

© 2011 IBM Corporation

IBM Rational ClearCase Unified
Change Management (UCM)

Module 3: UCM internals

This presentation looks at UCM internals.

1

Module objectives

� The following topics are covered in this section:
– UCM internals

• Project internals
• Stream internals
• Component internals
• Baseline internals

� Upon completion of this section, you will be able to:
– Describe the UCM internals
– Understand UCM commands
– Read results from examples given

2 Module 3: UCM internals © 2011 IBM Corporation

This module covers UCM internals, including: project internals, stream internals,
component internals, and baseline internals. Upon completion of this section, you will be
able to describe the UCM internals, understand UCM commands, and read results from
examples given in this module.

2

Overview

� In UCM, in order to get the internals of a particular UCM object (like activity, component, stream,
projects…), you must use this format:

cleartool dump –l object:object_name@\pvob_name

– Project internals (cleartool dump –l project:project_name)
– Stream internals (cleartool dump –l stream:stream_name)
– Component internals (cleartool describe –l component:component)
– Baseline internals (cleartool describe –l baseline:baseline_name)

3 Module 3: UCM internals	 © 2011 IBM Corporation

In UCM, you can get internals from any UCM object; for example, an activity, a
component, a stream, a project, and so on. In UCM, in order to get the internals of a
particular UCM object, you must follow the format shown here.

These examples give you an idea of how to get internals information from project, stream,
component, and baseline internals, including specifics like the modifiable component list or
the configuration specifications covered in the next few slides.

3

Process variables:
name SUM PROJ MOD COMPS
value ,oid:3d9b2b76.0fc64904.9bf8.0a:df:d6:88:92:9a@vobuuid:
d8c16d4.da694aa5.b61f.be:84:34:52:5a:d7

© 2011 IBM Corporation 4 Module 3: UCM internals

Project internals (1 of 4)

� Project’s modifiable component list
– A project keeps a list of all components that are made modifiable
– A component is entered into the project modifiable component list contained

within a process variable
– Run a long dump on the project or use the ucmutil lspvar tool
– Example:
cleartool dump –l project:projectname@\pvob

= _ _ _
=

Process variables:
name=SUM_PROJ_MOD_COMPS
value=,oid:3d9b2b76.0fc64904.9bf8.0a:df:d6:88:92:9a@vobuuid:
d8c16d4.da694aa5.b61f.be:84:34:52:5a:d7

A project keeps a list of all components that are made modifiable. Once a component is
made modifiable it can not be changed back and is very difficult to remove from the
project. The component is entered into the project’s modifiable component list contained
within a process variable. This process variable can be listed by running a long dump on
the project or using the ucmutil Lspvar tool.

This example shows running the cleartool dump command. In the results, look for the
“Process variables:” section of the output. In this example you can see the oid of the
component “@” the vobuuid of the pvob. It can be translated to value =
ucmtraining@\ucm_train_pvob. You can run a “cleartool describe dash L” on the long
string to see which component the value is referring to.

4

project UCM TRAIN
created 01-Feb-07.18:20:22 by William Frontiero (wfrontiero.Domain

Users@willpc)
owner: ASYLUM\wfrontiero
group: ASYLUM\Domain Users
folder: RootFolder@\ucm_ train_ pvob
* integration stream: UCM_ TRAIN_ Integration@\ucm_ train_ pvob

Project internals (2 of 4)

� Project’s integration stream
– One true integration stream
– When running cleartool describe –l project:project_name@\pvob you will see the actual

integration stream name
– Example:

M:\UCM_TRAIN_int>ct desc -l project:UCM_TRAIN@\ucm_train_pvob

project "UCM_TRAIN" "
created 01-Feb-07.18:20:22 by William Frontiero (wfrontiero.Domain

Users@willpc)
owner: ASYLUM\wfrontiero
group: ASYLUM\Domain Users
folder: RootFolder@\ucm_train_pvob

" _

* integration stream: UCM_TRAIN_Integration@\ucm_train_pvob

5 Module 3: UCM internals © 2011 IBM Corporation

While you can use development stream as an integration, every project has only ONE true
integration stream. You can see what the actual integration stream is by running a
cleartool describe –long on the project. The results are shown here. You can see the
integration stream on the last line.

