
RFTv6_AdvScripting.ppt Page 1 of 26

© 2006 IBM Corporation

IBM Software Group | Rational software

Advanced Scripting with
IBM® Rational ® Functional Tester

This module will cover some advanced scripting topics in Rational Functional Tester.

RFTv6_AdvScripting.ppt Page 2 of 26

IBM Software Group | Rational software

© 2006 IBM Corporation

Agenda

� Course Content

– Overview

– Understanding TestObjects in Rational Functional Tester

– Custom Object Finding Techniques

– Rational Functional Tester Script Hierarchy

– Remote Method Invocation

By the end of this module, you should understand TestObjects in Rational Functional
Tester, custom object finding techniques, script hierarchy, and remote method invocation.

RFTv6_AdvScripting.ppt Page 3 of 26

IBM Software Group | Rational software

© 2006 IBM Corporation

What is a TestObject?

� A TestObject represents a connection point between a
Rational Functional Tester script and the Software Under
Test (SUT).

– Most methods called on a TestObject are invoked in the SUT

� Two categories of TestObjects:

– Mapped

– Bound (“found”, “pinned”, “registered”)

Rational Functional Tester Script Internet Explorer

BrowserTestObject ShDocVw::IWebBrowser

Process Boundary

A TestObject represents a connection point between a Rational Functional Tester script
and the Software Under Test, or SUT. Most methods called on a TestObject are invoked
in the Software Under Test.

There are two categories of TestObjects: Mapped and Bound (also known as “found”,
“pinned”, or “registered”)

RFTv6_AdvScripting.ppt Page 4 of 26

IBM Software Group | Rational software

© 2006 IBM Corporation

Mapped TestObjects

� A Mapped TestObject contains the information necessary to locate a live
object in the SUT (Software Under Test)

– Recognition Properties

– Hierarchy

� In your script: button().click()

– The button is found using the properties from the map

– The code binds to an object representing the button in the SUT

– The object can be queried for information

– The object on the screen is clicked

– The bound object is freed

A Mapped TestObject contains the information necessary to locate a live object in the
Software Under Test.

Recognition Properties are different properties of the TestObject being recognized by
Rational Functional Tester.

The TestObject Hierarchy lists all test objects in the SUT and provides information on
owner/owned relationships, states, test domains, and others.

In your script: button().click(), t he button is found using the properties from the
map, and then bound to an object representing the button in the software under test. Next,
object is queried for pertinent information, like screen coordinates, and so on. The object
on the screen is clicked, and finally, the bound object is freed.

RFTv6_AdvScripting.ppt Page 5 of 26

IBM Software Group | Rational software

© 2006 IBM Corporation

Mapped TestObjects (cont.)
– The object in the SUT is found every time a Mapped TestObject is used

– button().click();

button().click();

In this case the object is found twice ; once for each click

– It is implemented in this fashion so that objects are not “tied up” in the SUT

– Calling find() on a Mapped TestObject returns a Bound TestObject

– The object is pinned in the SUT when it is located

GuiTestObject buttonTO = button().find();

buttonTO.click();

buttonTO.click();

buttonTO.unregister();

In this case the object is found once and is pinned in the SUT’s memory.

– Calling unregister() frees up the object in the SUT

The object in the Software Under Test is found every time a Mapped TestObject is used.
I n this example, the object is found twice ; once for each click. Objects are implemented
in this fashion so that they are not “tied up” in the software under test.

Second, calling find() on a Mapped TestObject returns a Bound TestObject. The object
is pinned in the Software Under Test when it is located. In this example, the object is
found once and is pinned in the memory of the software under test.

Finally, calling unregister() frees up the object in the software under test.

RFTv6_AdvScripting.ppt Page 6 of 26

IBM Software Group | Rational software

© 2006 IBM Corporation

Bound TestObjects

� Big difference: Mapped TestObjects are automatically unregistered,
Bound TestObjects are not!

� Methods that return Bound TestObjects:

– getChildren(), getMappableChildren(), getOwned(), getParent(),
getMappableParent(), getOwner(), find(), getTopParent()

� Use instanceof (Java™) or is (VB.NET), if it is a TestObject then you
need to call unregister.

� Always remember to unregister a TestObject as soon as you are done
with it.

