\ IBM Software Group | Rational software

IBM Rational Build Forge V7.0.1

Implementing Build Forge adaptors

software

(@ business on demand.

© 2007, 2008 I1BM Corporation

Converted towideo June 29, 2015

This module will cover implementing adaptors in Build Forge version 7.0.1 and later.

RBF_Operations2_Implementing.ppt

Page 1 of 17

IBM Software Group | Rational software

Module objectives

=Topics covered in this section:
» Adaptor XML structure
» Sections of an adaptor
» How the parts work together

gt B

¥ oo
Implementing Build Férge adamb © 2007, 2008 IBM Corporation

This presentation will cover the Build Forge Adaptor implementation. This module will
cover the general structure of an adaptor and how it is set up. From that, details will be
provided about each section of an adaptor. Last, the module will provide real examples of
how they are implemented. Once you are done with this module you should be able to
implement your own adaptor and trace the execution path of an existing adaptor.

RBF_Operations2_Implementing.ppt Page 2 of 17

IBM Software Group | Rational software

An example adaptor

<template>
<env name="COLOR" value="Red:Green"/>
<env name="BALL_SERVER" value="ball/>

<template>

<interface name="ByColor>

<setenv name="Changes” value="" type="temp />

<ontempenv name="Changes” value="empty™>
<step result="fail/>
</ontempenv>
</interface>
<command name="determing_color>
<execute>
echo $1
<execute>
<resultsbiock>
<match pattermn="(.*?):(.*7)$>
<bom category="ball_category” section="ball_color™>
<figld name="color1” text="$17>
</bom>
<setenv group="Temp" name="COLOR" value="$2:31">
<setenv name="Changes” value="TRUE" type="temp append />
</match>
<resultsbiock>
</command>
<bomformat category="ball_category” title="Ball Category™>
<section name="ball_color™>
<field order="1" name="color1" titie="Color 17>
</section>
</bomformat>

<run command="determine_color” params="SCOLOR" server="$BALL_SERVER" dr="/" timeout="380" />

4 . t

Lo <0 17
Implementina Build Férae adaptors

© 2007, 2008 IBM Corporation

This is the example adaptor from which this presentation will be pulling examples. Do not
worry about absorbing it all from this slide as the sections are discussed in the following
slides. Note that this is a fully functional adaptor that will work in Build Forge.

RBF_Operations2_Implementing.ppt

Page 3 of 17

IBM Software Group | Rational software

Template syntax

= The template syntax is the first section of the adaptor. Itsrole is to define
those variables that will be used by the adaptor.

= Those variables that are defined in the template block MUST be defined
by the project calling the adaptor.

= The template block is the mechanism to make sure that those variables
that will be used in the adaptor will exist.

= General rule: Any variable that the adaptor uses, regardless of scope,
should be declared in the template block to prevent problems down the
line.

<template>
<env name="COLOR" value="Red-Green" />
<env name="BALL_SERVER value="ball" />
</template>

« %

L ol w S
Implementina Build Férae adam- ©2007, 2008 IBM Corporation

The template block is an optional section of the adaptor, but an important one, especially
for adaptors that may be deployed by other people. The template block is always
declared first if the adaptor has one. The intention of the template is to declare all
variables that the adaptor may use or require in addition to defining the default values for
those variables. The adaptor does not enforce this template but if another person is
going to use the adaptor this would tell that person what environment variables should
be in the environment to use this adaptor. Also, when setting up an adaptor link there is
a check box to “Populate Env” when creating the link. The populate env option will draw
on the variables and default values defined in the template to populate the given
environment. To prevent problems later, the best practice suggestion for this section is to
declare any variable that the adaptor uses.

RBF_Operations2_Implementing.ppt Page 4 of 17

IBM Software Group | Rational software

Interface syntax

* The Interface block is the second section of the adaptor

= The Interface block defines the entry point for Build Forge into the
adaptor

= An adaptor definition can have many Interface blocks defined, but
must have at least one

= The Interface block will define an executable method in the run that
will Kick off the rest of the adaptor; this is the entry for the adaptor

<interface name="ByColor">
<run command="determine_color" params="$COLOR" server=$BALL_SERVER"
dir="/" timeout="360" />
<ontempenv name="Changes" value="empty">
<step result="fail"/>
</ontempenv>
</interface>

) . :‘ «0-»
it nidinenting Bi1d Férae adantdiil ©2007, 2008 IBM Corporation

This section is the interface block. The interface block comes right after the template block
(if there is a template block defined). The interface block defines where the entry point
will be for the adaptor. That is, when the adaptor starts execution it is starting here.
Generally, the interface block handles any initialization that needs to happen and defines
what commands should start the adaptor. The other important job that the interface has
is to determine the pass and fail criteria for the adaptor as a whole. So when you finish
the adaptor execution it will return to the interface block to determine if it was a success
or a failure.