5

Process variables:
name UCM STREAM RECBLS
value <recbls><bl>oid:140c501c.9500496b.aeaa.e9:87:99:fb:fd:5d@
vobuuid:0d8c16d4.da694aa5.b61f.be:84:34:52:5a:d7</bl></recbls>

© 2011 IBM Corporation 6 Module 3: UCM internals

Project internals (3 of 4)

� Project’s integration stream (cont.)
– Confusing development (child) streams with integration streams
– Integration stream keeps track of the recommended baselines with another process

variable
– Run a long dump on the project or use the ucmutil lspvar tool
– Example: cleartool dump –l project:projectname@\pvob

= _ _
=

Process variables:
name=UCM_STREAM_RECBLS
value=<recbls><bl>oid:140c501c.9500496b.aeaa.e9:87:99:fb:fd:5d@
vobuuid:0d8c16d4.da694aa5.b61f.be:84:34:52:5a:d7</bl></recbls>

Be sure not to confuse development (or, child) streams with integration streams. They are
not the same. By default, the integration stream will keep track of the recommended
baselines with another process variable. This process variable can be listed by running a
long dump on the project or using the ucmutil Lspvar tool.

Note again that you can run “cleartool describe –l” on the long oid that is returned to see
what baseline is being referenced.

In the results of the command shown here you will see each recommended baseline
represented by an oid.

6

child activities:
111 Ucm_ Train_ Integration
127 wfrontiero_ UCM_ TRAIN
165 Ucm_ Train_ Dev2
631 ucm_ train_ read
635 Ucm_ Train_ repro
715 Ucm_ Train_ Dev3
792 ucm_ Ucm_ Train_ dev
830 Ucm_ Train_ Dev1
918 Ucm_ Train_ Dev6

Project internals (4 of 4)

� Project’s stream list
– Projects maintain a list of streams created in the project

cleartool dump –l project:project_name@\pvob

Example: M:\UCM_TRAIN_int\ucm_train_pvob>ct dump -l project:UCM_TRAIN

child activities:

111 Ucm_Train_Integration

127 wfrontiero_UCM_TRAIN

165 Ucm_Train_Dev2

631 ucm_train_read

635 Ucm_Train_repro

715 Ucm_Train_Dev3

792 ucm_Ucm_Train_dev

830 Ucm_Train_Dev1

918 Ucm_Train_Dev6

7 Module 3: UCM internals © 2011 IBM Corporation

UCM projects maintain a list of streams created in the project. Use the cleartool dump
command shown here to list the oids of the streams in the project.

The example command returned the UCM TRAIN results shown here. In the results you
will see a number of child activities. Each child activity represents a steam in the project.

7

Stream internals (1 of 6)

� Stream internals
– A streams internals will consist of no more than three child activities.

• Timeline folder
• Activity folder
• Child stream folder

8 Module 3: UCM internals © 2011 IBM Corporation

Now that you have some exposure to project internals, this presentation will switch gears
and look at stream internals. A stream’s internals will consist of no more than three child
activities: the timeline, activity, and child stream folders. The timeline folder is keeps track
of all deliveries, rebases and baselines on the stream. The timeline folder can be used to
determine what components the stream has historically worked on. The activity folder
keeps track of all activities that are associated with that stream, and the child stream folder
keeps track of any child stream associated with that stream.

8

 cleartool dump l dbid:111@\pvob

title "Activity Folder"
name SUM Stream special folder type
value Activity Folder

111 internal070323.175346
112 internal070323.175347
131 internal070323.183827

© 2011 IBM Corporation 9 Module 3: UCM internals

Stream internals (2 of 6)

� These folders are visible when looking under the child activity section of a long dump on the
stream.

