
RFTv6_TipsAndTricks.ppt Page 1 of 35

© 2006 IBM Corporation

IBM Software Group | Rational software

IBM® Rational® Functional Tester
Tips and Tricks

This presentation covers some tips and tricks for using IBM Rational Functional Tester.

RFTv6_TipsAndTricks.ppt Page 2 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

Agenda

� Module Content

– Overview

– Preferences

– Playback

– Verification Points

– Data-Driven Testing

– Enabling Applications

– Command-Line

– Object Map

– ScriptAssure™

– Regular Expressions

– Troubleshooting

– Arguments

– Helper Class

This module will cover preferences, playback, verification points, and the rest of the topics
listed here. This training is intended to detail what can be done within Rational Functional
Tester, rather than giving step-by-step instructions on how to perform these functions.

RFTv6_TipsAndTricks.ppt Page 3 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

Tip 1 : Know the Functional Tester preferences

� Define settings for how you
want the workbench,
compiler, Functional Tester,
and so on to work

Tip 1: Know the Functional Tester Preferences.

Use the Preferences option in Functional Tester to define settings for how you want the
workbench, compiler, and other environments to work. Note that Preferences are called
“preferences” in Eclipse, while they are called “options” in VS.Net. Regardless of what
they are called, this is the primary interface to Rational Functional Tester and IDE
customization and control.

RFTv6_TipsAndTricks.ppt Page 4 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

Tip 1 : Know the Functional Tester preferences

� Define settings for how you
want the workbench,
compiler, Functional Tester,
and so on to work

These are the VS.Net options windows. You would make the same changes here as you
did to the preferences in the previous slide. This presentation will explore some of the
more important options, but you can make changes that fit your needs.

RFTv6_TipsAndTricks.ppt Page 5 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

Tip 1 : Know the Functional Tester preferences

You can customize your settings for logging. For example, you can choose to display the
log viewer after script playback, prompt before overwriting an existing log, and specify log
types. It may be advantageous to select “none” under type when you do not really want a
log to be generated, such as during script development.

RFTv6_TipsAndTricks.ppt Page 6 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

Tip 1 : Know the Functional Tester preferences

A foreground lock timeout specifies to operating systems the amount of time (in
milliseconds) after user input to block applications from showing up in the foreground.
Setting the lock timeout to zero as shown here allows the applications to work in real-time
without imposed OS delays.

RFTv6_TipsAndTricks.ppt Page 7 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

Tip 1 : Know the Functional Tester preferences

Settings in Rational Functional Tester preferences to customize the editor based on your
needs are shown here. For example, non-Rational Functional Tester preferences such as
adding line numbers to the editor affect Rational Functional Tester. Use these
preferences to manage the editor behaviors.

RFTv6_TipsAndTricks.ppt Page 8 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

Tip 1 : Know the Functional Tester preferences

When integrating with other Rational products, it is important to set preferences here. You
can turn on or off integrations, such as with Rational ClearCase®. ClearCase support, in
general, is a non-Rational Functional Tester function – but there is a Rational Functional
Tester-specific set of options that need to be taken into account and are not specifically
related to the Functional Test preferences.

RFTv6_TipsAndTricks.ppt Page 9 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

Tip 2: Controlling Rational Functional Tester playb ack

� Use F11 key to perform a controlled stop

– Closes out the log and cleans up before stopping

– Use stop() command to control where stop occurs

� Don’t want to use F11? Well you can change it

– In {install}/ivory.properties file change property
rational.test.ft.script.playback.stop.hotkey=122 comments in file tell you
how

� Terminate playback from the Rational Functional Tester UI using the stop
button

– Vs.Net IDE use Debug > Stop Debugging

Tip 2: Controlling Rational Functional Tester Playback

Rational Functional Tester has a little-known feature that allows you to stop script
playback. In this example, use the F11 key to perform a controlled stop. The
steps listed here give instructions on how to do this.

Why change the F11 key to some other key code? It is common for more
advanced users to customize their function key settings to have alternate
mappings for commonly used capabilities. If you already use F11 for something
else that may be used during playback, there could be a conflict. Basically this
is only interesting if you have remapped a debugger key, because temporarily
taking over the F11 key would only really impact your ability to use mappings in
the debugger.