When working with Bound TestObjects, there is a big difference between Mapped
TestObjects and Bound TestObjects. Mapped TestObjects are automatically unregistered,
while Bound TestObjects are not.

The methods shown here are used to return Bound TestObjects. As a hint, use the
“instanceof” or “is” methods if it is a TestObject that you will eventually need to call
unregister.

Always remember to unregister a TestObject as soon as you are done with it; remember,
you are dealing with live objects.

RFTv6_AdvScripting.ppt Page 7 of 26

IBM Software Group | Rational software

© 2006 IBM Corporation

Bound TestObjects (cont.)

� Some scripting hints:

– Be careful about program flow!

– Be careful about exceptions. It is best to put your call to unregister in a finally
block.

TestObject TO = mappedObject.find();

try

{

// what if the property does not exist?

TO.getProperty(“prop”);

}

finally

{

TO.unregister();

}

The example shows you how to unregister the bound object. It is helpful to put your call to
unregister in a finally block as shown here.

RFTv6_AdvScripting.ppt Page 8 of 26

IBM Software Group | Rational software

© 2006 IBM Corporation

Bound TestObjects (cont.)

� Some scripting hints:

– A great tip for arrays is to null out the object you are interested in and call
unregister on the whole array.

TestObject[] allResults = null ;

TestObject myResult = null ;

try

{

allResults = MTO.getChildren();

theGoodResult = allResults[0];

allResults[0] = null ;

}

finally

{

unregister(allResults);

}

Another scripting hint, when working with arrays, is to null out the object you are interested
in and to call unregister on the whole array. In the example shown here, the unregister call
unregisters the whole array through unregister(allResults);

RFTv6_AdvScripting.ppt Page 9 of 26

IBM Software Group | Rational software

© 2006 IBM Corporation

Custom object finding techniques

� The “old way”

�The “new way”:

start.find(

atDescendant(propName, propVal));

The old way shown here invokes getChildren() and getProperties() multiple times,
whereas, the new way invokes find() methods with the result of atDescendant method as a
parameter instead.

There are some advantages of the find() API as opposed to a recursive search. It is:

1) Much faster - Every call to getChildren() and getProperty() goes cross
process. find() goes cross process once, does the entire search, and returns,

2) Much safer - Very easy to leak registered objects in a custom search implementation,
and

3) Much easier - find() syntax may be a little tricky at first but it is much easier than
writing all the support code for custom solutions

RFTv6_AdvScripting.ppt Page 10 of 26

IBM Software Group | Rational software

© 2006 IBM Corporation

Custom object finding techniques

� Two places to start the search:

– The RootTestObject

– The RootTestObject is the “world view” of the system.
All domains will be searched.

– RootTestObject root =
getRootTestObject();

– Any GUI TestObject, mapped or bound

– Narrows down the focus of the search.

– Less likely to get unexpected results.

– The more you narrow the search, the faster it will run at
playback time.

You can start the search from the root or from a specific GUI TestObject. The second
option is preferred because it narrows down the focus of the search, is less likely to get
unexpected results, and will run faster at playback time.

RFTv6_AdvScripting.ppt Page 11 of 26

IBM Software Group | Rational software

© 2006 IBM Corporation

Custom object finding techniques

– Two main syntax concepts:

– Relationship

– Direct child

– Descendant

– Properties

– Name/Value pairs

– Same as properties in Object Map,
getProperties() , and properties VPs.

There is a relationships concept and a properties concept. In the relationships concept,
there could be a direct child relationship or a descendant relationship. Properties are the
name/value pairs. The following slides will go into more details about each of these.

RFTv6_AdvScripting.ppt Page 12 of 26

IBM Software Group | Rational software

© 2006 IBM Corporation

Custom object finding techniques

– Relationships

– atChild()

– Will only search direct children of the starting point

– atDescendant()

– Will search all descendants of the starting point

– atList()

– Used to link relationships together

– Searches are performed in order

– Express complicated relationships

In the relationship concept, the atChild() w ill only search direct children of the starting
point, the atDescendant() w ill search all descendants of the starting point, and the
atList() will be u sed to link relationships together. In addition, searches are
performed in order, with each successive search starting from the result of the previous
search, and can express complicated relationships like “find a dialog that is a child of a
browser and get me any OK button in that dialog” in one API call.

