
In this module, you learn how to diagnose and correct sensor timeouts in Tivoli®

Application Dependency Discovery Manager V7.2.1.

diagnose_sensor_timeouts.ppt Page 1 of 38



An assumption for this module is that you are familiar with Tivoli Application Dependency 

Discovery Manager.

diagnose_sensor_timeouts.ppt Page 2 of 38



The objective for this module is to understand how to diagnose and correct sensor 

timeouts within Tivoli Application Dependency Discovery Manager. 

diagnose_sensor_timeouts.ppt Page 3 of 38



You know your sensor has timed out if it fails with a “CTJTD3000E A sensor timeout error 

has occurred” error in the discovery history. 

This presentation shows the steps to diagnose this error. 

-- Turn on logging and finding the appropriate logs 

-- Identify the current timeout 

-- Review different causes of timeouts 

-- Find the cause of your timeout in the logs 

-- Identify and resolve common timeouts 

-- Consider the implications of changing timeout values 

diagnose_sensor_timeouts.ppt Page 4 of 38



To diagnose a sensor timeout, you must first set the Discover JVM to DEBUG mode. You 

can set the debug mode two ways. 

1. Set the collation.properties setting com.collation.log.level.vm.Discover.

2. In the dist/bin directory, run the command tracectl -s Discover -l DEBUG. 

The setting is dynamic; wait for 5 minutes to ensure that it was picked up. 

If you are discovering with an anchor, you must also set a value on the anchor server to 

ensure that DEBUG logs are also collected there. 

Set the com.collation.log.level.vm.Anchor value to DEBUG. 

After you complete the diagnosis, be sure to set these log level settings back to their 

original values, typically INFO. 

diagnose_sensor_timeouts.ppt Page 5 of 38



After debug is set, run discovery of the target IP address that is experiencing the timeout. 

After it completes, confirm that the timeout error still exists in discovery history. It is 

possible that during a single IP discovery, the timeout will not occur. This behavior can 

occur for several reasons: 

A) The problem is intermittent and occurs only when the target itself is overused 

and the commands cannot return in a reasonable time frame. 

B) If the target is Windows®, the gateway might be throttling the requests. This 

concept is presented later. 

C) Other load or resources-based factors, such as hangs in the login because of 

Active Directory problems, or WMI being inoperable during the prior discovery. 

If the timeout persists, open the log file for the affected sensor. The log is in the 

dist/log/sensors/<runid> directory, where runid is the date stamp of the discovery you 

ran. If you use an anchor, the sensor log is on the anchor in the anchor users home 

directory under taddm7.2.1.x/anchor/log/sensors/<runid>. The name of the log includes 

the sensor name and IP that is failing. For WebSphere, you might also look at the local 

anchor log in the software discovery server dist/log directory. 

diagnose_sensor_timeouts.ppt Page 6 of 38



When you review the log, the first item to look for is how long is the sensor takes to time 

out. This information helps later when you assess which timeout value to change, if a 

change is required. 

To determine the time to time out, note the time stamp of the first message in the log file. 

Then, search for the first instance of DISCOVER_SENSOR_CLEANUP. This message 

indicates that a timeout occurred. Determine the difference between the time stamp of this 

message and the first message in the log. This difference is an indication of the current 

timeout setting, which can be a sensor timeout or a command timeout. 

diagnose_sensor_timeouts.ppt Page 7 of 38



Now that you know how long it took to time out, you must understand why. There are 

many possible reasons: 

A) A single command took longer than that timeout. 

B) A resource was not available and the software was waiting for it when it timed 

out. For example, the Windows gateway ssh program was denying the request 

because of load and the retry time exceeded the timeout. 

C) The sensor is running too many commands, and the combination of all of them 

and the length of their responses exceeded the timeout value. 

D) The response from a command was in an unexpected format. and it caused the 

sensor to hang. For example, password prompts on login. 

diagnose_sensor_timeouts.ppt Page 8 of 38



Here is a list of things you can do to determine the cause of the timeout. 

Locate the first DISCOVER_SENSOR_CLEANUP message. 

Look at the message and the messages immediately before and after it. 

Assess whether the previous command occurred seconds before or several 

minutes before. If it was several minutes earlier, determine what command was run. 

If possible, run the command manually on the target to determine how long it takes. 

Determine if the output looks correct for the command. 