RBF_Operations2_Implementing.ppt Page 5 of 17

IBM Software Group | Rational software

Interface syntax

= The other important section is the ontempenv
= XML will define what the project should do after the adaptor

= Optionally, the interface will define what notifications will be made after
the adaptor run

<interface name="ByColor">

<run command="determine_color" params="$COLOR" server=$BALL_SERVER"
dir="/" timeout="360" />

<ontempenv name="Changes" value="empty">
<step result="fail"/>

</ontempenv>

</interface>

T .2 [

i o s B
it nidinenting Bi1d Férae adantdiil ©2007, 2008 IBM Corporation

The other important section is the ontempenv. XML will define what the project should do
after the adaptor. So in the case where you have defined an adaptor link, the ontempenv
will form the if-then-else structure that will decide what action the adaptor will do.
Optionally, the interface will define what notifications will be made after the adaptor runs.

Note: There was an architectural change between versions 7.0 and 7.0.1 that affected the
interface structure. Before, in 7.0, it was possible to define multiple interface blocks, but in
7.0.1 this was eliminated to only allow an adaptor a single interface block. This change
was made to encourage cohesion when defining an adaptor. In 7.0.1 and later versions,
the adaptor should have a very granular, specific, role.

RBF_Operations2_Implementing.ppt Page 6 of 17

IBM Software Group | Rational software

Command syntax

<command name="determine_color">
<execute>
echo $1
</execute>
<resultsblock>
<match pattern="A(.*?):(.*?)$">
<bom category="ball_category" section="ball_color">
<field name="color1" text="$1"/>
</bom>
<setenv group="Temp" name="COLOR" value="$2:$1"/>
<setenv name="Changes" value="TRUE" type="temp append"/>
</match>

</resultsblock>

</command>

* =

« ¥ 0
Implementing Build Férage adaptofs © 2007, 2008 IBM Corporation

This is the command block. It is the main part of the adaptor.

RBF_Operations2_Implementing.ppt Page 7 of 17

IBM Software Group | Rational software EE}E

Command syntax

= The command block defines the “methods” that the adaptor can use, and
in turn the command block may call other commands

= The command block is split into two distinct parts
» The execute block
» The resultsblock block

= The first block is straightforward. The execution block defines the
command to run on the command line

<execute>
cleartool —version
</execute>

= This fulfills the first part of the adaptor; to run command line arguments,
but how do you get the information back into Build Forge?

© 2007, 2008 IBM Corporation

The command block defines the method calls in the Adaptor. The commands are reusable
methods that can be used by the Adaptor. The command block defines a name that the
Adaptor can use at another point to call this command. Other than that, the command
block consists of two other parts: the Execute block and the Resultsblock Block. The
execute block is straightforward; it acts the same way that the Build Forge step does. It
takes any shell command that can run on the agent, and then runs it. Once the
command is run and the results of that command are sent back, then Build Forge moves
on to the resultsblock to determine what to do next.

In version 7.0.1, the Command blocks are more complex. The command declaration can
now define a mode as well as a name. The mode has three options: exec, conjoined,
and parallel. Exec describes the commands as they worked before: execute as soon as
you get them. Conjoined means that the commands will be collected together and
executed as a batch. Last, parallel means that the commands will be threaded.

RBF_Operations2_Implementing.ppt Page 8 of 17

IBM Software Group | Rational software

Resultsblock syntax
= Takes the result from the command line execution, parses it, and then puts
it back into Build Forge
= Split up into one or more match blocks

= Optionally define a beginning and end pattern that is defined by a Perl
regular expression

= The match blocks define Perl regular expressions to parse and match
sections of the return data

<resultsblock>
<match pattern="2(.*?):(.*?)$">
<bom category="ball_category" section="ball_color">
<field name="color1" text="$1"/>
</bom>
<setenv group="Temp" name="COLOR" value="$2:$1"/>
<setenv name="Changes" value="TRUE" type="temp append"/>
</match>

. :. «0+
Implementing Build Férge adnp'. © 2007, 2008 IBM Corporation

This is the Resultsblock section. The Resultsblock block takes the result from the
command line execution, parses it, and then puts it back into Build Forge. This block is
split up into one or more Match blocks. The Resultsblock block can optionally define a
beginning and end pattern that is defined by a Perl regular expression. This might help
you narrow down to a specific section to run Match blocks against. The Match blocks also
define Perl regular expressions to parse and match sections of the return data. Note: Perl
regular expressions will not be covered in this module.

