
RBF_Module3_BuildForgeServers.ppt

This module covers Abstracting Hardware when using Build Forge® Servers for IBM

Rational® Build Forge Version 7.0 and above.

This module assumes you are familiar with IBM Rational Build Forge basics. For a primer

on Build Forge, exit this module and first review the Introduction to Build Forge module,

then continue with this more advanced topic.

Page 1 of 20

RBF_Module3_BuildForgeServers.ppt

This module explains what the Build Forge agent is and how hardware is used in Build

Forge. It also outlines the steps that the agent takes when running a task. Additionally, this

module discusses the use of Selector and Collector constructs, and shows how to

implement them together to make hardware run a process.

Page 2 of 20

RBF_Module3_BuildForgeServers.ppt

There is a great deal of variance between computers, and usage must not be expanded

without consideration for how that variance is controlled. Users must be aware of how to

properly use resources, and how to appropriately track and redo Builds, if necessary. A

prime example of not dealing with this variance occurs when a user declares that

something works flawlessly on their computer, despite it not working on any other

computers. A user must be able to determine the factor that allows it to work on this one

computer.

Page 3 of 20

RBF_Module3_BuildForgeServers.ppt

One way to resolve the variable environments across computers is to strictly control

changes on a set of computers. Those computers then become the “official” Build

systems, and any Build submitted must work on those computers. This effectively controls

the changes that happen on the computers, and keeps everyone on the same page.

However, this solution has its drawbacks. Users end up avoiding the lab, since it is not

likely that the given configuration in the lab fits their needs exactly. If it does not match the

required configuration, there is a great deal of paperwork, approvals, and effort needed to

make the configuration changes so the lab can test whatever it needs. This results in the

lab being used less as users either delay or circumvent using it altogether to avoid the

extra hassle associated with it.

Page 4 of 20

RBF_Module3_BuildForgeServers.ppt

The Build Forge solution handles the problem of uncertainty regarding what is installed on

the computer, creating varied results when tested on other computers. There is no need to

tie a task to a particular computer, as that does not optimize resource usage. It also leaves

potential problems exposed with that single fail point. What must be developed is a very

specific list of requirements for a particular task to complete. If the machine’s environment

is known or can be controlled, then the problem will disappear. The two mechanisms Build

Forge uses to introduce this feature are known as Collectors and Selectors.

Page 5 of 20

RBF_Module3_BuildForgeServers.ppt

Collectors are the method used to bring important information about a given machine into

Build Forge. Collectors can be set up to gather the available RAM, gather the installed

JDKs, and to determine what Build Forge jobs are already running on that machine.

Page 6 of 20

RBF_Module3_BuildForgeServers.ppt

When setting up the Collector, the entered values must fall under one of the four

categories listed here:

Set establishes a user-defined name/value pair that does not change. This type of value

manually defines a value to a machine in Build Forge that might not physically exist.

Built-In is a list of variable types that are built into Build Forge for values that can be

difficult to manually define outside of Build Forge. For example, it is difficult to get available

RAM on the machine, so Build Forge provides values integrated into the product that

measure various levels of available RAM.

Run is the most flexible of the commands, allowing a user to run a command on the

machine and then peruse the results. For the previous example, determining what the

installed JDK was on the system, the value can be set to “java –version.” The results can

be searched with a regular expression to find the version and Build information for the

installed Java.

.include allows the abstraction of the Collectors by creating a hierarchy within the

Collectors. This establishes a main Collector that every other Collector can inherit from.

Page 7 of 20

RBF_Module3_BuildForgeServers.ppt

This is a screen capture of the Collector menu. The columns shown are variable,

command, type, and regular expression. Note the different types of Built-In variables that

can be drawn upon. Also, notice that the Run command has extra fields for the command

to run on the agent and the regular expression to retrieve the version information.

Page 8 of 20

RBF_Module3_BuildForgeServers.ppt

With the Collector defined, it must be applied in order to gather the required information.

However, the underlying machine must be entered into Build Forge to abstract it. The Build

Forge logical representation of hardware is called the Server. To set up the Server, it must

be able to connect over the network. Setting up communications requires an installation of

the Build Forge agent on the machine that it is connected to. Once the agent is in place,

specify the connection information on the Management Console for how to connect to that

agent. This completes the server definition in Build Forge, allowing a Collector to be

applied. The next time the engine refreshes, the engine creates a connection to that

database, and pulls the information specified in the Collector into the manifest. The

manifest is the Management Console copy of the important information for the server,

which is refreshed at a given time interval.

Page 9 of 20

RBF_Module3_BuildForgeServers.ppt

When setting up the server definition, the following information can be set:

The Name value is the logical name within Build Forge for the server definition. This is the
name that Build Forge uses to track the server.

Path is the value that indicates where on the Agent machine Build Forge creates its
folders and runs the Builds.

Host defines the network address where the agent is located. This can be any value as
long as it resolves on the network. For example, this can be a host name or an IP address,
as long as it resolves to an address on the Management Console machine.