RFTv6_TipsAndTricks.ppt Page 10 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

Tip 3: Save some ‘strokes on VP’s (and data driving)
1. Recording toolbar

2. VP Wizard Select screen

3. Select Object (drag)

4. VP Wizard Verification screen

5. VP Wizard Perform an Action screen

Check to
Bypass

verification
screen

Tip 3: Save key strokes on VPs and Data Driving

You can save some keystrokes when setting verification points in Rational Functional
Tester. If you do not need to change anything on the Verification Point and Action Wizard
panel (shown here in screen 4), uncheck the “After selecting object” option in screen 2.
This provides short-cut-like functionality later.

RFTv6_TipsAndTricks.ppt Page 11 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

Tip 3: Save some ‘strokes on VP’s

� Drag from Recording toolbar to
select object

After setting up the quick keystrokes, you will then be able to use the drag (represented by
the hand) pointer from the recording toolbar to select an object.

RFTv6_TipsAndTricks.ppt Page 12 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

Tip 4: Data-driven testing

� Scripts already have a Datapool asset

– Private – associated with one script

– Public – associated with zero or more scripts

� Population of a Datapool

– From a CSV file when created

– The CSV can be from existing Test Manager Datapool

Tip 4: Data-Driven Testing

Rational Functional Tester has a data-driving capability that is highly managed to make it
easier for you to utilize. Scripts in Rational Functional Tester already have a Datapool
asset: either private or public. You can manage the population of a Datapool from a CSV
file when created, or, the CSV can come from an existing Test Manager Datapool.

RFTv6_TipsAndTricks.ppt Page 13 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

Tip 4 : Data-driven testing notes

� No loop in script

– Managed by script initialize, terminate &
callScript by default

– Can manually control Datapool iteration using
DatapoolFactory.get().load(<file>) to fetch the
specified Datapool

� Recorder dynamically populates the Datapool

� Playback wizard includes Iteration Count field

� Verification Points may contain Datapool references

While the new datapool support is easy to use, it is not as easy to control the iteration
through the datapool. However, you can still invoke a Test Manager-like datapool iteration
if you choose.

Some items to be aware of include:

Iteration control is available on the playback wizard for the top level script or on the
callScript command for nested scripts.

The recorder dynamically populates the Datapool

The playback wizard includes Iteration Count field

Verification points may contain Datapool.

RFTv6_TipsAndTricks.ppt Page 14 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

Tip 5 : Test your enablement

Tip 5 : Test Your Enablement

This section shows you how to enable Web browsers to allow Rational Functional Tester
to infest in HTML domain applications. From the Configure menu, select “Enable
Environment for Testing.” From the dialog box, click the Search button to locate browser
candidates. Select the browser you want to test and click the Test button.

RFTv6_TipsAndTricks.ppt Page 15 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

Tip 5 : Test your enablement

Use the Browser Enablement Diagnostic tool to test the browser you selected. Once
complete, you will see a Passed! Or Failed! Message.

RFTv6_TipsAndTricks.ppt Page 16 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

Tip 6 : Test object inspector

� What do you need to know about the test
object?

– Is the SUT (system under test) ready to
test?

– What properties does it have?

– What is the class and object hierarchy?

– What methods are available to invoke?

� Find out with a wave of the cursor

– Test Object under the cursor is
automatically explored

– Use Copy and Paste to capture state of a
Test Object in the SUT

Tip 6 : Test Object Inspector

Test Object Inspector opens up a view when you hover over an application under test, the
component being moused over will be displayed in the Object Inspector view. Through
this inspector, you can find information such as, properties, classes and object hierarchy,
methods, and so on. Advanced users can take advantage of the ability to view method
signatures.

RFTv6_TipsAndTricks.ppt Page 17 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

Tip 7 : Command-line support

� Executing scripts from a command line allows you to
integrate Functional Tester with external test drivers, such
as:

– STAF/STAX – An open source set of communication tools for running
tests… http://staf.sourceforge.net

– Start enabler and application configuration tools from the command-
line to initialize test environment without raising the IDE

– Display IDE neutral Verification Point and Object Map editors for a
quick fix

– Script creation using the recorder or just creating an empty script

Tip 7: Run scripts from the command line

Rational Functional Tester allows you to run scripts from a command line. This function
gives you the ability to integrate Rational Functional Tester with external test drivers, such
as STAF and STAX.