If there is no long-running command, check the duration of all commands. 

Determine whether the total duration exceeds the default timeout value, which is 

typically 10 minutes. 

Determine if there are noticeable gaps in the log file where the software seems to 

be waiting to run a command. 

Next the presentation shows some examples. 

diagnose_sensor_timeouts.ppt Page 9 of 38



In this example, the sensor started at 20:51 and the timeout is at 21:03; it took 12 minutes 

to time out. When you examine the DISCOVER_SENSOR_CLEANUP message and 

surrounding ones, you see one command, sudo lswpar, timed out after 720 seconds or 

12 minutes.

diagnose_sensor_timeouts.ppt Page 10 of 38



The best resolution to a single command that takes to time much to complete is to 

determine why it is taking so long, rather than increasing the timeout. Review the log entry 

that shows the command that timed out. The log entry indicates the full command and the 

UNIX® IP and login ID. The entries often start with PATH and include the user that ran it. 

After you obtain this information, log in to the target directly with ssh that uses the same 

user ID as indicated in the log. Manually run the full command. Note how long it takes to 

run the command. On many UNIX systems, you can include time before the command to 

get accurate timing data.

diagnose_sensor_timeouts.ppt Page 11 of 38



After the command completes, note how long it took and review the results. In this 

example, the command produced a password prompt, which is not an expected 

response but is often triggered when you use sudo.

diagnose_sensor_timeouts.ppt Page 12 of 38



In this example, there are two possible solutions to the timeout. 

If there are WPARs to be discovered, then ensure that the discovery user can run the 

lswpar command without a password prompt by configuring NOPASSWD (no password) 

in the /etc/sudoers file. 

If there are no WPARs to be discovered in your environment, you can set the lswpar

command to blank in collation.properties file with the example shown so that no 

command is run. You can add a dotted decimal IP address to the end, to specify it for a 

single IP address rather than all AIX. 

diagnose_sensor_timeouts.ppt Page 13 of 38



In summary, when you deal with a timeout caused by a single command, perform these 

steps: 

1. Run the command manually and assess the time that it takes and the results. 

2. Determine if you can correct the issue with the command. 

3. The resolution can have multiple solutions; consider the best for your 

environment. 

4. If absolutely necessary, increase the sensor timeout. Note that doing so can 

increase overall discovery time because sensor timeouts are global. All of the 

sensors of the same type are now allowed to run for a longer time and use a limited 

pool of discovery threads. 

Consequences are covered in a few minutes. 

diagnose_sensor_timeouts.ppt Page 14 of 38



Timeouts that are caused by network latency are similar to the previous single long 

running command example. You see commands that run in a few seconds typically on 

local servers take minutes to complete on servers that are geographically distant or show 

other latency issues such as firewalls. In this example, a WMI request from the Tivoli 

Application Dependency Discovery Manager gateway to the Windows host 4.5.6.7, timed 

out after 260 seconds. The customer stated that this server was located far away, in Asia 

and the Tivoli Application Dependency Discovery Manager gateway is in the United States. 

They also said that there were network issues at times with the connectivity. 

diagnose_sensor_timeouts.ppt Page 15 of 38



In this example, you already know that there is a network latency issue that is based on 

customer description. The options to resolve this issue are presented on a later slide. But 

what if the latency issue is not known; where can you look next? 

Like the single-command example, it is best to try to run the command directly on the 

target. But because this system is Windows, doing so is not as straightforward as for 

UNIX. See technote 21628091 for detailed instructions on running Tivoli Application 

Dependency Discovery Manager commands manually on Windows. 

One caveat not mentioned in the previous example, is that there is more to the times you 

see in the Tivoli Application Dependency Discovery Manager log than the actual running of 

the command. The Tivoli Application Dependency Discovery Manager must receive the 

results and process them. If there is a large result set, the volume can add more 

overhead. When you evaluate the results of a command, keep the size of the results in 

mind. 

diagnose_sensor_timeouts.ppt Page 16 of 38

http://www-01.ibm.com/support/docview.wss?uid=swg21628091


If the command runs quickly on the target and with reasonable data returned, the problem 

might be network latency. 

You can also use simple tests like transferring a file between the target and the TADDM 

server and gateway, if applicable, with FTP and comparing those times to a working target. 

This test helps isolate network latency without using any TADDM-specific calls. 