– Example - Child activities

– Example ­ -

=
= _ _ _ _
=

title="Activity Folder"
name=SUM_Stream_special_folder_type
value=Activity Folder

111 internal070323.175346
112 internal070323.175347
131 internal070323.183827

These folders are visible when looking under the “child activity” section of a long dump on
the stream. For example, when looking at the child activities, you will see the folders 111,
112, and 131. In this example each line represents an internal folder of the stream. You
can determine which folder each represents by dumping the d-bid listed.

Other things to note: a checkpoint represents a make baseline, a foundation represents a
rebasing of the stream (or, re-foundation), and an integration represents integration activity
(or, deliver activity).

9

Stream internals (3 of 6)

� Stream’s recommended baseline list:
– Gives child streams a list of baselines to rebase to
– Allows all child streams to rebase to a consistent list which is decided by the stream owner, creator or

privileged user
– Allows a new project to be seeded from a previous project’s recommended baseline list
– Recommends a baseline list and chooses automatically for the developer unless otherwise specified
– Will keep a list of recommended baselines

• It is labeled
• It exists on the stream - meaning one of:

» Created by the stream

» Delivered to the stream

» Rebased into the stream

10 Module 3: UCM internals © 2011 IBM Corporation

A stream’s recommended baseline list is very helpful. A stream’s recommended baseline
gives child streams a list of baselines to rebase to. It allows all child streams to rebase to
a consistent list which is decided by the stream owner, creator or privileged user. It allows
a new project to be seeded from a previous projects recommended baseline list. When a
child stream attempts to rebase, the parent streams recommended baseline list is chosen
automatically for the developer unless otherwise specified. And a stream will keep a list of
recommended baselines.

Note that a baseline can be recommended if, and only if: 1) it is labeled, or, 2) it exists on
the stream - meaning either that it is created by the stream, delivered to the stream, or
rebased into the stream.

10

recommended baselines:
tron INITIAL@\pvob (tron@\pvob)
voltron INITIAL@\pvob (voltron@\pvob)

© 2011 IBM Corporation 11 Module 3: UCM internals

Stream internals (4 of 6)

� A stream’s recommended baseline list can be seen by a long describe of the stream.
– Example: cleartool describe –l stream:int_stream@\pvob

_
_

recommended baselines:
tron_INITIAL@\pvob (tron@\pvob)
voltron_INITIAL@\pvob (voltron@\pvob)

A stream’s recommended baseline list can be seen by a long describe of the stream. In
this example, the describe command gives these results.

Look for the recommended baselines section similar to the one shown here for tron and
voltron.

11

Stream internals (5 of 6)

� Configuration specification
– Stored in the stream and in the PVOB
– Viewed with a long dump
– Used to generate any views created on the stream
– Generated automatically
– Specifies the stream and time it was generated
– Specifies the baselines to which components it may or may not modify
– Specifies main or latest as a catch-all if no other rule applies

12 Module 3: UCM internals © 2011 IBM Corporation

A stream’s configuration specification is stored in the stream and in the PVOB. You can
view the configuration specification stored on the stream with a long dump; it is used to
generate any views created on the stream.

When creating a view from a stream you will notice the view’s configuration specification is
identical to the dump dash long of the stream.

A UCM configuration specification is generated automatically, and remember that it is
specific to stream. It specifies the stream and time it was generated, the baselines to
which components it may or may not modify, and the main or latest as a catch-all if no
other rule applies. Note that the UCM configuration specification will match that of the
stream’s configuration. Finally, note the view’s configuration specification is identical to the
dump –long of the stream.