Authentication is the credentials used when connecting to the Agent.

Access defines the Access Group for the agent. This is further explained in other
modules. For this module, a user must know that this defines whom the owner of the
Server is in Build Forge.

Collector has previously been discussed in this module. This is where collection
information is applied to the server definition.

Environment defines the environment variables associated with this server. PATH or
other variables for this server definition can be redefined to ensure that the environments
are uniform across various machines. Environments are further explained in other
modules. For this module, a user must know that this is where the initial environment on a
particular Server definition can be set.

Files determines whether to allow files to be deposited on this server from the Build Forge
Management Console.

Page 10 of 20

RBF_Module3_BuildForgeServers.ppt

This is the Server Definition menu in the Management Console. All servers are required to

define a name, path, host, access, and authentication.

Page 11 of 20

RBF_Module3_BuildForgeServers.ppt

This section of the module focuses on the Manifest. As stated earlier, the Manifest is the

compilation of the Collector information gathered in the last refresh. The Manifest is stored

on the Management Console database. The information exists locally on the Management

Console server, and does not have to be retrieved from the remote Agent every time. Note

that this can cause lags between the information in the Manifest and the actual

configuration on the Agent. Ensure that the refresh cycle for the Agents is set to work for

the particular configuration.

Page 12 of 20

RBF_Module3_BuildForgeServers.ppt

After running Collectors, Build Forge now has the hardware information and the

information flagged as important. A user must next decide what hardware to run this

information on. The mechanism in Build Forge that decides what hardware to use is the

Selector. The Selector takes the Manifest information in the database and searches for

criteria that has been defined in the Selector. It then picks the agent that best fits that

criteria.

Page 13 of 20

RBF_Module3_BuildForgeServers.ppt

Selectors are set up from one to many criteria. Each criterion needs to define the following

values:

Name defines the Collector variable being sought for comparison.

Operator controls how to logically compare this value in the Selector. For example, this is

used when determining whether the collector variable value is greater than or equal to a

value.

Value defines what the Collection variable is being compared to.

Required states if this criterion is necessary for the selection of the server. If this is set to

“No,” it is used to rank the available Agent resource choices rather than exclude those

choices.

Page 14 of 20

RBF_Module3_BuildForgeServers.ppt

This screen capture shows the Selector menu in the Build Forge Management Console,

and the list of criteria defined in the Selector. In this case, there is only one criterion

defined, the BF_NAME. This must not be equal to “null” to ensure that this Selector will

return a pool of agents whose logical name is not “null.”

Page 15 of 20

RBF_Module3_BuildForgeServers.ppt

The benefit of the Selector/Collector dynamic is the fact that adding new hardware to the

Build Forge agent pool is easy. The agent daemon process has a very small memory and

processor footprint, so it is easy to install and leave the agent daemon running on any

machine. As long as that machine is connected to the Management Console by way of the

network, that Agent can be added.

Since the processes entered into Build Forge are freed from physical machine constraints,

there is no longer a concern about where the Build runs. The Agent that it is run on has all

the necessary requirements, and will return the same result regardless of what agent was

selected from the Agent pool with the Selector.

Page 16 of 20

RBF_Module3_BuildForgeServers.ppt

This slide lists the steps during the Agent contact with the Management Console.

First, the engine sends the command request to the agent. It is assumed that the engine

has already selected this Agent by way of the Selector as the best option. The agent then

receives the command and creates a command shell. The shell reads the protocol request

from the engine, and derives the command and environment from the protocol.

Afterwards, the shell runs the user credentials from the protocol to switch the shell to the

given user. The agent brings in the environment defined in the protocol. Upon its

completion, the Agent generates a batch script containing the command sent from the

Engine. With the batch script done, the Agent runs it in the generated shell. The output

from the batch script execution, in addition to the exit code, is captured by the Agent, and

is sent back to the Engine.

Note that it is not required that the engine begins the agent process. The process can be

started using a telnet connection to that agent service. When telnetting into the agent on

the agent port, a user will receive a “Hello” message from the agent. This allows the

manual definition of an Agent protocol request to determine what response it produces.

Page 17 of 20

RBF_Module3_BuildForgeServers.ppt

This slide summarizes the interaction between the Agent, Selector, and Collector. The

Selector looks at the data in the Manifest generated by applying the Agent environment to

an agent, which then looks for the information defined in the Collector. The information

from the Collector can be derived from anything in the Agent operating system accessible

through the command line.

Page 18 of 20

RBF_Module3_BuildForgeServers.ppt

In summary, Server definitions are the logical Build Forge representations of Agents

installed on remote computers. A Collector is then applied to that server, and gathers

defined information. Once the data is gathered, it is placed in the server manifest. When a

process is called in Build Forge, a Selector is used to search the manifests to determine

the best candidate to run that particular process.

Page 19 of 20

RBF_Module3_BuildForgeServers.ppt Page 20 of 20