If you find that the gateway is nearly as fast as the target, the problem is more likely to be 

between the TADDM server and the gateway or in the processing time of the result set. 

diagnose_sensor_timeouts.ppt Page 17 of 38



There are several paths to resolving network latency. 

1. The first choice is to correct the latency issue so that commands return within a 

reasonable amount of time. 

2. If the latency cannot be corrected, the next best choice is to put a TADDM 

discovery server or gateway closer to the target so that the sensor can gather the 

results more quickly. The data to be sent to the storage server is smaller, and 

latency is often not an issue with that transfer. 

3. If absolutely necessary, increase the timeout for the sensor, but as noted earlier, 

timeout changes apply to all sensors of the same type, and increases can cause 

longer discovery run times. 

This presentation shows information about timeout parameters later. 

diagnose_sensor_timeouts.ppt Page 18 of 38



The next timeout example is specifically for the ping sensor. In this example, the ping 

sensor timed out after 10 minutes and looks like it did not ping any targets.

diagnose_sensor_timeouts.ppt Page 19 of 38



The ping sensor attempts to contact every IP in scope; often this action means that many 

ping sensors are created for the particular runid. Because of operating-system limitations, 

only one ping sensor can actively ping at a time. This limitation means the other ping-

sensors must wait while each command completes. If there are many ping-sensors, some 

can time out. 

You can control only the value of how many pings a sensor can run concurrently, the 

default number is 255. If your operating system permits more ports to be open, then you 

can increase the ping burstsize in the collation.properties file with the 

com.collation.ping.burstsize property. Setting this property can often resolve the timeout 

issue. If necessary, you can increase the ping sensor timeout slightly, perhaps to 15

minutes, instead of the default value of 10 minutes, if you cannot increase the number of 

pings. 

diagnose_sensor_timeouts.ppt Page 20 of 38



The next example relates to how many SSH sessions Tivoli Application Dependency 

Discovery Manager can have for a single UNIX system at one time. By default, only three 

sessions are allowed to one UNIX IP at any one time. If you configure many sensors to 

run on a single computer concurrently, it can lead to timeouts while waiting for a session. 

This problem typically occurs on larger application servers. 

When this problem occurs, the symptom in the log file is gaps between the messages. In 

this example, you can see that the sensor ran a command and is preparing to run the next 

command, but there is a 34-second gap while waiting for that session. In this log file, this 

gap is repeated frequently, and the sensor then timed out after 10 minutes. You can see 

this gap by looking for the Found cached SessionClient messages and checking 

whether there is frequently a gap between it and the prior message. 

diagnose_sensor_timeouts.ppt Page 21 of 38



In this example, you can identify 12 gaps that total more than 8 minutes, which caused the 

agent to timeout at 10 minutes even though the individual commands ran quickly. 

This problem is more likely to occur on large application servers where the software is 

running more than 10 sensors on the single IP concurrently. This problem is more likely to 

occur in smaller discovery scopes since the smaller the scope, the more opportunities 

there are for a single IP to run multiple sensors concurrently. 

The software limits the total number of running sensors with the discovery worker property 

on the discovery server, otherwise known as dwcount. Normally the default value is 32 

sensors can run at one time. However, many customers with enough resources, increase 

this value, which can lead to running many more sensors for a single IP than typically seen 

in a smaller environment. When more sensors run, the poolsize property throttles the 

sessions to a single IP to ensure that the software does not use too many resources on 

the target. As previously mentioned, the default value is 3 sessions at one time. So if 20 

sensors are running for an IP, that means 17 are waiting while the others run. 

diagnose_sensor_timeouts.ppt Page 22 of 38



The best resolution to this issue, if it occurs frequently, is to increase the poolsize so that 

more sessions can run concurrently on the target. However, increasing the pool size 

means that you can run more commands concurrently and therefore increase the use of 

the target. If possible, scope the property to the addresses that display this issue so that 

you have control over the increased use. 

Additionally, larger scopes and lower dwcount can make this problem less likely to occur. 

The reason is because the likelihood of the same IP running many sensors concurrently 

decreases as the scope size increases and the thread count is lower. There is a fine 

balance, since a higher dwcount can often lead to improved discovery times. If the higher 

dwcount causes timeouts, and you do not want to increase target use with poolsize, you 

might have to decrease dwcount to limit the number of sensors that run concurrently. 