12

UCM identity UCM.Stream
oid:2530ee2c.33e64b40.9cb1.7a:3f:3c:75:53:13@vobuuid:1b7190ed.
1ae240f5.9429.fd:eb:21:57:d6:87

This config spec was automatically generated by the UCM stream
"baseline__ Integration" at 3/23/2007 6:11:41 PM.
Component selection rules

Stream internals (6 of 6)

� Breaking down the UCM configuration specification

UCM identity UCM.Stream
oid:2530ee2c.33e64b40.9cb1.7a:3f:3c:75:53:13@vobuuid:1b7190ed.
1ae240f5.9429.fd:eb:21:57:d6:87

This config spec was automatically generated by the UCM stream
"baseline__Integration" at 3/23/2007 6:11:41 PM.
Component selection rules

13 Module 3: UCM internals © 2011 IBM Corporation

This example can tell you a lot of information you need to know about the UCM
configuration specification. The first few lines identify the stream from which the
configuration specification was generated. Then it tells you that the configuration
specification was automatically generated by the UCM stream. Next, the stream name
and last date the configuration specification was generated, and last, any component
selection rules that apply. Those rules provide two key bits of information: 1) Which
baseline the view believes it is looking at, and 2) If the component is modifiable in the
stream.

13

element [d606d48c58444e2a816c6325d34cf700 \voltron]/...
.../baseline Integration/LATEST
element [d606d48c58444e2a816c6325d34cf700 \voltron]/... /main/0 mkbranch
baseline Integration
element [d606d48c58444e2a816c6325d34cf700 \voltron]/... /main/0 mkbranch
baseline Integration

element [12dae557cf214a74b0ff4e665b48622d \tron]/... /main/0 nocheckout

Non included component backstop rule: no checkouts
element * /main/0 ucm nocheckout

© 2011 IBM Corporation 14 Module 3: UCM internals

Stream internals – Configuration specifications

� Example 1 – Modifiable component

� Example 2 – Non-modifiable component

� Example 3 – Backstop rule

" = "
__

" = " -
__
" = " -
__

element "[d606d48c58444e2a816c6325d34cf700=\voltron]/..."
.../baseline__Integration/LATEST
element "[d606d48c58444e2a816c6325d34cf700=\voltron]/..." /main/0 -mkbranch
baseline__Integration
element "[d606d48c58444e2a816c6325d34cf700=\voltron]/..." /main/0 -mkbranch
baseline__Integration

" = " –element "[12dae557cf214a74b0ff4e665b48622d=\tron]/..." /main/0 –nocheckout

-
- -

Non-included component backstop rule: no checkouts
element * /main/0 -ucm -nocheckout

The first example shows what a modifiable component looks in the configuration

specification.

Notice the three element selections for one element. This shows that the vob root

“\voltron” is modifiable in this view.

The second example shows what a non-modifiable component looks like in the

configuration specification.

Notice there is only one element selection rule for “\tron”. This shows that the vob root

“\tron” is non-modifiable from this view.

In the last example, you will notice the backstop rule in the configuration specification. This

indicates that no UCM checkouts can occur on the main branch.

14

Component internals

� A component in UCM consists of two main parts:
–	 The component object referenced in the Pvob
–	 The root (vob, directory in a vob, or rootless)

� Remember:
–	 Components are tracked and viewed by baselines (and baselines are specific to a component)
–	 All components are created with an initial baseline
–	 Rootless components are components with no association to a VOB or directory in a VOB
–	 A project can be configured to view a component by configuring its streams
–	 Making the component modifiable to the project is a matter of policy
–	 The streams can undergo work from the specified baseline
–	 After work has been done on the component, a make baseline, rebase or deliver will eventually

occur

15 Module 3: UCM internals	 © 2011 IBM Corporation

Now that you have some exposure to both project and stream internals, this presentation
will switch gears and look at component internals.

Remember, a component in UCM consists of two main parts: The component object
referenced in the PVOB and the root (vob, directory in a vob, or rootless). A component is
tracked and viewed by baselines, and baselines are specific to a component.

All components are created with an initial baseline - this baseline can be used by any
project within the specified PVOB.

Rootless components are components with no association to a vob or directory in a vob.
This means rootless components well never be modifiable.

A project can be configured to view a component by configuring its streams. The streams
within the project would select a baseline of the component by means of a rebase.

Making the component modifiable to the project is a matter of policy. A component can be
modifiable in one project and non-modifiable in another. Each project can decide if the
component should be modifiable or not.

