

updating, deleting, and displaying information from your database using JPA entities. JPA

Manager Beans are an ideal programming model for use in two-tier Web environments.

They fill the role that would normally be filled by a session bean in an EJB environment; all

of the business logic related to an entity is performed by the JPA Manager Bean. The use

of JPA Manager Beans is not limited to Web applications. They can be used anywhere that

you want to take advantage of their data abstraction capabilities, such as an EJB project,

a JPA Utility project, or even a plain Java project. Note that if you want to use JPA inside of

an EJB project, you might instead want to create an EJB Session Bean to contain all of

your JPA logic in order to get the benefits that the EJB container provides. You can

automatically generate Java Persistence API (JPA) manager bean classes for JPA entities

using the Add JPA Manager Beans wizard. This wizard creates the manager bean and lets

you configure which entities to associate with it and what tasks you want the manager to

perform.

Page 15 of 24

WASv7_RADJPATools.ppt

The persistence.xml file describes the details of the persistence units in your JPA project.

A persistence unit contains a list of entity beans. You can edit the persistence.xml file with

the Persistence XML Editor. The Persistence XML editor simplifies making changes to the

persistence.xml file like adding or removing persistence units, or modifying the properties

of a persistence unit. After you create persistent classes, you can automatically add them

to list of classes in their persistence unit in the persistence.xml file. To automatically add all

persistent classes in your JPA project to the persistence.xml file, right-click one of the Java

classes and choose the Synchronize Classes option. The persistent classes in your JPA

project are automatically discovered and added to the persistence unit in the

persistence.xml file.

When you specify object-relational mappings using the JPA tools, the mapping information

is contained in the Java class files in the form of Java annotations. However, you can also

choose to define the object-relational mappings in XML in a file called orm.xml. Mapping

information defined in the orm.xml file automatically overrides both default JPA behavior

and any mappings defined using annotations. Therefore, you can, for example, to adapt

existing JPA entity beans to a different set of database tables without needing to modify

the entity class files. You can use the Object Relational Mapping XML Editor to define

object-relational mappings for JPA entity beans in the orm.xml file.

The persistence.xml file and orm.xml file are located in the META-INF directory of the JPA

project.

Page 16 of 24

WASv7_RADJPATools.ppt

This section describes some additional tools for working with databases that can be useful

in developing Java Persistence API applications.

Page 17 of 24

WASv7_RADJPATools.ppt

There are multiple ways to access the database connection wizard from the workbench.

One way is to create a database connection while you are creating your JPA project.

Another way, described here, is to use the JPA project properties to start the wizard. A

connection profile contains the connection property information needed to connect to a

database runtime instance. You need to choose the type of database being used (for

example, Derby or DB2®), a name for the profile, the database driver you are using, and

any other required database parameters to create a connection – like the location of the

database and user name and password information if the database is secured.

Page 18 of 24

WASv7_RADJPATools.ppt

The data source explorer is integrated into the JPA Development perspective, and you can

also open it manually under the Window > Show View menu. From the data source

explorer, you can create new database connections (using the wizard described on the

previous page) and define and edit database tables. To edit a table, right-click it and

choose the option to edit the table. The database table entries appear in the table on the

right, and you can manually edit them. You can use this editor to populate test data for

working with your applications.

Page 19 of 24

WASv7_RADJPATools.ppt

Using the JPA tools, you can generate data definition language files for creating database

tables from entity beans that you create. In top-down mapping, you start with entity beans

and use them to create your database tables. You start from scratch with the entity

definitions and the object-relational mappings, and then you derive database schemas

from that data. If you use this approach, you are most likely concerned with creating the

architecture of your object model and then writing your entity classes. These entity classes

eventually drive the creation of your database model. If you are using a top-down mapping

of the object model to the relational model, develop the entity classes, and then use the

JPA tools DDL generation capability to create the database tables that are based on the

entity classes. The JPA Tools in your project can automatically generate a database

definition language, or DDL, file based on one of the entities in your project. Once you

have the DDL file, run it from the workbench to create the table.

Page 20 of 24

WASv7_RADJPATools.ppt

If you want to test your application on an application server, like WebSphere Application

Server, then you need to define a data source on that server. This assumes that you are

working in an EAR project and have a server connection configured for WebSphere

Application Server. Right-click the EAR project and choose the Open WebSphere

Application Server Deployment option to bring up the WebSphere Deployment editor.

From here, you can configure several server deployment options, including data source

definitions.

Page 21 of 24

WASv7_RADJPATools.ppt

This section contains a summary of the presentation.

Page 22 of 24

WASv7_RADJPATools.ppt

The Java Persistence API is a new programming model for persisting Java objects to

database; it is part of the Java EE 5 specification. The Rational Application Developer V7.5

workbench provides tools for doing JPA development, including specialized JPA projects

and views, tools for working with annotations, the ability to do top-down and bottom-up

mapping of entities and database tables, and wizards for configuring data sources for

application testing and deployment.

Page 23 of 24

WASv7_RADJPATools.ppt Page 24 of 24