RFTv6_TipsAndTricks.ppt Page 18 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

Tip 7 : Run scripts from the command-line
� To play back a Java™ script (order of arguments is significant):

– java -Drational_ft.install.dir=<Rational FT
install directory> <-classpath...>
com.rational.test.ft.rational_ft -datastore
<directory> -log <logname> [options] -playback
<script-name> [-args <values>]

� To play back a VB.NET script:

– rational_ft.exe -datastore <directory> -log
<logname> [options] -playback <script-name> [-args
<values>]

– Use Java command line to record, enable, configure applications
and perform other actions

� See help file “Functional Tester Command-Line Interface ” in your
IDE

You can actually do a lot more than just run scripts, although that is probably the primary
use of the Command line interface. You can use the sample commands shown here to
play back Java™ or VB.NET scripts. You can find more information and examples in the
Functional Tester Command Line interface help in your IDE.

RFTv6_TipsAndTricks.ppt Page 19 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

What is an Object Map?

� Static Hierarchical Representation of the SUT.

– Static

– Hierarchical

– Representation

� Two types of relationships in Map

– Parent/Child

– Owner/Owned

Object maps are static, hierarchical representations of the system under test.

•Static means that the object map includes all relevant TestObjects in the SUT and is not
timing-sensitive. There is no TestObject interaction data at this time.

-Hierarchical means that the object map follows a strict hierarchy. There are no cyclic
dependencies or any indirect associations.

-Representation means that the object map maintains recognition properties that
“describe” each TestObject.

There are two types of relationships in Map: Parent/Child and Owner/Owned.

Parent/Child is a containership relationship. For GUI Test Objects, this means the
parent includes the coordinate space of the child.

Owner/Owned is a non-contained relationship, for objects such as a dialog to the
parent window.

RFTv6_TipsAndTricks.ppt Page 20 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

What is ScriptAssure?

� ScriptAssure is just the fuzzy
matching logic associated with
the Find algorithm

� Scores are cumulative

ScriptAssure is just the fuzzy matching logic associated with the find algorithm in
Functional tester. Like in Golf, the scores are cumulative for the entire game, and the
lowest score wins. Here, a zero is a perfect score.

RFTv6_TipsAndTricks.ppt Page 21 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

score = ((100 – match(.captionText)) * 75) +
((100 – match(accessibleName)) * 75) +
((100 – match(accessibleRole)) * 75) +
((100 – match(.class)) * VERY_BAD);

int score = 0;
for (int i = 0; i < property.length; ++i)

score += (100 – match(property[i])) * weight;

score += ((100 – match(.captionText)) * 75) +
((100 – match(.class)) * VERY_BAD);

score += ((100 – match(.classIndex)) * 50) +
((100 – match(accessibleName)) * 100) +
((100 – match(accessibleRole)) * 100) +
((100 – match(.class)) * VERY_BAD);

Background : What is ScriptAssure?

� .class property must match or
score is VERY_BAD.

� “match” compares map
recognition property value to live
value and returns a value in
0..100 where 0 is bad and 100 is
good. Match values between 0
and 100 signify partial matches.

In this figure, you can see the sample code that the thresholds set for the match
properties. The .class property must match or score is VERY_BAD. (VERY_BAD is
simply a number that will definitely push the score over any threshold settings). “match”
compares map recognition property value to live value and returns a value in 0 to 100
where 0 is bad and 100 is good. Match values between 0 and 100 signify partial matches.

RFTv6_TipsAndTricks.ppt Page 22 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

� Specified in the Script

– ProcessTestObject process = startApp(“ClassicsJavaA ”);

– OkButton(process , DISABLED).click();

� Anchor

– Test Object from which the search should start

� State

– Enabled, Showing & Ready is the default

– Enabled

– Pre-6.1 – Test Object ignored in find if Enabled state wrong

– Post-6.1 – If best candidate is Disabled and looking for Enabled then
wait to see if best candidate becomes Enabled

– Ready – Browser specific, waits for page to be fully rendered

Test object anchors and state

Test Object anchors and state are specified in the script as shown above. The Anchor
(shown in red) is the test object from which the search should start. You could use
ProcessTestObject as the anchor as a starting point with anchors. As for the state, which
is shown in blue, the default state is enabled, showing, and ready. When enabled,
depending on which version of Rational Functional Tester you are using, you can see the
options here.