Once a component is made modifiable in a project, the streams can then undergo work
from the specified baseline.

And last, after work has been done on the component, a make baseline, rebase or deliver
will eventually occur. The moment one of these occur, a timeline instance for the
component is created on the stream.

15

Activity timeline:
Foundation hlink 133 3/23/2007 6:38:29 PM (rebase of a specified baseline)
Checkpoint 135 3/23/2007 6:49:36 PM (baseline created)
Checkpoint 141 3/23/2007 7:47:50 PM (baseline created)

Foundation hlink 133
Cleartool describe l dbid:133@\pvob
hyperlink 133
created 23-Mar-07.18:38:29 by William Frontiero (wfrontiero.Domain Users@willpc)
owner: ASYLUM\wfrontiero
group: ASYLUM\Domain Users
Foundation@133@\pvob baseline:voltron INITIAL@\pvob >
anyactivity:timeline070323.183829@\pvob

Component internals

� Component internals – Activities example

Activity timeline:
Foundation hlink=133 =3/23/2007 6:38:29 PM (rebase of a specified baseline) = =
Checkpoint=135 =3/23/2007 6:49:36 PM (baseline created) = =
Checkpoint=141 =3/23/2007 7:47:50 PM (baseline created) = =

� Example: Cleartool describe –l dbid:133@\pvob

Foundation hlink=133 =
Cleartool describe –l dbid:133@\pvob –
hyperlink "133"

created 23-Mar-07.18:38:29 by William Frontiero (wfrontiero.Domain Users@willpc)

owner: ASYLUM\wfrontiero

group: ASYLUM\Domain Users

" "

Foundation@133@\pvob baseline:voltron_INITIAL@\pvob ->
anyactivity:timeline070323.183829@\pvob

_ ­

16 Module 3: UCM internals © 2011 IBM Corporation

In this example, recall that streams keep a timeline for each modifiable component on the
stream. The timeline for this component will now log any new baselines, delivers or
rebases on the stream and will list the history of this component’s modification on the
stream as shown here. Note the checkpoints, activities, and time stamps.

If you run a describe command, each instance listed in the example can be shown with the
corresponding baselines or actions that occurred.

16

Checkpoint 135
cleartool describe l dbid:135@\pvob

baseline baseline 3 23 2007
created 23-Mar-07.18:49:36 by William Frontiero (wfrontiero.Domain Users@willpc)
owner: ASYLUM\wfrontiero
group: ASYLUM\Domain Users
component: voltron@\pvob
label status: Fully Labeled

Checkpoint 141
cleartool describe l dbid:141@\pvob

baseline baseline 3 23 2007.9012
created 23-Mar-07.19:47:50 by William Frontiero (wfrontiero.Domain Users@willpc)
owner: ASYLUM\wfrontiero
group: ASYLUM\Domain Users
component: voltron@\pvob
label status: Incrementally Labeled

Component internals

� Example: Cleartool describe –l dbid:135@\pvob

Checkpoint = 135 =
cleartool describe –l dbid:135@\pvob –

baseline "baseline__3_23_2007"
created 23-Mar-07.18:49:36 by William Frontiero (wfrontiero.Domain Users@willpc)
owner: ASYLUM\wfrontiero
group: ASYLUM\Domain Users
component: voltron@\pvob
label status: Fully Labeled

" __ _ _ "

� Example: Cleartool describe –l dbid:141@\pvob

=
Checkpoint = 141
cleartool describe –l dbid:141@\pvob –

baseline "baseline__3_23_2007.9012"
created 23-Mar-07.19:47:50 by William Frontiero (wfrontiero.Domain Users@willpc)
owner: ASYLUM\wfrontiero
group: ASYLUM\Domain Users
component: voltron@\pvob
label status: Incrementally Labeled

" __ _ _ "

17 Module 3: UCM internals	 © 2011 IBM Corporation

Continuing from the last example, running describe on the remaining two checkpoints will
yield these results.