IBM does not recommend sensor timeout increases for this issue because the sensor that 

fails can vary, and given the global nature of sensor timeouts, increasing several can have 

a large impact on discovery performance. 

diagnose_sensor_timeouts.ppt Page 23 of 38



The prior example was for UNIX; what about Windows? You can see the same issue here 

in a Windows log file. Note the almost 3-minute wait for the session in the log messages 

on this slide. In this example, the discovery server is waiting for an SSH session to the 

Windows gateway.

diagnose_sensor_timeouts.ppt Page 24 of 38



A poolsize parameter com.collation.platform.session.GatewayPoolSize also controls 

the number of sessions to the Windows gateway. The default value is 20. You can set one 

value for each gateway by scoping it to the gateway IP or setting one value that applies to 

all gateways. You can increase this size, but you must monitor the processor and memory 

on the gateway before and after any changes to ensure that you do not overuse it. 

TADDMTool is very processor-intensive, and increasing the number that can run 

concurrently can cause the gateway to perform poorly, resulting in more, not fewer, 

timeouts. You should also monitor the SSH software logs to ensure no errors as you 

increase this property. Do not excessively increase this property; it should be lower than 

dwcount.

diagnose_sensor_timeouts.ppt Page 25 of 38



Also, note that by default, most gateways do not accept even 20 sessions at the same 

time. Often these sessions are considered as attacks and can be denied by the SSH 

software. 

There are links to two technotes shown. The first one describes how to configure Cygwin 

and Bitvise so that sessions are not denied based on too many requests at once. The 

second one relates to Windows 2008 SP2 gateways running getInstalledSoftware. If you 

are running Windows 2008 SP2 on the gateway, be sure to apply the fix that is indicated in 

the technote. 

It is wise to monitor the cygwin/bitvise log file on the gateway for any changes to ensure 

that increased traffic does not create other errors. 

diagnose_sensor_timeouts.ppt Page 26 of 38



When you set pool sizes for UNIX or Windows, be aware that there is a relationship 

between the pool size, the size of the discovery, and the discover worker thread count or 

dwcount. 

If you discover a computer system with many applications on it, the software might run 30 

or more sensors concurrently in the case of a small discovery or a large dwcount. A 

poolsize that is set to 3 means that only 3 of those sensors can actively work at one time; 

the other sensors wait and no new sensors can start. 

Some customers increase the dwcount value to improve sensor throughput when 

available resources on their discovery servers, gateways, and anchors are present. If you 

increase the dwcount value, you do not increase the storage threads; typically 16 storage 

threads can saturate a storage server. Lab testing confirmed that the lower the storage 

thread count, the better the performance, with 8 being the optimal setting. You set storage 

threads with the com.collation.discover.observer.topopumpcount property. 

When you increase any thread count, be careful to monitor the software system resources 

(processor, memory, and IO statistics) to ensure that the changes do not overload the 

available resources. 

diagnose_sensor_timeouts.ppt Page 27 of 38



To summarize the pool sizes, perform these steps: 

1. The total of the pools should not exceed the dwcount, which is the total of all 

sensors. 

2. Increasing the poolsize can increase the concurrent load on a single target 

because it can run more commands together. 

3. Review both of the technotes that regard tuning the gateway and make any 

appropriate changes. 

4. Increase the dwcount only if you evaluated that you have enough resources on 

the discovery server, anchors, and gateways. 

5. If you increase the dwcount, it is not necessary to increase the storage threads; 

typically 16 storage threads can saturate a storage server. Increasing the 

topopumpcount is risky and can lead to unpredictable results. 

diagnose_sensor_timeouts.ppt Page 28 of 38



Now that you went through several examples, you are ready to learn about when to 

increase a sensor timeout value. Sometimes it is necessary, especially for larger 

applications like WebSphere or large database servers. When this problem occurs, the log 

file typically shows that the commands are all running. Some commands might take a few 

minutes, but the results set is large and expected. There are not many gaps of time in the 

log file to indicate a pooling issue. If so, then increasing the timeout value might be the 

only option.

diagnose_sensor_timeouts.ppt Page 29 of 38



Before you increase the timeout value, look at an example of the potential discovery time 

trade-off that occurs when timeout values are increased. 

For example, if you run 1000 Windows sensors and 900 of them take 5 minutes each to 

discover, but 100 take 2 hours each, what is the difference in discovery time if you 

increase the timeout from the default value of 10 minutes to 2 hours? 