RFTv6_AdvScripting.ppt Page 13 of 26

IBM Software Group | Rational software

© 2006 IBM Corporation

Custom object finding techniques
� Properties

– Matching is all or nothing! No fuzzy matching as

seen with Script Assure in location of mapped TestObjects.

– Make sure you use the correct type. A caption in a Windows® application
(.text property) is NOT a String… it is a CaptionText.

– atChild and atDescendant can take:

– One name/value pair: atChild(“name”, value);

– Two name/value pairs:

atChild(“name”, value, “foo”, bar);

– An array of properties:

Property[] props =

new Property[] { atProperty(“foo”,bar) };

atChild(props);

As for the properties, keep in mind that matching is all or nothing. Unlike ScriptAssure, you
cannot use fuzzy matching. In addition, ensure you use the correct type as shown in the
examples here.

RFTv6_AdvScripting.ppt Page 14 of 26

IBM Software Group | Rational software

© 2006 IBM Corporation

Custom object finding techniques
� Special Properties

– .domain

– Limit the search to a particular test domain

– Current Domains are: Java, HTML, Win, NET

– .processName

– Limit the search to a particular process

– If you are testing Win32 or .NET controls then the application will also be enabled
for testing

� You should use “good” recognition properties

– 100 weight or uniquely identifying properties or both

� You should constrain the “search space”

– Use domain or process information

– Start the search from an already-found TestObject

– getRootTestObject().find(atDescendant()) can be a bad idea!

Finally, there are special properties. The .domain and the .processName properties. The
.domain property limits the search to a particular test domain. And the .processName
property limits the search to a particular process.

You should use “good” recognition properties and constrain the “search space”

RFTv6_AdvScripting.ppt Page 15 of 26

IBM Software Group | Rational software

© 2006 IBM Corporation

Script class hierarchy

TestScript

TestScriptHelper

HelperSuperclass

RationalTestScript
(SubitemFactory)

Optional

Auto generated

TestScript is the class that you primarily interact with.

Helper is automatically generated by Rational Functional Tester based on Mapped Test
Objects referenced by the script.

Helper super class is optional, added at creation if preference set, and is modifiable in
script properties.

RationalTestScript is the base class for all scripts. The Helper super class MUST extend
this class in the end and may have multiple levels in the helper super class inheritance
hierarchy as long as RationalTestScript is at the root.

RFTv6_AdvScripting.ppt Page 16 of 26

IBM Software Group | Rational software

© 2006 IBM Corporation

Script class hierarchy (cont.)

HelperSuperclassA

RationalTestScript
(SubitemFactory)

TestScript1

TestScript1Helper

Optional

Auto
generated

TestScript3

TestScript3Helper

TestScript2

TestScript2Helper

HelperSuperclassB

In an expanded hierarchy, the same inheritance hierarchy apply here. Multiple scripts can
be extended using the same helper super class as shown here.

RFTv6_AdvScripting.ppt Page 17 of 26

IBM Software Group | Rational software

© 2006 IBM Corporation

Helper Superclass uses
� RationalTestScript method

overriding

– Event handlers

– Monitor script actions like
startApp, callScript, logging, etc

� Utility methods

– showMethodInfo

– doMySpecialVp

– etc

� Event handlers

– onInitialize

– onTerminate

– onAmbiguousRecognition

– onObjectNotFound

– onRecognitionWarning

– onSubitemNotFound

– onCallScriptException

– onTestObjectMethodExceptio
n

– onUnhandledException

– onVpFailure

You can override the following methods in order to customize your application. There are
also some utility methods you can invoke like the showMethodinfo and doMySpecialVP.
Event handlers allow you to have your own implementation when certain events occur.

RFTv6_AdvScripting.ppt Page 18 of 26

IBM Software Group | Rational software

© 2006 IBM Corporation

Advanced example: “Last Chance” find

� The Problem:

– The GUI hierarchy in the application you are testing sometimes
changes

– Script Assure requires rigid hierarchy

� Concepts Applied:

– find() using properties

– OnObjectNotFound() exception handler

– Programmatic access of Mapped TestObjects

– Using TestObjectMethodState

This advanced example explores the ‘last chance’ find. The problem: The GUI hierarchy in
the application you are testing sometimes changes, and Script Assure requires rigid
hierarchy.