RFTv6_TipsAndTricks.ppt Page 23 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

Tip 8: Private and shared object maps

Private

Shared

� Isolated from others

� Good for development

� May lead to redundancy

� Shared between multiple
scripts / multiple testers

� Single point of maintenance

� Can have Private maps
merged into it

A private object map is used by one and only one script. Private maps provide good
isolation from other scripters in that changes one person makes to the map of one script
do not impact others. If multiple scripts interact with the same set of objects, those objects
will appear in the object maps of multiple scripts, which leads to redundancy and higher
maintenance. When an object’s properties change, each instance of that object in every
private map must be updated individually.

Shared maps enable multiple scripts to use a single map. A shared map provides a single
point of maintenance where object property changes only need to be done in one place.
That is a double-edged sword, however. Because a map can be shared among multiple
scripters, it is possible that multiple scripters will want to edit the map at the same time.
Use of ClearCase for SCM – or at least a well defined change management process is a
requirement for using shared maps.

Your team will probably use some combination of Private and Shared maps. Different
teams will use different strategies and you can always merge private maps into shared
maps. One strategy is to use more private maps early in a project and as things begin to
stabilize, merge them into shared maps.

RFTv6_TipsAndTricks.ppt Page 24 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

Tip 9: Optimizing your object map

� Populate your Object Map manually BEFORE you
record

� Individually add the objects you will need

� After each addition, optimize the recognition properties

Result: an optimized map without object duplicatio ns

Tip 9: Optimizing your object map.

Instead of populating your object map automatically when you record a script, consider
populating it manually BEFORE you record. Using the “Insert Test Object into Object
Map” tool, individually add the objects you will need to interact with to the object map.
After each addition, view the object map and optimize the recognition properties. Your
new additions to the map will produce an optimized map without object duplications.

RFTv6_TipsAndTricks.ppt Page 25 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

Tip 10: Regular expressions in object recognition

� Regular expressions are extremely powerful

� Your object maps will be smart enough to handle many different
kinds of changes. For example:

– AUIML objects have randomly generated object .id properties
that change with every login: W047RX7389, W37AK3896

– The .id property value can be regexped to (W.+)

– Great documentation with examples is available off the RegEx
Evaluator dialog

Tip 10: Regular Expressions in Object Recognition

The use of regular expressions in the property value fields of your object map allows you
to handle changes in the AUT without changing your object map. For example:

AUIML objects have randomly generated object .id properties that change with
every login as shown above.

The .id property value can be regexped to (W.+)

Secure websites often have randomly generated session ids that are contained in
the URLs you access inside a site

The URL values can be regexped to

http://hostname/index.htmlSID=[0-9]+

RFTv6_TipsAndTricks.ppt Page 26 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

Tip 11: Troubleshooting object recognition failure s

� If object ca not be found:

– Is the SUT enabled & testable?

– Recognition properties are not resilient

– The ancestry structure has changed

– Recognition properties have changed in the parent objects

� To fix object recognition:

– Update Recognition properties in the OME

– Use Regexp for object property values

– Adjust recognition property weight to favor more resilient properties

Tip 11: Troubleshooting Object Recognition Failures

When an object cannot be found in the AUT, either:

Property-value pairs have changed in the object itself, the ancestry structure has
changed, or property-value pairs have changed in the parent object or objects.

To fix an ancestry structure change you should re-add the object to the map and delete
the old entry.

To fix object property-value change:

If it is a one-time change, re-add the object to the map and delete the old entry

If there are ongoing changes, use Regexp to change object property values

RFTv6_TipsAndTricks.ppt Page 27 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

Tip 12: Picking arguments - Passing data with callScript

� By default, automated
callScript does not
include arguments

� RationalTestScript API
overloads callScript with
arguments

protected java.lang.Object callScript (
java.lang.String scriptFullName ,
java.lang.Object[] args)

Tip 12: Picking Arguments

To insert script support commands, use the button as illustrated to view the script support
panels shown here. By doing this, you can choose the script to be inserted into the main
script. By default, automated callScript does not include arguments. RationalTestScript
API overloads callScript with arguments you pass in as a parameter when invoking the
callScript.

RFTv6_TipsAndTricks.ppt Page 28 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

Tip 13: HelperSuperClass

� Created for each new recording

� Override default methods

� Add new methods

� Inherited by any or all test scripts

TestScript

TestScriptHelper

RationalTestScript

TestScript2

TestScript2Helper

TestScriptN

TestScriptNHelper

…

HelperSuperClass2

Tip 13: HelperSuperClass

Rational Functional Tester creates a HelperSuperClass for each new recording. By
default, all Functional Tester scripts extend the RationalTestScript class, and thereby
inherit a number of methods, such as callScript. HelperSuperClass overrides default
methods and adds new methods from RationalTestScript.