If the discovery worker count is 32, that means the 900 sensors take 900 divided by 32 

threads times 5 minutes to run. This duration is approximately 2 hours and 20 minutes. 

The 100 sensors that take 2 hours fail to discover if the timeout is 10 minutes; it takes 30 

minutes more for a total of 3 hours. These 100 Windows computer system are not in Tivoli 

Application Dependency Discovery Manager. 

diagnose_sensor_timeouts.ppt Page 30 of 38



If the timeout is increased to 2 hours, the 100 Windows computer systems can be 

discovered. The first 900 sensors still take 2 hours and 20 minutes, but the remaining 100 

takes 100 divided by 32 threads times 2 hours to discover, or an extra 6 hours. The initial 

discovery run that took 3 hours now takes almost 9 hours to complete after the timeout 

value is increased. However, the 100 sensors that previously failed are now stored in Tivoli 

Application Dependency Discovery Manager. 

This example is basic; it does not account for the threads that are in a more mixed batch. 

Increasing the discover worker count value can mitigate the performance decrease, but 

more memory can be used to do so along with correct gateway, anchor, and poolsize

tuning. 

This example illustrates the trade-off of time versus discovery results. The trade-off might 

be worth it if there is no other way to improve the 100 slow Windows systems, but 

increase the timeout value with the understanding that discovery must take longer. 

diagnose_sensor_timeouts.ppt Page 31 of 38



To increase the timeout, you must know if the entire sensor timed out or if it was a single 

command that timed out. There are two controls in collation.properties for timeouts: 

1. The ssh session command timeout. 

By default the value is 4 minutes and is the maximum length of time a single 

command can take to return results. This timeout often manifests as a 

CTJTP1104E message that is shown in some of the previous examples. 

2. The sensor itself times out, all the commands run finished within 4 minutes, but 

the sum of them exceeded the default 10 minutes. 

If you determined that an ssh command is taking more than 4 minutes and you cannot 

correct it, you should increase com.collation.SshSessionCommandTimeout value 

appropriately, but not greatly, because it affects all sensors. 

Syntax discussion is next. 

diagnose_sensor_timeouts.ppt Page 32 of 38



Often if you must increase the ssh command timeout duration, you must increase the 

sensor total timeout value too. If one command runs for 8 minutes, then probably the 

entire sensor needs more than 10 minutes to complete. 

This property affects all sensors. Some sensors have individual command timeouts. Refer 

to the appendix for details on those properties. 

diagnose_sensor_timeouts.ppt Page 33 of 38



To increase sensor timeouts, follow the format on this slide, where sensor name is 

typically the name you see within the sensor log file. This format applies to Tivoli 

Application Dependency Discovery Manager V7.2.1 FP 1 and higher. Before this fix pack, 

some sensors used Sensor and some used Agent in the sensor name field. After Fix Pack 

1, use Sensor. However, Agent might still work for older sensors. The time is in 

milliseconds. 

Again, remember that sensor timeouts apply to all sensors of the same type. You cannot 

use the IP address to scope this property. Increasing the sensor timeout can increase 

discovery time. For example, if you have five slow WebSphere sensors and increase the 

timeout to 2 hours, they actually take that long. So another sensor cannot use five of the 

default 32 threads (dwcount) for 2 hours. 

diagnose_sensor_timeouts.ppt Page 34 of 38



There is a default agent timeout of 10 minutes that you should never change because it is 

the value that is used if no other sensor timeout is coded. Increasing the value means that 

every sensor can run longer and can have a much larger effect on discovery performance 

than if you change a single sensor. 

If you must change a timeout value, change the specific sensor only, or the ssh timeout 

value.

diagnose_sensor_timeouts.ppt Page 35 of 38



Now that you completed this module, you can diagnose and correct sensor timeouts in 

Tivoli Application Dependency Discovery Manager. 

You can: 

- Collect and view sensor debug logs 

- Identify the reason for the timeout in the log 

- Manually run any commands that appear to be failing to further diagnose when 

needed 

- Increase Ping Burst Size for PingSensor Timeouts 

- Increase the session pool size for UNIX and Windows 

- Increase the sensor timeout if no other options 

diagnose_sensor_timeouts.ppt Page 36 of 38



diagnose_sensor_timeouts.ppt Page 37 of 38