RFTv6_AdvScripting.ppt Page 19 of 26

IBM Software Group | Rational software

© 2006 IBM Corporation

Advanced example: “Last chance” find

� The Solution:

– Override the OnObjectNotFound() exception handler

– Gain access to the recognition properties of the Mapped TestObject you
were trying to interact with

– Use find() to try and locate the object without hierarchy constraints

– If more than one result, throw an AmbiguousRecognitionException
or pick one of the results (danger: “gliding”)

– If no results found, continue with ObjectNotFoundException

– If one result, set the found object in the TestObjectMethodState

The solution: you should override the OnObjectNotFound() exception handler and gain
access to the recognition properties of the Mapped TestObject you were trying to interact
with. You can also use find() to try and locate the object without hierarchy constraints.

RFTv6_AdvScripting.ppt Page 20 of 26

IBM Software Group | Rational software

© 2006 IBM Corporation

Remote method invocation

� Run methods on an object in the SUT using:

– invoke()

– findAndInvoke()

– do a “find” with properties and invoke the specified method provided one
object is found

� What it is good for:

– Objects in the SUT for which Rational Functional Tester does not have a
proxy

– For example, a custom JFC Spinner control

– Additional non-GUI-related testing that cannot be accessed using properties

– Querying ClearCase® source control information in the IDE you are
developing

Remote Method Invocation is used by invoking the Software Under Test’s own method
from Rational Functional Tester. It calls methods on an object in the Software Under Test
through the invoke() and findAndInvoke() methods. Remote method invocation is
beneficial in some scenarios such as when objects in the SUT for which Rational
Functional Tester does not have a proxy and for non-GUI-related testing that cannot be
accessed through the properties controls.

RFTv6_AdvScripting.ppt Page 21 of 26

IBM Software Group | Rational software

© 2006 IBM Corporation

Remote method invocation

� When invoking methods that take arguments, the method signature
needs to be passed to invoke .

– The method signature uses JNI (Java Native Interface) syntax

– The Test Object Inspector is your best friend!

When invoking methods that take arguments, the method signature needs to be passed to
invoke . The method signature uses Java Native Interface syntax. Use the Test Object
Inspector to view method information as shown here.

RFTv6_AdvScripting.ppt Page 22 of 26

IBM Software Group | Rational software

© 2006 IBM Corporation

Remote method invocation

Shown here is an example of the list of the methods and JNI parameters from the Test
Object Inspector.

RFTv6_AdvScripting.ppt Page 23 of 26

IBM Software Group | Rational software

© 2006 IBM Corporation

Remote method invocation

� Object[] invokeArgs = new Object[]{ new
Boolean(true)};

reorderingAllowed().invoke(

"setBorderPaintedFlat" , "(Z)V" , invokeArgs);

The example shown here shows you how to call the invoke() method with the correct
parameters.

RFTv6_AdvScripting.ppt Page 24 of 26

IBM Software Group | Rational software

© 2006 IBM Corporation

Remote method invocation

� You can modify the software in ways that a user cannot

� Discuss the methods being invoked with the development team, if
possible

� Be careful of the return value of the invoke… if there is no value class
then a TestObject will be returned

� Do not forget to unregister the returned TestObject!

When using Remote Method Invocation, be aware that you can modify the software in
ways that a user can not. You should discuss the methods being invoked with the
development team. Be careful of the return value of the invoke… if there is no value class,
then a TestObject will be returned, and finally, do not forget to unregister the returned
TestObject!

RFTv6_AdvScripting.ppt Page 25 of 26

IBM Software Group | Rational software

© 2006 IBM Corporation

Summary

� Advanced overview of Rational Functional Tester Scripting,
including:

– Understanding TestObjects in Rational Functional Tester

– Custom Object Finding Techniques

– Rational Functional Tester Script Hierarchy

– Remote Method Invocation

In summary, you should now have a working knowledge of advanced scripting functions in
Rational Functional Tester, including: TestObjects in Rational Functional Tester, Custom
Object Finding Techniques, Rational Functional Tester Script Hierarchy, and Remote
Method Invocation.

For more information on these topics, reference the Rational Functional Tester API on the
online help.

RFTv6_AdvScripting.ppt Page 26 of 26

IBM Software Group | Rational software

© 2006 IBM Corporation

Trademarks, copyrights and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS MQSeries Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice. Any statements regarding IBM's
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program
Product in this document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:
IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation2006. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