RBF_Operations2_Implementing.ppt Page 9 of 17

IBM Software Group | Rational soﬂwarsi »

Common command: ipconfig

Take the results and put into a variable

WINDOWS\system32\cmd.exe -|o| x|
5 600 P
orp

IC:\Documents and Settings\smurata>

In this example, suppose you had a command that ran an ipconfig on a Windows system.
From that command, you want to find the IP address and put it into a variable. Going back
to the command block, you could put this common command in there. Here is an example
of the ipconfig execution - so you know what sort of data you would get back. Now the
guestion is: How do you use the Resultsblock to get useful information back from that

output?

RBF_Operations2_Implementing.ppt Page 10 of 17

IBM Software Group | Rational software

Command practical example

= The XML shown below will process the results returned, find the IP entry,
and place it in the ADDRESS variable

<command name="“getIPAddress”>
<execute>
“C:\Windows\windows32\ipconfig.exe”
</execute>
<resultsblock>
<match pattern="1P(.*?):\s(.*)"
<setenv name=‘ADDRESS” value=“$2"/>
</match>
</resultsblock>
</command>

T .2 [

i o s B
it nidinenting Bi1d Férae adantdiil ©2007, 2008 IBM Corporation

Here you can see the full implementation of the IPconfig example. Notice that you have
set up the command to have a name of getIPAddress. You can then trace the flow of
this as running the ipconfig.exe command, and the resulting information is sent to
resultsblock. In this case there is a match block set up to capture the information that
you are interested in. The match block uses a Perl regular expression to define the data
that it is interested in. Perl regular expressions are beyond the scope of this
presentation, but in this case you are looking for the IP address part of the output.
Based on the regular expression matches you can then feed that into Build Forge. In
this case you are setting the environment variable ADDRESS to $2 which is the part of
the regular expression that was catching the IP address.

RBF_Operations2_Implementing.ppt Page 11 of 17

IBM Software Group | Rational software

Integrate block

= Always runs on the management console system

= Home directory is the Integration folder in the Build Forge root install
directory

= This is handy for running scripts on the console machine

= |t ensures that the script will run regardless of the agent running the
adaptor

<integrate>
cqgperl bfcgresolve pl $2 Fixed "Fixed in build $BF_TAG"
</integrate>

- A L

A «~0-
implementing Bilild Férqe m‘lam’ © 2007, 2008 IBM Corporation

The integrate block is a special case replacement for the Execute block. When the
command is called in the execute block, for example, a step, it is run on the agent defined
by the run command. However in the case of Integrate, it will always run on the
Management Console system from the home directory of Integration in the Build Forge
root install. The intention for this was to make sure particular commands are consistently
run on the same system (or if they are required to run on the console system).

RBF_Operations2_Implementing.ppt Page 12 of 17

IBM Software Group | Rational software

Bomformat syntax

= The Bomformat section allows you to create a
BOM entry for the information getting
generated by the adaptor

= BOM = Bill of Materials

<bomformat category="ball_category" title="Ball Category">
<section name="ball_color">
<field order="1" name="color1" title="Color 1"/>
</section>

</bomformat>

. ™ 1 [

TR
impi@menting Biild Férqe adaptals ©2007, 2008 IBM Corporation

This is the Bomformat section. The Bomformat section allows you to create a BOM entry
for the information getting generated by the adaptor. BOM stands for Bill of Materials.

RBF_Operations2_Implementing.ppt Page 13 of 17

IBM Software Group | Rational software

Bomformat syntax

* The Bomformat section is straightforward.

= There are three elements
» Categories - the blocks in the BOM
» Sections - the table divisions for the BOM
» Fields - the entries that will populate the columns

1 “ ¥ 0o
it nidinenting Bi1d Férae adantdiil ©2007, 2008 IBM Corporation

The Bomformat section is where you want to update the important parts of the build that
you want to draw attention to (for example, what files were created by this build). With a
regular build, those details are caught automatically, however with an Adaptor it is
advantageous to add in your own details on what the Adaptor is doing and what it is
touching. Anything from the command blocks can be captured and put into the BOM.
The Bomformat block is simple, there are categories, sections, and fields. The
categories are the expandable blocks that appear in the BOM. The sections are how the
tables that appear in that block are split up. Finally the fields are the column entries in

that table.