RFTv6_TipsAndTricks.ppt Page 29 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

Tip 14: Cook your own verification point

� Manual and Dynamic VPs
IFtVerificationPoint vpManual (String vpName, Object actual)

IFtVerificationPoint vpManual (String vpName, Object expected,

Object actual)

IFtVerificationPoint vpDynamic (String vpName)

IFtVerificationPoint vpDynamic (String vpName, TestObject testObj)

� vpName must be unique in a script!

� With single object vpManual the baseline is create the first time performTest() is run.

� Use vpDynamic when acting against a specific TestObject with baseline created first time.

Tip 14: Cook Your Own Verification Point

When using verification points in Rational Functional Tester, you have two options; manual
and dynamic.

A Manual verification point allows you to specify the expected data and the actual data
using Rational Functional Tester API to verify. A dynamic verification point allows you to
use Rational Functional Tester GUI settings to verify certain components.

RFTv6_TipsAndTricks.ppt Page 30 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

Tip 14: Cook your own verification point

� getTestData flavors

– String

– Vector

– Hashtable

– Object[] – list

– Object[][] – table

– ITestDataTreeNodes[] - tree

� Use the VpUtil class to get ITestData wrapping

(ITestData types include “metadata” support)

vpManual(“manual4”,
VpUtil .getTestData(MyProperty)).performTest();

� Support methods

– getTestDataRegion

– getTestDataMenu

– getTestDataTreeNode

Using ITestData based types means you get metadata properties, such as the ones
shown here. Even if you are not interested in ITestData today, you might want it in the
future, so using VpUtil is a good pattern to set.

RFTv6_TipsAndTricks.ppt Page 31 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

Tip 14: Cook your own clipboard VP

� Insert clipboardVP(“Test42”); in script to check verification on the
clipboard data

� Java

– java.awt.Toolkit.getDefaultToolkit().getSystemClipb oard()

� VB.Net

– System.Windows.Forms.Clipboard.GetDataObject()

You can check verification on the clipboard data by invoking the clipboardVP method. You
can get the clipboard data by invoking the methods listed above.

RFTv6_TipsAndTricks.ppt Page 32 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

Tip 15: Cross-platform use of native controls

� Using the Windows® control support does not work on Linux®

– Nested native controls in Java do not get recorded

� If interested in Linux playback or Native control support in a Java application
use:

– Best solution is to use TestObject.find()

– RationalTestScript.getTopWindows() returns IWindow[]

– RationalTestScript.getScreen() returns IScreen

� Use IWindow interface methods

– getChildren()

– getText()

� IScreen interface methods include:

– getActiveWindow()

� See API on-line docs for rest

Tip 15: Cross-Platform Use of Native Controls

You can use the IWindow and IScreen interface methods to access native controls. Native
control support does not work on Linux® platforms.

RFTv6_TipsAndTricks.ppt Page 33 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

Tip 15 : Example of file download dialog

IWindow[] children = getScreen().getActiveWindow(). getChildren();

for (int i = 0; i < children.length; ++i) {
if (children[i].getText().equals("&Open")) {

children[i].click();
break ;

}
}

Get children of
active window

Find object with text
“&Open” and click it

Here is an example of the File Download dialog box. You can see callouts for the Find
object and the getChildren methods.

RFTv6_TipsAndTricks.ppt Page 34 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

Summary

– Preferences

– Playback

– Verification Points

– Data-Driven Testing

– Enabling Applications

– Command-Line

– Object Map

– ScriptAssure

– Regular Expressions

– Troubleshooting

– Arguments

– Helper Class

You should now have significant knowledge of what can be done
within Rational Functional Tester, including:

In summary, this presentation provided you with a good understanding of what can be
done within Rational Functional Tester, including setting preferences, playbacks,
verification points, and the other items on this list. For more information, reference the
Rational Functional Tester API from the help menu.

RFTv6_TipsAndTricks.ppt Page 35 of 35

IBM Software Group | Rational software

© 2006 IBM Corporation

Trademarks, copyrights and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IBM(logo) ClearCase OS/390
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Rational ScriptAssure zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice. Any statements regarding IBM's
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program
Product in this document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2006. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