[Pause 10 seconds]

The output here gives you information about the baseline.

17

Baseline internals (1 of 2)

� A baseline consists of two major parts:
– Baseline object referenced in the PVOB
– Label Type which exists in the Component VOB

� Baselines are recorded versions of a component’s development history

� Browsing baselines on a component

� Baseline browser for component
– The version tree browser displays version with labels
– The baseline browser displays timeline instances per component

18 Module 3: UCM internals © 2011 IBM Corporation

Last on the internals discussion are baseline internals. A baseline consists of two major
parts: 1) the baseline object referenced in the PVOB, and 2) the label type which exists in
the component VOB.

The baseline object points to the label type which exists in the component root vob, and
the label type is what is used to label versions created when developing in UCM. The label
type is also used in the selection rules of UCM configuration specifications.

Baselines are nothing more than recorded versions of a component’s development history.
When browsing baselines on a component you are viewing all the timelines of the
component -- this is why you see the different streams which have created baselines and
modified the component.

Finally, the baseline browser for a component is like that of a version tree of an element.
The version tree browser displays versions with labels, while the baseline browser
displays timeline instances per component.

18

baseline baseline 3 23 2007.9012
created 23-Mar-07.19:47:50 by William Frontiero (wfrontiero.Domain Users@willpc)
owner: ASYLUM\wfrontiero
group: ASYLUM\Domain Users
component: voltron@\pvob
label status: Incrementally Labeled
change sets:
addingFilesSource@\pvob
dependentActThroughTextDoc@\pvob
promotion level: INITIAL
depends on:
Attributes:
PromotionLevel INITIAL
Hyperlinks
BaselineLbtype@142@\pvob > lbtype:baseline 3 23 2007.9012@\voltron
(baseline_ 3_ 23.. is the label type)
UseBaseline@210@\pvob < stream:baseline child@\pvob

Baseline internals (2 of 2)

� Example: cleartool describe –l baseline:baseline_name@\pvob

baseline "baseline__3_23_2007.9012"
created 23-Mar-07.19:47:50 by William Frontiero (wfrontiero.Domain Users@willpc)
owner: ASYLUM\wfrontiero
group: ASYLUM\Domain Users
component: voltron@\pvob
label status: Incrementally Labeled
change sets:
addingFilesSource@\pvob
dependentActThroughTextDoc@\pvob
promotion level: INITIAL
depends on:
Attributes:

" __ _ _ "

PromotionLevel = "INITIAL“

Hyperlinks

= " “

BaselineLbtype@142@\pvob -> lbtype:baseline__3_23_2007.9012@\voltron
(baseline_3_23.. is the label type)

- __ _ _

UseBaseline@210@\pvob <- stream:baseline_child@\pvob - _
Contributors: Marcus Matic, Alex Grillakis, and Will Frontiero

19 Module 3: UCM internals © 2011 IBM Corporation

The “component:” line shows this baseline is associated with the component voltron. The
“label status:” line shows the baseline is currently incrementally labeled, and the “change
sets” section shows the activities that are associated with the baseline.

The “Hyperlinks” section of the output displays what label type a baseline is associated
with, and what streams are currently using the baseline. The “baselineLBtype” line shows
that the label type is 3_23, and the “UseBaseline” line shows the baseline_child is
currently looking at this particular baseline.

19

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better meet your
needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send email feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_RCCv7_UCM_Module3_UCMInternals.ppt

This module is also available in PDF format at: ../RCCv7_UCM_Module3_UCMInternals.pdf

20 Module 3: UCM internals © 2011 IBM Corporation

You can help improve the quality of IBM Education Assistant content by
providing feedback.

20

21

TTrraaddeemmaarrkkss,, ddiissccllaaiimmeerr,, aanndd ccooppyyrriigghhtt iinnffoorrmmaattiioonn

IBM, the IBM logo, ibm.com, ClearCase, and Rational are trademarks or registered trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other IBM trademarks
is available on the web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2011. All rights reserved.

© 2011 IBM Corporation

21