RBF_Operations2_Implementing.ppt Page 14 of 17

IBM Software Group | Rational software

Bomformat continued

@ BuildForge - Project Runs - Mozilla Firefox mE]
Fle Edt Yew Mgty Gookmaks Ioos teb
e & /1‘) http:/ fmurata Acontrol index. oo mod morojectrurs Macton sed t30f_d e 1 380 = 22300 5sect0n mDom b Gl
) BulkdForge - Project Runs G |) suicForge - Projecss) BuicForge - Onine Help
Comote (N Roct Lrar
& rome (b Project Runs ~ Adaptor e @
3 Prowen Ruri BUILD_S784 Stats: Completed — Passed — Built Dute: 06/03/07 01:00PM Seactcr: Locathost Cams: Production
g u Purge Rua Change Cami | Sroducten W
9 Prviost tome & Burid Stepn
(Il © Bl Category
) Erirermern e color2
£5 seven Green Red
Rgmrwaten
= slaw
@iose LARGE

@ Project Rums »

Fiter | @ Step Manifests
(L] Bl of Materials

(L]

3 st newm (9

85 s seen

o al Adustor

sgc 1 I

P s B _'
Jmplementina Build Férae adam‘ i

© 2007, 2008 IBM Corporation

This screen capture shows you how the BOM appears for the example. You can see that
the Category here is called “Ball Category”, with two sections; one of which has two
fields called “color1” and “color2,” the other section has a field called “size.”

RBF_Operations2_Implementing.ppt Page 15 of 17

IBM Software Group | Rational software

Summary

= Adaptor XML structure

= Sections of an adaptor
» Template
» Interface
» Command
» Bomformat

= How the parts work together

- i -]

¥ o oy
Implementing Build Férae adap(ar ! © 2007, 2008 I1BM Corporation

In summary, you should now be familiar with a simple adaptor. This module covered the
Adaptor’s XML structure, its sections in detail, including the template, interface, command,
and bomformat syntax. In its entirety, you should now know how the parts of a Build
Forge adaptor work together.

RBF_Operations2_Implementing.ppt Page 16 of 17

RBF_Operations2_Implementing.ppt

IBM Software Group | Rational software

Trademarks, copyrlghts and disclaimers

The following terms are ks orregi of Busi ines Corporation inthe United States, other countries, or both:
BuildForge 1BM Rational
isa kof Busil ines C ion and Rati Cor ion inthe United States, Other Countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subjectto change withoutnotice. This document couldinclude
technical inaccuracies ortypographical errors. IBM may make improvements or changesin the products or programs described herein atany time without notice. Any
statements vegﬁrdng IBM's future direction and intent are subjectto change or withdrawal without notice, and represent goals and objemves only References inthis
documentto IBM products, programs, or services does notimplythat IBM intends to make such all inwhich IBM
operates or does business. Any reference to an IBM Program Productin this documentis notintendedto stale or imply that only that progfam product may be used.
Any functionally equivalent program, that does notinfringe IBM's property rights, may be

Informationis growded "AS 1S” without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS™ WITHOUT
WARRANTY, RESS OR IMPLIED. IBM 'RESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsnbiltylo upuatemls |nlormauon IBM products are warranted, if at all, accordingto the terms and

conditions ofthe agreements (for example, IBM Customer A of Limited International Program License Agreemert etc.) underwhich
the¥ are provided. Information concerning non-1BM products was obtamed trom the suppliers ofthose products, their published announcements or other publicl:
Iable sources. IBM has not testedthose p and cannot confirm the accuracy of performance, compatibility or any other

claims relatedto non-IBM products.
IBM makes no represomations orwarranties, express orimplied, regarding non-IBM products and services.

The of the hereinis not mlendadlo and does not, grant any rightor license under any IBM patents or copyrights. Inquiries regarding
patent or copyngm licenses should be made, inwriting, to

IBM Director of Licensing
1BM Corporation

North Castle Drive
Armonk, NY 10504-1785
USA

Performance Is basedon and proj ing 1BM d
ofhowthose have used IBM produas andthe results they may have achieved. The actual mrou%nput or performance that any userwm
expenencevnllvavy depending upon considerations such as the amount of multiprogramming in the user's job stream, the | ,the storage g
andthe workload processed. Therefore, no assurance can be given that an individual user will achieve orp & impr tothe
ratios stated here.
®C i i C tion 2007. All rights reserved.
S. Go Users-D tation relatedto i rights-Use, ication or di is subjectto icti setforthin GSA ADP Schedule

Note to U.S.
Contract andIBM Corp.

1 =]
) <o~ :
= Implementing Build Férage adaptofs © 2007, 2008 IBM Corporation

Page 17 of 17

